xref: /openbmc/linux/mm/migrate.c (revision 86bee12f)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/page_owner.h>
42 
43 #include <asm/tlbflush.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47 
48 #include "internal.h"
49 
50 /*
51  * migrate_prep() needs to be called before we start compiling a list of pages
52  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53  * undesirable, use migrate_prep_local()
54  */
55 int migrate_prep(void)
56 {
57 	/*
58 	 * Clear the LRU lists so pages can be isolated.
59 	 * Note that pages may be moved off the LRU after we have
60 	 * drained them. Those pages will fail to migrate like other
61 	 * pages that may be busy.
62 	 */
63 	lru_add_drain_all();
64 
65 	return 0;
66 }
67 
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
69 int migrate_prep_local(void)
70 {
71 	lru_add_drain();
72 
73 	return 0;
74 }
75 
76 /*
77  * Put previously isolated pages back onto the appropriate lists
78  * from where they were once taken off for compaction/migration.
79  *
80  * This function shall be used whenever the isolated pageset has been
81  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82  * and isolate_huge_page().
83  */
84 void putback_movable_pages(struct list_head *l)
85 {
86 	struct page *page;
87 	struct page *page2;
88 
89 	list_for_each_entry_safe(page, page2, l, lru) {
90 		if (unlikely(PageHuge(page))) {
91 			putback_active_hugepage(page);
92 			continue;
93 		}
94 		list_del(&page->lru);
95 		dec_zone_page_state(page, NR_ISOLATED_ANON +
96 				page_is_file_cache(page));
97 		if (unlikely(isolated_balloon_page(page)))
98 			balloon_page_putback(page);
99 		else
100 			putback_lru_page(page);
101 	}
102 }
103 
104 /*
105  * Restore a potential migration pte to a working pte entry
106  */
107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 				 unsigned long addr, void *old)
109 {
110 	struct mm_struct *mm = vma->vm_mm;
111 	swp_entry_t entry;
112  	pmd_t *pmd;
113 	pte_t *ptep, pte;
114  	spinlock_t *ptl;
115 
116 	if (unlikely(PageHuge(new))) {
117 		ptep = huge_pte_offset(mm, addr);
118 		if (!ptep)
119 			goto out;
120 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 	} else {
122 		pmd = mm_find_pmd(mm, addr);
123 		if (!pmd)
124 			goto out;
125 
126 		ptep = pte_offset_map(pmd, addr);
127 
128 		/*
129 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
130 		 * can race mremap's move_ptes(), which skips anon_vma lock.
131 		 */
132 
133 		ptl = pte_lockptr(mm, pmd);
134 	}
135 
136  	spin_lock(ptl);
137 	pte = *ptep;
138 	if (!is_swap_pte(pte))
139 		goto unlock;
140 
141 	entry = pte_to_swp_entry(pte);
142 
143 	if (!is_migration_entry(entry) ||
144 	    migration_entry_to_page(entry) != old)
145 		goto unlock;
146 
147 	get_page(new);
148 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 	if (pte_swp_soft_dirty(*ptep))
150 		pte = pte_mksoft_dirty(pte);
151 
152 	/* Recheck VMA as permissions can change since migration started  */
153 	if (is_write_migration_entry(entry))
154 		pte = maybe_mkwrite(pte, vma);
155 
156 #ifdef CONFIG_HUGETLB_PAGE
157 	if (PageHuge(new)) {
158 		pte = pte_mkhuge(pte);
159 		pte = arch_make_huge_pte(pte, vma, new, 0);
160 	}
161 #endif
162 	flush_dcache_page(new);
163 	set_pte_at(mm, addr, ptep, pte);
164 
165 	if (PageHuge(new)) {
166 		if (PageAnon(new))
167 			hugepage_add_anon_rmap(new, vma, addr);
168 		else
169 			page_dup_rmap(new, true);
170 	} else if (PageAnon(new))
171 		page_add_anon_rmap(new, vma, addr, false);
172 	else
173 		page_add_file_rmap(new);
174 
175 	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
176 		mlock_vma_page(new);
177 
178 	/* No need to invalidate - it was non-present before */
179 	update_mmu_cache(vma, addr, ptep);
180 unlock:
181 	pte_unmap_unlock(ptep, ptl);
182 out:
183 	return SWAP_AGAIN;
184 }
185 
186 /*
187  * Get rid of all migration entries and replace them by
188  * references to the indicated page.
189  */
190 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
191 {
192 	struct rmap_walk_control rwc = {
193 		.rmap_one = remove_migration_pte,
194 		.arg = old,
195 	};
196 
197 	if (locked)
198 		rmap_walk_locked(new, &rwc);
199 	else
200 		rmap_walk(new, &rwc);
201 }
202 
203 /*
204  * Something used the pte of a page under migration. We need to
205  * get to the page and wait until migration is finished.
206  * When we return from this function the fault will be retried.
207  */
208 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
209 				spinlock_t *ptl)
210 {
211 	pte_t pte;
212 	swp_entry_t entry;
213 	struct page *page;
214 
215 	spin_lock(ptl);
216 	pte = *ptep;
217 	if (!is_swap_pte(pte))
218 		goto out;
219 
220 	entry = pte_to_swp_entry(pte);
221 	if (!is_migration_entry(entry))
222 		goto out;
223 
224 	page = migration_entry_to_page(entry);
225 
226 	/*
227 	 * Once radix-tree replacement of page migration started, page_count
228 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
229 	 * against a page without get_page().
230 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
231 	 * will occur again.
232 	 */
233 	if (!get_page_unless_zero(page))
234 		goto out;
235 	pte_unmap_unlock(ptep, ptl);
236 	wait_on_page_locked(page);
237 	put_page(page);
238 	return;
239 out:
240 	pte_unmap_unlock(ptep, ptl);
241 }
242 
243 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
244 				unsigned long address)
245 {
246 	spinlock_t *ptl = pte_lockptr(mm, pmd);
247 	pte_t *ptep = pte_offset_map(pmd, address);
248 	__migration_entry_wait(mm, ptep, ptl);
249 }
250 
251 void migration_entry_wait_huge(struct vm_area_struct *vma,
252 		struct mm_struct *mm, pte_t *pte)
253 {
254 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
255 	__migration_entry_wait(mm, pte, ptl);
256 }
257 
258 #ifdef CONFIG_BLOCK
259 /* Returns true if all buffers are successfully locked */
260 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 							enum migrate_mode mode)
262 {
263 	struct buffer_head *bh = head;
264 
265 	/* Simple case, sync compaction */
266 	if (mode != MIGRATE_ASYNC) {
267 		do {
268 			get_bh(bh);
269 			lock_buffer(bh);
270 			bh = bh->b_this_page;
271 
272 		} while (bh != head);
273 
274 		return true;
275 	}
276 
277 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
278 	do {
279 		get_bh(bh);
280 		if (!trylock_buffer(bh)) {
281 			/*
282 			 * We failed to lock the buffer and cannot stall in
283 			 * async migration. Release the taken locks
284 			 */
285 			struct buffer_head *failed_bh = bh;
286 			put_bh(failed_bh);
287 			bh = head;
288 			while (bh != failed_bh) {
289 				unlock_buffer(bh);
290 				put_bh(bh);
291 				bh = bh->b_this_page;
292 			}
293 			return false;
294 		}
295 
296 		bh = bh->b_this_page;
297 	} while (bh != head);
298 	return true;
299 }
300 #else
301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302 							enum migrate_mode mode)
303 {
304 	return true;
305 }
306 #endif /* CONFIG_BLOCK */
307 
308 /*
309  * Replace the page in the mapping.
