1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 41 #include <asm/tlbflush.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/migrate.h> 45 46 #include "internal.h" 47 48 /* 49 * migrate_prep() needs to be called before we start compiling a list of pages 50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 51 * undesirable, use migrate_prep_local() 52 */ 53 int migrate_prep(void) 54 { 55 /* 56 * Clear the LRU lists so pages can be isolated. 57 * Note that pages may be moved off the LRU after we have 58 * drained them. Those pages will fail to migrate like other 59 * pages that may be busy. 60 */ 61 lru_add_drain_all(); 62 63 return 0; 64 } 65 66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 67 int migrate_prep_local(void) 68 { 69 lru_add_drain(); 70 71 return 0; 72 } 73 74 /* 75 * Put previously isolated pages back onto the appropriate lists 76 * from where they were once taken off for compaction/migration. 77 * 78 * This function shall be used whenever the isolated pageset has been 79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 80 * and isolate_huge_page(). 81 */ 82 void putback_movable_pages(struct list_head *l) 83 { 84 struct page *page; 85 struct page *page2; 86 87 list_for_each_entry_safe(page, page2, l, lru) { 88 if (unlikely(PageHuge(page))) { 89 putback_active_hugepage(page); 90 continue; 91 } 92 list_del(&page->lru); 93 dec_zone_page_state(page, NR_ISOLATED_ANON + 94 page_is_file_cache(page)); 95 if (unlikely(isolated_balloon_page(page))) 96 balloon_page_putback(page); 97 else 98 putback_lru_page(page); 99 } 100 } 101 102 /* 103 * Restore a potential migration pte to a working pte entry 104 */ 105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 106 unsigned long addr, void *old) 107 { 108 struct mm_struct *mm = vma->vm_mm; 109 swp_entry_t entry; 110 pmd_t *pmd; 111 pte_t *ptep, pte; 112 spinlock_t *ptl; 113 114 if (unlikely(PageHuge(new))) { 115 ptep = huge_pte_offset(mm, addr); 116 if (!ptep) 117 goto out; 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 119 } else { 120 pmd = mm_find_pmd(mm, addr); 121 if (!pmd) 122 goto out; 123 124 ptep = pte_offset_map(pmd, addr); 125 126 /* 127 * Peek to check is_swap_pte() before taking ptlock? No, we 128 * can race mremap's move_ptes(), which skips anon_vma lock. 129 */ 130 131 ptl = pte_lockptr(mm, pmd); 132 } 133 134 spin_lock(ptl); 135 pte = *ptep; 136 if (!is_swap_pte(pte)) 137 goto unlock; 138 139 entry = pte_to_swp_entry(pte); 140 141 if (!is_migration_entry(entry) || 142 migration_entry_to_page(entry) != old) 143 goto unlock; 144 145 get_page(new); 146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 147 if (pte_swp_soft_dirty(*ptep)) 148 pte = pte_mksoft_dirty(pte); 149 150 /* Recheck VMA as permissions can change since migration started */ 151 if (is_write_migration_entry(entry)) 152 pte = maybe_mkwrite(pte, vma); 153 154 #ifdef CONFIG_HUGETLB_PAGE 155 if (PageHuge(new)) { 156 pte = pte_mkhuge(pte); 157 pte = arch_make_huge_pte(pte, vma, new, 0); 158 } 159 #endif 160 flush_dcache_page(new); 161 set_pte_at(mm, addr, ptep, pte); 162 163 if (PageHuge(new)) { 164 if (PageAnon(new)) 165 hugepage_add_anon_rmap(new, vma, addr); 166 else 167 page_dup_rmap(new); 168 } else if (PageAnon(new)) 169 page_add_anon_rmap(new, vma, addr); 170 else 171 page_add_file_rmap(new); 172 173 /* No need to invalidate - it was non-present before */ 174 update_mmu_cache(vma, addr, ptep); 175 unlock: 176 pte_unmap_unlock(ptep, ptl); 177 out: 178 return SWAP_AGAIN; 179 } 180 181 /* 182 * Congratulations to trinity for discovering this bug. 183 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to 184 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then 185 * replace the specified range by file ptes throughout (maybe populated after). 186 * If page migration finds a page within that range, while it's still located 187 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem: 188 * zap_pte() clears the temporary migration entry before mmap_sem is dropped. 