xref: /openbmc/linux/mm/migrate.c (revision 8957261c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct folio *folio = folio_get_nontail_page(page);
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (!folio)
75 		goto out;
76 
77 	if (unlikely(folio_test_slab(folio)))
78 		goto out_putfolio;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__folio_test_movable(folio)))
87 		goto out_putfolio;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(folio_test_slab(folio)))
91 		goto out_putfolio;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!folio_trylock(folio)))
105 		goto out_putfolio;
106 
107 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 		goto out_no_isolated;
109 
110 	mops = folio_movable_ops(folio);
111 	VM_BUG_ON_FOLIO(!mops, folio);
112 
113 	if (!mops->isolate_page(&folio->page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(folio_test_isolated(folio));
118 	folio_set_isolated(folio);
119 	folio_unlock(folio);
120 
121 	return true;
122 
123 out_no_isolated:
124 	folio_unlock(folio);
125 out_putfolio:
126 	folio_put(folio);
127 out:
128 	return false;
129 }
130 
131 static void putback_movable_folio(struct folio *folio)
132 {
133 	const struct movable_operations *mops = folio_movable_ops(folio);
134 
135 	mops->putback_page(&folio->page);
136 	folio_clear_isolated(folio);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct folio *folio;
150 	struct folio *folio2;
151 
152 	list_for_each_entry_safe(folio, folio2, l, lru) {
153 		if (unlikely(folio_test_hugetlb(folio))) {
154 			folio_putback_active_hugetlb(folio);
155 			continue;
156 		}
157 		list_del(&folio->lru);
158 		/*
159 		 * We isolated non-lru movable folio so here we can use
160 		 * __PageMovable because LRU folio's mapping cannot have
161 		 * PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__folio_test_movable(folio))) {
164 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 			folio_lock(folio);
166 			if (folio_test_movable(folio))
167 				putback_movable_folio(folio);
168 			else
169 				folio_clear_isolated(folio);
170 			folio_unlock(folio);
171 			folio_put(folio);
172 		} else {
173 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 					folio_is_file_lru(folio), -folio_nr_pages(folio));
175 			folio_putback_lru(folio);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t old_pte;
191 		pte_t pte;
192 		swp_entry_t entry;
193 		struct page *new;
194 		unsigned long idx = 0;
195 
196 		/* pgoff is invalid for ksm pages, but they are never large */
197 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 		new = folio_page(folio, idx);
200 
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 		/* PMD-mapped THP migration entry */
203 		if (!pvmw.pte) {
204 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 					!folio_test_pmd_mappable(folio), folio);
206 			remove_migration_pmd(&pvmw, new);
207 			continue;
208 		}
209 #endif
210 
211 		folio_get(folio);
212 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 		old_pte = ptep_get(pvmw.pte);
214 		if (pte_swp_soft_dirty(old_pte))
215 			pte = pte_mksoft_dirty(pte);
216 
217 		entry = pte_to_swp_entry(old_pte);
218 		if (!is_migration_entry_young(entry))
219 			pte = pte_mkold(pte);
220 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
221 			pte = pte_mkdirty(pte);
222 		if (is_writable_migration_entry(entry))
223 			pte = pte_mkwrite(pte, vma);
224 		else if (pte_swp_uffd_wp(old_pte))
225 			pte = pte_mkuffd_wp(pte);
226 
227 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
228 			rmap_flags |= RMAP_EXCLUSIVE;
229 
230 		if (unlikely(is_device_private_page(new))) {
231 			if (pte_write(pte))
232 				entry = make_writable_device_private_entry(
233 							page_to_pfn(new));
234 			else
235 				entry = make_readable_device_private_entry(
236 							page_to_pfn(new));
237 			pte = swp_entry_to_pte(entry);
238 			if (pte_swp_soft_dirty(old_pte))
239 				pte = pte_swp_mksoft_dirty(pte);
240 			if (pte_swp_uffd_wp(old_pte))
241 				pte = pte_swp_mkuffd_wp(pte);
242 		}
243 
244 #ifdef CONFIG_HUGETLB_PAGE
245 		if (folio_test_hugetlb(folio)) {
246 			unsigned int shift = huge_page_shift(hstate_vma(vma));
247 
248 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
249 			if (folio_test_anon(folio))
250 				hugepage_add_anon_rmap(new, vma, pvmw.address,
251 						       rmap_flags);
252 			else
253 				page_dup_file_rmap(new, true);
254 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
255 		} else
256 #endif
257 		{
258 			if (folio_test_anon(folio))
259 				page_add_anon_rmap(new, vma, pvmw.address,
260 						   rmap_flags);
261 			else
262 				page_add_file_rmap(new, vma, false);
263 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
264 		}
265 		if (vma->vm_flags & VM_LOCKED)
266 			mlock_drain_local();
267 
268 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
269 					   compound_order(new));
270 
271 		/* No need to invalidate - it was non-present before */
272 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
273 	}
274 
275 	return true;
276 }
277 
278 /*
279  * Get rid of all migration entries and replace them by
280  * references to the indicated page.
281  */
282 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
283 {
284 	struct rmap_walk_control rwc = {
285 		.rmap_one = remove_migration_pte,
286 		.arg = src,
287 	};
288 
289 	if (locked)
290 		rmap_walk_locked(dst, &rwc);
291 	else
292 		rmap_walk(dst, &rwc);
293 }
294 
295 /*
296  * Something used the pte of a page under migration. We need to
297  * get to the page and wait until migration is finished.
298  * When we return from this function the fault will be retried.
299  */
300 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
301 			  unsigned long address)
302 {
303 	spinlock_t *ptl;
304 	pte_t *ptep;
305 	pte_t pte;
306 	swp_entry_t entry;
307 
308 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
309 	if (!ptep)
310 		return;
311 
312 	pte = ptep_get(ptep);
313 	pte_unmap(ptep);
314 
315 	if (!is_swap_pte(pte))
316 		goto out;
317 
318 	entry = pte_to_swp_entry(pte);
319 	if (!is_migration_entry(entry))
320 		goto out;
321 
322 	migration_entry_wait_on_locked(entry, ptl);
323 	return;
324 out:
325 	spin_unlock(ptl);
326 }
327 
328 #ifdef CONFIG_HUGETLB_PAGE
329 /*
330  * The vma read lock must be held upon entry. Holding that lock prevents either
331  * the pte or the ptl from being freed.
332  *
333  * This function will release the vma lock before returning.
334  */
335 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
336 {
337 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
338 	pte_t pte;
339 
340 	hugetlb_vma_assert_locked(vma);
341 	spin_lock(ptl);
342 	pte = huge_ptep_get(ptep);
343 
344 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
345 		spin_unlock(ptl);
346 		hugetlb_vma_unlock_read(vma);
347 	} else {
348 		/*
349 		 * If migration entry existed, safe to release vma lock
350 		 * here because the pgtable page won't be freed without the
351 		 * pgtable lock released.  See comment right above pgtable
352 		 * lock release in migration_entry_wait_on_locked().
353 		 */
354 		hugetlb_vma_unlock_read(vma);
355 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
356 	}
357 }
358 #endif
359 
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 	spinlock_t *ptl;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
369 	return;
370 unlock:
371 	spin_unlock(ptl);
372 }
373 #endif
374 
375 static int folio_expected_refs(struct address_space *mapping,
376 		struct folio *folio)
377 {
378 	int refs = 1;
379 	if (!mapping)
380 		return refs;
381 
382 	refs += folio_nr_pages(folio);
383 	if (folio_test_private(folio))
384 		refs++;
385 
386 	return refs;
387 }
388 
389 /*
390  * Replace the page in the mapping.
391  *
392  * The number of remaining references must be:
393  * 1 for anonymous pages without a mapping
394  * 2 for pages with a mapping
395  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
396  */
397 int folio_migrate_mapping(struct address_space *mapping,
398 		struct folio *newfolio, struct folio *folio, int extra_count)
399 {
400 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
401 	struct zone *oldzone, *newzone;
402 	int dirty;
403 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
404 	long nr = folio_nr_pages(folio);
405 
406 	if (!mapping) {
407 		/* Anonymous page without mapping */
408 		if (folio_ref_count(folio) != expected_count)
409 			return -EAGAIN;
410 
411 		/* No turning back from here */
412 		newfolio->index = folio->index;
413 		newfolio->mapping = folio->mapping;
414 		if (folio_test_swapbacked(folio))
415 			__folio_set_swapbacked(newfolio);
416 
417 		return MIGRATEPAGE_SUCCESS;
418 	}
419 
420 	oldzone = folio_zone(folio);
421 	newzone = folio_zone(newfolio);
422 
423 	xas_lock_irq(&xas);
424 	if (!folio_ref_freeze(folio, expected_count)) {
425 		xas_unlock_irq(&xas);
426 		return -EAGAIN;
427 	}
428 
429 	/*
430 	 * Now we know that no one else is looking at the folio:
431 	 * no turning back from here.
432 	 */
433 	newfolio->index = folio->index;
434 	newfolio->mapping = folio->mapping;
435 	folio_ref_add(newfolio, nr); /* add cache reference */
436 	if (folio_test_swapbacked(folio)) {
437 		__folio_set_swapbacked(newfolio);
438 		if (folio_test_swapcache(folio)) {
439 			folio_set_swapcache(newfolio);
440 			newfolio->private = folio_get_private(folio);
441 		}
442 	} else {
443 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
444 	}
445 
446 	/* Move dirty while page refs frozen and newpage not yet exposed */
447 	dirty = folio_test_dirty(folio);
448 	if (dirty) {
449 		folio_clear_dirty(folio);
450 		folio_set_dirty(newfolio);
451 	}
452 
453 	xas_store(&xas, newfolio);
454 
455 	/*
456 	 * Drop cache reference from old page by unfreezing
457 	 * to one less reference.
458 	 * We know this isn't the last reference.