310  *
311  * The number of remaining references must be:
312  * 1 for anonymous pages without a mapping
313  * 2 for pages with a mapping
314  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
315  */
316 int migrate_page_move_mapping(struct address_space *mapping,
317 		struct page *newpage, struct page *page,
318 		struct buffer_head *head, enum migrate_mode mode,
319 		int extra_count)
320 {
321 	struct zone *oldzone, *newzone;
322 	int dirty;
323 	int expected_count = 1 + extra_count;
324 	void **pslot;
325 
326 	if (!mapping) {
327 		/* Anonymous page without mapping */
328 		if (page_count(page) != expected_count)
329 			return -EAGAIN;
330 
331 		/* No turning back from here */
332 		newpage->index = page->index;
333 		newpage->mapping = page->mapping;
334 		if (PageSwapBacked(page))
335 			__SetPageSwapBacked(newpage);
336 
337 		return MIGRATEPAGE_SUCCESS;
338 	}
339 
340 	oldzone = page_zone(page);
341 	newzone = page_zone(newpage);
342 
343 	spin_lock_irq(&mapping->tree_lock);
344 
345 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
346  					page_index(page));
347 
348 	expected_count += 1 + page_has_private(page);
349 	if (page_count(page) != expected_count ||
350 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
351 		spin_unlock_irq(&mapping->tree_lock);
352 		return -EAGAIN;
353 	}
354 
355 	if (!page_ref_freeze(page, expected_count)) {
356 		spin_unlock_irq(&mapping->tree_lock);
357 		return -EAGAIN;
358 	}
359 
360 	/*
361 	 * In the async migration case of moving a page with buffers, lock the
362 	 * buffers using trylock before the mapping is moved. If the mapping
363 	 * was moved, we later failed to lock the buffers and could not move
364 	 * the mapping back due to an elevated page count, we would have to
365 	 * block waiting on other references to be dropped.
366 	 */
367 	if (mode == MIGRATE_ASYNC && head &&
368 			!buffer_migrate_lock_buffers(head, mode)) {
369 		page_ref_unfreeze(page, expected_count);
370 		spin_unlock_irq(&mapping->tree_lock);
371 		return -EAGAIN;
372 	}
373 
374 	/*
375 	 * Now we know that no one else is looking at the page:
376 	 * no turning back from here.
377 	 */
378 	newpage->index = page->index;
379 	newpage->mapping = page->mapping;
380 	if (PageSwapBacked(page))
381 		__SetPageSwapBacked(newpage);
382 
383 	get_page(newpage);	/* add cache reference */
384 	if (PageSwapCache(page)) {
385 		SetPageSwapCache(newpage);
386 		set_page_private(newpage, page_private(page));
387 	}
388 
389 	/* Move dirty while page refs frozen and newpage not yet exposed */
390 	dirty = PageDirty(page);
391 	if (dirty) {
392 		ClearPageDirty(page);
393 		SetPageDirty(newpage);
394 	}
395 
396 	radix_tree_replace_slot(pslot, newpage);
397 
398 	/*
399 	 * Drop cache reference from old page by unfreezing
400 	 * to one less reference.
401 	 * We know this isn't the last reference.
402 	 */
403 	page_ref_unfreeze(page, expected_count - 1);
404 
405 	spin_unlock(&mapping->tree_lock);
406 	/* Leave irq disabled to prevent preemption while updating stats */
407 
408 	/*
409 	 * If moved to a different zone then also account
410 	 * the page for that zone. Other VM counters will be
411 	 * taken care of when we establish references to the
412 	 * new page and drop references to the old page.
413 	 *
414 	 * Note that anonymous pages are accounted for
415 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
416 	 * are mapped to swap space.
417 	 */
418 	if (newzone != oldzone) {
419 		__dec_zone_state(oldzone, NR_FILE_PAGES);
420 		__inc_zone_state(newzone, NR_FILE_PAGES);
421 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
422 			__dec_zone_state(oldzone, NR_SHMEM);
423 			__inc_zone_state(newzone, NR_SHMEM);
424 		}
425 		if (dirty && mapping_cap_account_dirty(mapping)) {
426 			__dec_zone_state(oldzone, NR_FILE_DIRTY);
427 			__inc_zone_state(newzone, NR_FILE_DIRTY);
428 		}
429 	}
430 	local_irq_enable();
431 
432 	return MIGRATEPAGE_SUCCESS;
433 }
434 EXPORT_SYMBOL(migrate_page_move_mapping);
435 
436 /*
437  * The expected number of remaining references is the same as that
438  * of migrate_page_move_mapping().
439  */
440 int migrate_huge_page_move_mapping(struct address_space *mapping,
441 				   struct page *newpage, struct page *page)
442 {
443 	int expected_count;
444 	void **pslot;
445 
446 	spin_lock_irq(&mapping->tree_lock);
447 
448 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
449 					page_index(page));
450 
451 	expected_count = 2 + page_has_private(page);
452 	if (page_count(page) != expected_count ||
453 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
454 		spin_unlock_irq(&mapping->tree_lock);
455 		return -EAGAIN;
456 	}
457 
458 	if (!page_ref_freeze(page, expected_count)) {
459 		spin_unlock_irq(&mapping->tree_lock);
460 		return -EAGAIN;
461 	}
462 
463 	newpage->index = page->index;
464 	newpage->mapping = page->mapping;
465 
466 	get_page(newpage);
467 
468 	radix_tree_replace_slot(pslot, newpage);
469 
470 	page_ref_unfreeze(page, expected_count - 1);
471 
472 	spin_unlock_irq(&mapping->tree_lock);
473 
474 	return MIGRATEPAGE_SUCCESS;
475 }
476 
477 /*
478  * Gigantic pages are so large that we do not guarantee that page++ pointer
479  * arithmetic will work across the entire page.  We need something more
480  * specialized.