189 * But if the migrating page is in a part of the vma outside the range to be 190 * remapped, then it will not be cleared, and remove_migration_ptes() needs to 191 * deal with it. Fortunately, this part of the vma is of course still linear, 192 * so we just need to use linear location on the nonlinear list. 193 */ 194 static int remove_linear_migration_ptes_from_nonlinear(struct page *page, 195 struct address_space *mapping, void *arg) 196 { 197 struct vm_area_struct *vma; 198 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */ 199 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 200 unsigned long addr; 201 202 list_for_each_entry(vma, 203 &mapping->i_mmap_nonlinear, shared.nonlinear) { 204 205 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 206 if (addr >= vma->vm_start && addr < vma->vm_end) 207 remove_migration_pte(page, vma, addr, arg); 208 } 209 return SWAP_AGAIN; 210 } 211 212 /* 213 * Get rid of all migration entries and replace them by 214 * references to the indicated page. 215 */ 216 static void remove_migration_ptes(struct page *old, struct page *new) 217 { 218 struct rmap_walk_control rwc = { 219 .rmap_one = remove_migration_pte, 220 .arg = old, 221 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear, 222 }; 223 224 rmap_walk(new, &rwc); 225 } 226 227 /* 228 * Something used the pte of a page under migration. We need to 229 * get to the page and wait until migration is finished. 230 * When we return from this function the fault will be retried. 231 */ 232 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 233 spinlock_t *ptl) 234 { 235 pte_t pte; 236 swp_entry_t entry; 237 struct page *page; 238 239 spin_lock(ptl); 240 pte = *ptep; 241 if (!is_swap_pte(pte)) 242 goto out; 243 244 entry = pte_to_swp_entry(pte); 245 if (!is_migration_entry(entry)) 246 goto out; 247 248 page = migration_entry_to_page(entry); 249 250 /* 251 * Once radix-tree replacement of page migration started, page_count 252 * *must* be zero. And, we don't want to call wait_on_page_locked() 253 * against a page without get_page(). 254 * So, we use get_page_unless_zero(), here. Even failed, page fault 255 * will occur again. 256 */ 257 if (!get_page_unless_zero(page)) 258 goto out; 259 pte_unmap_unlock(ptep, ptl); 260 wait_on_page_locked(page); 261 put_page(page); 262 return; 263 out: 264 pte_unmap_unlock(ptep, ptl); 265 } 266 267 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 268 unsigned long address) 269 { 270 spinlock_t *ptl = pte_lockptr(mm, pmd); 271 pte_t *ptep = pte_offset_map(pmd, address); 272 __migration_entry_wait(mm, ptep, ptl); 273 } 274 275 void migration_entry_wait_huge(struct vm_area_struct *vma, 276 struct mm_struct *mm, pte_t *pte) 277 { 278 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 279 __migration_entry_wait(mm, pte, ptl); 280 } 281 282 #ifdef CONFIG_BLOCK 283 /* Returns true if all buffers are successfully locked */ 284 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 285 enum migrate_mode mode) 286 { 287 struct buffer_head *bh = head; 288 289 /* Simple case, sync compaction */ 290 if (mode != MIGRATE_ASYNC) { 291 do { 292 get_bh(bh); 293 lock_buffer(bh); 294 bh = bh->b_this_page; 295 296 } while (bh != head); 297 298 return true; 299 } 300 301 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 302 do { 303 get_bh(bh); 304 if (!trylock_buffer(bh)) { 305 /* 306 * We failed to lock the buffer and cannot stall in 307 * async migration. Release the taken locks 308 */ 309 struct buffer_head *failed_bh = bh; 310 put_bh(failed_bh); 311 bh = head; 312 while (bh != failed_bh) { 313 unlock_buffer(bh); 314 put_bh(bh); 315 bh = bh->b_this_page; 316 } 317 return false; 318 } 319 320 bh = bh->b_this_page; 321 } while (bh != head); 322 return true; 323 } 324 #else 325 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 326 enum migrate_mode mode) 327 { 328 return true; 329 } 330 #endif /* CONFIG_BLOCK */ 331 332 /* 333 * Replace the page in the mapping. 