459 	 */
460 	folio_ref_unfreeze(folio, expected_count - nr);
461 
462 	xas_unlock(&xas);
463 	/* Leave irq disabled to prevent preemption while updating stats */
464 
465 	/*
466 	 * If moved to a different zone then also account
467 	 * the page for that zone. Other VM counters will be
468 	 * taken care of when we establish references to the
469 	 * new page and drop references to the old page.
470 	 *
471 	 * Note that anonymous pages are accounted for
472 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
473 	 * are mapped to swap space.
474 	 */
475 	if (newzone != oldzone) {
476 		struct lruvec *old_lruvec, *new_lruvec;
477 		struct mem_cgroup *memcg;
478 
479 		memcg = folio_memcg(folio);
480 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
481 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
482 
483 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
484 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
485 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
486 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
487 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
488 
489 			if (folio_test_pmd_mappable(folio)) {
490 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
491 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
492 			}
493 		}
494 #ifdef CONFIG_SWAP
495 		if (folio_test_swapcache(folio)) {
496 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
497 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
498 		}
499 #endif
500 		if (dirty && mapping_can_writeback(mapping)) {
501 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
502 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
503 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
504 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
505 		}
506 	}
507 	local_irq_enable();
508 
509 	return MIGRATEPAGE_SUCCESS;
510 }
511 EXPORT_SYMBOL(folio_migrate_mapping);
512 
513 /*
514  * The expected number of remaining references is the same as that
515  * of folio_migrate_mapping().
516  */
517 int migrate_huge_page_move_mapping(struct address_space *mapping,
518 				   struct folio *dst, struct folio *src)
519 {
520 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
521 	int expected_count;
522 
523 	xas_lock_irq(&xas);
524 	expected_count = 2 + folio_has_private(src);
525 	if (!folio_ref_freeze(src, expected_count)) {
526 		xas_unlock_irq(&xas);
527 		return -EAGAIN;
528 	}
529 
530 	dst->index = src->index;
531 	dst->mapping = src->mapping;
532 
533 	folio_get(dst);
534 
535 	xas_store(&xas, dst);
536 
537 	folio_ref_unfreeze(src, expected_count - 1);
538 
539 	xas_unlock_irq(&xas);
540 
541 	return MIGRATEPAGE_SUCCESS;
542 }
543 
544 /*
545  * Copy the flags and some other ancillary information
546  */
547 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
548 {
549 	int cpupid;
550 
551 	if (folio_test_error(folio))
552 		folio_set_error(newfolio);
553 	if (folio_test_referenced(folio))
554 		folio_set_referenced(newfolio);
555 	if (folio_test_uptodate(folio))
556 		folio_mark_uptodate(newfolio);
557 	if (folio_test_clear_active(folio)) {
558 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
559 		folio_set_active(newfolio);
560 	} else if (folio_test_clear_unevictable(folio))
561 		folio_set_unevictable(newfolio);
562 	if (folio_test_workingset(folio))
563 		folio_set_workingset(newfolio);
564 	if (folio_test_checked(folio))
565 		folio_set_checked(newfolio);
566 	/*
567 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
568 	 * migration entries. We can still have PG_anon_exclusive set on an
569 	 * effectively unmapped and unreferenced first sub-pages of an
570 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
571 	 */
572 	if (folio_test_mappedtodisk(folio))
573 		folio_set_mappedtodisk(newfolio);
574 
575 	/* Move dirty on pages not done by folio_migrate_mapping() */
576 	if (folio_test_dirty(folio))
577 		folio_set_dirty(newfolio);
578 
579 	if (folio_test_young(folio))
580 		folio_set_young(newfolio);
581 	if (folio_test_idle(folio))
582 		folio_set_idle(newfolio);
583 
584 	/*
585 	 * Copy NUMA information to the new page, to prevent over-eager
586 	 * future migrations of this same page.
587 	 */
588 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
589 	/*
590 	 * For memory tiering mode, when migrate between slow and fast
591 	 * memory node, reset cpupid, because that is used to record
592 	 * page access time in slow memory node.
593 	 */
594 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
595 		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
596 		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
597 
598 		if (f_toptier != t_toptier)
599 			cpupid = -1;
600 	}
601 	page_cpupid_xchg_last(&newfolio->page, cpupid);
602 
603 	folio_migrate_ksm(newfolio, folio);
604 	/*
605 	 * Please do not reorder this without considering how mm/ksm.c's
606 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
607 	 */
608 	if (folio_test_swapcache(folio))
609 		folio_clear_swapcache(folio);
610 	folio_clear_private(folio);
611 
612 	/* page->private contains hugetlb specific flags */
613 	if (!folio_test_hugetlb(folio))
614 		folio->private = NULL;
615 
616 	/*
617 	 * If any waiters have accumulated on the new page then
618 	 * wake them up.
619 	 */
620 	if (folio_test_writeback(newfolio))
621 		folio_end_writeback(newfolio);
622 
623 	/*
624 	 * PG_readahead shares the same bit with PG_reclaim.  The above
625 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
626 	 * bit after that.
627 	 */
628 	if (folio_test_readahead(folio))
629 		folio_set_readahead(newfolio);
630 
631 	folio_copy_owner(newfolio, folio);
632 
633 	if (!folio_test_hugetlb(folio))
634 		mem_cgroup_migrate(folio, newfolio);
635 }
636 EXPORT_SYMBOL(folio_migrate_flags);
637 
638 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
639 {
640 	folio_copy(newfolio, folio);
641 	folio_migrate_flags(newfolio, folio);
642 }
643 EXPORT_SYMBOL(folio_migrate_copy);
644 
645 /************************************************************
646  *                    Migration functions
647  ***********************************************************/
648 
649 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
650 		struct folio *src, enum migrate_mode mode, int extra_count)
651 {
652 	int rc;
653 
654 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
655 
656 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
657 
658 	if (rc != MIGRATEPAGE_SUCCESS)
659 		return rc;
660 
661 	if (mode != MIGRATE_SYNC_NO_COPY)
662 		folio_migrate_copy(dst, src);
663 	else
664 		folio_migrate_flags(dst, src);
665 	return MIGRATEPAGE_SUCCESS;
666 }
667 
668 /**
669  * migrate_folio() - Simple folio migration.
670  * @mapping: The address_space containing the folio.
671  * @dst: The folio to migrate the data to.
672  * @src: The folio containing the current data.
673  * @mode: How to migrate the page.
674  *
675  * Common logic to directly migrate a single LRU folio suitable for
676  * folios that do not use PagePrivate/PagePrivate2.
677  *
678  * Folios are locked upon entry and exit.
679  */
680 int migrate_folio(struct address_space *mapping, struct folio *dst,
681 		struct folio *src, enum migrate_mode mode)
682 {
683 	return migrate_folio_extra(mapping, dst, src, mode, 0);
684 }
685 EXPORT_SYMBOL(migrate_folio);
686 
687 #ifdef CONFIG_BUFFER_HEAD
688 /* Returns true if all buffers are successfully locked */
689 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
690 							enum migrate_mode mode)
691 {
692 	struct buffer_head *bh = head;
693 	struct buffer_head *failed_bh;
694 
695 	do {
696 		if (!trylock_buffer(bh)) {
697 			if (mode == MIGRATE_ASYNC)
698 				goto unlock;
699 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
700 				goto unlock;
701 			lock_buffer(bh);
702 		}
703 
704 		bh = bh->b_this_page;
705 	} while (bh != head);
706 
707 	return true;
708 
709 unlock:
710 	/* We failed to lock the buffer and cannot stall. */
711 	failed_bh = bh;
712 	bh = head;
713 	while (bh != failed_bh) {
714 		unlock_buffer(bh);
715 		bh = bh->b_this_page;
716 	}
717 
718 	return false;
719 }
720 
721 static int __buffer_migrate_folio(struct address_space *mapping,
722 		struct folio *dst, struct folio *src, enum migrate_mode mode,
723 		bool check_refs)
724 {
725 	struct buffer_head *bh, *head;
726 	int rc;
727 	int expected_count;
728 
729 	head = folio_buffers(src);
730 	if (!head)
731 		return migrate_folio(mapping, dst, src, mode);
732 
733 	/* Check whether page does not have extra refs before we do more work */
734 	expected_count = folio_expected_refs(mapping, src);
735 	if (folio_ref_count(src) != expected_count)
736 		return -EAGAIN;
737 
738 	if (!buffer_migrate_lock_buffers(head, mode))
739 		return -EAGAIN;
740 
741 	if (check_refs) {
742 		bool busy;
743 		bool invalidated = false;
744 
745 recheck_buffers:
746 		busy = false;
747 		spin_lock(&mapping->private_lock);
748 		bh = head;
749 		do {
750 			if (atomic_read(&bh->b_count)) {
751 				busy = true;
752 				break;
753 			}
754 			bh = bh->b_this_page;
755 		} while (bh != head);
756 		if (busy) {
757 			if (invalidated) {
758 				rc = -EAGAIN;
759 				goto unlock_buffers;
760 			}
761 			spin_unlock(&mapping->private_lock);
762 			invalidate_bh_lrus();
763 			invalidated = true;
764 			goto recheck_buffers;
765 		}
766 	}
767 
768 	rc = folio_migrate_mapping(mapping, dst, src, 0);
769 	if (rc != MIGRATEPAGE_SUCCESS)
770 		goto unlock_buffers;
771 
772 	folio_attach_private(dst, folio_detach_private(src));
773 
774 	bh = head;
775 	do {
776 		folio_set_bh(bh, dst, bh_offset(bh));
777 		bh = bh->b_this_page;
778 	} while (bh != head);
779 
780 	if (mode != MIGRATE_SYNC_NO_COPY)
781 		folio_migrate_copy(dst, src);
782 	else
783 		folio_migrate_flags(dst, src);
784 
785 	rc = MIGRATEPAGE_SUCCESS;
786 unlock_buffers:
787 	if (check_refs)
788 		spin_unlock(&mapping->private_lock);
789 	bh = head;
790 	do {
791 		unlock_buffer(bh);
792 		bh = bh->b_this_page;
793 	} while (bh != head);
794 
795 	return rc;
796 }
797 
798 /**
799  * buffer_migrate_folio() - Migration function for folios with buffers.