481  */
482 static void __copy_gigantic_page(struct page *dst, struct page *src,
483 				int nr_pages)
484 {
485 	int i;
486 	struct page *dst_base = dst;
487 	struct page *src_base = src;
488 
489 	for (i = 0; i < nr_pages; ) {
490 		cond_resched();
491 		copy_highpage(dst, src);
492 
493 		i++;
494 		dst = mem_map_next(dst, dst_base, i);
495 		src = mem_map_next(src, src_base, i);
496 	}
497 }
498 
499 static void copy_huge_page(struct page *dst, struct page *src)
500 {
501 	int i;
502 	int nr_pages;
503 
504 	if (PageHuge(src)) {
505 		/* hugetlbfs page */
506 		struct hstate *h = page_hstate(src);
507 		nr_pages = pages_per_huge_page(h);
508 
509 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
510 			__copy_gigantic_page(dst, src, nr_pages);
511 			return;
512 		}
513 	} else {
514 		/* thp page */
515 		BUG_ON(!PageTransHuge(src));
516 		nr_pages = hpage_nr_pages(src);
517 	}
518 
519 	for (i = 0; i < nr_pages; i++) {
520 		cond_resched();
521 		copy_highpage(dst + i, src + i);
522 	}
523 }
524 
525 /*
526  * Copy the page to its new location
527  */
528 void migrate_page_copy(struct page *newpage, struct page *page)
529 {
530 	int cpupid;
531 
532 	if (PageHuge(page) || PageTransHuge(page))
533 		copy_huge_page(newpage, page);
534 	else
535 		copy_highpage(newpage, page);
536 
537 	if (PageError(page))
538 		SetPageError(newpage);
539 	if (PageReferenced(page))
540 		SetPageReferenced(newpage);
541 	if (PageUptodate(page))
542 		SetPageUptodate(newpage);
543 	if (TestClearPageActive(page)) {
544 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
545 		SetPageActive(newpage);
546 	} else if (TestClearPageUnevictable(page))
547 		SetPageUnevictable(newpage);
548 	if (PageChecked(page))
549 		SetPageChecked(newpage);
550 	if (PageMappedToDisk(page))
551 		SetPageMappedToDisk(newpage);
552 
553 	/* Move dirty on pages not done by migrate_page_move_mapping() */
554 	if (PageDirty(page))
555 		SetPageDirty(newpage);
556 
557 	if (page_is_young(page))
558 		set_page_young(newpage);
559 	if (page_is_idle(page))
560 		set_page_idle(newpage);
561 
562 	/*
563 	 * Copy NUMA information to the new page, to prevent over-eager
564 	 * future migrations of this same page.
565 	 */
566 	cpupid = page_cpupid_xchg_last(page, -1);
567 	page_cpupid_xchg_last(newpage, cpupid);
568 
569 	ksm_migrate_page(newpage, page);
570 	/*
571 	 * Please do not reorder this without considering how mm/ksm.c's
572 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
573 	 */
574 	if (PageSwapCache(page))
575 		ClearPageSwapCache(page);
576 	ClearPagePrivate(page);
577 	set_page_private(page, 0);
578 
579 	/*
580 	 * If any waiters have accumulated on the new page then
581 	 * wake them up.
582 	 */
583 	if (PageWriteback(newpage))
584 		end_page_writeback(newpage);
585 
586 	copy_page_owner(page, newpage);
587 
588 	mem_cgroup_migrate(page, newpage);
589 }
590 EXPORT_SYMBOL(migrate_page_copy);
591 
592 /************************************************************
593  *                    Migration functions
594  ***********************************************************/
595 
596 /*
597  * Common logic to directly migrate a single page suitable for
598  * pages that do not use PagePrivate/PagePrivate2.
599  *
600  * Pages are locked upon entry and exit.
601  */
602 int migrate_page(struct address_space *mapping,
603 		struct page *newpage, struct page *page,
604 		enum migrate_mode mode)
605 {
606 	int rc;
607 
608 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
609 
610 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
611 
612 	if (rc != MIGRATEPAGE_SUCCESS)
613 		return rc;
614 
615 	migrate_page_copy(newpage, page);
616 	return MIGRATEPAGE_SUCCESS;
617 }
618 EXPORT_SYMBOL(migrate_page);
619 
620 #ifdef CONFIG_BLOCK
621 /*
622  * Migration function for pages with buffers. This function can only be used
623  * if the underlying filesystem guarantees that no other references to "page"
624  * exist.
625  */
626 int buffer_migrate_page(struct address_space *mapping,
627 		struct page *newpage, struct page *page, enum migrate_mode mode)
628 {
629 	struct buffer_head *bh, *head;
630 	int rc;
631 
632 	if (!page_has_buffers(page))
633 		return migrate_page(mapping, newpage, page, mode);
634 
635 	head = page_buffers(page);
636 
637 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
638 
639 	if (rc != MIGRATEPAGE_SUCCESS)
640 		return rc;
641 
642 	/*
643 	 * In the async case, migrate_page_move_mapping locked the buffers
644 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
645 	 * need to be locked now
646 	 */
647 	if (mode != MIGRATE_ASYNC)
648 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
649 
650 	ClearPagePrivate(page);
651 	set_page_private(newpage, page_private(page));
652 	set_page_private(page, 0);
653 	put_page(page);
654 	get_page(newpage);
655 
656 	bh = head;
657 	do {
658 		set_bh_page(bh, newpage, bh_offset(bh));
659 		bh = bh->b_this_page;
660 
661 	} while (bh != head);
662 
663 	SetPagePrivate(newpage);
664 
665 	migrate_page_copy(newpage, page);
666 
667 	bh = head;
668 	do {
669 		unlock_buffer(bh);
670  		put_bh(bh);
671 		bh = bh->b_this_page;
672 
673 	} while (bh != head);
674 
675 	return MIGRATEPAGE_SUCCESS;
676 }
677 EXPORT_SYMBOL(buffer_migrate_page);
678 #endif
679 
680 /*
681  * Writeback a page to clean the dirty state
682  */
683 static int writeout(struct address_space *mapping, struct page *page)
684 {
685 	struct writeback_control wbc = {
686 		.sync_mode = WB_SYNC_NONE,
687 		.nr_to_write = 1,
688 		.range_start = 0,
689 		.range_end = LLONG_MAX,
690 		.for_reclaim = 1
691 	};
692 	int rc;
693 
694 	if (!mapping->a_ops->writepage)
695 		/* No write method for the address space */
696 		return -EINVAL;
697 
698 	if (!clear_page_dirty_for_io(page))
699 		/* Someone else already triggered a write */
700 		return -EAGAIN;
701 
702 	/*
703 	 * A dirty page may imply that the underlying filesystem has
704 	 * the page on some queue. So the page must be clean for
705 	 * migration. Writeout may mean we loose the lock and the
706 	 * page state is no longer what we checked for earlier.
707 	 * At this point we know that the migration attempt cannot
708 	 * be successful.
709 	 */
710 	remove_migration_ptes(page, page, false);
711 
712 	rc = mapping->a_ops->writepage(page, &wbc);
713 
714 	if (rc != AOP_WRITEPAGE_ACTIVATE)
715 		/* unlocked. Relock */
716 		lock_page(page);
717 
718 	return (rc < 0) ? -EIO : -EAGAIN;
719 }
720 
721 /*
722  * Default handling if a filesystem does not provide a migration function.
723  */
724 static int fallback_migrate_page(struct address_space *mapping,
725 	struct page *newpage, struct page *page, enum migrate_mode mode)
726 {
727 	if (PageDirty(page)) {
728 		/* Only writeback pages in full synchronous migration */
729 		if (mode != MIGRATE_SYNC)
730 			return -EBUSY;
731 		return writeout(mapping, page);
732 	}
733 
734 	/*
735 	 * Buffers may be managed in a filesystem specific way.
736 	 * We must have no buffers or drop them.
737 	 */
738 	if (page_has_private(page) &&
739 	    !try_to_release_page(page, GFP_KERNEL))
740 		return -EAGAIN;
741 
742 	return migrate_page(mapping, newpage, page, mode);
743 }
744 
745 /*
746  * Move a page to a newly allocated page
747  * The page is locked and all ptes have been successfully removed.
748  *
749  * The new page will have replaced the old page if this function
750  * is successful.
