xref: /openbmc/linux/mm/migrate.c (revision 8958b249)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 void migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 }
81 
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84 	struct address_space *mapping;
85 
86 	/*
87 	 * Avoid burning cycles with pages that are yet under __free_pages(),
88 	 * or just got freed under us.
89 	 *
90 	 * In case we 'win' a race for a movable page being freed under us and
91 	 * raise its refcount preventing __free_pages() from doing its job
92 	 * the put_page() at the end of this block will take care of
93 	 * release this page, thus avoiding a nasty leakage.
94 	 */
95 	if (unlikely(!get_page_unless_zero(page)))
96 		goto out;
97 
98 	/*
99 	 * Check PageMovable before holding a PG_lock because page's owner
100 	 * assumes anybody doesn't touch PG_lock of newly allocated page
101 	 * so unconditionally grabbing the lock ruins page's owner side.
102 	 */
103 	if (unlikely(!__PageMovable(page)))
104 		goto out_putpage;
105 	/*
106 	 * As movable pages are not isolated from LRU lists, concurrent
107 	 * compaction threads can race against page migration functions
108 	 * as well as race against the releasing a page.
109 	 *
110 	 * In order to avoid having an already isolated movable page
111 	 * being (wrongly) re-isolated while it is under migration,
112 	 * or to avoid attempting to isolate pages being released,
113 	 * lets be sure we have the page lock
114 	 * before proceeding with the movable page isolation steps.
115 	 */
116 	if (unlikely(!trylock_page(page)))
117 		goto out_putpage;
118 
119 	if (!PageMovable(page) || PageIsolated(page))
120 		goto out_no_isolated;
121 
122 	mapping = page_mapping(page);
123 	VM_BUG_ON_PAGE(!mapping, page);
124 
125 	if (!mapping->a_ops->isolate_page(page, mode))
126 		goto out_no_isolated;
127 
128 	/* Driver shouldn't use PG_isolated bit of page->flags */
129 	WARN_ON_ONCE(PageIsolated(page));
130 	__SetPageIsolated(page);
131 	unlock_page(page);
132 
133 	return 0;
134 
135 out_no_isolated:
136 	unlock_page(page);
137 out_putpage:
138 	put_page(page);
139 out:
140 	return -EBUSY;
141 }
142 
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146 	struct address_space *mapping;
147 
148 	VM_BUG_ON_PAGE(!PageLocked(page), page);
149 	VM_BUG_ON_PAGE(!PageMovable(page), page);
150 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
151 
152 	mapping = page_mapping(page);
153 	mapping->a_ops->putback_page(page);
154 	__ClearPageIsolated(page);
155 }
156 
157 /*
158  * Put previously isolated pages back onto the appropriate lists
159  * from where they were once taken off for compaction/migration.
160  *
161  * This function shall be used whenever the isolated pageset has been
162  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163  * and isolate_huge_page().
164  */
165 void putback_movable_pages(struct list_head *l)
166 {
167 	struct page *page;
168 	struct page *page2;
169 
170 	list_for_each_entry_safe(page, page2, l, lru) {
171 		if (unlikely(PageHuge(page))) {
172 			putback_active_hugepage(page);
173 			continue;
174 		}
175 		list_del(&page->lru);
176 		/*
177 		 * We isolated non-lru movable page so here we can use
178 		 * __PageMovable because LRU page's mapping cannot have
179 		 * PAGE_MAPPING_MOVABLE.
180 		 */
181 		if (unlikely(__PageMovable(page))) {
182 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 			lock_page(page);
184 			if (PageMovable(page))
185 				putback_movable_page(page);
186 			else
187 				__ClearPageIsolated(page);
188 			unlock_page(page);
189 			put_page(page);
190 		} else {
191 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 					page_is_file_lru(page), -thp_nr_pages(page));
193 			putback_lru_page(page);
194 		}
195 	}
196 }
197 
198 /*
199  * Restore a potential migration pte to a working pte entry
200  */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 				 unsigned long addr, void *old)
203 {
204 	struct page_vma_mapped_walk pvmw = {
205 		.page = old,
206 		.vma = vma,
207 		.address = addr,
208 		.flags = PVMW_SYNC | PVMW_MIGRATION,
209 	};
210 	struct page *new;
211 	pte_t pte;
212 	swp_entry_t entry;
213 
214 	VM_BUG_ON_PAGE(PageTail(page), page);
215 	while (page_vma_mapped_walk(&pvmw)) {
216 		if (PageKsm(page))
217 			new = page;
218 		else
219 			new = page - pvmw.page->index +
220 				linear_page_index(vma, pvmw.address);
221 
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 		/* PMD-mapped THP migration entry */
224 		if (!pvmw.pte) {
225 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 			remove_migration_pmd(&pvmw, new);
227 			continue;
228 		}
229 #endif
230 
231 		get_page(new);
232 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 		if (pte_swp_soft_dirty(*pvmw.pte))
234 			pte = pte_mksoft_dirty(pte);
235 
236 		/*
237 		 * Recheck VMA as permissions can change since migration started
238 		 */
239 		entry = pte_to_swp_entry(*pvmw.pte);
240 		if (is_write_migration_entry(entry))
241 			pte = maybe_mkwrite(pte, vma);
242 		else if (pte_swp_uffd_wp(*pvmw.pte))
243 			pte = pte_mkuffd_wp(pte);
244 
245 		if (unlikely(is_device_private_page(new))) {
246 			entry = make_device_private_entry(new, pte_write(pte));
247 			pte = swp_entry_to_pte(entry);
248 			if (pte_swp_soft_dirty(*pvmw.pte))
249 				pte = pte_swp_mksoft_dirty(pte);
250 			if (pte_swp_uffd_wp(*pvmw.pte))
251 				pte = pte_swp_mkuffd_wp(pte);
252 		}
253 
254 #ifdef CONFIG_HUGETLB_PAGE
255 		if (PageHuge(new)) {
256 			pte = pte_mkhuge(pte);
257 			pte = arch_make_huge_pte(pte, vma, new, 0);
258 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 			if (PageAnon(new))
260 				hugepage_add_anon_rmap(new, vma, pvmw.address);
261 			else
262 				page_dup_rmap(new, true);
263 		} else
264 #endif
265 		{
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 
268 			if (PageAnon(new))
269 				page_add_anon_rmap(new, vma, pvmw.address, false);
270 			else
271 				page_add_file_rmap(new, false);
272 		}
273 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 			mlock_vma_page(new);
275 
276 		if (PageTransHuge(page) && PageMlocked(page))
277 			clear_page_mlock(page);
278 
279 		/* No need to invalidate - it was non-present before */
280 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 	}
282 
283 	return true;
284 }
285 
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 	struct rmap_walk_control rwc = {
293 		.rmap_one = remove_migration_pte,
294 		.arg = old,
295 	};
296 
297 	if (locked)
298 		rmap_walk_locked(new, &rwc);
299 	else
300 		rmap_walk(new, &rwc);
301 }
302 
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 				spinlock_t *ptl)
310 {
311 	pte_t pte;
312 	swp_entry_t entry;
313 	struct page *page;
314 
315 	spin_lock(ptl);
316 	pte = *ptep;
317 	if (!is_swap_pte(pte))
318 		goto out;
319 
320 	entry = pte_to_swp_entry(pte);
321 	if (!is_migration_entry(entry))
322 		goto out;
323 
324 	page = migration_entry_to_page(entry);
325 
326 	/*
327 	 * Once page cache replacement of page migration started, page_count
328 	 * is zero; but we must not call put_and_wait_on_page_locked() without
329 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 	 */
331 	if (!get_page_unless_zero(page))
332 		goto out;
333 	pte_unmap_unlock(ptep, ptl);
334 	put_and_wait_on_page_locked(page);
335 	return;
336 out:
337 	pte_unmap_unlock(ptep, ptl);
338 }
339 
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 				unsigned long address)
342 {
343 	spinlock_t *ptl = pte_lockptr(mm, pmd);
344 	pte_t *ptep = pte_offset_map(pmd, address);
345 	__migration_entry_wait(mm, ptep, ptl);
346 }
347 
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 		struct mm_struct *mm, pte_t *pte)
350 {
351 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 	__migration_entry_wait(mm, pte, ptl);
353 }
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 	struct page *page;
360 
361 	ptl = pmd_lock(mm, pmd);
362 	if (!is_pmd_migration_entry(*pmd))
363 		goto unlock;
364 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 	if (!get_page_unless_zero(page))
366 		goto unlock;
367 	spin_unlock(ptl);
368 	put_and_wait_on_page_locked(page);
369 	return;
370 unlock:
371 	spin_unlock(ptl);
372 }
373 #endif
374 
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 	int expected_count = 1;
378 
379 	/*
380 	 * Device private pages have an extra refcount as they are
381 	 * ZONE_DEVICE pages.
382 	 */
383 	expected_count += is_device_private_page(page);
384 	if (mapping)
385 		expected_count += thp_nr_pages(page) + page_has_private(page);
386 
387 	return expected_count;
388 }
389 
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399 		struct page *newpage, struct page *page, int extra_count)
400 {
401 	XA_STATE(xas, &mapping->i_pages, page_index(page));
402 	struct zone *oldzone, *newzone;
403 	int dirty;
404 	int expected_count = expected_page_refs(mapping, page) + extra_count;
405 
406 	if (!mapping) {
407 		/* Anonymous page without mapping */
408 		if (page_count(page) != expected_count)
409 			return -EAGAIN;
410 
411 		/* No turning back from here */
412 		newpage->index = page->index;
413 		newpage->mapping = page->mapping;
414 		if (PageSwapBacked(page))
415 			__SetPageSwapBacked(newpage);
416 
417 		return MIGRATEPAGE_SUCCESS;
418 	}
419 
420 	oldzone = page_zone(page);
421 	newzone = page_zone(newpage);
422 
423 	xas_lock_irq(&xas);
424 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 		xas_unlock_irq(&xas);
426 		return -EAGAIN;
427 	}
428 
429 	if (!page_ref_freeze(page, expected_count)) {
430 		xas_unlock_irq(&xas);
431 		return -EAGAIN;
432 	}
433 
434 	/*
435 	 * Now we know that no one else is looking at the page:
436 	 * no turning back from here.
437 	 */
438 	newpage->index = page->index;
439 	newpage->mapping = page->mapping;
440 	page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
441 	if (PageSwapBacked(page)) {
442 		__SetPageSwapBacked(newpage);
443 		if (PageSwapCache(page)) {
444 			SetPageSwapCache(newpage);
445 			set_page_private(newpage, page_private(page));
446 		}
447 	} else {
448 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
449 	}
450 
451 	/* Move dirty while page refs frozen and newpage not yet exposed */
452 	dirty = PageDirty(page);
453 	if (dirty) {
454 		ClearPageDirty(page);
455 		SetPageDirty(newpage);
456 	}
457 
458 	xas_store(&xas, newpage);
459 	if (PageTransHuge(page)) {
460 		int i;
461 
462 		for (i = 1; i < HPAGE_PMD_NR; i++) {
463 			xas_next(&xas);
464 			xas_store(&xas, newpage);
465 		}
466 	}
467 
468 	/*
469 	 * Drop cache reference from old page by unfreezing
470 	 * to one less reference.
471 	 * We know this isn't the last reference.
472 	 */
473 	page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
474 
475 	xas_unlock(&xas);
476 	/* Leave irq disabled to prevent preemption while updating stats */
477 
478 	/*
479 	 * If moved to a different zone then also account
480 	 * the page for that zone. Other VM counters will be
481 	 * taken care of when we establish references to the
482 	 * new page and drop references to the old page.
483 	 *
484 	 * Note that anonymous pages are accounted for
485 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 	 * are mapped to swap space.