334 * 335 * The number of remaining references must be: 336 * 1 for anonymous pages without a mapping 337 * 2 for pages with a mapping 338 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 339 */ 340 int migrate_page_move_mapping(struct address_space *mapping, 341 struct page *newpage, struct page *page, 342 struct buffer_head *head, enum migrate_mode mode, 343 int extra_count) 344 { 345 int expected_count = 1 + extra_count; 346 void **pslot; 347 348 if (!mapping) { 349 /* Anonymous page without mapping */ 350 if (page_count(page) != expected_count) 351 return -EAGAIN; 352 return MIGRATEPAGE_SUCCESS; 353 } 354 355 spin_lock_irq(&mapping->tree_lock); 356 357 pslot = radix_tree_lookup_slot(&mapping->page_tree, 358 page_index(page)); 359 360 expected_count += 1 + page_has_private(page); 361 if (page_count(page) != expected_count || 362 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 363 spin_unlock_irq(&mapping->tree_lock); 364 return -EAGAIN; 365 } 366 367 if (!page_freeze_refs(page, expected_count)) { 368 spin_unlock_irq(&mapping->tree_lock); 369 return -EAGAIN; 370 } 371 372 /* 373 * In the async migration case of moving a page with buffers, lock the 374 * buffers using trylock before the mapping is moved. If the mapping 375 * was moved, we later failed to lock the buffers and could not move 376 * the mapping back due to an elevated page count, we would have to 377 * block waiting on other references to be dropped. 378 */ 379 if (mode == MIGRATE_ASYNC && head && 380 !buffer_migrate_lock_buffers(head, mode)) { 381 page_unfreeze_refs(page, expected_count); 382 spin_unlock_irq(&mapping->tree_lock); 383 return -EAGAIN; 384 } 385 386 /* 387 * Now we know that no one else is looking at the page. 388 */ 389 get_page(newpage); /* add cache reference */ 390 if (PageSwapCache(page)) { 391 SetPageSwapCache(newpage); 392 set_page_private(newpage, page_private(page)); 393 } 394 395 radix_tree_replace_slot(pslot, newpage); 396 397 /* 398 * Drop cache reference from old page by unfreezing 399 * to one less reference. 400 * We know this isn't the last reference. 401 */ 402 page_unfreeze_refs(page, expected_count - 1); 403 404 /* 405 * If moved to a different zone then also account 406 * the page for that zone. Other VM counters will be 407 * taken care of when we establish references to the 408 * new page and drop references to the old page. 409 * 410 * Note that anonymous pages are accounted for 411 * via NR_FILE_PAGES and NR_ANON_PAGES if they 412 * are mapped to swap space. 413 */ 414 __dec_zone_page_state(page, NR_FILE_PAGES); 415 __inc_zone_page_state(newpage, NR_FILE_PAGES); 416 if (!PageSwapCache(page) && PageSwapBacked(page)) { 417 __dec_zone_page_state(page, NR_SHMEM); 418 __inc_zone_page_state(newpage, NR_SHMEM); 419 } 420 spin_unlock_irq(&mapping->tree_lock); 421 422 return MIGRATEPAGE_SUCCESS; 423 } 424 425 /* 426 * The expected number of remaining references is the same as that 427 * of migrate_page_move_mapping(). 428 */ 429 int migrate_huge_page_move_mapping(struct address_space *mapping, 430 struct page *newpage, struct page *page) 431 { 432 int expected_count; 433 void **pslot; 434 435 if (!mapping) { 436 if (page_count(page) != 1) 437 return -EAGAIN; 438 return MIGRATEPAGE_SUCCESS; 439 } 440 441 spin_lock_irq(&mapping->tree_lock); 442 443 pslot = radix_tree_lookup_slot(&mapping->page_tree, 444 page_index(page)); 445 446 expected_count = 2 + page_has_private(page); 447 if (page_count(page) != expected_count || 448 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 449 spin_unlock_irq(&mapping->tree_lock); 450 return -EAGAIN; 451 } 452 453 if (!page_freeze_refs(page, expected_count)) { 454 spin_unlock_irq(&mapping->tree_lock); 455 return -EAGAIN; 456 } 457 458 get_page(newpage); 459 460 radix_tree_replace_slot(pslot, newpage); 461 462 page_unfreeze_refs(page, expected_count - 1); 463 464 spin_unlock_irq(&mapping->tree_lock); 465 return MIGRATEPAGE_SUCCESS; 466 } 467 468 /* 469 * Gigantic pages are so large that we do not guarantee that page++ pointer 470 * arithmetic will work across the entire page. We need something more 471 * specialized. 