751  *
752  * Return value:
753  *   < 0 - error code
754  *  MIGRATEPAGE_SUCCESS - success
755  */
756 static int move_to_new_page(struct page *newpage, struct page *page,
757 				enum migrate_mode mode)
758 {
759 	struct address_space *mapping;
760 	int rc;
761 
762 	VM_BUG_ON_PAGE(!PageLocked(page), page);
763 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
764 
765 	mapping = page_mapping(page);
766 	if (!mapping)
767 		rc = migrate_page(mapping, newpage, page, mode);
768 	else if (mapping->a_ops->migratepage)
769 		/*
770 		 * Most pages have a mapping and most filesystems provide a
771 		 * migratepage callback. Anonymous pages are part of swap
772 		 * space which also has its own migratepage callback. This
773 		 * is the most common path for page migration.
774 		 */
775 		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
776 	else
777 		rc = fallback_migrate_page(mapping, newpage, page, mode);
778 
779 	/*
780 	 * When successful, old pagecache page->mapping must be cleared before
781 	 * page is freed; but stats require that PageAnon be left as PageAnon.
782 	 */
783 	if (rc == MIGRATEPAGE_SUCCESS) {
784 		if (!PageAnon(page))
785 			page->mapping = NULL;
786 	}
787 	return rc;
788 }
789 
790 static int __unmap_and_move(struct page *page, struct page *newpage,
791 				int force, enum migrate_mode mode)
792 {
793 	int rc = -EAGAIN;
794 	int page_was_mapped = 0;
795 	struct anon_vma *anon_vma = NULL;
796 
797 	if (!trylock_page(page)) {
798 		if (!force || mode == MIGRATE_ASYNC)
799 			goto out;
800 
801 		/*
802 		 * It's not safe for direct compaction to call lock_page.
803 		 * For example, during page readahead pages are added locked
804 		 * to the LRU. Later, when the IO completes the pages are
805 		 * marked uptodate and unlocked. However, the queueing
806 		 * could be merging multiple pages for one bio (e.g.
807 		 * mpage_readpages). If an allocation happens for the
808 		 * second or third page, the process can end up locking
809 		 * the same page twice and deadlocking. Rather than
810 		 * trying to be clever about what pages can be locked,
811 		 * avoid the use of lock_page for direct compaction
812 		 * altogether.
813 		 */
814 		if (current->flags & PF_MEMALLOC)
815 			goto out;
816 
817 		lock_page(page);
818 	}
819 
820 	if (PageWriteback(page)) {
821 		/*
822 		 * Only in the case of a full synchronous migration is it
823 		 * necessary to wait for PageWriteback. In the async case,
824 		 * the retry loop is too short and in the sync-light case,
825 		 * the overhead of stalling is too much
826 		 */
827 		if (mode != MIGRATE_SYNC) {
828 			rc = -EBUSY;
829 			goto out_unlock;
830 		}
831 		if (!force)
832 			goto out_unlock;
833 		wait_on_page_writeback(page);
834 	}
835 
836 	/*
837 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
838 	 * we cannot notice that anon_vma is freed while we migrates a page.
839 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
840 	 * of migration. File cache pages are no problem because of page_lock()
841 	 * File Caches may use write_page() or lock_page() in migration, then,
842 	 * just care Anon page here.
843 	 *
844 	 * Only page_get_anon_vma() understands the subtleties of
845 	 * getting a hold on an anon_vma from outside one of its mms.
846 	 * But if we cannot get anon_vma, then we won't need it anyway,
847 	 * because that implies that the anon page is no longer mapped
848 	 * (and cannot be remapped so long as we hold the page lock).
849 	 */
850 	if (PageAnon(page) && !PageKsm(page))
851 		anon_vma = page_get_anon_vma(page);
852 
853 	/*
854 	 * Block others from accessing the new page when we get around to
855 	 * establishing additional references. We are usually the only one
856 	 * holding a reference to newpage at this point. We used to have a BUG
857 	 * here if trylock_page(newpage) fails, but would like to allow for
858 	 * cases where there might be a race with the previous use of newpage.
859 	 * This is much like races on refcount of oldpage: just don't BUG().
860 	 */
861 	if (unlikely(!trylock_page(newpage)))
862 		goto out_unlock;
863 
864 	if (unlikely(isolated_balloon_page(page))) {
865 		/*
866 		 * A ballooned page does not need any special attention from
867 		 * physical to virtual reverse mapping procedures.
868 		 * Skip any attempt to unmap PTEs or to remap swap cache,
869 		 * in order to avoid burning cycles at rmap level, and perform
870 		 * the page migration right away (proteced by page lock).
871 		 */
872 		rc = balloon_page_migrate(newpage, page, mode);
873 		goto out_unlock_both;
874 	}
875 
876 	/*
877 	 * Corner case handling:
878 	 * 1. When a new swap-cache page is read into, it is added to the LRU
879 	 * and treated as swapcache but it has no rmap yet.
880 	 * Calling try_to_unmap() against a page->mapping==NULL page will
881 	 * trigger a BUG.  So handle it here.
882 	 * 2. An orphaned page (see truncate_complete_page) might have
883 	 * fs-private metadata. The page can be picked up due to memory
884 	 * offlining.  Everywhere else except page reclaim, the page is
885 	 * invisible to the vm, so the page can not be migrated.  So try to
886 	 * free the metadata, so the page can be freed.
887 	 */
888 	if (!page->mapping) {
889 		VM_BUG_ON_PAGE(PageAnon(page), page);
890 		if (page_has_private(page)) {
891 			try_to_free_buffers(page);
892 			goto out_unlock_both;
893 		}
894 	} else if (page_mapped(page)) {
895 		/* Establish migration ptes */
896 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
897 				page);
898 		try_to_unmap(page,
899 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
900 		page_was_mapped = 1;
901 	}
902 
903 	if (!page_mapped(page))
904 		rc = move_to_new_page(newpage, page, mode);
905 
906 	if (page_was_mapped)
907 		remove_migration_ptes(page,
908 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
909 
910 out_unlock_both:
911 	unlock_page(newpage);
912 out_unlock:
913 	/* Drop an anon_vma reference if we took one */
914 	if (anon_vma)
915 		put_anon_vma(anon_vma);
916 	unlock_page(page);
917 out:
918 	return rc;
919 }
920 
921 /*
922  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
923  * around it.
924  */
925 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
926 #define ICE_noinline noinline
927 #else
928 #define ICE_noinline
929 #endif
930 
931 /*
932  * Obtain the lock on page, remove all ptes and migrate the page
933  * to the newly allocated page in newpage.
934  */
935 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
936 				   free_page_t put_new_page,
937 				   unsigned long private, struct page *page,
938 				   int force, enum migrate_mode mode,
939 				   enum migrate_reason reason)
940 {
941 	int rc = MIGRATEPAGE_SUCCESS;
942 	int *result = NULL;
943 	struct page *newpage;
944 
945 	newpage = get_new_page(page, private, &result);
946 	if (!newpage)
947 		return -ENOMEM;
948 
949 	if (page_count(page) == 1) {
950 		/* page was freed from under us. So we are done. */
951 		goto out;
952 	}
953 
954 	if (unlikely(PageTransHuge(page))) {
955 		lock_page(page);
956 		rc = split_huge_page(page);
957 		unlock_page(page);
958 		if (rc)
959 			goto out;
960 	}
961 
962 	rc = __unmap_and_move(page, newpage, force, mode);
963 	if (rc == MIGRATEPAGE_SUCCESS) {
964 		put_new_page = NULL;
965 		set_page_owner_migrate_reason(newpage, reason);
966 	}
967 
968 out:
969 	if (rc != -EAGAIN) {
970 		/*
971 		 * A page that has been migrated has all references
972 		 * removed and will be freed. A page that has not been
973 		 * migrated will have kepts its references and be
974 		 * restored.