487 	 */
488 	if (newzone != oldzone) {
489 		struct lruvec *old_lruvec, *new_lruvec;
490 		struct mem_cgroup *memcg;
491 
492 		memcg = page_memcg(page);
493 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
494 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
495 
496 		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
497 		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
498 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
499 			__dec_lruvec_state(old_lruvec, NR_SHMEM);
500 			__inc_lruvec_state(new_lruvec, NR_SHMEM);
501 		}
502 		if (dirty && mapping_can_writeback(mapping)) {
503 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
504 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
505 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
506 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
507 		}
508 	}
509 	local_irq_enable();
510 
511 	return MIGRATEPAGE_SUCCESS;
512 }
513 EXPORT_SYMBOL(migrate_page_move_mapping);
514 
515 /*
516  * The expected number of remaining references is the same as that
517  * of migrate_page_move_mapping().
518  */
519 int migrate_huge_page_move_mapping(struct address_space *mapping,
520 				   struct page *newpage, struct page *page)
521 {
522 	XA_STATE(xas, &mapping->i_pages, page_index(page));
523 	int expected_count;
524 
525 	xas_lock_irq(&xas);
526 	expected_count = 2 + page_has_private(page);
527 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
528 		xas_unlock_irq(&xas);
529 		return -EAGAIN;
530 	}
531 
532 	if (!page_ref_freeze(page, expected_count)) {
533 		xas_unlock_irq(&xas);
534 		return -EAGAIN;
535 	}
536 
537 	newpage->index = page->index;
538 	newpage->mapping = page->mapping;
539 
540 	get_page(newpage);
541 
542 	xas_store(&xas, newpage);
543 
544 	page_ref_unfreeze(page, expected_count - 1);
545 
546 	xas_unlock_irq(&xas);
547 
548 	return MIGRATEPAGE_SUCCESS;
549 }
550 
551 /*
552  * Gigantic pages are so large that we do not guarantee that page++ pointer
553  * arithmetic will work across the entire page.  We need something more
554  * specialized.
555  */
556 static void __copy_gigantic_page(struct page *dst, struct page *src,
557 				int nr_pages)
558 {
559 	int i;
560 	struct page *dst_base = dst;
561 	struct page *src_base = src;
562 
563 	for (i = 0; i < nr_pages; ) {
564 		cond_resched();
565 		copy_highpage(dst, src);
566 
567 		i++;
568 		dst = mem_map_next(dst, dst_base, i);
569 		src = mem_map_next(src, src_base, i);
570 	}
571 }
572 
573 static void copy_huge_page(struct page *dst, struct page *src)
574 {
575 	int i;
576 	int nr_pages;
577 
578 	if (PageHuge(src)) {
579 		/* hugetlbfs page */
580 		struct hstate *h = page_hstate(src);
581 		nr_pages = pages_per_huge_page(h);
582 
583 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
584 			__copy_gigantic_page(dst, src, nr_pages);
585 			return;
586 		}
587 	} else {
588 		/* thp page */
589 		BUG_ON(!PageTransHuge(src));
590 		nr_pages = thp_nr_pages(src);
591 	}
592 
593 	for (i = 0; i < nr_pages; i++) {
594 		cond_resched();
595 		copy_highpage(dst + i, src + i);
596 	}
597 }
598 
599 /*
600  * Copy the page to its new location
601  */
602 void migrate_page_states(struct page *newpage, struct page *page)
603 {
604 	int cpupid;
605 
606 	if (PageError(page))
607 		SetPageError(newpage);
608 	if (PageReferenced(page))
609 		SetPageReferenced(newpage);
610 	if (PageUptodate(page))
611 		SetPageUptodate(newpage);
612 	if (TestClearPageActive(page)) {
613 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
614 		SetPageActive(newpage);
615 	} else if (TestClearPageUnevictable(page))
616 		SetPageUnevictable(newpage);
617 	if (PageWorkingset(page))
618 		SetPageWorkingset(newpage);
619 	if (PageChecked(page))
620 		SetPageChecked(newpage);
621 	if (PageMappedToDisk(page))
622 		SetPageMappedToDisk(newpage);
623 
624 	/* Move dirty on pages not done by migrate_page_move_mapping() */
625 	if (PageDirty(page))
626 		SetPageDirty(newpage);
627 
628 	if (page_is_young(page))
629 		set_page_young(newpage);
630 	if (page_is_idle(page))
631 		set_page_idle(newpage);
632 
633 	/*
634 	 * Copy NUMA information to the new page, to prevent over-eager
635 	 * future migrations of this same page.
636 	 */
637 	cpupid = page_cpupid_xchg_last(page, -1);
638 	page_cpupid_xchg_last(newpage, cpupid);
639 
640 	ksm_migrate_page(newpage, page);
641 	/*
642 	 * Please do not reorder this without considering how mm/ksm.c's
643 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
644 	 */
645 	if (PageSwapCache(page))
646 		ClearPageSwapCache(page);
647 	ClearPagePrivate(page);
648 	set_page_private(page, 0);
649 
650 	/*
651 	 * If any waiters have accumulated on the new page then
652 	 * wake them up.
653 	 */
654 	if (PageWriteback(newpage))
655 		end_page_writeback(newpage);
656 
657 	/*
658 	 * PG_readahead shares the same bit with PG_reclaim.  The above
659 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
660 	 * bit after that.
661 	 */
662 	if (PageReadahead(page))
663 		SetPageReadahead(newpage);
664 
665 	copy_page_owner(page, newpage);
666 
667 	if (!PageHuge(page))
668 		mem_cgroup_migrate(page, newpage);
669 }
670 EXPORT_SYMBOL(migrate_page_states);
671 
672 void migrate_page_copy(struct page *newpage, struct page *page)
673 {
674 	if (PageHuge(page) || PageTransHuge(page))
675 		copy_huge_page(newpage, page);
676 	else
677 		copy_highpage(newpage, page);
678 
679 	migrate_page_states(newpage, page);
680 }
681 EXPORT_SYMBOL(migrate_page_copy);
682 
683 /************************************************************
684  *                    Migration functions
685  ***********************************************************/
686 
687 /*
688  * Common logic to directly migrate a single LRU page suitable for
689  * pages that do not use PagePrivate/PagePrivate2.
690  *
691  * Pages are locked upon entry and exit.
692  */
693 int migrate_page(struct address_space *mapping,
694 		struct page *newpage, struct page *page,
695 		enum migrate_mode mode)
696 {
697 	int rc;
698 
699 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
700 
701 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
702 
703 	if (rc != MIGRATEPAGE_SUCCESS)
704 		return rc;
705 
706 	if (mode != MIGRATE_SYNC_NO_COPY)
707 		migrate_page_copy(newpage, page);
708 	else
709 		migrate_page_states(newpage, page);
710 	return MIGRATEPAGE_SUCCESS;
711 }
712 EXPORT_SYMBOL(migrate_page);
713 
714 #ifdef CONFIG_BLOCK
715 /* Returns true if all buffers are successfully locked */
716 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
717 							enum migrate_mode mode)
718 {
719 	struct buffer_head *bh = head;
720 
721 	/* Simple case, sync compaction */
722 	if (mode != MIGRATE_ASYNC) {
723 		do {
724 			lock_buffer(bh);
725 			bh = bh->b_this_page;
726 
727 		} while (bh != head);
728 
729 		return true;
730 	}
731 
732 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
733 	do {
734 		if (!trylock_buffer(bh)) {
735 			/*
736 			 * We failed to lock the buffer and cannot stall in
737 			 * async migration. Release the taken locks
738 			 */
739 			struct buffer_head *failed_bh = bh;
740 			bh = head;
741 			while (bh != failed_bh) {
742 				unlock_buffer(bh);
743 				bh = bh->b_this_page;
744 			}
745 			return false;
746 		}
747 
748 		bh = bh->b_this_page;
749 	} while (bh != head);
750 	return true;
751 }
752 
753 static int __buffer_migrate_page(struct address_space *mapping,
754 		struct page *newpage, struct page *page, enum migrate_mode mode,
755 		bool check_refs)
756 {
757 	struct buffer_head *bh, *head;
758 	int rc;
759 	int expected_count;
760 
761 	if (!page_has_buffers(page))
762 		return migrate_page(mapping, newpage, page, mode);
763 
764 	/* Check whether page does not have extra refs before we do more work */
765 	expected_count = expected_page_refs(mapping, page);
766 	if (page_count(page) != expected_count)
767 		return -EAGAIN;
768 
769 	head = page_buffers(page);
770 	if (!buffer_migrate_lock_buffers(head, mode))
771 		return -EAGAIN;
772 
773 	if (check_refs) {
774 		bool busy;
775 		bool invalidated = false;
776 
777 recheck_buffers:
778 		busy = false;
779 		spin_lock(&mapping->private_lock);
780 		bh = head;
781 		do {
782 			if (atomic_read(&bh->b_count)) {
783 				busy = true;
784 				break;
785 			}
786 			bh = bh->b_this_page;
787 		} while (bh != head);
788 		if (busy) {
789 			if (invalidated) {
790 				rc = -EAGAIN;
791 				goto unlock_buffers;
792 			}
793 			spin_unlock(&mapping->private_lock);
794 			invalidate_bh_lrus();
795 			invalidated = true;
796 			goto recheck_buffers;
797 		}
798 	}
799 
800 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
801 	if (rc != MIGRATEPAGE_SUCCESS)
802 		goto unlock_buffers;
803 
804 	attach_page_private(newpage, detach_page_private(page));
805 
806 	bh = head;
807 	do {
808 		set_bh_page(bh, newpage, bh_offset(bh));
809 		bh = bh->b_this_page;
810 
811 	} while (bh != head);
812 
813 	if (mode != MIGRATE_SYNC_NO_COPY)
814 		migrate_page_copy(newpage, page);
815 	else
816 		migrate_page_states(newpage, page);
817 
818 	rc = MIGRATEPAGE_SUCCESS;
819 unlock_buffers:
820 	if (check_refs)
821 		spin_unlock(&mapping->private_lock);
822 	bh = head;
823 	do {
824 		unlock_buffer(bh);
825 		bh = bh->b_this_page;
826 
827 	} while (bh != head);
828 
829 	return rc;
830 }
831 
832 /*
833  * Migration function for pages with buffers. This function can only be used
834  * if the underlying filesystem guarantees that no other references to "page"
835  * exist. For example attached buffer heads are accessed only under page lock.
836  */
837 int buffer_migrate_page(struct address_space *mapping,
838 		struct page *newpage, struct page *page, enum migrate_mode mode)
839 {
840 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
841 }
842 EXPORT_SYMBOL(buffer_migrate_page);
843 
844 /*
845  * Same as above except that this variant is more careful and checks that there
846  * are also no buffer head references. This function is the right one for
847  * mappings where buffer heads are directly looked up and referenced (such as
848  * block device mappings).
849  */
850 int buffer_migrate_page_norefs(struct address_space *mapping,
851 		struct page *newpage, struct page *page, enum migrate_mode mode)
852 {
853 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
854 }
855 #endif
856 
857 /*
858  * Writeback a page to clean the dirty state
859  */
860 static int writeout(struct address_space *mapping, struct page *page)
861 {
862 	struct writeback_control wbc = {
863 		.sync_mode = WB_SYNC_NONE,
864 		.nr_to_write = 1,
865 		.range_start = 0,
866 		.range_end = LLONG_MAX,
867 		.for_reclaim = 1
868 	};
869 	int rc;
870 
871 	if (!mapping->a_ops->writepage)
872 		/* No write method for the address space */
873 		return -EINVAL;
874 
875 	if (!clear_page_dirty_for_io(page))
876 		/* Someone else already triggered a write */
877 		return -EAGAIN;
878 
879 	/*
880 	 * A dirty page may imply that the underlying filesystem has
881 	 * the page on some queue. So the page must be clean for
882 	 * migration. Writeout may mean we loose the lock and the
883 	 * page state is no longer what we checked for earlier.
884 	 * At this point we know that the migration attempt cannot
885 	 * be successful.
886 	 */
887 	remove_migration_ptes(page, page, false);
888 
889 	rc = mapping->a_ops->writepage(page, &wbc);
890 
891 	if (rc != AOP_WRITEPAGE_ACTIVATE)
892 		/* unlocked. Relock */
893 		lock_page(page);
894 
895 	return (rc < 0) ? -EIO : -EAGAIN;
896 }
897 
898 /*
899  * Default handling if a filesystem does not provide a migration function.