800  * @mapping: The address space containing @src.
801  * @dst: The folio to migrate to.
802  * @src: The folio to migrate from.
803  * @mode: How to migrate the folio.
804  *
805  * This function can only be used if the underlying filesystem guarantees
806  * that no other references to @src exist. For example attached buffer
807  * heads are accessed only under the folio lock.  If your filesystem cannot
808  * provide this guarantee, buffer_migrate_folio_norefs() may be more
809  * appropriate.
810  *
811  * Return: 0 on success or a negative errno on failure.
812  */
813 int buffer_migrate_folio(struct address_space *mapping,
814 		struct folio *dst, struct folio *src, enum migrate_mode mode)
815 {
816 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
817 }
818 EXPORT_SYMBOL(buffer_migrate_folio);
819 
820 /**
821  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
822  * @mapping: The address space containing @src.
823  * @dst: The folio to migrate to.
824  * @src: The folio to migrate from.
825  * @mode: How to migrate the folio.
826  *
827  * Like buffer_migrate_folio() except that this variant is more careful
828  * and checks that there are also no buffer head references. This function
829  * is the right one for mappings where buffer heads are directly looked
830  * up and referenced (such as block device mappings).
831  *
832  * Return: 0 on success or a negative errno on failure.
833  */
834 int buffer_migrate_folio_norefs(struct address_space *mapping,
835 		struct folio *dst, struct folio *src, enum migrate_mode mode)
836 {
837 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
838 }
839 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
840 #endif /* CONFIG_BUFFER_HEAD */
841 
842 int filemap_migrate_folio(struct address_space *mapping,
843 		struct folio *dst, struct folio *src, enum migrate_mode mode)
844 {
845 	int ret;
846 
847 	ret = folio_migrate_mapping(mapping, dst, src, 0);
848 	if (ret != MIGRATEPAGE_SUCCESS)
849 		return ret;
850 
851 	if (folio_get_private(src))
852 		folio_attach_private(dst, folio_detach_private(src));
853 
854 	if (mode != MIGRATE_SYNC_NO_COPY)
855 		folio_migrate_copy(dst, src);
856 	else
857 		folio_migrate_flags(dst, src);
858 	return MIGRATEPAGE_SUCCESS;
859 }
860 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
861 
862 /*
863  * Writeback a folio to clean the dirty state
864  */
865 static int writeout(struct address_space *mapping, struct folio *folio)
866 {
867 	struct writeback_control wbc = {
868 		.sync_mode = WB_SYNC_NONE,
869 		.nr_to_write = 1,
870 		.range_start = 0,
871 		.range_end = LLONG_MAX,
872 		.for_reclaim = 1
873 	};
874 	int rc;
875 
876 	if (!mapping->a_ops->writepage)
877 		/* No write method for the address space */
878 		return -EINVAL;
879 
880 	if (!folio_clear_dirty_for_io(folio))
881 		/* Someone else already triggered a write */
882 		return -EAGAIN;
883 
884 	/*
885 	 * A dirty folio may imply that the underlying filesystem has
886 	 * the folio on some queue. So the folio must be clean for
887 	 * migration. Writeout may mean we lose the lock and the
888 	 * folio state is no longer what we checked for earlier.
889 	 * At this point we know that the migration attempt cannot
890 	 * be successful.
891 	 */
892 	remove_migration_ptes(folio, folio, false);
893 
894 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
895 
896 	if (rc != AOP_WRITEPAGE_ACTIVATE)
897 		/* unlocked. Relock */
898 		folio_lock(folio);
899 
900 	return (rc < 0) ? -EIO : -EAGAIN;
901 }
902 
903 /*
904  * Default handling if a filesystem does not provide a migration function.
905  */
906 static int fallback_migrate_folio(struct address_space *mapping,
907 		struct folio *dst, struct folio *src, enum migrate_mode mode)
908 {
909 	if (folio_test_dirty(src)) {
910 		/* Only writeback folios in full synchronous migration */
911 		switch (mode) {
912 		case MIGRATE_SYNC:
913 		case MIGRATE_SYNC_NO_COPY:
914 			break;
915 		default:
916 			return -EBUSY;
917 		}
918 		return writeout(mapping, src);
919 	}
920 
921 	/*
922 	 * Buffers may be managed in a filesystem specific way.
923 	 * We must have no buffers or drop them.
924 	 */
925 	if (!filemap_release_folio(src, GFP_KERNEL))
926 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
927 
928 	return migrate_folio(mapping, dst, src, mode);
929 }
930 
931 /*
932  * Move a page to a newly allocated page
933  * The page is locked and all ptes have been successfully removed.
934  *
935  * The new page will have replaced the old page if this function
936  * is successful.
937  *
938  * Return value:
939  *   < 0 - error code
940  *  MIGRATEPAGE_SUCCESS - success
941  */
942 static int move_to_new_folio(struct folio *dst, struct folio *src,
943 				enum migrate_mode mode)
944 {
945 	int rc = -EAGAIN;
946 	bool is_lru = !__PageMovable(&src->page);
947 
948 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
949 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
950 
951 	if (likely(is_lru)) {
952 		struct address_space *mapping = folio_mapping(src);
953 
954 		if (!mapping)
955 			rc = migrate_folio(mapping, dst, src, mode);
956 		else if (mapping->a_ops->migrate_folio)
957 			/*
958 			 * Most folios have a mapping and most filesystems
959 			 * provide a migrate_folio callback. Anonymous folios
960 			 * are part of swap space which also has its own
961 			 * migrate_folio callback. This is the most common path
962 			 * for page migration.
963 			 */
964 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
965 								mode);
966 		else
967 			rc = fallback_migrate_folio(mapping, dst, src, mode);
968 	} else {
969 		const struct movable_operations *mops;
970 
971 		/*
972 		 * In case of non-lru page, it could be released after
973 		 * isolation step. In that case, we shouldn't try migration.
974 		 */
975 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
976 		if (!folio_test_movable(src)) {
977 			rc = MIGRATEPAGE_SUCCESS;
978 			folio_clear_isolated(src);
979 			goto out;
980 		}
981 
982 		mops = folio_movable_ops(src);
983 		rc = mops->migrate_page(&dst->page, &src->page, mode);
984 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
985 				!folio_test_isolated(src));
986 	}
987 
988 	/*
989 	 * When successful, old pagecache src->mapping must be cleared before
990 	 * src is freed; but stats require that PageAnon be left as PageAnon.
991 	 */
992 	if (rc == MIGRATEPAGE_SUCCESS) {
993 		if (__PageMovable(&src->page)) {
994 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
995 
996 			/*
997 			 * We clear PG_movable under page_lock so any compactor
998 			 * cannot try to migrate this page.
999 			 */
1000 			folio_clear_isolated(src);
1001 		}
1002 
1003 		/*
1004 		 * Anonymous and movable src->mapping will be cleared by
1005 		 * free_pages_prepare so don't reset it here for keeping
1006 		 * the type to work PageAnon, for example.
1007 		 */
1008 		if (!folio_mapping_flags(src))
1009 			src->mapping = NULL;
1010 
1011 		if (likely(!folio_is_zone_device(dst)))
1012 			flush_dcache_folio(dst);
1013 	}
1014 out:
1015 	return rc;
1016 }
1017 
1018 /*
1019  * To record some information during migration, we use some unused
1020  * fields (mapping and private) of struct folio of the newly allocated
1021  * destination folio.  This is safe because nobody is using them
1022  * except us.
1023  */
1024 union migration_ptr {
1025 	struct anon_vma *anon_vma;
1026 	struct address_space *mapping;
1027 };
1028 static void __migrate_folio_record(struct folio *dst,
1029 				   unsigned long page_was_mapped,
1030 				   struct anon_vma *anon_vma)
1031 {
1032 	union migration_ptr ptr = { .anon_vma = anon_vma };
1033 	dst->mapping = ptr.mapping;
1034 	dst->private = (void *)page_was_mapped;
1035 }
1036 
1037 static void __migrate_folio_extract(struct folio *dst,
1038 				   int *page_was_mappedp,
1039 				   struct anon_vma **anon_vmap)
1040 {
1041 	union migration_ptr ptr = { .mapping = dst->mapping };
1042 	*anon_vmap = ptr.anon_vma;
1043 	*page_was_mappedp = (unsigned long)dst->private;
1044 	dst->mapping = NULL;
1045 	dst->private = NULL;
1046 }
1047 
1048 /* Restore the source folio to the original state upon failure */
1049 static void migrate_folio_undo_src(struct folio *src,
1050 				   int page_was_mapped,
1051 				   struct anon_vma *anon_vma,
1052 				   bool locked,
1053 				   struct list_head *ret)
1054 {
1055 	if (page_was_mapped)
1056 		remove_migration_ptes(src, src, false);
1057 	/* Drop an anon_vma reference if we took one */
1058 	if (anon_vma)
1059 		put_anon_vma(anon_vma);
1060 	if (locked)
1061 		folio_unlock(src);
1062 	if (ret)
1063 		list_move_tail(&src->lru, ret);
1064 }
1065 
1066 /* Restore the destination folio to the original state upon failure */
1067 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1068 		free_folio_t put_new_folio, unsigned long private)
1069 {
1070 	if (locked)
1071 		folio_unlock(dst);
1072 	if (put_new_folio)
1073 		put_new_folio(dst, private);
1074 	else
1075 		folio_put(dst);
1076 }
1077 
1078 /* Cleanup src folio upon migration success */
1079 static void migrate_folio_done(struct folio *src,
1080 			       enum migrate_reason reason)
1081 {
1082 	/*
1083 	 * Compaction can migrate also non-LRU pages which are
1084 	 * not accounted to NR_ISOLATED_*. They can be recognized
1085 	 * as __PageMovable
1086 	 */
1087 	if (likely(!__folio_test_movable(src)))
1088 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1089 				    folio_is_file_lru(src), -folio_nr_pages(src));
1090 
1091 	if (reason != MR_MEMORY_FAILURE)
1092 		/* We release the page in page_handle_poison. */
1093 		folio_put(src);
1094 }
1095 
1096 /* Obtain the lock on page, remove all ptes. */
1097 static int migrate_folio_unmap(new_folio_t get_new_folio,
1098 		free_folio_t put_new_folio, unsigned long private,
1099 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1100 		enum migrate_reason reason, struct list_head *ret)
1101 {
1102 	struct folio *dst;
1103 	int rc = -EAGAIN;
1104 	int page_was_mapped = 0;
1105 	struct anon_vma *anon_vma = NULL;
1106 	bool is_lru = !__PageMovable(&src->page);
1107 	bool locked = false;
1108 	bool dst_locked = false;
1109 
1110 	if (folio_ref_count(src) == 1) {
1111 		/* Folio was freed from under us. So we are done. */
1112 		folio_clear_active(src);
1113 		folio_clear_unevictable(src);
1114 		/* free_pages_prepare() will clear PG_isolated. */
1115 		list_del(&src->lru);
1116 		migrate_folio_done(src, reason);
1117 		return MIGRATEPAGE_SUCCESS;
1118 	}
1119 
1120 	dst = get_new_folio(src, private);
1121 	if (!dst)
1122 		return -ENOMEM;
1123 	*dstp = dst;
1124 
1125 	dst->private = NULL;
1126 
1127 	if (!folio_trylock(src)) {
1128 		if (mode == MIGRATE_ASYNC)
1129 			goto out;
1130 
1131 		/*
1132 		 * It's not safe for direct compaction to call lock_page.