975 		 */
976 		list_del(&page->lru);
977 		dec_zone_page_state(page, NR_ISOLATED_ANON +
978 				page_is_file_cache(page));
979 		/* Soft-offlined page shouldn't go through lru cache list */
980 		if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
981 			/*
982 			 * With this release, we free successfully migrated
983 			 * page and set PG_HWPoison on just freed page
984 			 * intentionally. Although it's rather weird, it's how
985 			 * HWPoison flag works at the moment.
986 			 */
987 			put_page(page);
988 			if (!test_set_page_hwpoison(page))
989 				num_poisoned_pages_inc();
990 		} else
991 			putback_lru_page(page);
992 	}
993 
994 	/*
995 	 * If migration was not successful and there's a freeing callback, use
996 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
997 	 * during isolation.
998 	 */
999 	if (put_new_page)
1000 		put_new_page(newpage, private);
1001 	else if (unlikely(__is_movable_balloon_page(newpage))) {
1002 		/* drop our reference, page already in the balloon */
1003 		put_page(newpage);
1004 	} else
1005 		putback_lru_page(newpage);
1006 
1007 	if (result) {
1008 		if (rc)
1009 			*result = rc;
1010 		else
1011 			*result = page_to_nid(newpage);
1012 	}
1013 	return rc;
1014 }
1015 
1016 /*
1017  * Counterpart of unmap_and_move_page() for hugepage migration.
1018  *
1019  * This function doesn't wait the completion of hugepage I/O
1020  * because there is no race between I/O and migration for hugepage.
1021  * Note that currently hugepage I/O occurs only in direct I/O
1022  * where no lock is held and PG_writeback is irrelevant,
1023  * and writeback status of all subpages are counted in the reference
1024  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1025  * under direct I/O, the reference of the head page is 512 and a bit more.)
1026  * This means that when we try to migrate hugepage whose subpages are
1027  * doing direct I/O, some references remain after try_to_unmap() and
1028  * hugepage migration fails without data corruption.
1029  *
1030  * There is also no race when direct I/O is issued on the page under migration,
1031  * because then pte is replaced with migration swap entry and direct I/O code
1032  * will wait in the page fault for migration to complete.
1033  */
1034 static int unmap_and_move_huge_page(new_page_t get_new_page,
1035 				free_page_t put_new_page, unsigned long private,
1036 				struct page *hpage, int force,
1037 				enum migrate_mode mode, int reason)
1038 {
1039 	int rc = -EAGAIN;
1040 	int *result = NULL;
1041 	int page_was_mapped = 0;
1042 	struct page *new_hpage;
1043 	struct anon_vma *anon_vma = NULL;
1044 
1045 	/*
1046 	 * Movability of hugepages depends on architectures and hugepage size.
1047 	 * This check is necessary because some callers of hugepage migration
1048 	 * like soft offline and memory hotremove don't walk through page
1049 	 * tables or check whether the hugepage is pmd-based or not before
1050 	 * kicking migration.
1051 	 */
1052 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1053 		putback_active_hugepage(hpage);
1054 		return -ENOSYS;
1055 	}
1056 
1057 	new_hpage = get_new_page(hpage, private, &result);
1058 	if (!new_hpage)
1059 		return -ENOMEM;
1060 
1061 	if (!trylock_page(hpage)) {
1062 		if (!force || mode != MIGRATE_SYNC)
1063 			goto out;
1064 		lock_page(hpage);
1065 	}
1066 
1067 	if (PageAnon(hpage))
1068 		anon_vma = page_get_anon_vma(hpage);
1069 
1070 	if (unlikely(!trylock_page(new_hpage)))
1071 		goto put_anon;
1072 
1073 	if (page_mapped(hpage)) {
1074 		try_to_unmap(hpage,
1075 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1076 		page_was_mapped = 1;
1077 	}
1078 
1079 	if (!page_mapped(hpage))
1080 		rc = move_to_new_page(new_hpage, hpage, mode);
1081 
1082 	if (page_was_mapped)
1083 		remove_migration_ptes(hpage,
1084 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1085 
1086 	unlock_page(new_hpage);
1087 
1088 put_anon:
1089 	if (anon_vma)
1090 		put_anon_vma(anon_vma);
1091 
1092 	if (rc == MIGRATEPAGE_SUCCESS) {
1093 		hugetlb_cgroup_migrate(hpage, new_hpage);
1094 		put_new_page = NULL;
1095 		set_page_owner_migrate_reason(new_hpage, reason);
1096 	}
1097 
1098 	unlock_page(hpage);
1099 out:
1100 	if (rc != -EAGAIN)
1101 		putback_active_hugepage(hpage);
1102 
1103 	/*
1104 	 * If migration was not successful and there's a freeing callback, use
1105 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1106 	 * isolation.
1107 	 */
1108 	if (put_new_page)
1109 		put_new_page(new_hpage, private);
1110 	else
1111 		putback_active_hugepage(new_hpage);
1112 
1113 	if (result) {
1114 		if (rc)
1115 			*result = rc;
1116 		else
1117 			*result = page_to_nid(new_hpage);
1118 	}
1119 	return rc;
1120 }
1121 
1122 /*
1123  * migrate_pages - migrate the pages specified in a list, to the free pages
1124  *		   supplied as the target for the page migration
1125  *
1126  * @from:		The list of pages to be migrated.
1127  * @get_new_page:	The function used to allocate free pages to be used
1128  *			as the target of the page migration.
1129  * @put_new_page:	The function used to free target pages if migration
1130  *			fails, or NULL if no special handling is necessary.
1131  * @private:		Private data to be passed on to get_new_page()
1132  * @mode:		The migration mode that specifies the constraints for
1133  *			page migration, if any.
1134  * @reason:		The reason for page migration.
1135  *
1136  * The function returns after 10 attempts or if no pages are movable any more
1137  * because the list has become empty or no retryable pages exist any more.
1138  * The caller should call putback_movable_pages() to return pages to the LRU
1139  * or free list only if ret != 0.
1140  *
1141  * Returns the number of pages that were not migrated, or an error code.
1142  */
1143 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1144 		free_page_t put_new_page, unsigned long private,
1145 		enum migrate_mode mode, int reason)
1146 {
1147 	int retry = 1;
1148 	int nr_failed = 0;
1149 	int nr_succeeded = 0;
1150 	int pass = 0;
1151 	struct page *page;
1152 	struct page *page2;
1153 	int swapwrite = current->flags & PF_SWAPWRITE;
1154 	int rc;
1155 
1156 	if (!swapwrite)
1157 		current->flags |= PF_SWAPWRITE;
1158 
1159 	for(pass = 0; pass < 10 && retry; pass++) {
1160 		retry = 0;
1161 
1162 		list_for_each_entry_safe(page, page2, from, lru) {
1163 			cond_resched();
1164 
1165 			if (PageHuge(page))
1166 				rc = unmap_and_move_huge_page(get_new_page,
1167 						put_new_page, private, page,
1168 						pass > 2, mode, reason);
1169 			else
1170 				rc = unmap_and_move(get_new_page, put_new_page,
1171 						private, page, pass > 2, mode,
1172 						reason);
1173 
1174 			switch(rc) {
1175 			case -ENOMEM:
1176 				nr_failed++;
1177 				goto out;
1178 			case -EAGAIN:
1179 				retry++;
1180 				break;
1181 			case MIGRATEPAGE_SUCCESS:
1182 				nr_succeeded++;
1183 				break;
1184 			default:
1185 				/*
1186 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1187 				 * unlike -EAGAIN case, the failed page is
1188 				 * removed from migration page list and not
1189 				 * retried in the next outer loop.