900  */
901 static int fallback_migrate_page(struct address_space *mapping,
902 	struct page *newpage, struct page *page, enum migrate_mode mode)
903 {
904 	if (PageDirty(page)) {
905 		/* Only writeback pages in full synchronous migration */
906 		switch (mode) {
907 		case MIGRATE_SYNC:
908 		case MIGRATE_SYNC_NO_COPY:
909 			break;
910 		default:
911 			return -EBUSY;
912 		}
913 		return writeout(mapping, page);
914 	}
915 
916 	/*
917 	 * Buffers may be managed in a filesystem specific way.
918 	 * We must have no buffers or drop them.
919 	 */
920 	if (page_has_private(page) &&
921 	    !try_to_release_page(page, GFP_KERNEL))
922 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
923 
924 	return migrate_page(mapping, newpage, page, mode);
925 }
926 
927 /*
928  * Move a page to a newly allocated page
929  * The page is locked and all ptes have been successfully removed.
930  *
931  * The new page will have replaced the old page if this function
932  * is successful.
933  *
934  * Return value:
935  *   < 0 - error code
936  *  MIGRATEPAGE_SUCCESS - success
937  */
938 static int move_to_new_page(struct page *newpage, struct page *page,
939 				enum migrate_mode mode)
940 {
941 	struct address_space *mapping;
942 	int rc = -EAGAIN;
943 	bool is_lru = !__PageMovable(page);
944 
945 	VM_BUG_ON_PAGE(!PageLocked(page), page);
946 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
947 
948 	mapping = page_mapping(page);
949 
950 	if (likely(is_lru)) {
951 		if (!mapping)
952 			rc = migrate_page(mapping, newpage, page, mode);
953 		else if (mapping->a_ops->migratepage)
954 			/*
955 			 * Most pages have a mapping and most filesystems
956 			 * provide a migratepage callback. Anonymous pages
957 			 * are part of swap space which also has its own
958 			 * migratepage callback. This is the most common path
959 			 * for page migration.
960 			 */
961 			rc = mapping->a_ops->migratepage(mapping, newpage,
962 							page, mode);
963 		else
964 			rc = fallback_migrate_page(mapping, newpage,
965 							page, mode);
966 	} else {
967 		/*
968 		 * In case of non-lru page, it could be released after
969 		 * isolation step. In that case, we shouldn't try migration.
970 		 */
971 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
972 		if (!PageMovable(page)) {
973 			rc = MIGRATEPAGE_SUCCESS;
974 			__ClearPageIsolated(page);
975 			goto out;
976 		}
977 
978 		rc = mapping->a_ops->migratepage(mapping, newpage,
979 						page, mode);
980 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
981 			!PageIsolated(page));
982 	}
983 
984 	/*
985 	 * When successful, old pagecache page->mapping must be cleared before
986 	 * page is freed; but stats require that PageAnon be left as PageAnon.
987 	 */
988 	if (rc == MIGRATEPAGE_SUCCESS) {
989 		if (__PageMovable(page)) {
990 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
991 
992 			/*
993 			 * We clear PG_movable under page_lock so any compactor
994 			 * cannot try to migrate this page.
995 			 */
996 			__ClearPageIsolated(page);
997 		}
998 
999 		/*
1000 		 * Anonymous and movable page->mapping will be cleared by
1001 		 * free_pages_prepare so don't reset it here for keeping
1002 		 * the type to work PageAnon, for example.
1003 		 */
1004 		if (!PageMappingFlags(page))
1005 			page->mapping = NULL;
1006 
1007 		if (likely(!is_zone_device_page(newpage)))
1008 			flush_dcache_page(newpage);
1009 
1010 	}
1011 out:
1012 	return rc;
1013 }
1014 
1015 static int __unmap_and_move(struct page *page, struct page *newpage,
1016 				int force, enum migrate_mode mode)
1017 {
1018 	int rc = -EAGAIN;
1019 	int page_was_mapped = 0;
1020 	struct anon_vma *anon_vma = NULL;
1021 	bool is_lru = !__PageMovable(page);
1022 
1023 	if (!trylock_page(page)) {
1024 		if (!force || mode == MIGRATE_ASYNC)
1025 			goto out;
1026 
1027 		/*
1028 		 * It's not safe for direct compaction to call lock_page.
1029 		 * For example, during page readahead pages are added locked
1030 		 * to the LRU. Later, when the IO completes the pages are
1031 		 * marked uptodate and unlocked. However, the queueing
1032 		 * could be merging multiple pages for one bio (e.g.
1033 		 * mpage_readahead). If an allocation happens for the
1034 		 * second or third page, the process can end up locking
1035 		 * the same page twice and deadlocking. Rather than
1036 		 * trying to be clever about what pages can be locked,
1037 		 * avoid the use of lock_page for direct compaction
1038 		 * altogether.
1039 		 */
1040 		if (current->flags & PF_MEMALLOC)
1041 			goto out;
1042 
1043 		lock_page(page);
1044 	}
1045 
1046 	if (PageWriteback(page)) {
1047 		/*
1048 		 * Only in the case of a full synchronous migration is it
1049 		 * necessary to wait for PageWriteback. In the async case,
1050 		 * the retry loop is too short and in the sync-light case,
1051 		 * the overhead of stalling is too much
1052 		 */
1053 		switch (mode) {
1054 		case MIGRATE_SYNC:
1055 		case MIGRATE_SYNC_NO_COPY:
1056 			break;
1057 		default:
1058 			rc = -EBUSY;
1059 			goto out_unlock;
1060 		}
1061 		if (!force)
1062 			goto out_unlock;
1063 		wait_on_page_writeback(page);
1064 	}
1065 
1066 	/*
1067 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1068 	 * we cannot notice that anon_vma is freed while we migrates a page.
1069 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1070 	 * of migration. File cache pages are no problem because of page_lock()
1071 	 * File Caches may use write_page() or lock_page() in migration, then,
1072 	 * just care Anon page here.
1073 	 *
1074 	 * Only page_get_anon_vma() understands the subtleties of
1075 	 * getting a hold on an anon_vma from outside one of its mms.
1076 	 * But if we cannot get anon_vma, then we won't need it anyway,
1077 	 * because that implies that the anon page is no longer mapped
1078 	 * (and cannot be remapped so long as we hold the page lock).
1079 	 */
1080 	if (PageAnon(page) && !PageKsm(page))
1081 		anon_vma = page_get_anon_vma(page);
1082 
1083 	/*
1084 	 * Block others from accessing the new page when we get around to
1085 	 * establishing additional references. We are usually the only one
1086 	 * holding a reference to newpage at this point. We used to have a BUG
1087 	 * here if trylock_page(newpage) fails, but would like to allow for
1088 	 * cases where there might be a race with the previous use of newpage.
1089 	 * This is much like races on refcount of oldpage: just don't BUG().
1090 	 */
1091 	if (unlikely(!trylock_page(newpage)))
1092 		goto out_unlock;
1093 
1094 	if (unlikely(!is_lru)) {
1095 		rc = move_to_new_page(newpage, page, mode);
1096 		goto out_unlock_both;
1097 	}
1098 
1099 	/*
1100 	 * Corner case handling:
1101 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1102 	 * and treated as swapcache but it has no rmap yet.
1103 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1104 	 * trigger a BUG.  So handle it here.
1105 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1106 	 * fs-private metadata. The page can be picked up due to memory
1107 	 * offlining.  Everywhere else except page reclaim, the page is
1108 	 * invisible to the vm, so the page can not be migrated.  So try to
1109 	 * free the metadata, so the page can be freed.
1110 	 */
1111 	if (!page->mapping) {
1112 		VM_BUG_ON_PAGE(PageAnon(page), page);
1113 		if (page_has_private(page)) {
1114 			try_to_free_buffers(page);
1115 			goto out_unlock_both;
1116 		}
1117 	} else if (page_mapped(page)) {
1118 		/* Establish migration ptes */
1119 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1120 				page);
1121 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1122 		page_was_mapped = 1;
1123 	}
1124 
1125 	if (!page_mapped(page))
1126 		rc = move_to_new_page(newpage, page, mode);
1127 
1128 	if (page_was_mapped)
1129 		remove_migration_ptes(page,
1130 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1131 
1132 out_unlock_both:
1133 	unlock_page(newpage);
1134 out_unlock:
1135 	/* Drop an anon_vma reference if we took one */
1136 	if (anon_vma)
1137 		put_anon_vma(anon_vma);
1138 	unlock_page(page);
1139 out:
1140 	/*
1141 	 * If migration is successful, decrease refcount of the newpage
1142 	 * which will not free the page because new page owner increased
1143 	 * refcounter. As well, if it is LRU page, add the page to LRU
1144 	 * list in here. Use the old state of the isolated source page to
1145 	 * determine if we migrated a LRU page. newpage was already unlocked
1146 	 * and possibly modified by its owner - don't rely on the page
1147 	 * state.
1148 	 */
1149 	if (rc == MIGRATEPAGE_SUCCESS) {
1150 		if (unlikely(!is_lru))
1151 			put_page(newpage);
1152 		else
1153 			putback_lru_page(newpage);
1154 	}
1155 
1156 	return rc;
1157 }
1158 
1159 /*
1160  * Obtain the lock on page, remove all ptes and migrate the page
1161  * to the newly allocated page in newpage.
1162  */
1163 static int unmap_and_move(new_page_t get_new_page,
1164 				   free_page_t put_new_page,
1165 				   unsigned long private, struct page *page,
1166 				   int force, enum migrate_mode mode,
1167 				   enum migrate_reason reason,
1168 				   struct list_head *ret)
1169 {
1170 	int rc = MIGRATEPAGE_SUCCESS;
1171 	struct page *newpage = NULL;
1172 
1173 	if (!thp_migration_supported() && PageTransHuge(page))
1174 		return -ENOSYS;
1175 
1176 	if (page_count(page) == 1) {
1177 		/* page was freed from under us. So we are done. */
1178 		ClearPageActive(page);
1179 		ClearPageUnevictable(page);
1180 		if (unlikely(__PageMovable(page))) {
1181 			lock_page(page);
1182 			if (!PageMovable(page))
1183 				__ClearPageIsolated(page);
1184 			unlock_page(page);
1185 		}
1186 		goto out;
1187 	}
1188 
1189 	newpage = get_new_page(page, private);
1190 	if (!newpage)
1191 		return -ENOMEM;
1192 
1193 	rc = __unmap_and_move(page, newpage, force, mode);
1194 	if (rc == MIGRATEPAGE_SUCCESS)
1195 		set_page_owner_migrate_reason(newpage, reason);
1196 
1197 out:
1198 	if (rc != -EAGAIN) {
1199 		/*
1200 		 * A page that has been migrated has all references
1201 		 * removed and will be freed. A page that has not been
1202 		 * migrated will have kept its references and be restored.
1203 		 */
1204 		list_del(&page->lru);
1205 	}
1206 
1207 	/*
1208 	 * If migration is successful, releases reference grabbed during
1209 	 * isolation. Otherwise, restore the page to right list unless
1210 	 * we want to retry.
1211 	 */
1212 	if (rc == MIGRATEPAGE_SUCCESS) {
1213 		/*
1214 		 * Compaction can migrate also non-LRU pages which are
1215 		 * not accounted to NR_ISOLATED_*. They can be recognized
1216 		 * as __PageMovable
1217 		 */
1218 		if (likely(!__PageMovable(page)))
1219 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220 					page_is_file_lru(page), -thp_nr_pages(page));
1221 
1222 		if (reason != MR_MEMORY_FAILURE)
1223 			/*
1224 			 * We release the page in page_handle_poison.
1225 			 */
1226 			put_page(page);
1227 	} else {
1228 		if (rc != -EAGAIN)
1229 			list_add_tail(&page->lru, ret);
1230 
1231 		if (put_new_page)
1232 			put_new_page(newpage, private);
1233 		else
1234 			put_page(newpage);
1235 	}
1236 
1237 	return rc;
1238 }
1239 
1240 /*
1241  * Counterpart of unmap_and_move_page() for hugepage migration.
1242  *
1243  * This function doesn't wait the completion of hugepage I/O
1244  * because there is no race between I/O and migration for hugepage.