1133 		 * For example, during page readahead pages are added locked
1134 		 * to the LRU. Later, when the IO completes the pages are
1135 		 * marked uptodate and unlocked. However, the queueing
1136 		 * could be merging multiple pages for one bio (e.g.
1137 		 * mpage_readahead). If an allocation happens for the
1138 		 * second or third page, the process can end up locking
1139 		 * the same page twice and deadlocking. Rather than
1140 		 * trying to be clever about what pages can be locked,
1141 		 * avoid the use of lock_page for direct compaction
1142 		 * altogether.
1143 		 */
1144 		if (current->flags & PF_MEMALLOC)
1145 			goto out;
1146 
1147 		/*
1148 		 * In "light" mode, we can wait for transient locks (eg
1149 		 * inserting a page into the page table), but it's not
1150 		 * worth waiting for I/O.
1151 		 */
1152 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1153 			goto out;
1154 
1155 		folio_lock(src);
1156 	}
1157 	locked = true;
1158 
1159 	if (folio_test_writeback(src)) {
1160 		/*
1161 		 * Only in the case of a full synchronous migration is it
1162 		 * necessary to wait for PageWriteback. In the async case,
1163 		 * the retry loop is too short and in the sync-light case,
1164 		 * the overhead of stalling is too much
1165 		 */
1166 		switch (mode) {
1167 		case MIGRATE_SYNC:
1168 		case MIGRATE_SYNC_NO_COPY:
1169 			break;
1170 		default:
1171 			rc = -EBUSY;
1172 			goto out;
1173 		}
1174 		folio_wait_writeback(src);
1175 	}
1176 
1177 	/*
1178 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1179 	 * we cannot notice that anon_vma is freed while we migrate a page.
1180 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1181 	 * of migration. File cache pages are no problem because of page_lock()
1182 	 * File Caches may use write_page() or lock_page() in migration, then,
1183 	 * just care Anon page here.
1184 	 *
1185 	 * Only folio_get_anon_vma() understands the subtleties of
1186 	 * getting a hold on an anon_vma from outside one of its mms.
1187 	 * But if we cannot get anon_vma, then we won't need it anyway,
1188 	 * because that implies that the anon page is no longer mapped
1189 	 * (and cannot be remapped so long as we hold the page lock).
1190 	 */
1191 	if (folio_test_anon(src) && !folio_test_ksm(src))
1192 		anon_vma = folio_get_anon_vma(src);
1193 
1194 	/*
1195 	 * Block others from accessing the new page when we get around to
1196 	 * establishing additional references. We are usually the only one
1197 	 * holding a reference to dst at this point. We used to have a BUG
1198 	 * here if folio_trylock(dst) fails, but would like to allow for
1199 	 * cases where there might be a race with the previous use of dst.
1200 	 * This is much like races on refcount of oldpage: just don't BUG().
1201 	 */
1202 	if (unlikely(!folio_trylock(dst)))
1203 		goto out;
1204 	dst_locked = true;
1205 
1206 	if (unlikely(!is_lru)) {
1207 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1208 		return MIGRATEPAGE_UNMAP;
1209 	}
1210 
1211 	/*
1212 	 * Corner case handling:
1213 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1214 	 * and treated as swapcache but it has no rmap yet.
1215 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1216 	 * trigger a BUG.  So handle it here.
1217 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1218 	 * fs-private metadata. The page can be picked up due to memory
1219 	 * offlining.  Everywhere else except page reclaim, the page is
1220 	 * invisible to the vm, so the page can not be migrated.  So try to
1221 	 * free the metadata, so the page can be freed.
1222 	 */
1223 	if (!src->mapping) {
1224 		if (folio_test_private(src)) {
1225 			try_to_free_buffers(src);
1226 			goto out;
1227 		}
1228 	} else if (folio_mapped(src)) {
1229 		/* Establish migration ptes */
1230 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1231 			       !folio_test_ksm(src) && !anon_vma, src);
1232 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1233 		page_was_mapped = 1;
1234 	}
1235 
1236 	if (!folio_mapped(src)) {
1237 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1238 		return MIGRATEPAGE_UNMAP;
1239 	}
1240 
1241 out:
1242 	/*
1243 	 * A folio that has not been unmapped will be restored to
1244 	 * right list unless we want to retry.
1245 	 */
1246 	if (rc == -EAGAIN)
1247 		ret = NULL;
1248 
1249 	migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret);
1250 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1251 
1252 	return rc;
1253 }
1254 
1255 /* Migrate the folio to the newly allocated folio in dst. */
1256 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1257 			      struct folio *src, struct folio *dst,
1258 			      enum migrate_mode mode, enum migrate_reason reason,
1259 			      struct list_head *ret)
1260 {
1261 	int rc;
1262 	int page_was_mapped = 0;
1263 	struct anon_vma *anon_vma = NULL;
1264 	bool is_lru = !__PageMovable(&src->page);
1265 	struct list_head *prev;
1266 
1267 	__migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1268 	prev = dst->lru.prev;
1269 	list_del(&dst->lru);
1270 
1271 	rc = move_to_new_folio(dst, src, mode);
1272 	if (rc)
1273 		goto out;
1274 
1275 	if (unlikely(!is_lru))
1276 		goto out_unlock_both;
1277 
1278 	/*
1279 	 * When successful, push dst to LRU immediately: so that if it
1280 	 * turns out to be an mlocked page, remove_migration_ptes() will
1281 	 * automatically build up the correct dst->mlock_count for it.
1282 	 *
1283 	 * We would like to do something similar for the old page, when
1284 	 * unsuccessful, and other cases when a page has been temporarily
1285 	 * isolated from the unevictable LRU: but this case is the easiest.
1286 	 */
1287 	folio_add_lru(dst);
1288 	if (page_was_mapped)
1289 		lru_add_drain();
1290 
1291 	if (page_was_mapped)
1292 		remove_migration_ptes(src, dst, false);
1293 
1294 out_unlock_both:
1295 	folio_unlock(dst);
1296 	set_page_owner_migrate_reason(&dst->page, reason);
1297 	/*
1298 	 * If migration is successful, decrease refcount of dst,
1299 	 * which will not free the page because new page owner increased
1300 	 * refcounter.
1301 	 */
1302 	folio_put(dst);
1303 
1304 	/*
1305 	 * A folio that has been migrated has all references removed
1306 	 * and will be freed.
1307 	 */
1308 	list_del(&src->lru);
1309 	/* Drop an anon_vma reference if we took one */
1310 	if (anon_vma)
1311 		put_anon_vma(anon_vma);
1312 	folio_unlock(src);
1313 	migrate_folio_done(src, reason);
1314 
1315 	return rc;
1316 out:
1317 	/*
1318 	 * A folio that has not been migrated will be restored to
1319 	 * right list unless we want to retry.
1320 	 */
1321 	if (rc == -EAGAIN) {
1322 		list_add(&dst->lru, prev);
1323 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1324 		return rc;
1325 	}
1326 
1327 	migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret);
1328 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1329 
1330 	return rc;
1331 }
1332 
1333 /*
1334  * Counterpart of unmap_and_move_page() for hugepage migration.
1335  *
1336  * This function doesn't wait the completion of hugepage I/O
1337  * because there is no race between I/O and migration for hugepage.
1338  * Note that currently hugepage I/O occurs only in direct I/O
1339  * where no lock is held and PG_writeback is irrelevant,
1340  * and writeback status of all subpages are counted in the reference
1341  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1342  * under direct I/O, the reference of the head page is 512 and a bit more.)
1343  * This means that when we try to migrate hugepage whose subpages are
1344  * doing direct I/O, some references remain after try_to_unmap() and
1345  * hugepage migration fails without data corruption.
1346  *
1347  * There is also no race when direct I/O is issued on the page under migration,
1348  * because then pte is replaced with migration swap entry and direct I/O code
1349  * will wait in the page fault for migration to complete.