1190 				 */
1191 				nr_failed++;
1192 				break;
1193 			}
1194 		}
1195 	}
1196 	nr_failed += retry;
1197 	rc = nr_failed;
1198 out:
1199 	if (nr_succeeded)
1200 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1201 	if (nr_failed)
1202 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1203 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1204 
1205 	if (!swapwrite)
1206 		current->flags &= ~PF_SWAPWRITE;
1207 
1208 	return rc;
1209 }
1210 
1211 #ifdef CONFIG_NUMA
1212 /*
1213  * Move a list of individual pages
1214  */
1215 struct page_to_node {
1216 	unsigned long addr;
1217 	struct page *page;
1218 	int node;
1219 	int status;
1220 };
1221 
1222 static struct page *new_page_node(struct page *p, unsigned long private,
1223 		int **result)
1224 {
1225 	struct page_to_node *pm = (struct page_to_node *)private;
1226 
1227 	while (pm->node != MAX_NUMNODES && pm->page != p)
1228 		pm++;
1229 
1230 	if (pm->node == MAX_NUMNODES)
1231 		return NULL;
1232 
1233 	*result = &pm->status;
1234 
1235 	if (PageHuge(p))
1236 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1237 					pm->node);
1238 	else
1239 		return __alloc_pages_node(pm->node,
1240 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1241 }
1242 
1243 /*
1244  * Move a set of pages as indicated in the pm array. The addr
1245  * field must be set to the virtual address of the page to be moved
1246  * and the node number must contain a valid target node.
1247  * The pm array ends with node = MAX_NUMNODES.
1248  */
1249 static int do_move_page_to_node_array(struct mm_struct *mm,
1250 				      struct page_to_node *pm,
1251 				      int migrate_all)
1252 {
1253 	int err;
1254 	struct page_to_node *pp;
1255 	LIST_HEAD(pagelist);
1256 
1257 	down_read(&mm->mmap_sem);
1258 
1259 	/*
1260 	 * Build a list of pages to migrate
1261 	 */
1262 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1263 		struct vm_area_struct *vma;
1264 		struct page *page;
1265 
1266 		err = -EFAULT;
1267 		vma = find_vma(mm, pp->addr);
1268 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1269 			goto set_status;
1270 
1271 		/* FOLL_DUMP to ignore special (like zero) pages */
1272 		page = follow_page(vma, pp->addr,
1273 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1274 
1275 		err = PTR_ERR(page);
1276 		if (IS_ERR(page))
1277 			goto set_status;
1278 
1279 		err = -ENOENT;
1280 		if (!page)
1281 			goto set_status;
1282 
1283 		pp->page = page;
1284 		err = page_to_nid(page);
1285 
1286 		if (err == pp->node)
1287 			/*
1288 			 * Node already in the right place
1289 			 */
1290 			goto put_and_set;
1291 
1292 		err = -EACCES;
1293 		if (page_mapcount(page) > 1 &&
1294 				!migrate_all)
1295 			goto put_and_set;
1296 
1297 		if (PageHuge(page)) {
1298 			if (PageHead(page))
1299 				isolate_huge_page(page, &pagelist);
1300 			goto put_and_set;
1301 		}
1302 
1303 		err = isolate_lru_page(page);
1304 		if (!err) {
1305 			list_add_tail(&page->lru, &pagelist);
1306 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1307 					    page_is_file_cache(page));
1308 		}
1309 put_and_set:
1310 		/*
1311 		 * Either remove the duplicate refcount from
1312 		 * isolate_lru_page() or drop the page ref if it was
1313 		 * not isolated.
1314 		 */
1315 		put_page(page);
1316 set_status:
1317 		pp->status = err;
1318 	}
1319 
1320 	err = 0;
1321 	if (!list_empty(&pagelist)) {
1322 		err = migrate_pages(&pagelist, new_page_node, NULL,
1323 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1324 		if (err)
1325 			putback_movable_pages(&pagelist);
1326 	}
1327 
1328 	up_read(&mm->mmap_sem);
1329 	return err;
1330 }
1331 
1332 /*
1333  * Migrate an array of page address onto an array of nodes and fill
1334  * the corresponding array of status.
1335  */
1336 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1337 			 unsigned long nr_pages,
1338 			 const void __user * __user *pages,
1339 			 const int __user *nodes,
1340 			 int __user *status, int flags)
1341 {
1342 	struct page_to_node *pm;
1343 	unsigned long chunk_nr_pages;
1344 	unsigned long chunk_start;
1345 	int err;
1346 
1347 	err = -ENOMEM;
1348 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1349 	if (!pm)
1350 		goto out;
1351 
1352 	migrate_prep();
1353 
1354 	/*
1355 	 * Store a chunk of page_to_node array in a page,
1356 	 * but keep the last one as a marker
1357 	 */
1358 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1359 
1360 	for (chunk_start = 0;
1361 	     chunk_start < nr_pages;
1362 	     chunk_start += chunk_nr_pages) {
1363 		int j;
1364 
1365 		if (chunk_start + chunk_nr_pages > nr_pages)
1366 			chunk_nr_pages = nr_pages - chunk_start;
1367 
1368 		/* fill the chunk pm with addrs and nodes from user-space */
1369 		for (j = 0; j < chunk_nr_pages; j++) {
1370 			const void __user *p;
1371 			int node;
1372 
1373 			err = -EFAULT;
1374 			if (get_user(p, pages + j + chunk_start))
1375 				goto out_pm;
1376 			pm[j].addr = (unsigned long) p;
1377 
1378 			if (get_user(node, nodes + j + chunk_start))
1379 				goto out_pm;
1380 
1381 			err = -ENODEV;
1382 			if (node < 0 || node >= MAX_NUMNODES)
1383 				goto out_pm;
1384 
1385 			if (!node_state(node, N_MEMORY))
1386 				goto out_pm;
1387 
1388 			err = -EACCES;
1389 			if (!node_isset(node, task_nodes))
1390 				goto out_pm;
1391 
1392 			pm[j].node = node;
1393 		}
1394 
1395 		/* End marker for this chunk */
1396 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1397 
1398 		/* Migrate this chunk */
1399 		err = do_move_page_to_node_array(mm, pm,
1400 						 flags & MPOL_MF_MOVE_ALL);
1401 		if (err < 0)
1402 			goto out_pm;
1403 
1404 		/* Return status information */
1405 		for (j = 0; j < chunk_nr_pages; j++)
1406 			if (put_user(pm[j].status, status + j + chunk_start)) {
1407 				err = -EFAULT;
1408 				goto out_pm;
1409 			}
1410 	}
1411 	err = 0;
1412 
1413 out_pm:
1414 	free_page((unsigned long)pm);
1415 out:
1416 	return err;
1417 }
1418 
1419 /*
1420  * Determine the nodes of an array of pages and store it in an array of status.