1245  * Note that currently hugepage I/O occurs only in direct I/O
1246  * where no lock is held and PG_writeback is irrelevant,
1247  * and writeback status of all subpages are counted in the reference
1248  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1249  * under direct I/O, the reference of the head page is 512 and a bit more.)
1250  * This means that when we try to migrate hugepage whose subpages are
1251  * doing direct I/O, some references remain after try_to_unmap() and
1252  * hugepage migration fails without data corruption.
1253  *
1254  * There is also no race when direct I/O is issued on the page under migration,
1255  * because then pte is replaced with migration swap entry and direct I/O code
1256  * will wait in the page fault for migration to complete.
1257  */
1258 static int unmap_and_move_huge_page(new_page_t get_new_page,
1259 				free_page_t put_new_page, unsigned long private,
1260 				struct page *hpage, int force,
1261 				enum migrate_mode mode, int reason,
1262 				struct list_head *ret)
1263 {
1264 	int rc = -EAGAIN;
1265 	int page_was_mapped = 0;
1266 	struct page *new_hpage;
1267 	struct anon_vma *anon_vma = NULL;
1268 	struct address_space *mapping = NULL;
1269 
1270 	/*
1271 	 * Migratability of hugepages depends on architectures and their size.
1272 	 * This check is necessary because some callers of hugepage migration
1273 	 * like soft offline and memory hotremove don't walk through page
1274 	 * tables or check whether the hugepage is pmd-based or not before
1275 	 * kicking migration.
1276 	 */
1277 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1278 		list_move_tail(&hpage->lru, ret);
1279 		return -ENOSYS;
1280 	}
1281 
1282 	new_hpage = get_new_page(hpage, private);
1283 	if (!new_hpage)
1284 		return -ENOMEM;
1285 
1286 	if (!trylock_page(hpage)) {
1287 		if (!force)
1288 			goto out;
1289 		switch (mode) {
1290 		case MIGRATE_SYNC:
1291 		case MIGRATE_SYNC_NO_COPY:
1292 			break;
1293 		default:
1294 			goto out;
1295 		}
1296 		lock_page(hpage);
1297 	}
1298 
1299 	/*
1300 	 * Check for pages which are in the process of being freed.  Without
1301 	 * page_mapping() set, hugetlbfs specific move page routine will not
1302 	 * be called and we could leak usage counts for subpools.
1303 	 */
1304 	if (page_private(hpage) && !page_mapping(hpage)) {
1305 		rc = -EBUSY;
1306 		goto out_unlock;
1307 	}
1308 
1309 	if (PageAnon(hpage))
1310 		anon_vma = page_get_anon_vma(hpage);
1311 
1312 	if (unlikely(!trylock_page(new_hpage)))
1313 		goto put_anon;
1314 
1315 	if (page_mapped(hpage)) {
1316 		bool mapping_locked = false;
1317 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1318 
1319 		if (!PageAnon(hpage)) {
1320 			/*
1321 			 * In shared mappings, try_to_unmap could potentially
1322 			 * call huge_pmd_unshare.  Because of this, take
1323 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1324 			 * to let lower levels know we have taken the lock.
1325 			 */
1326 			mapping = hugetlb_page_mapping_lock_write(hpage);
1327 			if (unlikely(!mapping))
1328 				goto unlock_put_anon;
1329 
1330 			mapping_locked = true;
1331 			ttu |= TTU_RMAP_LOCKED;
1332 		}
1333 
1334 		try_to_unmap(hpage, ttu);
1335 		page_was_mapped = 1;
1336 
1337 		if (mapping_locked)
1338 			i_mmap_unlock_write(mapping);
1339 	}
1340 
1341 	if (!page_mapped(hpage))
1342 		rc = move_to_new_page(new_hpage, hpage, mode);
1343 
1344 	if (page_was_mapped)
1345 		remove_migration_ptes(hpage,
1346 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1347 
1348 unlock_put_anon:
1349 	unlock_page(new_hpage);
1350 
1351 put_anon:
1352 	if (anon_vma)
1353 		put_anon_vma(anon_vma);
1354 
1355 	if (rc == MIGRATEPAGE_SUCCESS) {
1356 		move_hugetlb_state(hpage, new_hpage, reason);
1357 		put_new_page = NULL;
1358 	}
1359 
1360 out_unlock:
1361 	unlock_page(hpage);
1362 out:
1363 	if (rc == MIGRATEPAGE_SUCCESS)
1364 		putback_active_hugepage(hpage);
1365 	else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1366 		list_move_tail(&hpage->lru, ret);
1367 
1368 	/*
1369 	 * If migration was not successful and there's a freeing callback, use
1370 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1371 	 * isolation.
1372 	 */
1373 	if (put_new_page)
1374 		put_new_page(new_hpage, private);
1375 	else
1376 		putback_active_hugepage(new_hpage);
1377 
1378 	return rc;
1379 }
1380 
1381 static inline int try_split_thp(struct page *page, struct page **page2,
1382 				struct list_head *from)
1383 {
1384 	int rc = 0;
1385 
1386 	lock_page(page);
1387 	rc = split_huge_page_to_list(page, from);
1388 	unlock_page(page);
1389 	if (!rc)
1390 		list_safe_reset_next(page, *page2, lru);
1391 
1392 	return rc;
1393 }
1394 
1395 /*
1396  * migrate_pages - migrate the pages specified in a list, to the free pages
1397  *		   supplied as the target for the page migration
1398  *
1399  * @from:		The list of pages to be migrated.
1400  * @get_new_page:	The function used to allocate free pages to be used
1401  *			as the target of the page migration.
1402  * @put_new_page:	The function used to free target pages if migration
1403  *			fails, or NULL if no special handling is necessary.
1404  * @private:		Private data to be passed on to get_new_page()
1405  * @mode:		The migration mode that specifies the constraints for
1406  *			page migration, if any.
1407  * @reason:		The reason for page migration.
1408  *
1409  * The function returns after 10 attempts or if no pages are movable any more
1410  * because the list has become empty or no retryable pages exist any more.
1411  * It is caller's responsibility to call putback_movable_pages() to return pages
1412  * to the LRU or free list only if ret != 0.
1413  *
1414  * Returns the number of pages that were not migrated, or an error code.
1415  */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417 		free_page_t put_new_page, unsigned long private,
1418 		enum migrate_mode mode, int reason)
1419 {
1420 	int retry = 1;
1421 	int thp_retry = 1;
1422 	int nr_failed = 0;
1423 	int nr_succeeded = 0;
1424 	int nr_thp_succeeded = 0;
1425 	int nr_thp_failed = 0;
1426 	int nr_thp_split = 0;
1427 	int pass = 0;
1428 	bool is_thp = false;
1429 	struct page *page;
1430 	struct page *page2;
1431 	int swapwrite = current->flags & PF_SWAPWRITE;
1432 	int rc, nr_subpages;
1433 	LIST_HEAD(ret_pages);
1434 
1435 	if (!swapwrite)
1436 		current->flags |= PF_SWAPWRITE;
1437 
1438 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439 		retry = 0;
1440 		thp_retry = 0;
1441 
1442 		list_for_each_entry_safe(page, page2, from, lru) {
1443 retry:
1444 			/*
1445 			 * THP statistics is based on the source huge page.
1446 			 * Capture required information that might get lost
1447 			 * during migration.
1448 			 */
1449 			is_thp = PageTransHuge(page) && !PageHuge(page);
1450 			nr_subpages = thp_nr_pages(page);
1451 			cond_resched();
1452 
1453 			if (PageHuge(page))
1454 				rc = unmap_and_move_huge_page(get_new_page,
1455 						put_new_page, private, page,
1456 						pass > 2, mode, reason,
1457 						&ret_pages);
1458 			else
1459 				rc = unmap_and_move(get_new_page, put_new_page,
1460 						private, page, pass > 2, mode,
1461 						reason, &ret_pages);
1462 			/*
1463 			 * The rules are:
1464 			 *	Success: non hugetlb page will be freed, hugetlb
1465 			 *		 page will be put back
1466 			 *	-EAGAIN: stay on the from list
1467 			 *	-ENOMEM: stay on the from list
1468 			 *	Other errno: put on ret_pages list then splice to
1469 			 *		     from list
1470 			 */
1471 			switch(rc) {
1472 			/*
1473 			 * THP migration might be unsupported or the
1474 			 * allocation could've failed so we should
1475 			 * retry on the same page with the THP split
1476 			 * to base pages.
1477 			 *
1478 			 * Head page is retried immediately and tail
1479 			 * pages are added to the tail of the list so
1480 			 * we encounter them after the rest of the list
1481 			 * is processed.
1482 			 */
1483 			case -ENOSYS:
1484 				/* THP migration is unsupported */
1485 				if (is_thp) {
1486 					if (!try_split_thp(page, &page2, from)) {
1487 						nr_thp_split++;
1488 						goto retry;
1489 					}
1490 
1491 					nr_thp_failed++;
1492 					nr_failed += nr_subpages;
1493 					break;
1494 				}
1495 
1496 				/* Hugetlb migration is unsupported */
1497 				nr_failed++;
1498 				break;
1499 			case -ENOMEM:
1500 				/*
1501 				 * When memory is low, don't bother to try to migrate
1502 				 * other pages, just exit.
1503 				 */
1504 				if (is_thp) {
1505 					if (!try_split_thp(page, &page2, from)) {
1506 						nr_thp_split++;
1507 						goto retry;
1508 					}
1509 
1510 					nr_thp_failed++;
1511 					nr_failed += nr_subpages;
1512 					goto out;
1513 				}
1514 				nr_failed++;
1515 				goto out;
1516 			case -EAGAIN:
1517 				if (is_thp) {
1518 					thp_retry++;
1519 					break;
1520 				}
1521 				retry++;
1522 				break;
1523 			case MIGRATEPAGE_SUCCESS:
1524 				if (is_thp) {
1525 					nr_thp_succeeded++;
1526 					nr_succeeded += nr_subpages;
1527 					break;
1528 				}
1529 				nr_succeeded++;
1530 				break;
1531 			default:
1532 				/*
1533 				 * Permanent failure (-EBUSY, etc.):
1534 				 * unlike -EAGAIN case, the failed page is
1535 				 * removed from migration page list and not
1536 				 * retried in the next outer loop.
1537 				 */
1538 				if (is_thp) {
1539 					nr_thp_failed++;
1540 					nr_failed += nr_subpages;
1541 					break;
1542 				}
1543 				nr_failed++;
1544 				break;
1545 			}
1546 		}
1547 	}
1548 	nr_failed += retry + thp_retry;
1549 	nr_thp_failed += thp_retry;
1550 	rc = nr_failed;
1551 out:
1552 	/*
1553 	 * Put the permanent failure page back to migration list, they
1554 	 * will be put back to the right list by the caller.
1555 	 */
1556 	list_splice(&ret_pages, from);
1557 
1558 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1559 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1560 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1561 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1562 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1563 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1564 			       nr_thp_failed, nr_thp_split, mode, reason);
1565 
1566 	if (!swapwrite)
1567 		current->flags &= ~PF_SWAPWRITE;
1568 
1569 	return rc;
1570 }
1571 
1572 struct page *alloc_migration_target(struct page *page, unsigned long private)
1573 {
1574 	struct migration_target_control *mtc;
1575 	gfp_t gfp_mask;
1576 	unsigned int order = 0;
1577 	struct page *new_page = NULL;
1578 	int nid;
1579 	int zidx;
1580 
1581 	mtc = (struct migration_target_control *)private;
1582 	gfp_mask = mtc->gfp_mask;
1583 	nid = mtc->nid;
1584 	if (nid == NUMA_NO_NODE)
1585 		nid = page_to_nid(page);
1586 
1587 	if (PageHuge(page)) {
1588 		struct hstate *h = page_hstate(compound_head(page));
1589 
1590 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1591 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1592 	}
1593 
1594 	if (PageTransHuge(page)) {
1595 		/*
1596 		 * clear __GFP_RECLAIM to make the migration callback
1597 		 * consistent with regular THP allocations.