1350  */
1351 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1352 		free_folio_t put_new_folio, unsigned long private,
1353 		struct folio *src, int force, enum migrate_mode mode,
1354 		int reason, struct list_head *ret)
1355 {
1356 	struct folio *dst;
1357 	int rc = -EAGAIN;
1358 	int page_was_mapped = 0;
1359 	struct anon_vma *anon_vma = NULL;
1360 	struct address_space *mapping = NULL;
1361 
1362 	if (folio_ref_count(src) == 1) {
1363 		/* page was freed from under us. So we are done. */
1364 		folio_putback_active_hugetlb(src);
1365 		return MIGRATEPAGE_SUCCESS;
1366 	}
1367 
1368 	dst = get_new_folio(src, private);
1369 	if (!dst)
1370 		return -ENOMEM;
1371 
1372 	if (!folio_trylock(src)) {
1373 		if (!force)
1374 			goto out;
1375 		switch (mode) {
1376 		case MIGRATE_SYNC:
1377 		case MIGRATE_SYNC_NO_COPY:
1378 			break;
1379 		default:
1380 			goto out;
1381 		}
1382 		folio_lock(src);
1383 	}
1384 
1385 	/*
1386 	 * Check for pages which are in the process of being freed.  Without
1387 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1388 	 * be called and we could leak usage counts for subpools.
1389 	 */
1390 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1391 		rc = -EBUSY;
1392 		goto out_unlock;
1393 	}
1394 
1395 	if (folio_test_anon(src))
1396 		anon_vma = folio_get_anon_vma(src);
1397 
1398 	if (unlikely(!folio_trylock(dst)))
1399 		goto put_anon;
1400 
1401 	if (folio_mapped(src)) {
1402 		enum ttu_flags ttu = 0;
1403 
1404 		if (!folio_test_anon(src)) {
1405 			/*
1406 			 * In shared mappings, try_to_unmap could potentially
1407 			 * call huge_pmd_unshare.  Because of this, take
1408 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1409 			 * to let lower levels know we have taken the lock.
1410 			 */
1411 			mapping = hugetlb_page_mapping_lock_write(&src->page);
1412 			if (unlikely(!mapping))
1413 				goto unlock_put_anon;
1414 
1415 			ttu = TTU_RMAP_LOCKED;
1416 		}
1417 
1418 		try_to_migrate(src, ttu);
1419 		page_was_mapped = 1;
1420 
1421 		if (ttu & TTU_RMAP_LOCKED)
1422 			i_mmap_unlock_write(mapping);
1423 	}
1424 
1425 	if (!folio_mapped(src))
1426 		rc = move_to_new_folio(dst, src, mode);
1427 
1428 	if (page_was_mapped)
1429 		remove_migration_ptes(src,
1430 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1431 
1432 unlock_put_anon:
1433 	folio_unlock(dst);
1434 
1435 put_anon:
1436 	if (anon_vma)
1437 		put_anon_vma(anon_vma);
1438 
1439 	if (rc == MIGRATEPAGE_SUCCESS) {
1440 		move_hugetlb_state(src, dst, reason);
1441 		put_new_folio = NULL;
1442 	}
1443 
1444 out_unlock:
1445 	folio_unlock(src);
1446 out:
1447 	if (rc == MIGRATEPAGE_SUCCESS)
1448 		folio_putback_active_hugetlb(src);
1449 	else if (rc != -EAGAIN)
1450 		list_move_tail(&src->lru, ret);
1451 
1452 	/*
1453 	 * If migration was not successful and there's a freeing callback, use
1454 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1455 	 * isolation.
1456 	 */
1457 	if (put_new_folio)
1458 		put_new_folio(dst, private);
1459 	else
1460 		folio_putback_active_hugetlb(dst);
1461 
1462 	return rc;
1463 }
1464 
1465 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1466 {
1467 	int rc;
1468 
1469 	folio_lock(folio);
1470 	rc = split_folio_to_list(folio, split_folios);
1471 	folio_unlock(folio);
1472 	if (!rc)
1473 		list_move_tail(&folio->lru, split_folios);
1474 
1475 	return rc;
1476 }
1477 
1478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1479 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1480 #else
1481 #define NR_MAX_BATCHED_MIGRATION	512
1482 #endif
1483 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1484 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1485 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1486 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1487 
1488 struct migrate_pages_stats {
1489 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1490 				   units of base pages */
1491 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1492 				   units of base pages.  Untried folios aren't counted */
1493 	int nr_thp_succeeded;	/* THP migrated successfully */
1494 	int nr_thp_failed;	/* THP failed to be migrated */
1495 	int nr_thp_split;	/* THP split before migrating */
1496 };
1497 
1498 /*
1499  * Returns the number of hugetlb folios that were not migrated, or an error code
1500  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1501  * any more because the list has become empty or no retryable hugetlb folios
1502  * exist any more. It is caller's responsibility to call putback_movable_pages()
1503  * only if ret != 0.
1504  */
1505 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1506 			    free_folio_t put_new_folio, unsigned long private,
1507 			    enum migrate_mode mode, int reason,
1508 			    struct migrate_pages_stats *stats,
1509 			    struct list_head *ret_folios)
1510 {
1511 	int retry = 1;
1512 	int nr_failed = 0;
1513 	int nr_retry_pages = 0;
1514 	int pass = 0;
1515 	struct folio *folio, *folio2;
1516 	int rc, nr_pages;
1517 
1518 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1519 		retry = 0;
1520 		nr_retry_pages = 0;
1521 
1522 		list_for_each_entry_safe(folio, folio2, from, lru) {
1523 			if (!folio_test_hugetlb(folio))
1524 				continue;
1525 
1526 			nr_pages = folio_nr_pages(folio);
1527 
1528 			cond_resched();
1529 
1530 			/*
1531 			 * Migratability of hugepages depends on architectures and
1532 			 * their size.  This check is necessary because some callers
1533 			 * of hugepage migration like soft offline and memory
1534 			 * hotremove don't walk through page tables or check whether
1535 			 * the hugepage is pmd-based or not before kicking migration.
1536 			 */
1537 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1538 				nr_failed++;
1539 				stats->nr_failed_pages += nr_pages;
1540 				list_move_tail(&folio->lru, ret_folios);
1541 				continue;
1542 			}
1543 
1544 			rc = unmap_and_move_huge_page(get_new_folio,
1545 						      put_new_folio, private,
1546 						      folio, pass > 2, mode,
1547 						      reason, ret_folios);
1548 			/*
1549 			 * The rules are:
1550 			 *	Success: hugetlb folio will be put back
1551 			 *	-EAGAIN: stay on the from list
1552 			 *	-ENOMEM: stay on the from list
1553 			 *	Other errno: put on ret_folios list
1554 			 */
1555 			switch(rc) {
1556 			case -ENOMEM:
1557 				/*
1558 				 * When memory is low, don't bother to try to migrate
1559 				 * other folios, just exit.
1560 				 */
1561 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1562 				return -ENOMEM;
1563 			case -EAGAIN:
1564 				retry++;
1565 				nr_retry_pages += nr_pages;
1566 				break;
1567 			case MIGRATEPAGE_SUCCESS:
1568 				stats->nr_succeeded += nr_pages;
1569 				break;
1570 			default:
1571 				/*
1572 				 * Permanent failure (-EBUSY, etc.):
1573 				 * unlike -EAGAIN case, the failed folio is
1574 				 * removed from migration folio list and not
1575 				 * retried in the next outer loop.
1576 				 */
1577 				nr_failed++;
1578 				stats->nr_failed_pages += nr_pages;
1579 				break;
1580 			}
1581 		}
1582 	}
1583 	/*
1584 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1585 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1586 	 * folios as failed.
1587 	 */
1588 	nr_failed += retry;
1589 	stats->nr_failed_pages += nr_retry_pages;
1590 
1591 	return nr_failed;
1592 }
1593 
1594 /*
1595  * migrate_pages_batch() first unmaps folios in the from list as many as
1596  * possible, then move the unmapped folios.
1597  *
1598  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1599  * lock or bit when we have locked more than one folio.  Which may cause
1600  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1601  * length of the from list must be <= 1.
1602  */
1603 static int migrate_pages_batch(struct list_head *from,
1604 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1605 		unsigned long private, enum migrate_mode mode, int reason,
1606 		struct list_head *ret_folios, struct list_head *split_folios,
1607 		struct migrate_pages_stats *stats, int nr_pass)
1608 {
1609 	int retry = 1;
1610 	int thp_retry = 1;
1611 	int nr_failed = 0;
1612 	int nr_retry_pages = 0;
1613 	int pass = 0;
1614 	bool is_thp = false;
1615 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1616 	int rc, rc_saved = 0, nr_pages;
1617 	LIST_HEAD(unmap_folios);
1618 	LIST_HEAD(dst_folios);
1619 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1620 
1621 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1622 			!list_empty(from) && !list_is_singular(from));
1623 
1624 	for (pass = 0; pass < nr_pass && retry; pass++) {
1625 		retry = 0;
1626 		thp_retry = 0;
1627 		nr_retry_pages = 0;
1628 
1629 		list_for_each_entry_safe(folio, folio2, from, lru) {
1630 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1631 			nr_pages = folio_nr_pages(folio);
1632 
1633 			cond_resched();
1634 
1635 			/*
1636 			 * Large folio migration might be unsupported or
1637 			 * the allocation might be failed so we should retry
1638 			 * on the same folio with the large folio split
1639 			 * to normal folios.
1640 			 *
1641 			 * Split folios are put in split_folios, and
1642 			 * we will migrate them after the rest of the
1643 			 * list is processed.