472 */ 473 static void __copy_gigantic_page(struct page *dst, struct page *src, 474 int nr_pages) 475 { 476 int i; 477 struct page *dst_base = dst; 478 struct page *src_base = src; 479 480 for (i = 0; i < nr_pages; ) { 481 cond_resched(); 482 copy_highpage(dst, src); 483 484 i++; 485 dst = mem_map_next(dst, dst_base, i); 486 src = mem_map_next(src, src_base, i); 487 } 488 } 489 490 static void copy_huge_page(struct page *dst, struct page *src) 491 { 492 int i; 493 int nr_pages; 494 495 if (PageHuge(src)) { 496 /* hugetlbfs page */ 497 struct hstate *h = page_hstate(src); 498 nr_pages = pages_per_huge_page(h); 499 500 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 501 __copy_gigantic_page(dst, src, nr_pages); 502 return; 503 } 504 } else { 505 /* thp page */ 506 BUG_ON(!PageTransHuge(src)); 507 nr_pages = hpage_nr_pages(src); 508 } 509 510 for (i = 0; i < nr_pages; i++) { 511 cond_resched(); 512 copy_highpage(dst + i, src + i); 513 } 514 } 515 516 /* 517 * Copy the page to its new location 518 */ 519 void migrate_page_copy(struct page *newpage, struct page *page) 520 { 521 int cpupid; 522 523 if (PageHuge(page) || PageTransHuge(page)) 524 copy_huge_page(newpage, page); 525 else 526 copy_highpage(newpage, page); 527 528 if (PageError(page)) 529 SetPageError(newpage); 530 if (PageReferenced(page)) 531 SetPageReferenced(newpage); 532 if (PageUptodate(page)) 533 SetPageUptodate(newpage); 534 if (TestClearPageActive(page)) { 535 VM_BUG_ON_PAGE(PageUnevictable(page), page); 536 SetPageActive(newpage); 537 } else if (TestClearPageUnevictable(page)) 538 SetPageUnevictable(newpage); 539 if (PageChecked(page)) 540 SetPageChecked(newpage); 541 if (PageMappedToDisk(page)) 542 SetPageMappedToDisk(newpage); 543 544 if (PageDirty(page)) { 545 clear_page_dirty_for_io(page); 546 /* 547 * Want to mark the page and the radix tree as dirty, and 548 * redo the accounting that clear_page_dirty_for_io undid, 549 * but we can't use set_page_dirty because that function 550 * is actually a signal that all of the page has become dirty. 551 * Whereas only part of our page may be dirty. 552 */ 553 if (PageSwapBacked(page)) 554 SetPageDirty(newpage); 555 else 556 __set_page_dirty_nobuffers(newpage); 557 } 558 559 /* 560 * Copy NUMA information to the new page, to prevent over-eager 561 * future migrations of this same page. 562 */ 563 cpupid = page_cpupid_xchg_last(page, -1); 564 page_cpupid_xchg_last(newpage, cpupid); 565 566 mlock_migrate_page(newpage, page); 567 ksm_migrate_page(newpage, page); 568 /* 569 * Please do not reorder this without considering how mm/ksm.c's 570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 571 */ 572 ClearPageSwapCache(page); 573 ClearPagePrivate(page); 574 set_page_private(page, 0); 575 576 /* 577 * If any waiters have accumulated on the new page then 578 * wake them up. 579 */ 580 if (PageWriteback(newpage)) 581 end_page_writeback(newpage); 582 } 583 584 /************************************************************ 585 * Migration functions 586 ***********************************************************/ 587 588 /* 589 * Common logic to directly migrate a single page suitable for 590 * pages that do not use PagePrivate/PagePrivate2. 591 * 592 * Pages are locked upon entry and exit. 593 */ 594 int migrate_page(struct address_space *mapping, 595 struct page *newpage, struct page *page, 596 enum migrate_mode mode) 597 { 598 int rc; 599 600 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 601 602 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 603 604 if (rc != MIGRATEPAGE_SUCCESS) 605 return rc; 606 607 migrate_page_copy(newpage, page); 608 return MIGRATEPAGE_SUCCESS; 609 } 610 EXPORT_SYMBOL(migrate_page); 611 612 #ifdef CONFIG_BLOCK 613 /* 614 * Migration function for pages with buffers. This function can only be used 615 * if the underlying filesystem guarantees that no other references to "page" 616 * exist. 