1598 		 */
1599 		gfp_mask &= ~__GFP_RECLAIM;
1600 		gfp_mask |= GFP_TRANSHUGE;
1601 		order = HPAGE_PMD_ORDER;
1602 	}
1603 	zidx = zone_idx(page_zone(page));
1604 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1605 		gfp_mask |= __GFP_HIGHMEM;
1606 
1607 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1608 
1609 	if (new_page && PageTransHuge(new_page))
1610 		prep_transhuge_page(new_page);
1611 
1612 	return new_page;
1613 }
1614 
1615 #ifdef CONFIG_NUMA
1616 
1617 static int store_status(int __user *status, int start, int value, int nr)
1618 {
1619 	while (nr-- > 0) {
1620 		if (put_user(value, status + start))
1621 			return -EFAULT;
1622 		start++;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int do_move_pages_to_node(struct mm_struct *mm,
1629 		struct list_head *pagelist, int node)
1630 {
1631 	int err;
1632 	struct migration_target_control mtc = {
1633 		.nid = node,
1634 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1635 	};
1636 
1637 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1638 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1639 	if (err)
1640 		putback_movable_pages(pagelist);
1641 	return err;
1642 }
1643 
1644 /*
1645  * Resolves the given address to a struct page, isolates it from the LRU and
1646  * puts it to the given pagelist.
1647  * Returns:
1648  *     errno - if the page cannot be found/isolated
1649  *     0 - when it doesn't have to be migrated because it is already on the
1650  *         target node
1651  *     1 - when it has been queued
1652  */
1653 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1654 		int node, struct list_head *pagelist, bool migrate_all)
1655 {
1656 	struct vm_area_struct *vma;
1657 	struct page *page;
1658 	unsigned int follflags;
1659 	int err;
1660 
1661 	mmap_read_lock(mm);
1662 	err = -EFAULT;
1663 	vma = find_vma(mm, addr);
1664 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1665 		goto out;
1666 
1667 	/* FOLL_DUMP to ignore special (like zero) pages */
1668 	follflags = FOLL_GET | FOLL_DUMP;
1669 	page = follow_page(vma, addr, follflags);
1670 
1671 	err = PTR_ERR(page);
1672 	if (IS_ERR(page))
1673 		goto out;
1674 
1675 	err = -ENOENT;
1676 	if (!page)
1677 		goto out;
1678 
1679 	err = 0;
1680 	if (page_to_nid(page) == node)
1681 		goto out_putpage;
1682 
1683 	err = -EACCES;
1684 	if (page_mapcount(page) > 1 && !migrate_all)
1685 		goto out_putpage;
1686 
1687 	if (PageHuge(page)) {
1688 		if (PageHead(page)) {
1689 			isolate_huge_page(page, pagelist);
1690 			err = 1;
1691 		}
1692 	} else {
1693 		struct page *head;
1694 
1695 		head = compound_head(page);
1696 		err = isolate_lru_page(head);
1697 		if (err)
1698 			goto out_putpage;
1699 
1700 		err = 1;
1701 		list_add_tail(&head->lru, pagelist);
1702 		mod_node_page_state(page_pgdat(head),
1703 			NR_ISOLATED_ANON + page_is_file_lru(head),
1704 			thp_nr_pages(head));
1705 	}
1706 out_putpage:
1707 	/*
1708 	 * Either remove the duplicate refcount from
1709 	 * isolate_lru_page() or drop the page ref if it was
1710 	 * not isolated.
1711 	 */
1712 	put_page(page);
1713 out:
1714 	mmap_read_unlock(mm);
1715 	return err;
1716 }
1717 
1718 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1719 		struct list_head *pagelist, int __user *status,
1720 		int start, int i, unsigned long nr_pages)
1721 {
1722 	int err;
1723 
1724 	if (list_empty(pagelist))
1725 		return 0;
1726 
1727 	err = do_move_pages_to_node(mm, pagelist, node);
1728 	if (err) {
1729 		/*
1730 		 * Positive err means the number of failed
1731 		 * pages to migrate.  Since we are going to
1732 		 * abort and return the number of non-migrated
1733 		 * pages, so need to include the rest of the
1734 		 * nr_pages that have not been attempted as
1735 		 * well.
1736 		 */
1737 		if (err > 0)
1738 			err += nr_pages - i - 1;
1739 		return err;
1740 	}
1741 	return store_status(status, start, node, i - start);
1742 }
1743 
1744 /*
1745  * Migrate an array of page address onto an array of nodes and fill
1746  * the corresponding array of status.
1747  */
1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1749 			 unsigned long nr_pages,
1750 			 const void __user * __user *pages,
1751 			 const int __user *nodes,
1752 			 int __user *status, int flags)
1753 {
1754 	int current_node = NUMA_NO_NODE;
1755 	LIST_HEAD(pagelist);
1756 	int start, i;
1757 	int err = 0, err1;
1758 
1759 	migrate_prep();
1760 
1761 	for (i = start = 0; i < nr_pages; i++) {
1762 		const void __user *p;
1763 		unsigned long addr;
1764 		int node;
1765 
1766 		err = -EFAULT;
1767 		if (get_user(p, pages + i))
1768 			goto out_flush;
1769 		if (get_user(node, nodes + i))
1770 			goto out_flush;
1771 		addr = (unsigned long)untagged_addr(p);
1772 
1773 		err = -ENODEV;
1774 		if (node < 0 || node >= MAX_NUMNODES)
1775 			goto out_flush;
1776 		if (!node_state(node, N_MEMORY))
1777 			goto out_flush;
1778 
1779 		err = -EACCES;
1780 		if (!node_isset(node, task_nodes))
1781 			goto out_flush;
1782 
1783 		if (current_node == NUMA_NO_NODE) {
1784 			current_node = node;
1785 			start = i;
1786 		} else if (node != current_node) {
1787 			err = move_pages_and_store_status(mm, current_node,
1788 					&pagelist, status, start, i, nr_pages);
1789 			if (err)
1790 				goto out;
1791 			start = i;
1792 			current_node = node;
1793 		}
1794 
1795 		/*
1796 		 * Errors in the page lookup or isolation are not fatal and we simply
1797 		 * report them via status
1798 		 */
1799 		err = add_page_for_migration(mm, addr, current_node,
1800 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1801 
1802 		if (err > 0) {
1803 			/* The page is successfully queued for migration */
1804 			continue;
1805 		}
1806 
1807 		/*
1808 		 * If the page is already on the target node (!err), store the
1809 		 * node, otherwise, store the err.
1810 		 */
1811 		err = store_status(status, i, err ? : current_node, 1);
1812 		if (err)
1813 			goto out_flush;
1814 
1815 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1816 				status, start, i, nr_pages);
1817 		if (err)
1818 			goto out;
1819 		current_node = NUMA_NO_NODE;
1820 	}
1821 out_flush:
1822 	/* Make sure we do not overwrite the existing error */
1823 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1824 				status, start, i, nr_pages);
1825 	if (err >= 0)
1826 		err = err1;
1827 out:
1828 	return err;
1829 }
1830 
1831 /*
1832  * Determine the nodes of an array of pages and store it in an array of status.
1833  */
1834 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1835 				const void __user **pages, int *status)
1836 {
1837 	unsigned long i;
1838 
1839 	mmap_read_lock(mm);
1840 
1841 	for (i = 0; i < nr_pages; i++) {
1842 		unsigned long addr = (unsigned long)(*pages);
1843 		struct vm_area_struct *vma;
1844 		struct page *page;
1845 		int err = -EFAULT;
1846 
1847 		vma = find_vma(mm, addr);
1848 		if (!vma || addr < vma->vm_start)
1849 			goto set_status;
1850 
1851 		/* FOLL_DUMP to ignore special (like zero) pages */
1852 		page = follow_page(vma, addr, FOLL_DUMP);
1853 
1854 		err = PTR_ERR(page);
1855 		if (IS_ERR(page))
1856 			goto set_status;
1857 
1858 		err = page ? page_to_nid(page) : -ENOENT;
1859 set_status:
1860 		*status = err;
1861 
1862 		pages++;
1863 		status++;
1864 	}
1865 
1866 	mmap_read_unlock(mm);
1867 }
1868 
1869 /*
1870  * Determine the nodes of a user array of pages and store it in
1871  * a user array of status.
1872  */
1873 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1874 			 const void __user * __user *pages,
1875 			 int __user *status)
1876 {
1877 #define DO_PAGES_STAT_CHUNK_NR 16
1878 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1879 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1880 
1881 	while (nr_pages) {
1882 		unsigned long chunk_nr;
1883 
1884 		chunk_nr = nr_pages;
1885 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1886 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1887 
1888 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1889 			break;
1890 
1891 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1892 
1893 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1894 			break;
1895 
1896 		pages += chunk_nr;
1897 		status += chunk_nr;
1898 		nr_pages -= chunk_nr;
1899 	}
1900 	return nr_pages ? -EFAULT : 0;
1901 }
1902 
1903 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1904 {
1905 	struct task_struct *task;
1906 	struct mm_struct *mm;
1907 
1908 	/*
1909 	 * There is no need to check if current process has the right to modify
1910 	 * the specified process when they are same.
1911 	 */
1912 	if (!pid) {
1913 		mmget(current->mm);
1914 		*mem_nodes = cpuset_mems_allowed(current);
1915 		return current->mm;
1916 	}
1917 
1918 	/* Find the mm_struct */
1919 	rcu_read_lock();
1920 	task = find_task_by_vpid(pid);
1921 	if (!task) {
1922 		rcu_read_unlock();
1923 		return ERR_PTR(-ESRCH);
1924 	}
1925 	get_task_struct(task);
1926 
1927 	/*
1928 	 * Check if this process has the right to modify the specified
1929 	 * process. Use the regular "ptrace_may_access()" checks.
1930 	 */
1931 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1932 		rcu_read_unlock();
1933 		mm = ERR_PTR(-EPERM);
1934 		goto out;
1935 	}
1936 	rcu_read_unlock();
1937 
1938 	mm = ERR_PTR(security_task_movememory(task));
1939 	if (IS_ERR(mm))
1940 		goto out;
1941 	*mem_nodes = cpuset_mems_allowed(task);
1942 	mm = get_task_mm(task);
1943 out:
1944 	put_task_struct(task);
1945 	if (!mm)
1946 		mm = ERR_PTR(-EINVAL);
1947 	return mm;
1948 }
1949 
1950 /*
1951  * Move a list of pages in the address space of the currently executing
1952  * process.