1644 			 */
1645 			if (!thp_migration_supported() && is_thp) {
1646 				nr_failed++;
1647 				stats->nr_thp_failed++;
1648 				if (!try_split_folio(folio, split_folios)) {
1649 					stats->nr_thp_split++;
1650 					continue;
1651 				}
1652 				stats->nr_failed_pages += nr_pages;
1653 				list_move_tail(&folio->lru, ret_folios);
1654 				continue;
1655 			}
1656 
1657 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1658 					private, folio, &dst, mode, reason,
1659 					ret_folios);
1660 			/*
1661 			 * The rules are:
1662 			 *	Success: folio will be freed
1663 			 *	Unmap: folio will be put on unmap_folios list,
1664 			 *	       dst folio put on dst_folios list
1665 			 *	-EAGAIN: stay on the from list
1666 			 *	-ENOMEM: stay on the from list
1667 			 *	Other errno: put on ret_folios list
1668 			 */
1669 			switch(rc) {
1670 			case -ENOMEM:
1671 				/*
1672 				 * When memory is low, don't bother to try to migrate
1673 				 * other folios, move unmapped folios, then exit.
1674 				 */
1675 				nr_failed++;
1676 				stats->nr_thp_failed += is_thp;
1677 				/* Large folio NUMA faulting doesn't split to retry. */
1678 				if (folio_test_large(folio) && !nosplit) {
1679 					int ret = try_split_folio(folio, split_folios);
1680 
1681 					if (!ret) {
1682 						stats->nr_thp_split += is_thp;
1683 						break;
1684 					} else if (reason == MR_LONGTERM_PIN &&
1685 						   ret == -EAGAIN) {
1686 						/*
1687 						 * Try again to split large folio to
1688 						 * mitigate the failure of longterm pinning.
1689 						 */
1690 						retry++;
1691 						thp_retry += is_thp;
1692 						nr_retry_pages += nr_pages;
1693 						/* Undo duplicated failure counting. */
1694 						nr_failed--;
1695 						stats->nr_thp_failed -= is_thp;
1696 						break;
1697 					}
1698 				}
1699 
1700 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1701 				/* nr_failed isn't updated for not used */
1702 				stats->nr_thp_failed += thp_retry;
1703 				rc_saved = rc;
1704 				if (list_empty(&unmap_folios))
1705 					goto out;
1706 				else
1707 					goto move;
1708 			case -EAGAIN:
1709 				retry++;
1710 				thp_retry += is_thp;
1711 				nr_retry_pages += nr_pages;
1712 				break;
1713 			case MIGRATEPAGE_SUCCESS:
1714 				stats->nr_succeeded += nr_pages;
1715 				stats->nr_thp_succeeded += is_thp;
1716 				break;
1717 			case MIGRATEPAGE_UNMAP:
1718 				list_move_tail(&folio->lru, &unmap_folios);
1719 				list_add_tail(&dst->lru, &dst_folios);
1720 				break;
1721 			default:
1722 				/*
1723 				 * Permanent failure (-EBUSY, etc.):
1724 				 * unlike -EAGAIN case, the failed folio is
1725 				 * removed from migration folio list and not
1726 				 * retried in the next outer loop.
1727 				 */
1728 				nr_failed++;
1729 				stats->nr_thp_failed += is_thp;
1730 				stats->nr_failed_pages += nr_pages;
1731 				break;
1732 			}
1733 		}
1734 	}
1735 	nr_failed += retry;
1736 	stats->nr_thp_failed += thp_retry;
1737 	stats->nr_failed_pages += nr_retry_pages;
1738 move:
1739 	/* Flush TLBs for all unmapped folios */
1740 	try_to_unmap_flush();
1741 
1742 	retry = 1;
1743 	for (pass = 0; pass < nr_pass && retry; pass++) {
1744 		retry = 0;
1745 		thp_retry = 0;
1746 		nr_retry_pages = 0;
1747 
1748 		dst = list_first_entry(&dst_folios, struct folio, lru);
1749 		dst2 = list_next_entry(dst, lru);
1750 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1751 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1752 			nr_pages = folio_nr_pages(folio);
1753 
1754 			cond_resched();
1755 
1756 			rc = migrate_folio_move(put_new_folio, private,
1757 						folio, dst, mode,
1758 						reason, ret_folios);
1759 			/*
1760 			 * The rules are:
1761 			 *	Success: folio will be freed
1762 			 *	-EAGAIN: stay on the unmap_folios list
1763 			 *	Other errno: put on ret_folios list
1764 			 */
1765 			switch(rc) {
1766 			case -EAGAIN:
1767 				retry++;
1768 				thp_retry += is_thp;
1769 				nr_retry_pages += nr_pages;
1770 				break;
1771 			case MIGRATEPAGE_SUCCESS:
1772 				stats->nr_succeeded += nr_pages;
1773 				stats->nr_thp_succeeded += is_thp;
1774 				break;
1775 			default:
1776 				nr_failed++;
1777 				stats->nr_thp_failed += is_thp;
1778 				stats->nr_failed_pages += nr_pages;
1779 				break;
1780 			}
1781 			dst = dst2;
1782 			dst2 = list_next_entry(dst, lru);
1783 		}
1784 	}
1785 	nr_failed += retry;
1786 	stats->nr_thp_failed += thp_retry;
1787 	stats->nr_failed_pages += nr_retry_pages;
1788 
1789 	rc = rc_saved ? : nr_failed;
1790 out:
1791 	/* Cleanup remaining folios */
1792 	dst = list_first_entry(&dst_folios, struct folio, lru);
1793 	dst2 = list_next_entry(dst, lru);
1794 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1795 		int page_was_mapped = 0;
1796 		struct anon_vma *anon_vma = NULL;
1797 
1798 		__migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1799 		migrate_folio_undo_src(folio, page_was_mapped, anon_vma,
1800 				       true, ret_folios);
1801 		list_del(&dst->lru);
1802 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1803 		dst = dst2;
1804 		dst2 = list_next_entry(dst, lru);
1805 	}
1806 
1807 	return rc;
1808 }
1809 
1810 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1811 		free_folio_t put_new_folio, unsigned long private,
1812 		enum migrate_mode mode, int reason,
1813 		struct list_head *ret_folios, struct list_head *split_folios,
1814 		struct migrate_pages_stats *stats)
1815 {
1816 	int rc, nr_failed = 0;
1817 	LIST_HEAD(folios);
1818 	struct migrate_pages_stats astats;
1819 
1820 	memset(&astats, 0, sizeof(astats));
1821 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1822 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1823 				 reason, &folios, split_folios, &astats,
1824 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1825 	stats->nr_succeeded += astats.nr_succeeded;
1826 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1827 	stats->nr_thp_split += astats.nr_thp_split;
1828 	if (rc < 0) {
1829 		stats->nr_failed_pages += astats.nr_failed_pages;
1830 		stats->nr_thp_failed += astats.nr_thp_failed;
1831 		list_splice_tail(&folios, ret_folios);
1832 		return rc;
1833 	}
1834 	stats->nr_thp_failed += astats.nr_thp_split;
1835 	nr_failed += astats.nr_thp_split;
1836 	/*
1837 	 * Fall back to migrate all failed folios one by one synchronously. All
1838 	 * failed folios except split THPs will be retried, so their failure
1839 	 * isn't counted
1840 	 */
1841 	list_splice_tail_init(&folios, from);
1842 	while (!list_empty(from)) {
1843 		list_move(from->next, &folios);
1844 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1845 					 private, mode, reason, ret_folios,
1846 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1847 		list_splice_tail_init(&folios, ret_folios);
1848 		if (rc < 0)
1849 			return rc;
1850 		nr_failed += rc;
1851 	}
1852 
1853 	return nr_failed;
1854 }
1855 
1856 /*
1857  * migrate_pages - migrate the folios specified in a list, to the free folios
1858  *		   supplied as the target for the page migration
1859  *
1860  * @from:		The list of folios to be migrated.
1861  * @get_new_folio:	The function used to allocate free folios to be used
1862  *			as the target of the folio migration.
1863  * @put_new_folio:	The function used to free target folios if migration
1864  *			fails, or NULL if no special handling is necessary.
1865  * @private:		Private data to be passed on to get_new_folio()
1866  * @mode:		The migration mode that specifies the constraints for
1867  *			folio migration, if any.
1868  * @reason:		The reason for folio migration.
1869  * @ret_succeeded:	Set to the number of folios migrated successfully if
1870  *			the caller passes a non-NULL pointer.
1871  *
1872  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1873  * are movable any more because the list has become empty or no retryable folios
1874  * exist any more. It is caller's responsibility to call putback_movable_pages()
1875  * only if ret != 0.
1876  *
1877  * Returns the number of {normal folio, large folio, hugetlb} that were not
1878  * migrated, or an error code. The number of large folio splits will be
1879  * considered as the number of non-migrated large folio, no matter how many
1880  * split folios of the large folio are migrated successfully.
1881  */
1882 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1883 		free_folio_t put_new_folio, unsigned long private,
1884 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1885 {
1886 	int rc, rc_gather;
1887 	int nr_pages;
1888 	struct folio *folio, *folio2;
1889 	LIST_HEAD(folios);
1890 	LIST_HEAD(ret_folios);
1891 	LIST_HEAD(split_folios);
1892 	struct migrate_pages_stats stats;
1893 
1894 	trace_mm_migrate_pages_start(mode, reason);
1895 
1896 	memset(&stats, 0, sizeof(stats));
1897 
1898 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1899 				     mode, reason, &stats, &ret_folios);
1900 	if (rc_gather < 0)
1901 		goto out;
1902 
1903 again:
1904 	nr_pages = 0;
1905 	list_for_each_entry_safe(folio, folio2, from, lru) {
1906 		/* Retried hugetlb folios will be kept in list  */
1907 		if (folio_test_hugetlb(folio)) {
1908 			list_move_tail(&folio->lru, &ret_folios);
1909 			continue;
1910 		}
1911 
1912 		nr_pages += folio_nr_pages(folio);
1913 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1914 			break;
1915 	}
1916 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1917 		list_cut_before(&folios, from, &folio2->lru);
1918 	else
1919 		list_splice_init(from, &folios);
1920 	if (mode == MIGRATE_ASYNC)
1921 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1922 				private, mode, reason, &ret_folios,
1923 				&split_folios, &stats,
1924 				NR_MAX_MIGRATE_PAGES_RETRY);
1925 	else
1926 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1927 				private, mode, reason, &ret_folios,
1928 				&split_folios, &stats);
1929 	list_splice_tail_init(&folios, &ret_folios);
1930 	if (rc < 0) {
1931 		rc_gather = rc;
1932 		list_splice_tail(&split_folios, &ret_folios);
1933 		goto out;
1934 	}
1935 	if (!list_empty(&split_folios)) {
1936 		/*
1937 		 * Failure isn't counted since all split folios of a large folio
1938 		 * is counted as 1 failure already.  And, we only try to migrate
1939 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1940 		 */
1941 		migrate_pages_batch(&split_folios, get_new_folio,
1942 				put_new_folio, private, MIGRATE_ASYNC, reason,
1943 				&ret_folios, NULL, &stats, 1);
1944 		list_splice_tail_init(&split_folios, &ret_folios);
1945 	}
1946 	rc_gather += rc;
1947 	if (!list_empty(from))
1948 		goto again;
1949 out:
1950 	/*
1951 	 * Put the permanent failure folio back to migration list, they
1952 	 * will be put back to the right list by the caller.