1421  */
1422 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1423 				const void __user **pages, int *status)
1424 {
1425 	unsigned long i;
1426 
1427 	down_read(&mm->mmap_sem);
1428 
1429 	for (i = 0; i < nr_pages; i++) {
1430 		unsigned long addr = (unsigned long)(*pages);
1431 		struct vm_area_struct *vma;
1432 		struct page *page;
1433 		int err = -EFAULT;
1434 
1435 		vma = find_vma(mm, addr);
1436 		if (!vma || addr < vma->vm_start)
1437 			goto set_status;
1438 
1439 		/* FOLL_DUMP to ignore special (like zero) pages */
1440 		page = follow_page(vma, addr, FOLL_DUMP);
1441 
1442 		err = PTR_ERR(page);
1443 		if (IS_ERR(page))
1444 			goto set_status;
1445 
1446 		err = page ? page_to_nid(page) : -ENOENT;
1447 set_status:
1448 		*status = err;
1449 
1450 		pages++;
1451 		status++;
1452 	}
1453 
1454 	up_read(&mm->mmap_sem);
1455 }
1456 
1457 /*
1458  * Determine the nodes of a user array of pages and store it in
1459  * a user array of status.
1460  */
1461 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1462 			 const void __user * __user *pages,
1463 			 int __user *status)
1464 {
1465 #define DO_PAGES_STAT_CHUNK_NR 16
1466 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1467 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1468 
1469 	while (nr_pages) {
1470 		unsigned long chunk_nr;
1471 
1472 		chunk_nr = nr_pages;
1473 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1474 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1475 
1476 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1477 			break;
1478 
1479 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1480 
1481 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1482 			break;
1483 
1484 		pages += chunk_nr;
1485 		status += chunk_nr;
1486 		nr_pages -= chunk_nr;
1487 	}
1488 	return nr_pages ? -EFAULT : 0;
1489 }
1490 
1491 /*
1492  * Move a list of pages in the address space of the currently executing
1493  * process.
1494  */
1495 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1496 		const void __user * __user *, pages,
1497 		const int __user *, nodes,
1498 		int __user *, status, int, flags)
1499 {
1500 	const struct cred *cred = current_cred(), *tcred;
1501 	struct task_struct *task;
1502 	struct mm_struct *mm;
1503 	int err;
1504 	nodemask_t task_nodes;
1505 
1506 	/* Check flags */
1507 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1508 		return -EINVAL;
1509 
1510 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1511 		return -EPERM;
1512 
1513 	/* Find the mm_struct */
1514 	rcu_read_lock();
1515 	task = pid ? find_task_by_vpid(pid) : current;
1516 	if (!task) {
1517 		rcu_read_unlock();
1518 		return -ESRCH;
1519 	}
1520 	get_task_struct(task);
1521 
1522 	/*
1523 	 * Check if this process has the right to modify the specified
1524 	 * process. The right exists if the process has administrative
1525 	 * capabilities, superuser privileges or the same
1526 	 * userid as the target process.
1527 	 */
1528 	tcred = __task_cred(task);
1529 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1530 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1531 	    !capable(CAP_SYS_NICE)) {
1532 		rcu_read_unlock();
1533 		err = -EPERM;
1534 		goto out;
1535 	}
1536 	rcu_read_unlock();
1537 
1538  	err = security_task_movememory(task);
1539  	if (err)
1540 		goto out;
1541 
1542 	task_nodes = cpuset_mems_allowed(task);
1543 	mm = get_task_mm(task);
1544 	put_task_struct(task);
1545 
1546 	if (!mm)
1547 		return -EINVAL;
1548 
1549 	if (nodes)
1550 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1551 				    nodes, status, flags);
1552 	else
1553 		err = do_pages_stat(mm, nr_pages, pages, status);
1554 
1555 	mmput(mm);
1556 	return err;
1557 
1558 out:
1559 	put_task_struct(task);
1560 	return err;
1561 }
1562 
1563 #ifdef CONFIG_NUMA_BALANCING
1564 /*
1565  * Returns true if this is a safe migration target node for misplaced NUMA
1566  * pages. Currently it only checks the watermarks which crude
1567  */
1568 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1569 				   unsigned long nr_migrate_pages)
1570 {
1571 	int z;
1572 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1573 		struct zone *zone = pgdat->node_zones + z;
1574 
1575 		if (!populated_zone(zone))
1576 			continue;
1577 
1578 		if (!zone_reclaimable(zone))
1579 			continue;
1580 
1581 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1582 		if (!zone_watermark_ok(zone, 0,
1583 				       high_wmark_pages(zone) +
1584 				       nr_migrate_pages,
1585 				       0, 0))
1586 			continue;
1587 		return true;
1588 	}
1589 	return false;
1590 }
1591 
1592 static struct page *alloc_misplaced_dst_page(struct page *page,
1593 					   unsigned long data,
1594 					   int **result)
1595 {
1596 	int nid = (int) data;
1597 	struct page *newpage;
1598 
1599 	newpage = __alloc_pages_node(nid,
1600 					 (GFP_HIGHUSER_MOVABLE |
1601 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1602 					  __GFP_NORETRY | __GFP_NOWARN) &
1603 					 ~__GFP_RECLAIM, 0);
1604 
1605 	return newpage;
1606 }
1607 
1608 /*
1609  * page migration rate limiting control.
1610  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1611  * window of time. Default here says do not migrate more than 1280M per second.
1612  */
1613 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1614 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1615 
1616 /* Returns true if the node is migrate rate-limited after the update */
1617 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1618 					unsigned long nr_pages)
1619 {
1620 	/*
1621 	 * Rate-limit the amount of data that is being migrated to a node.
1622 	 * Optimal placement is no good if the memory bus is saturated and
1623 	 * all the time is being spent migrating!
1624 	 */
1625 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1626 		spin_lock(&pgdat->numabalancing_migrate_lock);
1627 		pgdat->numabalancing_migrate_nr_pages = 0;
1628 		pgdat->numabalancing_migrate_next_window = jiffies +
1629 			msecs_to_jiffies(migrate_interval_millisecs);
1630 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1631 	}
1632 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1633 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1634 								nr_pages);
1635 		return true;
1636 	}
1637 
1638 	/*
1639 	 * This is an unlocked non-atomic update so errors are possible.
1640 	 * The consequences are failing to migrate when we potentiall should
1641 	 * have which is not severe enough to warrant locking. If it is ever
1642 	 * a problem, it can be converted to a per-cpu counter.
1643 	 */
1644 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1645 	return false;
1646 }
1647 
1648 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1649 {
1650 	int page_lru;
1651 
1652 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1653 
1654 	/* Avoid migrating to a node that is nearly full */
1655 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1656 		return 0;
1657 
1658 	if (isolate_lru_page(page))
1659 		return 0;
1660 
1661 	/*
1662 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1663 	 * check on page_count(), so we must do it here, now that the page
1664 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1665 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1666 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1667 	 */
1668 	if (PageTransHuge(page) && page_count(page) != 3) {
1669 		putback_lru_page(page);
1670 		return 0;
1671 	}
1672 
1673 	page_lru = page_is_file_cache(page);
1674 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1675 				hpage_nr_pages(page));
1676 
1677 	/*
1678 	 * Isolating the page has taken another reference, so the
1679 	 * caller's reference can be safely dropped without the page
1680 	 * disappearing underneath us during migration.