1953  */
1954 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1955 			     const void __user * __user *pages,
1956 			     const int __user *nodes,
1957 			     int __user *status, int flags)
1958 {
1959 	struct mm_struct *mm;
1960 	int err;
1961 	nodemask_t task_nodes;
1962 
1963 	/* Check flags */
1964 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1965 		return -EINVAL;
1966 
1967 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1968 		return -EPERM;
1969 
1970 	mm = find_mm_struct(pid, &task_nodes);
1971 	if (IS_ERR(mm))
1972 		return PTR_ERR(mm);
1973 
1974 	if (nodes)
1975 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1976 				    nodes, status, flags);
1977 	else
1978 		err = do_pages_stat(mm, nr_pages, pages, status);
1979 
1980 	mmput(mm);
1981 	return err;
1982 }
1983 
1984 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1985 		const void __user * __user *, pages,
1986 		const int __user *, nodes,
1987 		int __user *, status, int, flags)
1988 {
1989 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1990 }
1991 
1992 #ifdef CONFIG_COMPAT
1993 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1994 		       compat_uptr_t __user *, pages32,
1995 		       const int __user *, nodes,
1996 		       int __user *, status,
1997 		       int, flags)
1998 {
1999 	const void __user * __user *pages;
2000 	int i;
2001 
2002 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2003 	for (i = 0; i < nr_pages; i++) {
2004 		compat_uptr_t p;
2005 
2006 		if (get_user(p, pages32 + i) ||
2007 			put_user(compat_ptr(p), pages + i))
2008 			return -EFAULT;
2009 	}
2010 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2011 }
2012 #endif /* CONFIG_COMPAT */
2013 
2014 #ifdef CONFIG_NUMA_BALANCING
2015 /*
2016  * Returns true if this is a safe migration target node for misplaced NUMA
2017  * pages. Currently it only checks the watermarks which crude
2018  */
2019 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2020 				   unsigned long nr_migrate_pages)
2021 {
2022 	int z;
2023 
2024 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2025 		struct zone *zone = pgdat->node_zones + z;
2026 
2027 		if (!populated_zone(zone))
2028 			continue;
2029 
2030 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2031 		if (!zone_watermark_ok(zone, 0,
2032 				       high_wmark_pages(zone) +
2033 				       nr_migrate_pages,
2034 				       ZONE_MOVABLE, 0))
2035 			continue;
2036 		return true;
2037 	}
2038 	return false;
2039 }
2040 
2041 static struct page *alloc_misplaced_dst_page(struct page *page,
2042 					   unsigned long data)
2043 {
2044 	int nid = (int) data;
2045 	struct page *newpage;
2046 
2047 	newpage = __alloc_pages_node(nid,
2048 					 (GFP_HIGHUSER_MOVABLE |
2049 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2050 					  __GFP_NORETRY | __GFP_NOWARN) &
2051 					 ~__GFP_RECLAIM, 0);
2052 
2053 	return newpage;
2054 }
2055 
2056 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2057 {
2058 	int page_lru;
2059 
2060 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2061 
2062 	/* Avoid migrating to a node that is nearly full */
2063 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2064 		return 0;
2065 
2066 	if (isolate_lru_page(page))
2067 		return 0;
2068 
2069 	/*
2070 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2071 	 * check on page_count(), so we must do it here, now that the page
2072 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2073 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2074 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2075 	 */
2076 	if (PageTransHuge(page) && page_count(page) != 3) {
2077 		putback_lru_page(page);
2078 		return 0;
2079 	}
2080 
2081 	page_lru = page_is_file_lru(page);
2082 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2083 				thp_nr_pages(page));
2084 
2085 	/*
2086 	 * Isolating the page has taken another reference, so the
2087 	 * caller's reference can be safely dropped without the page
2088 	 * disappearing underneath us during migration.
2089 	 */
2090 	put_page(page);
2091 	return 1;
2092 }
2093 
2094 bool pmd_trans_migrating(pmd_t pmd)
2095 {
2096 	struct page *page = pmd_page(pmd);
2097 	return PageLocked(page);
2098 }
2099 
2100 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2101 				       struct page *page)
2102 {
2103 	if (page_mapcount(page) != 1 &&
2104 	    (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2105 	    (vma->vm_flags & VM_EXEC))
2106 		return true;
2107 
2108 	return false;
2109 }
2110 
2111 /*
2112  * Attempt to migrate a misplaced page to the specified destination
2113  * node. Caller is expected to have an elevated reference count on
2114  * the page that will be dropped by this function before returning.
2115  */
2116 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2117 			   int node)
2118 {
2119 	pg_data_t *pgdat = NODE_DATA(node);
2120 	int isolated;
2121 	int nr_remaining;
2122 	LIST_HEAD(migratepages);
2123 
2124 	/*
2125 	 * Don't migrate file pages that are mapped in multiple processes
2126 	 * with execute permissions as they are probably shared libraries.
2127 	 */
2128 	if (is_shared_exec_page(vma, page))
2129 		goto out;
2130 
2131 	/*
2132 	 * Also do not migrate dirty pages as not all filesystems can move
2133 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2134 	 */
2135 	if (page_is_file_lru(page) && PageDirty(page))
2136 		goto out;
2137 
2138 	isolated = numamigrate_isolate_page(pgdat, page);
2139 	if (!isolated)
2140 		goto out;
2141 
2142 	list_add(&page->lru, &migratepages);
2143 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2144 				     NULL, node, MIGRATE_ASYNC,
2145 				     MR_NUMA_MISPLACED);
2146 	if (nr_remaining) {
2147 		if (!list_empty(&migratepages)) {
2148 			list_del(&page->lru);
2149 			dec_node_page_state(page, NR_ISOLATED_ANON +
2150 					page_is_file_lru(page));
2151 			putback_lru_page(page);
2152 		}
2153 		isolated = 0;
2154 	} else
2155 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2156 	BUG_ON(!list_empty(&migratepages));
2157 	return isolated;
2158 
2159 out:
2160 	put_page(page);
2161 	return 0;
2162 }
2163 #endif /* CONFIG_NUMA_BALANCING */
2164 
2165 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2166 /*
2167  * Migrates a THP to a given target node. page must be locked and is unlocked
2168  * before returning.
2169  */
2170 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2171 				struct vm_area_struct *vma,
2172 				pmd_t *pmd, pmd_t entry,
2173 				unsigned long address,
2174 				struct page *page, int node)
2175 {
2176 	spinlock_t *ptl;
2177 	pg_data_t *pgdat = NODE_DATA(node);
2178 	int isolated = 0;
2179 	struct page *new_page = NULL;
2180 	int page_lru = page_is_file_lru(page);
2181 	unsigned long start = address & HPAGE_PMD_MASK;
2182 
2183 	if (is_shared_exec_page(vma, page))
2184 		goto out;
2185 
2186 	new_page = alloc_pages_node(node,
2187 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2188 		HPAGE_PMD_ORDER);
2189 	if (!new_page)
2190 		goto out_fail;
2191 	prep_transhuge_page(new_page);
2192 
2193 	isolated = numamigrate_isolate_page(pgdat, page);
2194 	if (!isolated) {
2195 		put_page(new_page);
2196 		goto out_fail;
2197 	}
2198 
2199 	/* Prepare a page as a migration target */
2200 	__SetPageLocked(new_page);
2201 	if (PageSwapBacked(page))
2202 		__SetPageSwapBacked(new_page);
2203 
2204 	/* anon mapping, we can simply copy page->mapping to the new page: */
2205 	new_page->mapping = page->mapping;
2206 	new_page->index = page->index;
2207 	/* flush the cache before copying using the kernel virtual address */
2208 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2209 	migrate_page_copy(new_page, page);
2210 	WARN_ON(PageLRU(new_page));
2211 
2212 	/* Recheck the target PMD */
2213 	ptl = pmd_lock(mm, pmd);
2214 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2215 		spin_unlock(ptl);
2216 
2217 		/* Reverse changes made by migrate_page_copy() */
2218 		if (TestClearPageActive(new_page))
2219 			SetPageActive(page);
2220 		if (TestClearPageUnevictable(new_page))
2221 			SetPageUnevictable(page);
2222 
2223 		unlock_page(new_page);
2224 		put_page(new_page);		/* Free it */
2225 
2226 		/* Retake the callers reference and putback on LRU */
2227 		get_page(page);
2228 		putback_lru_page(page);
2229 		mod_node_page_state(page_pgdat(page),
2230 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2231 
2232 		goto out_unlock;
2233 	}
2234 
2235 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2236 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2237 
2238 	/*
2239 	 * Overwrite the old entry under pagetable lock and establish
2240 	 * the new PTE. Any parallel GUP will either observe the old
2241 	 * page blocking on the page lock, block on the page table
2242 	 * lock or observe the new page. The SetPageUptodate on the
2243 	 * new page and page_add_new_anon_rmap guarantee the copy is
2244 	 * visible before the pagetable update.
2245 	 */
2246 	page_add_anon_rmap(new_page, vma, start, true);
2247 	/*
2248 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2249 	 * has already been flushed globally.  So no TLB can be currently
2250 	 * caching this non present pmd mapping.  There's no need to clear the
2251 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2252 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2253 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2254 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2255 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2256 	 * pmd.
2257 	 */
2258 	set_pmd_at(mm, start, pmd, entry);
2259 	update_mmu_cache_pmd(vma, address, &entry);
2260 
2261 	page_ref_unfreeze(page, 2);
2262 	mlock_migrate_page(new_page, page);
2263 	page_remove_rmap(page, true);
2264 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2265 
2266 	spin_unlock(ptl);
2267 
2268 	/* Take an "isolate" reference and put new page on the LRU. */
2269 	get_page(new_page);
2270 	putback_lru_page(new_page);
2271 
2272 	unlock_page(new_page);
2273 	unlock_page(page);
2274 	put_page(page);			/* Drop the rmap reference */
2275 	put_page(page);			/* Drop the LRU isolation reference */
2276 
2277 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2278 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2279 
2280 	mod_node_page_state(page_pgdat(page),
2281 			NR_ISOLATED_ANON + page_lru,
2282 			-HPAGE_PMD_NR);
2283 	return isolated;
2284 
2285 out_fail:
2286 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2287 	ptl = pmd_lock(mm, pmd);
2288 	if (pmd_same(*pmd, entry)) {
2289 		entry = pmd_modify(entry, vma->vm_page_prot);
2290 		set_pmd_at(mm, start, pmd, entry);
2291 		update_mmu_cache_pmd(vma, address, &entry);
2292 	}
2293 	spin_unlock(ptl);
2294 
2295 out_unlock:
2296 	unlock_page(page);
2297 out:
2298 	put_page(page);
2299 	return 0;
2300 }
2301 #endif /* CONFIG_NUMA_BALANCING */
2302 
2303 #endif /* CONFIG_NUMA */
2304 
2305 #ifdef CONFIG_DEVICE_PRIVATE
2306 static int migrate_vma_collect_hole(unsigned long start,
2307 				    unsigned long end,
2308 				    __always_unused int depth,
2309 				    struct mm_walk *walk)
2310 {
2311 	struct migrate_vma *migrate = walk->private;
2312 	unsigned long addr;
2313 
2314 	/* Only allow populating anonymous memory. */
2315 	if (!vma_is_anonymous(walk->vma)) {
2316 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2317 			migrate->src[migrate->npages] = 0;
2318 			migrate->dst[migrate->npages] = 0;
2319 			migrate->npages++;
2320 		}
2321 		return 0;
2322 	}
2323 
2324 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2325 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2326 		migrate->dst[migrate->npages] = 0;
2327 		migrate->npages++;
2328 		migrate->cpages++;
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 static int migrate_vma_collect_skip(unsigned long start,
2335 				    unsigned long end,
2336 				    struct mm_walk *walk)
2337 {
2338 	struct migrate_vma *migrate = walk->private;
2339 	unsigned long addr;
2340 
2341 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2342 		migrate->dst[migrate->npages] = 0;
2343 		migrate->src[migrate->npages++] = 0;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2350 				   unsigned long start,
2351 				   unsigned long end,
2352 				   struct mm_walk *walk)
2353 {
2354 	struct migrate_vma *migrate = walk->private;
2355 	struct vm_area_struct *vma = walk->vma;
2356 	struct mm_struct *mm = vma->vm_mm;
2357 	unsigned long addr = start, unmapped = 0;
2358 	spinlock_t *ptl;
2359 	pte_t *ptep;
2360 
2361 again:
2362 	if (pmd_none(*pmdp))
2363 		return migrate_vma_collect_hole(start, end, -1, walk);
2364 
2365 	if (pmd_trans_huge(*pmdp)) {
2366 		struct page *page;
2367 
2368 		ptl = pmd_lock(mm, pmdp);
2369 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2370 			spin_unlock(ptl);
2371 			goto again;
2372 		}
2373 
2374 		page = pmd_page(*pmdp);
2375 		if (is_huge_zero_page(page)) {
2376 			spin_unlock(ptl);
2377 			split_huge_pmd(vma, pmdp, addr);
2378 			if (pmd_trans_unstable(pmdp))
2379 				return migrate_vma_collect_skip(start, end,
2380 								walk);
2381 		} else {
2382 			int ret;
2383 
2384 			get_page(page);
2385 			spin_unlock(ptl);
2386 			if (unlikely(!trylock_page(page)))
2387 				return migrate_vma_collect_skip(start, end,
2388 								walk);
2389 			ret = split_huge_page(page);
2390 			unlock_page(page);
2391 			put_page(page);
2392 			if (ret)
2393 				return migrate_vma_collect_skip(start, end,
2394 								walk);
2395 			if (pmd_none(*pmdp))
2396 				return migrate_vma_collect_hole(start, end, -1,
2397 								walk);
2398 		}
2399 	}
2400 
2401 	if (unlikely(pmd_bad(*pmdp)))
2402 		return migrate_vma_collect_skip(start, end, walk);
2403 
2404 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2405 	arch_enter_lazy_mmu_mode();
2406 
2407 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2408 		unsigned long mpfn = 0, pfn;
2409 		struct page *page;
2410 		swp_entry_t entry;
2411 		pte_t pte;
2412 
2413 		pte = *ptep;
2414 
2415 		if (pte_none(pte)) {
2416 			if (vma_is_anonymous(vma)) {
2417 				mpfn = MIGRATE_PFN_MIGRATE;
2418 				migrate->cpages++;
2419 			}
2420 			goto next;
2421 		}
2422 
2423 		if (!pte_present(pte)) {
2424 			/*
2425 			 * Only care about unaddressable device page special
2426 			 * page table entry. Other special swap entries are not
2427 			 * migratable, and we ignore regular swapped page.