1953 	 */
1954 	list_splice(&ret_folios, from);
1955 
1956 	/*
1957 	 * Return 0 in case all split folios of fail-to-migrate large folios
1958 	 * are migrated successfully.
1959 	 */
1960 	if (list_empty(from))
1961 		rc_gather = 0;
1962 
1963 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1964 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1965 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1966 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1967 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1968 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1969 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1970 			       stats.nr_thp_split, mode, reason);
1971 
1972 	if (ret_succeeded)
1973 		*ret_succeeded = stats.nr_succeeded;
1974 
1975 	return rc_gather;
1976 }
1977 
1978 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
1979 {
1980 	struct migration_target_control *mtc;
1981 	gfp_t gfp_mask;
1982 	unsigned int order = 0;
1983 	int nid;
1984 	int zidx;
1985 
1986 	mtc = (struct migration_target_control *)private;
1987 	gfp_mask = mtc->gfp_mask;
1988 	nid = mtc->nid;
1989 	if (nid == NUMA_NO_NODE)
1990 		nid = folio_nid(src);
1991 
1992 	if (folio_test_hugetlb(src)) {
1993 		struct hstate *h = folio_hstate(src);
1994 
1995 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1996 		return alloc_hugetlb_folio_nodemask(h, nid,
1997 						mtc->nmask, gfp_mask);
1998 	}
1999 
2000 	if (folio_test_large(src)) {
2001 		/*
2002 		 * clear __GFP_RECLAIM to make the migration callback
2003 		 * consistent with regular THP allocations.
2004 		 */
2005 		gfp_mask &= ~__GFP_RECLAIM;
2006 		gfp_mask |= GFP_TRANSHUGE;
2007 		order = folio_order(src);
2008 	}
2009 	zidx = zone_idx(folio_zone(src));
2010 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2011 		gfp_mask |= __GFP_HIGHMEM;
2012 
2013 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2014 }
2015 
2016 #ifdef CONFIG_NUMA
2017 
2018 static int store_status(int __user *status, int start, int value, int nr)
2019 {
2020 	while (nr-- > 0) {
2021 		if (put_user(value, status + start))
2022 			return -EFAULT;
2023 		start++;
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 static int do_move_pages_to_node(struct mm_struct *mm,
2030 		struct list_head *pagelist, int node)
2031 {
2032 	int err;
2033 	struct migration_target_control mtc = {
2034 		.nid = node,
2035 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2036 	};
2037 
2038 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2039 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2040 	if (err)
2041 		putback_movable_pages(pagelist);
2042 	return err;
2043 }
2044 
2045 /*
2046  * Resolves the given address to a struct page, isolates it from the LRU and
2047  * puts it to the given pagelist.
2048  * Returns:
2049  *     errno - if the page cannot be found/isolated
2050  *     0 - when it doesn't have to be migrated because it is already on the
2051  *         target node
2052  *     1 - when it has been queued
2053  */
2054 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2055 		int node, struct list_head *pagelist, bool migrate_all)
2056 {
2057 	struct vm_area_struct *vma;
2058 	unsigned long addr;
2059 	struct page *page;
2060 	int err;
2061 	bool isolated;
2062 
2063 	mmap_read_lock(mm);
2064 	addr = (unsigned long)untagged_addr_remote(mm, p);
2065 
2066 	err = -EFAULT;
2067 	vma = vma_lookup(mm, addr);
2068 	if (!vma || !vma_migratable(vma))
2069 		goto out;
2070 
2071 	/* FOLL_DUMP to ignore special (like zero) pages */
2072 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2073 
2074 	err = PTR_ERR(page);
2075 	if (IS_ERR(page))
2076 		goto out;
2077 
2078 	err = -ENOENT;
2079 	if (!page)
2080 		goto out;
2081 
2082 	if (is_zone_device_page(page))
2083 		goto out_putpage;
2084 
2085 	err = 0;
2086 	if (page_to_nid(page) == node)
2087 		goto out_putpage;
2088 
2089 	err = -EACCES;
2090 	if (page_mapcount(page) > 1 && !migrate_all)
2091 		goto out_putpage;
2092 
2093 	if (PageHuge(page)) {
2094 		if (PageHead(page)) {
2095 			isolated = isolate_hugetlb(page_folio(page), pagelist);
2096 			err = isolated ? 1 : -EBUSY;
2097 		}
2098 	} else {
2099 		struct page *head;
2100 
2101 		head = compound_head(page);
2102 		isolated = isolate_lru_page(head);
2103 		if (!isolated) {
2104 			err = -EBUSY;
2105 			goto out_putpage;
2106 		}
2107 
2108 		err = 1;
2109 		list_add_tail(&head->lru, pagelist);
2110 		mod_node_page_state(page_pgdat(head),
2111 			NR_ISOLATED_ANON + page_is_file_lru(head),
2112 			thp_nr_pages(head));
2113 	}
2114 out_putpage:
2115 	/*
2116 	 * Either remove the duplicate refcount from
2117 	 * isolate_lru_page() or drop the page ref if it was
2118 	 * not isolated.
2119 	 */
2120 	put_page(page);
2121 out:
2122 	mmap_read_unlock(mm);
2123 	return err;
2124 }
2125 
2126 static int move_pages_and_store_status(struct mm_struct *mm, int node,
2127 		struct list_head *pagelist, int __user *status,
2128 		int start, int i, unsigned long nr_pages)
2129 {
2130 	int err;
2131 
2132 	if (list_empty(pagelist))
2133 		return 0;
2134 
2135 	err = do_move_pages_to_node(mm, pagelist, node);
2136 	if (err) {
2137 		/*
2138 		 * Positive err means the number of failed
2139 		 * pages to migrate.  Since we are going to
2140 		 * abort and return the number of non-migrated
2141 		 * pages, so need to include the rest of the
2142 		 * nr_pages that have not been attempted as
2143 		 * well.
2144 		 */
2145 		if (err > 0)
2146 			err += nr_pages - i;
2147 		return err;
2148 	}
2149 	return store_status(status, start, node, i - start);
2150 }
2151 
2152 /*
2153  * Migrate an array of page address onto an array of nodes and fill
2154  * the corresponding array of status.
2155  */
2156 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2157 			 unsigned long nr_pages,
2158 			 const void __user * __user *pages,
2159 			 const int __user *nodes,
2160 			 int __user *status, int flags)
2161 {
2162 	int current_node = NUMA_NO_NODE;
2163 	LIST_HEAD(pagelist);
2164 	int start, i;
2165 	int err = 0, err1;
2166 
2167 	lru_cache_disable();
2168 
2169 	for (i = start = 0; i < nr_pages; i++) {
2170 		const void __user *p;
2171 		int node;
2172 
2173 		err = -EFAULT;
2174 		if (get_user(p, pages + i))
2175 			goto out_flush;
2176 		if (get_user(node, nodes + i))
2177 			goto out_flush;
2178 
2179 		err = -ENODEV;
2180 		if (node < 0 || node >= MAX_NUMNODES)
2181 			goto out_flush;
2182 		if (!node_state(node, N_MEMORY))
2183 			goto out_flush;
2184 
2185 		err = -EACCES;
2186 		if (!node_isset(node, task_nodes))
2187 			goto out_flush;
2188 
2189 		if (current_node == NUMA_NO_NODE) {
2190 			current_node = node;
2191 			start = i;
2192 		} else if (node != current_node) {
2193 			err = move_pages_and_store_status(mm, current_node,
2194 					&pagelist, status, start, i, nr_pages);
2195 			if (err)
2196 				goto out;
2197 			start = i;
2198 			current_node = node;
2199 		}
2200 
2201 		/*
2202 		 * Errors in the page lookup or isolation are not fatal and we simply
2203 		 * report them via status
2204 		 */
2205 		err = add_page_for_migration(mm, p, current_node, &pagelist,
2206 					     flags & MPOL_MF_MOVE_ALL);
2207 
2208 		if (err > 0) {
2209 			/* The page is successfully queued for migration */
2210 			continue;
2211 		}
2212 
2213 		/*
2214 		 * The move_pages() man page does not have an -EEXIST choice, so
2215 		 * use -EFAULT instead.
2216 		 */
2217 		if (err == -EEXIST)
2218 			err = -EFAULT;
2219 
2220 		/*
2221 		 * If the page is already on the target node (!err), store the
2222 		 * node, otherwise, store the err.