1681 	 */
1682 	put_page(page);
1683 	return 1;
1684 }
1685 
1686 bool pmd_trans_migrating(pmd_t pmd)
1687 {
1688 	struct page *page = pmd_page(pmd);
1689 	return PageLocked(page);
1690 }
1691 
1692 /*
1693  * Attempt to migrate a misplaced page to the specified destination
1694  * node. Caller is expected to have an elevated reference count on
1695  * the page that will be dropped by this function before returning.
1696  */
1697 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1698 			   int node)
1699 {
1700 	pg_data_t *pgdat = NODE_DATA(node);
1701 	int isolated;
1702 	int nr_remaining;
1703 	LIST_HEAD(migratepages);
1704 
1705 	/*
1706 	 * Don't migrate file pages that are mapped in multiple processes
1707 	 * with execute permissions as they are probably shared libraries.
1708 	 */
1709 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1710 	    (vma->vm_flags & VM_EXEC))
1711 		goto out;
1712 
1713 	/*
1714 	 * Rate-limit the amount of data that is being migrated to a node.
1715 	 * Optimal placement is no good if the memory bus is saturated and
1716 	 * all the time is being spent migrating!
1717 	 */
1718 	if (numamigrate_update_ratelimit(pgdat, 1))
1719 		goto out;
1720 
1721 	isolated = numamigrate_isolate_page(pgdat, page);
1722 	if (!isolated)
1723 		goto out;
1724 
1725 	list_add(&page->lru, &migratepages);
1726 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1727 				     NULL, node, MIGRATE_ASYNC,
1728 				     MR_NUMA_MISPLACED);
1729 	if (nr_remaining) {
1730 		if (!list_empty(&migratepages)) {
1731 			list_del(&page->lru);
1732 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1733 					page_is_file_cache(page));
1734 			putback_lru_page(page);
1735 		}
1736 		isolated = 0;
1737 	} else
1738 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1739 	BUG_ON(!list_empty(&migratepages));
1740 	return isolated;
1741 
1742 out:
1743 	put_page(page);
1744 	return 0;
1745 }
1746 #endif /* CONFIG_NUMA_BALANCING */
1747 
1748 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1749 /*
1750  * Migrates a THP to a given target node. page must be locked and is unlocked
1751  * before returning.
1752  */
1753 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1754 				struct vm_area_struct *vma,
1755 				pmd_t *pmd, pmd_t entry,
1756 				unsigned long address,
1757 				struct page *page, int node)
1758 {
1759 	spinlock_t *ptl;
1760 	pg_data_t *pgdat = NODE_DATA(node);
1761 	int isolated = 0;
1762 	struct page *new_page = NULL;
1763 	int page_lru = page_is_file_cache(page);
1764 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1765 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1766 	pmd_t orig_entry;
1767 
1768 	/*
1769 	 * Rate-limit the amount of data that is being migrated to a node.
1770 	 * Optimal placement is no good if the memory bus is saturated and
1771 	 * all the time is being spent migrating!
1772 	 */
1773 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1774 		goto out_dropref;
1775 
1776 	new_page = alloc_pages_node(node,
1777 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1778 		HPAGE_PMD_ORDER);
1779 	if (!new_page)
1780 		goto out_fail;
1781 	prep_transhuge_page(new_page);
1782 
1783 	isolated = numamigrate_isolate_page(pgdat, page);
1784 	if (!isolated) {
1785 		put_page(new_page);
1786 		goto out_fail;
1787 	}
1788 	/*
1789 	 * We are not sure a pending tlb flush here is for a huge page
1790 	 * mapping or not. Hence use the tlb range variant
1791 	 */
1792 	if (mm_tlb_flush_pending(mm))
1793 		flush_tlb_range(vma, mmun_start, mmun_end);
1794 
1795 	/* Prepare a page as a migration target */
1796 	__SetPageLocked(new_page);
1797 	__SetPageSwapBacked(new_page);
1798 
1799 	/* anon mapping, we can simply copy page->mapping to the new page: */
1800 	new_page->mapping = page->mapping;
1801 	new_page->index = page->index;
1802 	migrate_page_copy(new_page, page);
1803 	WARN_ON(PageLRU(new_page));
1804 
1805 	/* Recheck the target PMD */
1806 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1807 	ptl = pmd_lock(mm, pmd);
1808 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1809 fail_putback:
1810 		spin_unlock(ptl);
1811 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1812 
1813 		/* Reverse changes made by migrate_page_copy() */
1814 		if (TestClearPageActive(new_page))
1815 			SetPageActive(page);
1816 		if (TestClearPageUnevictable(new_page))
1817 			SetPageUnevictable(page);
1818 
1819 		unlock_page(new_page);
1820 		put_page(new_page);		/* Free it */
1821 
1822 		/* Retake the callers reference and putback on LRU */
1823 		get_page(page);
1824 		putback_lru_page(page);
1825 		mod_zone_page_state(page_zone(page),
1826 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1827 
1828 		goto out_unlock;
1829 	}
1830 
1831 	orig_entry = *pmd;
1832 	entry = mk_pmd(new_page, vma->vm_page_prot);
1833 	entry = pmd_mkhuge(entry);
1834 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1835 
1836 	/*
1837 	 * Clear the old entry under pagetable lock and establish the new PTE.
1838 	 * Any parallel GUP will either observe the old page blocking on the
1839 	 * page lock, block on the page table lock or observe the new page.
1840 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1841 	 * guarantee the copy is visible before the pagetable update.
1842 	 */
1843 	flush_cache_range(vma, mmun_start, mmun_end);
1844 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1845 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1846 	set_pmd_at(mm, mmun_start, pmd, entry);
1847 	update_mmu_cache_pmd(vma, address, &entry);
1848 
1849 	if (page_count(page) != 2) {
1850 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1851 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1852 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1853 		update_mmu_cache_pmd(vma, address, &entry);
1854 		page_remove_rmap(new_page, true);
1855 		goto fail_putback;
1856 	}
1857 
1858 	mlock_migrate_page(new_page, page);
1859 	page_remove_rmap(page, true);
1860 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1861 
1862 	spin_unlock(ptl);
1863 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1864 
1865 	/* Take an "isolate" reference and put new page on the LRU. */
1866 	get_page(new_page);
1867 	putback_lru_page(new_page);
1868 
1869 	unlock_page(new_page);
1870 	unlock_page(page);
1871 	put_page(page);			/* Drop the rmap reference */
1872 	put_page(page);			/* Drop the LRU isolation reference */
1873 
1874 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1875 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1876 
1877 	mod_zone_page_state(page_zone(page),
1878 			NR_ISOLATED_ANON + page_lru,
1879 			-HPAGE_PMD_NR);
1880 	return isolated;
1881 
1882 out_fail:
1883 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1884 out_dropref:
1885 	ptl = pmd_lock(mm, pmd);
1886 	if (pmd_same(*pmd, entry)) {
1887 		entry = pmd_modify(entry, vma->vm_page_prot);
1888 		set_pmd_at(mm, mmun_start, pmd, entry);
1889 		update_mmu_cache_pmd(vma, address, &entry);
1890 	}
1891 	spin_unlock(ptl);
1892 
1893 out_unlock:
1894 	unlock_page(page);
1895 	put_page(page);
1896 	return 0;
1897 }
1898 #endif /* CONFIG_NUMA_BALANCING */
1899 
1900 #endif /* CONFIG_NUMA */
1901