2428 			 */
2429 			entry = pte_to_swp_entry(pte);
2430 			if (!is_device_private_entry(entry))
2431 				goto next;
2432 
2433 			page = device_private_entry_to_page(entry);
2434 			if (!(migrate->flags &
2435 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2436 			    page->pgmap->owner != migrate->pgmap_owner)
2437 				goto next;
2438 
2439 			mpfn = migrate_pfn(page_to_pfn(page)) |
2440 					MIGRATE_PFN_MIGRATE;
2441 			if (is_write_device_private_entry(entry))
2442 				mpfn |= MIGRATE_PFN_WRITE;
2443 		} else {
2444 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2445 				goto next;
2446 			pfn = pte_pfn(pte);
2447 			if (is_zero_pfn(pfn)) {
2448 				mpfn = MIGRATE_PFN_MIGRATE;
2449 				migrate->cpages++;
2450 				goto next;
2451 			}
2452 			page = vm_normal_page(migrate->vma, addr, pte);
2453 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2454 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2455 		}
2456 
2457 		/* FIXME support THP */
2458 		if (!page || !page->mapping || PageTransCompound(page)) {
2459 			mpfn = 0;
2460 			goto next;
2461 		}
2462 
2463 		/*
2464 		 * By getting a reference on the page we pin it and that blocks
2465 		 * any kind of migration. Side effect is that it "freezes" the
2466 		 * pte.
2467 		 *
2468 		 * We drop this reference after isolating the page from the lru
2469 		 * for non device page (device page are not on the lru and thus
2470 		 * can't be dropped from it).
2471 		 */
2472 		get_page(page);
2473 		migrate->cpages++;
2474 
2475 		/*
2476 		 * Optimize for the common case where page is only mapped once
2477 		 * in one process. If we can lock the page, then we can safely
2478 		 * set up a special migration page table entry now.
2479 		 */
2480 		if (trylock_page(page)) {
2481 			pte_t swp_pte;
2482 
2483 			mpfn |= MIGRATE_PFN_LOCKED;
2484 			ptep_get_and_clear(mm, addr, ptep);
2485 
2486 			/* Setup special migration page table entry */
2487 			entry = make_migration_entry(page, mpfn &
2488 						     MIGRATE_PFN_WRITE);
2489 			swp_pte = swp_entry_to_pte(entry);
2490 			if (pte_present(pte)) {
2491 				if (pte_soft_dirty(pte))
2492 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2493 				if (pte_uffd_wp(pte))
2494 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2495 			} else {
2496 				if (pte_swp_soft_dirty(pte))
2497 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2498 				if (pte_swp_uffd_wp(pte))
2499 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2500 			}
2501 			set_pte_at(mm, addr, ptep, swp_pte);
2502 
2503 			/*
2504 			 * This is like regular unmap: we remove the rmap and
2505 			 * drop page refcount. Page won't be freed, as we took
2506 			 * a reference just above.
2507 			 */
2508 			page_remove_rmap(page, false);
2509 			put_page(page);
2510 
2511 			if (pte_present(pte))
2512 				unmapped++;
2513 		}
2514 
2515 next:
2516 		migrate->dst[migrate->npages] = 0;
2517 		migrate->src[migrate->npages++] = mpfn;
2518 	}
2519 	arch_leave_lazy_mmu_mode();
2520 	pte_unmap_unlock(ptep - 1, ptl);
2521 
2522 	/* Only flush the TLB if we actually modified any entries */
2523 	if (unmapped)
2524 		flush_tlb_range(walk->vma, start, end);
2525 
2526 	return 0;
2527 }
2528 
2529 static const struct mm_walk_ops migrate_vma_walk_ops = {
2530 	.pmd_entry		= migrate_vma_collect_pmd,
2531 	.pte_hole		= migrate_vma_collect_hole,
2532 };
2533 
2534 /*
2535  * migrate_vma_collect() - collect pages over a range of virtual addresses
2536  * @migrate: migrate struct containing all migration information
2537  *
2538  * This will walk the CPU page table. For each virtual address backed by a
2539  * valid page, it updates the src array and takes a reference on the page, in
2540  * order to pin the page until we lock it and unmap it.
2541  */
2542 static void migrate_vma_collect(struct migrate_vma *migrate)
2543 {
2544 	struct mmu_notifier_range range;
2545 
2546 	/*
2547 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2548 	 * that the registered device driver can skip invalidating device
2549 	 * private page mappings that won't be migrated.
2550 	 */
2551 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2552 		migrate->vma->vm_mm, migrate->start, migrate->end,
2553 		migrate->pgmap_owner);
2554 	mmu_notifier_invalidate_range_start(&range);
2555 
2556 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2557 			&migrate_vma_walk_ops, migrate);
2558 
2559 	mmu_notifier_invalidate_range_end(&range);
2560 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2561 }
2562 
2563 /*
2564  * migrate_vma_check_page() - check if page is pinned or not
2565  * @page: struct page to check
2566  *
2567  * Pinned pages cannot be migrated. This is the same test as in
2568  * migrate_page_move_mapping(), except that here we allow migration of a
2569  * ZONE_DEVICE page.
2570  */
2571 static bool migrate_vma_check_page(struct page *page)
2572 {
2573 	/*
2574 	 * One extra ref because caller holds an extra reference, either from
2575 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2576 	 * a device page.
2577 	 */
2578 	int extra = 1;
2579 
2580 	/*
2581 	 * FIXME support THP (transparent huge page), it is bit more complex to
2582 	 * check them than regular pages, because they can be mapped with a pmd
2583 	 * or with a pte (split pte mapping).
2584 	 */
2585 	if (PageCompound(page))
2586 		return false;
2587 
2588 	/* Page from ZONE_DEVICE have one extra reference */
2589 	if (is_zone_device_page(page)) {
2590 		/*
2591 		 * Private page can never be pin as they have no valid pte and
2592 		 * GUP will fail for those. Yet if there is a pending migration
2593 		 * a thread might try to wait on the pte migration entry and
2594 		 * will bump the page reference count. Sadly there is no way to
2595 		 * differentiate a regular pin from migration wait. Hence to
2596 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2597 		 * infinite loop (one stopping migration because the other is
2598 		 * waiting on pte migration entry). We always return true here.
2599 		 *
2600 		 * FIXME proper solution is to rework migration_entry_wait() so
2601 		 * it does not need to take a reference on page.
2602 		 */
2603 		return is_device_private_page(page);
2604 	}
2605 
2606 	/* For file back page */
2607 	if (page_mapping(page))
2608 		extra += 1 + page_has_private(page);
2609 
2610 	if ((page_count(page) - extra) > page_mapcount(page))
2611 		return false;
2612 
2613 	return true;
2614 }
2615 
2616 /*
2617  * migrate_vma_prepare() - lock pages and isolate them from the lru
2618  * @migrate: migrate struct containing all migration information
2619  *
2620  * This locks pages that have been collected by migrate_vma_collect(). Once each
2621  * page is locked it is isolated from the lru (for non-device pages). Finally,
2622  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2623  * migrated by concurrent kernel threads.
2624  */
2625 static void migrate_vma_prepare(struct migrate_vma *migrate)
2626 {
2627 	const unsigned long npages = migrate->npages;
2628 	const unsigned long start = migrate->start;
2629 	unsigned long addr, i, restore = 0;
2630 	bool allow_drain = true;
2631 
2632 	lru_add_drain();
2633 
2634 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2635 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2636 		bool remap = true;
2637 
2638 		if (!page)
2639 			continue;
2640 
2641 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2642 			/*
2643 			 * Because we are migrating several pages there can be
2644 			 * a deadlock between 2 concurrent migration where each
2645 			 * are waiting on each other page lock.
2646 			 *
2647 			 * Make migrate_vma() a best effort thing and backoff
2648 			 * for any page we can not lock right away.
2649 			 */
2650 			if (!trylock_page(page)) {
2651 				migrate->src[i] = 0;
2652 				migrate->cpages--;
2653 				put_page(page);
2654 				continue;
2655 			}
2656 			remap = false;
2657 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2658 		}
2659 
2660 		/* ZONE_DEVICE pages are not on LRU */
2661 		if (!is_zone_device_page(page)) {
2662 			if (!PageLRU(page) && allow_drain) {
2663 				/* Drain CPU's pagevec */
2664 				lru_add_drain_all();
2665 				allow_drain = false;
2666 			}
2667 
2668 			if (isolate_lru_page(page)) {
2669 				if (remap) {
2670 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2671 					migrate->cpages--;
2672 					restore++;
2673 				} else {
2674 					migrate->src[i] = 0;
2675 					unlock_page(page);
2676 					migrate->cpages--;
2677 					put_page(page);
2678 				}
2679 				continue;
2680 			}
2681 
2682 			/* Drop the reference we took in collect */
2683 			put_page(page);
2684 		}
2685 
2686 		if (!migrate_vma_check_page(page)) {
2687 			if (remap) {
2688 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2689 				migrate->cpages--;
2690 				restore++;
2691 
2692 				if (!is_zone_device_page(page)) {
2693 					get_page(page);
2694 					putback_lru_page(page);
2695 				}
2696 			} else {
2697 				migrate->src[i] = 0;
2698 				unlock_page(page);
2699 				migrate->cpages--;
2700 
2701 				if (!is_zone_device_page(page))
2702 					putback_lru_page(page);
2703 				else
2704 					put_page(page);
2705 			}
2706 		}
2707 	}
2708 
2709 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2710 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2711 
2712 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2713 			continue;
2714 
2715 		remove_migration_pte(page, migrate->vma, addr, page);
2716 
2717 		migrate->src[i] = 0;
2718 		unlock_page(page);
2719 		put_page(page);
2720 		restore--;
2721 	}
2722 }
2723 
2724 /*
2725  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2726  * @migrate: migrate struct containing all migration information
2727  *
2728  * Replace page mapping (CPU page table pte) with a special migration pte entry
2729  * and check again if it has been pinned. Pinned pages are restored because we
2730  * cannot migrate them.
2731  *
2732  * This is the last step before we call the device driver callback to allocate
2733  * destination memory and copy contents of original page over to new page.
2734  */
2735 static void migrate_vma_unmap(struct migrate_vma *migrate)
2736 {
2737 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2738 	const unsigned long npages = migrate->npages;
2739 	const unsigned long start = migrate->start;
2740 	unsigned long addr, i, restore = 0;
2741 
2742 	for (i = 0; i < npages; i++) {
2743 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2744 
2745 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2746 			continue;
2747 
2748 		if (page_mapped(page)) {
2749 			try_to_unmap(page, flags);
2750 			if (page_mapped(page))
2751 				goto restore;
2752 		}
2753 
2754 		if (migrate_vma_check_page(page))
2755 			continue;
2756 
2757 restore:
2758 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2759 		migrate->cpages--;
2760 		restore++;
2761 	}
2762 
2763 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2764 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2765 
2766 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2767 			continue;
2768 
2769 		remove_migration_ptes(page, page, false);
2770 
2771 		migrate->src[i] = 0;
2772 		unlock_page(page);
2773 		restore--;
2774 
2775 		if (is_zone_device_page(page))
2776 			put_page(page);
2777 		else
2778 			putback_lru_page(page);
2779 	}
2780 }
2781 
2782 /**
2783  * migrate_vma_setup() - prepare to migrate a range of memory
2784  * @args: contains the vma, start, and pfns arrays for the migration
2785  *
2786  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2787  * without an error.