2223 		 */
2224 		err = store_status(status, i, err ? : current_node, 1);
2225 		if (err)
2226 			goto out_flush;
2227 
2228 		err = move_pages_and_store_status(mm, current_node, &pagelist,
2229 				status, start, i, nr_pages);
2230 		if (err) {
2231 			/* We have accounted for page i */
2232 			if (err > 0)
2233 				err--;
2234 			goto out;
2235 		}
2236 		current_node = NUMA_NO_NODE;
2237 	}
2238 out_flush:
2239 	/* Make sure we do not overwrite the existing error */
2240 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
2241 				status, start, i, nr_pages);
2242 	if (err >= 0)
2243 		err = err1;
2244 out:
2245 	lru_cache_enable();
2246 	return err;
2247 }
2248 
2249 /*
2250  * Determine the nodes of an array of pages and store it in an array of status.
2251  */
2252 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2253 				const void __user **pages, int *status)
2254 {
2255 	unsigned long i;
2256 
2257 	mmap_read_lock(mm);
2258 
2259 	for (i = 0; i < nr_pages; i++) {
2260 		unsigned long addr = (unsigned long)(*pages);
2261 		struct vm_area_struct *vma;
2262 		struct page *page;
2263 		int err = -EFAULT;
2264 
2265 		vma = vma_lookup(mm, addr);
2266 		if (!vma)
2267 			goto set_status;
2268 
2269 		/* FOLL_DUMP to ignore special (like zero) pages */
2270 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2271 
2272 		err = PTR_ERR(page);
2273 		if (IS_ERR(page))
2274 			goto set_status;
2275 
2276 		err = -ENOENT;
2277 		if (!page)
2278 			goto set_status;
2279 
2280 		if (!is_zone_device_page(page))
2281 			err = page_to_nid(page);
2282 
2283 		put_page(page);
2284 set_status:
2285 		*status = err;
2286 
2287 		pages++;
2288 		status++;
2289 	}
2290 
2291 	mmap_read_unlock(mm);
2292 }
2293 
2294 static int get_compat_pages_array(const void __user *chunk_pages[],
2295 				  const void __user * __user *pages,
2296 				  unsigned long chunk_nr)
2297 {
2298 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2299 	compat_uptr_t p;
2300 	int i;
2301 
2302 	for (i = 0; i < chunk_nr; i++) {
2303 		if (get_user(p, pages32 + i))
2304 			return -EFAULT;
2305 		chunk_pages[i] = compat_ptr(p);
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 /*
2312  * Determine the nodes of a user array of pages and store it in
2313  * a user array of status.
2314  */
2315 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2316 			 const void __user * __user *pages,
2317 			 int __user *status)
2318 {
2319 #define DO_PAGES_STAT_CHUNK_NR 16UL
2320 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2321 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2322 
2323 	while (nr_pages) {
2324 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2325 
2326 		if (in_compat_syscall()) {
2327 			if (get_compat_pages_array(chunk_pages, pages,
2328 						   chunk_nr))
2329 				break;
2330 		} else {
2331 			if (copy_from_user(chunk_pages, pages,
2332 				      chunk_nr * sizeof(*chunk_pages)))
2333 				break;
2334 		}
2335 
2336 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2337 
2338 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2339 			break;
2340 
2341 		pages += chunk_nr;
2342 		status += chunk_nr;
2343 		nr_pages -= chunk_nr;
2344 	}
2345 	return nr_pages ? -EFAULT : 0;
2346 }
2347 
2348 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2349 {
2350 	struct task_struct *task;
2351 	struct mm_struct *mm;
2352 
2353 	/*
2354 	 * There is no need to check if current process has the right to modify
2355 	 * the specified process when they are same.
2356 	 */
2357 	if (!pid) {
2358 		mmget(current->mm);
2359 		*mem_nodes = cpuset_mems_allowed(current);
2360 		return current->mm;
2361 	}
2362 
2363 	/* Find the mm_struct */
2364 	rcu_read_lock();
2365 	task = find_task_by_vpid(pid);
2366 	if (!task) {
2367 		rcu_read_unlock();
2368 		return ERR_PTR(-ESRCH);
2369 	}
2370 	get_task_struct(task);
2371 
2372 	/*
2373 	 * Check if this process has the right to modify the specified
2374 	 * process. Use the regular "ptrace_may_access()" checks.
2375 	 */
2376 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2377 		rcu_read_unlock();
2378 		mm = ERR_PTR(-EPERM);
2379 		goto out;
2380 	}
2381 	rcu_read_unlock();
2382 
2383 	mm = ERR_PTR(security_task_movememory(task));
2384 	if (IS_ERR(mm))
2385 		goto out;
2386 	*mem_nodes = cpuset_mems_allowed(task);
2387 	mm = get_task_mm(task);
2388 out:
2389 	put_task_struct(task);
2390 	if (!mm)
2391 		mm = ERR_PTR(-EINVAL);
2392 	return mm;
2393 }
2394 
2395 /*
2396  * Move a list of pages in the address space of the currently executing
2397  * process.
2398  */
2399 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2400 			     const void __user * __user *pages,
2401 			     const int __user *nodes,
2402 			     int __user *status, int flags)
2403 {
2404 	struct mm_struct *mm;
2405 	int err;
2406 	nodemask_t task_nodes;
2407 
2408 	/* Check flags */
2409 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2410 		return -EINVAL;
2411 
2412 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2413 		return -EPERM;
2414 
2415 	mm = find_mm_struct(pid, &task_nodes);
2416 	if (IS_ERR(mm))
2417 		return PTR_ERR(mm);
2418 
2419 	if (nodes)
2420 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2421 				    nodes, status, flags);
2422 	else
2423 		err = do_pages_stat(mm, nr_pages, pages, status);
2424 
2425 	mmput(mm);
2426 	return err;
2427 }
2428 
2429 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2430 		const void __user * __user *, pages,
2431 		const int __user *, nodes,
2432 		int __user *, status, int, flags)
2433 {
2434 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2435 }
2436 
2437 #ifdef CONFIG_NUMA_BALANCING
2438 /*
2439  * Returns true if this is a safe migration target node for misplaced NUMA
2440  * pages. Currently it only checks the watermarks which is crude.
2441  */
2442 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2443 				   unsigned long nr_migrate_pages)
2444 {
2445 	int z;
2446 
2447 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2448 		struct zone *zone = pgdat->node_zones + z;
2449 
2450 		if (!managed_zone(zone))
2451 			continue;
2452 
2453 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2454 		if (!zone_watermark_ok(zone, 0,
2455 				       high_wmark_pages(zone) +
2456 				       nr_migrate_pages,
2457 				       ZONE_MOVABLE, 0))
2458 			continue;
2459 		return true;
2460 	}
2461 	return false;
2462 }
2463 
2464 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2465 					   unsigned long data)
2466 {
2467 	int nid = (int) data;
2468 	int order = folio_order(src);
2469 	gfp_t gfp = __GFP_THISNODE;
2470 
2471 	if (order > 0)
2472 		gfp |= GFP_TRANSHUGE_LIGHT;
2473 	else {
2474 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2475 			__GFP_NOWARN;
2476 		gfp &= ~__GFP_RECLAIM;
2477 	}
2478 	return __folio_alloc_node(gfp, order, nid);
2479 }
2480 
2481 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2482 {
2483 	int nr_pages = thp_nr_pages(page);
2484 	int order = compound_order(page);
2485 
2486 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2487 
2488 	/* Do not migrate THP mapped by multiple processes */
2489 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2490 		return 0;
2491 
2492 	/* Avoid migrating to a node that is nearly full */
2493 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2494 		int z;
2495 
2496 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2497 			return 0;
2498 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2499 			if (managed_zone(pgdat->node_zones + z))
2500 				break;
2501 		}
2502 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2503 		return 0;
2504 	}
2505 
2506 	if (!isolate_lru_page(page))
2507 		return 0;
2508 
2509 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2510 			    nr_pages);
2511 
2512 	/*
2513 	 * Isolating the page has taken another reference, so the
2514 	 * caller's reference can be safely dropped without the page
2515 	 * disappearing underneath us during migration.
2516 	 */
2517 	put_page(page);
2518 	return 1;
2519 }
2520 
2521 /*
2522  * Attempt to migrate a misplaced page to the specified destination
2523  * node. Caller is expected to have an elevated reference count on
2524  * the page that will be dropped by this function before returning.
2525  */
2526 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2527 			   int node)
2528 {
2529 	pg_data_t *pgdat = NODE_DATA(node);
2530 	int isolated;
2531 	int nr_remaining;
2532 	unsigned int nr_succeeded;
2533 	LIST_HEAD(migratepages);
2534 	int nr_pages = thp_nr_pages(page);
2535 
2536 	/*
2537 	 * Don't migrate file pages that are mapped in multiple processes
2538 	 * with execute permissions as they are probably shared libraries.
2539 	 */
2540 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2541 	    (vma->vm_flags & VM_EXEC))
2542 		goto out;
2543 
2544 	/*
2545 	 * Also do not migrate dirty pages as not all filesystems can move
2546 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2547 	 */
2548 	if (page_is_file_lru(page) && PageDirty(page))
2549 		goto out;
2550 
2551 	isolated = numamigrate_isolate_page(pgdat, page);
2552 	if (!isolated)
2553 		goto out;
2554 
2555 	list_add(&page->lru, &migratepages);
2556 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2557 				     NULL, node, MIGRATE_ASYNC,
2558 				     MR_NUMA_MISPLACED, &nr_succeeded);
2559 	if (nr_remaining) {
2560 		if (!list_empty(&migratepages)) {
2561 			list_del(&page->lru);
2562 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2563 					page_is_file_lru(page), -nr_pages);
2564 			putback_lru_page(page);
2565 		}
2566 		isolated = 0;
2567 	}
2568 	if (nr_succeeded) {
2569 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2570 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2571 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2572 					    nr_succeeded);
2573 	}
2574 	BUG_ON(!list_empty(&migratepages));
2575 	return isolated;
2576 
2577 out:
2578 	put_page(page);
2579 	return 0;
2580 }
2581 #endif /* CONFIG_NUMA_BALANCING */
2582 #endif /* CONFIG_NUMA */
2583