2788  *
2789  * Prepare to migrate a range of memory virtual address range by collecting all
2790  * the pages backing each virtual address in the range, saving them inside the
2791  * src array.  Then lock those pages and unmap them. Once the pages are locked
2792  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2793  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2794  * corresponding src array entry.  Then restores any pages that are pinned, by
2795  * remapping and unlocking those pages.
2796  *
2797  * The caller should then allocate destination memory and copy source memory to
2798  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2799  * flag set).  Once these are allocated and copied, the caller must update each
2800  * corresponding entry in the dst array with the pfn value of the destination
2801  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2802  * (destination pages must have their struct pages locked, via lock_page()).
2803  *
2804  * Note that the caller does not have to migrate all the pages that are marked
2805  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2806  * device memory to system memory.  If the caller cannot migrate a device page
2807  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2808  * consequences for the userspace process, so it must be avoided if at all
2809  * possible.
2810  *
2811  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2812  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2813  * allowing the caller to allocate device memory for those unback virtual
2814  * address.  For this the caller simply has to allocate device memory and
2815  * properly set the destination entry like for regular migration.  Note that
2816  * this can still fails and thus inside the device driver must check if the
2817  * migration was successful for those entries after calling migrate_vma_pages()
2818  * just like for regular migration.
2819  *
2820  * After that, the callers must call migrate_vma_pages() to go over each entry
2821  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2822  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2823  * then migrate_vma_pages() to migrate struct page information from the source
2824  * struct page to the destination struct page.  If it fails to migrate the
2825  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2826  * src array.
2827  *
2828  * At this point all successfully migrated pages have an entry in the src
2829  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2830  * array entry with MIGRATE_PFN_VALID flag set.
2831  *
2832  * Once migrate_vma_pages() returns the caller may inspect which pages were
2833  * successfully migrated, and which were not.  Successfully migrated pages will
2834  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2835  *
2836  * It is safe to update device page table after migrate_vma_pages() because
2837  * both destination and source page are still locked, and the mmap_lock is held
2838  * in read mode (hence no one can unmap the range being migrated).
2839  *
2840  * Once the caller is done cleaning up things and updating its page table (if it
2841  * chose to do so, this is not an obligation) it finally calls
2842  * migrate_vma_finalize() to update the CPU page table to point to new pages
2843  * for successfully migrated pages or otherwise restore the CPU page table to
2844  * point to the original source pages.
2845  */
2846 int migrate_vma_setup(struct migrate_vma *args)
2847 {
2848 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2849 
2850 	args->start &= PAGE_MASK;
2851 	args->end &= PAGE_MASK;
2852 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2853 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2854 		return -EINVAL;
2855 	if (nr_pages <= 0)
2856 		return -EINVAL;
2857 	if (args->start < args->vma->vm_start ||
2858 	    args->start >= args->vma->vm_end)
2859 		return -EINVAL;
2860 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2861 		return -EINVAL;
2862 	if (!args->src || !args->dst)
2863 		return -EINVAL;
2864 
2865 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2866 	args->cpages = 0;
2867 	args->npages = 0;
2868 
2869 	migrate_vma_collect(args);
2870 
2871 	if (args->cpages)
2872 		migrate_vma_prepare(args);
2873 	if (args->cpages)
2874 		migrate_vma_unmap(args);
2875 
2876 	/*
2877 	 * At this point pages are locked and unmapped, and thus they have
2878 	 * stable content and can safely be copied to destination memory that
2879 	 * is allocated by the drivers.
2880 	 */
2881 	return 0;
2882 
2883 }
2884 EXPORT_SYMBOL(migrate_vma_setup);
2885 
2886 /*
2887  * This code closely matches the code in:
2888  *   __handle_mm_fault()
2889  *     handle_pte_fault()
2890  *       do_anonymous_page()
2891  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2892  * private page.
2893  */
2894 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2895 				    unsigned long addr,
2896 				    struct page *page,
2897 				    unsigned long *src)
2898 {
2899 	struct vm_area_struct *vma = migrate->vma;
2900 	struct mm_struct *mm = vma->vm_mm;
2901 	bool flush = false;
2902 	spinlock_t *ptl;
2903 	pte_t entry;
2904 	pgd_t *pgdp;
2905 	p4d_t *p4dp;
2906 	pud_t *pudp;
2907 	pmd_t *pmdp;
2908 	pte_t *ptep;
2909 
2910 	/* Only allow populating anonymous memory */
2911 	if (!vma_is_anonymous(vma))
2912 		goto abort;
2913 
2914 	pgdp = pgd_offset(mm, addr);
2915 	p4dp = p4d_alloc(mm, pgdp, addr);
2916 	if (!p4dp)
2917 		goto abort;
2918 	pudp = pud_alloc(mm, p4dp, addr);
2919 	if (!pudp)
2920 		goto abort;
2921 	pmdp = pmd_alloc(mm, pudp, addr);
2922 	if (!pmdp)
2923 		goto abort;
2924 
2925 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2926 		goto abort;
2927 
2928 	/*
2929 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2930 	 * pte_offset_map() on pmds where a huge pmd might be created
2931 	 * from a different thread.
2932 	 *
2933 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2934 	 * parallel threads are excluded by other means.
2935 	 *
2936 	 * Here we only have mmap_read_lock(mm).
2937 	 */
2938 	if (pte_alloc(mm, pmdp))
2939 		goto abort;
2940 
2941 	/* See the comment in pte_alloc_one_map() */
2942 	if (unlikely(pmd_trans_unstable(pmdp)))
2943 		goto abort;
2944 
2945 	if (unlikely(anon_vma_prepare(vma)))
2946 		goto abort;
2947 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2948 		goto abort;
2949 
2950 	/*
2951 	 * The memory barrier inside __SetPageUptodate makes sure that
2952 	 * preceding stores to the page contents become visible before
2953 	 * the set_pte_at() write.
2954 	 */
2955 	__SetPageUptodate(page);
2956 
2957 	if (is_zone_device_page(page)) {
2958 		if (is_device_private_page(page)) {
2959 			swp_entry_t swp_entry;
2960 
2961 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2962 			entry = swp_entry_to_pte(swp_entry);
2963 		}
2964 	} else {
2965 		entry = mk_pte(page, vma->vm_page_prot);
2966 		if (vma->vm_flags & VM_WRITE)
2967 			entry = pte_mkwrite(pte_mkdirty(entry));
2968 	}
2969 
2970 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2971 
2972 	if (check_stable_address_space(mm))
2973 		goto unlock_abort;
2974 
2975 	if (pte_present(*ptep)) {
2976 		unsigned long pfn = pte_pfn(*ptep);
2977 
2978 		if (!is_zero_pfn(pfn))
2979 			goto unlock_abort;
2980 		flush = true;
2981 	} else if (!pte_none(*ptep))
2982 		goto unlock_abort;
2983 
2984 	/*
2985 	 * Check for userfaultfd but do not deliver the fault. Instead,
2986 	 * just back off.
2987 	 */
2988 	if (userfaultfd_missing(vma))
2989 		goto unlock_abort;
2990 
2991 	inc_mm_counter(mm, MM_ANONPAGES);
2992 	page_add_new_anon_rmap(page, vma, addr, false);
2993 	if (!is_zone_device_page(page))
2994 		lru_cache_add_inactive_or_unevictable(page, vma);
2995 	get_page(page);
2996 
2997 	if (flush) {
2998 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2999 		ptep_clear_flush_notify(vma, addr, ptep);
3000 		set_pte_at_notify(mm, addr, ptep, entry);
3001 		update_mmu_cache(vma, addr, ptep);
3002 	} else {
3003 		/* No need to invalidate - it was non-present before */
3004 		set_pte_at(mm, addr, ptep, entry);
3005 		update_mmu_cache(vma, addr, ptep);
3006 	}
3007 
3008 	pte_unmap_unlock(ptep, ptl);
3009 	*src = MIGRATE_PFN_MIGRATE;
3010 	return;
3011 
3012 unlock_abort:
3013 	pte_unmap_unlock(ptep, ptl);
3014 abort:
3015 	*src &= ~MIGRATE_PFN_MIGRATE;
3016 }
3017 
3018 /**
3019  * migrate_vma_pages() - migrate meta-data from src page to dst page
3020  * @migrate: migrate struct containing all migration information
3021  *
3022  * This migrates struct page meta-data from source struct page to destination
3023  * struct page. This effectively finishes the migration from source page to the
3024  * destination page.
3025  */
3026 void migrate_vma_pages(struct migrate_vma *migrate)
3027 {
3028 	const unsigned long npages = migrate->npages;
3029 	const unsigned long start = migrate->start;
3030 	struct mmu_notifier_range range;
3031 	unsigned long addr, i;
3032 	bool notified = false;
3033 
3034 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3035 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3036 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3037 		struct address_space *mapping;
3038 		int r;
3039 
3040 		if (!newpage) {
3041 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3042 			continue;
3043 		}
3044 
3045 		if (!page) {
3046 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3047 				continue;
3048 			if (!notified) {
3049 				notified = true;
3050 
3051 				mmu_notifier_range_init_migrate(&range, 0,
3052 					migrate->vma, migrate->vma->vm_mm,
3053 					addr, migrate->end,
3054 					migrate->pgmap_owner);
3055 				mmu_notifier_invalidate_range_start(&range);
3056 			}
3057 			migrate_vma_insert_page(migrate, addr, newpage,
3058 						&migrate->src[i]);
3059 			continue;
3060 		}
3061 
3062 		mapping = page_mapping(page);
3063 
3064 		if (is_zone_device_page(newpage)) {
3065 			if (is_device_private_page(newpage)) {
3066 				/*
3067 				 * For now only support private anonymous when
3068 				 * migrating to un-addressable device memory.
3069 				 */
3070 				if (mapping) {
3071 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3072 					continue;
3073 				}
3074 			} else {
3075 				/*
3076 				 * Other types of ZONE_DEVICE page are not
3077 				 * supported.
3078 				 */
3079 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3080 				continue;
3081 			}
3082 		}
3083 
3084 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3085 		if (r != MIGRATEPAGE_SUCCESS)
3086 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3087 	}
3088 
3089 	/*
3090 	 * No need to double call mmu_notifier->invalidate_range() callback as
3091 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3092 	 * did already call it.
3093 	 */
3094 	if (notified)
3095 		mmu_notifier_invalidate_range_only_end(&range);
3096 }
3097 EXPORT_SYMBOL(migrate_vma_pages);
3098 
3099 /**
3100  * migrate_vma_finalize() - restore CPU page table entry
3101  * @migrate: migrate struct containing all migration information
3102  *
3103  * This replaces the special migration pte entry with either a mapping to the
3104  * new page if migration was successful for that page, or to the original page
3105  * otherwise.
3106  *
3107  * This also unlocks the pages and puts them back on the lru, or drops the extra
3108  * refcount, for device pages.
3109  */
3110 void migrate_vma_finalize(struct migrate_vma *migrate)
3111 {
3112 	const unsigned long npages = migrate->npages;
3113 	unsigned long i;
3114 
3115 	for (i = 0; i < npages; i++) {
3116 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3117 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3118 
3119 		if (!page) {
3120 			if (newpage) {
3121 				unlock_page(newpage);
3122 				put_page(newpage);
3123 			}
3124 			continue;
3125 		}
3126 
3127 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3128 			if (newpage) {
3129 				unlock_page(newpage);
3130 				put_page(newpage);
3131 			}
3132 			newpage = page;
3133 		}
3134 
3135 		remove_migration_ptes(page, newpage, false);
3136 		unlock_page(page);
3137 
3138 		if (is_zone_device_page(page))
3139 			put_page(page);
3140 		else
3141 			putback_lru_page(page);
3142 
3143 		if (newpage != page) {
3144 			unlock_page(newpage);
3145 			if (is_zone_device_page(newpage))
3146 				put_page(newpage);
3147 			else
3148 				putback_lru_page(newpage);
3149 		}
3150 	}
3151 }
3152 EXPORT_SYMBOL(migrate_vma_finalize);
3153 #endif /* CONFIG_DEVICE_PRIVATE */
3154