617 */ 618 int buffer_migrate_page(struct address_space *mapping, 619 struct page *newpage, struct page *page, enum migrate_mode mode) 620 { 621 struct buffer_head *bh, *head; 622 int rc; 623 624 if (!page_has_buffers(page)) 625 return migrate_page(mapping, newpage, page, mode); 626 627 head = page_buffers(page); 628 629 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 630 631 if (rc != MIGRATEPAGE_SUCCESS) 632 return rc; 633 634 /* 635 * In the async case, migrate_page_move_mapping locked the buffers 636 * with an IRQ-safe spinlock held. In the sync case, the buffers 637 * need to be locked now 638 */ 639 if (mode != MIGRATE_ASYNC) 640 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 641 642 ClearPagePrivate(page); 643 set_page_private(newpage, page_private(page)); 644 set_page_private(page, 0); 645 put_page(page); 646 get_page(newpage); 647 648 bh = head; 649 do { 650 set_bh_page(bh, newpage, bh_offset(bh)); 651 bh = bh->b_this_page; 652 653 } while (bh != head); 654 655 SetPagePrivate(newpage); 656 657 migrate_page_copy(newpage, page); 658 659 bh = head; 660 do { 661 unlock_buffer(bh); 662 put_bh(bh); 663 bh = bh->b_this_page; 664 665 } while (bh != head); 666 667 return MIGRATEPAGE_SUCCESS; 668 } 669 EXPORT_SYMBOL(buffer_migrate_page); 670 #endif 671 672 /* 673 * Writeback a page to clean the dirty state 674 */ 675 static int writeout(struct address_space *mapping, struct page *page) 676 { 677 struct writeback_control wbc = { 678 .sync_mode = WB_SYNC_NONE, 679 .nr_to_write = 1, 680 .range_start = 0, 681 .range_end = LLONG_MAX, 682 .for_reclaim = 1 683 }; 684 int rc; 685 686 if (!mapping->a_ops->writepage) 687 /* No write method for the address space */ 688 return -EINVAL; 689 690 if (!clear_page_dirty_for_io(page)) 691 /* Someone else already triggered a write */ 692 return -EAGAIN; 693 694 /* 695 * A dirty page may imply that the underlying filesystem has 696 * the page on some queue. So the page must be clean for 697 * migration. Writeout may mean we loose the lock and the 698 * page state is no longer what we checked for earlier. 699 * At this point we know that the migration attempt cannot 700 * be successful. 701 */ 702 remove_migration_ptes(page, page); 703 704 rc = mapping->a_ops->writepage(page, &wbc); 705 706 if (rc != AOP_WRITEPAGE_ACTIVATE) 707 /* unlocked. Relock */ 708 lock_page(page); 709 710 return (rc < 0) ? -EIO : -EAGAIN; 711 } 712 713 /* 714 * Default handling if a filesystem does not provide a migration function. 715 */ 716 static int fallback_migrate_page(struct address_space *mapping, 717 struct page *newpage, struct page *page, enum migrate_mode mode) 718 { 719 if (PageDirty(page)) { 720 /* Only writeback pages in full synchronous migration */ 721 if (mode != MIGRATE_SYNC) 722 return -EBUSY; 723 return writeout(mapping, page); 724 } 725 726 /* 727 * Buffers may be managed in a filesystem specific way. 728 * We must have no buffers or drop them. 729 */ 730 if (page_has_private(page) && 731 !try_to_release_page(page, GFP_KERNEL)) 732 return -EAGAIN; 733 734 return migrate_page(mapping, newpage, page, mode); 735 } 736 737 /* 738 * Move a page to a newly allocated page 739 * The page is locked and all ptes have been successfully removed. 740 * 741 * The new page will have replaced the old page if this function 742 * is successful. 743 * 744 * Return value: 745 * < 0 - error code 746 * MIGRATEPAGE_SUCCESS - success 747 */ 748 static int move_to_new_page(struct page *newpage, struct page *page, 749 int page_was_mapped, enum migrate_mode mode) 750 { 751 struct address_space *mapping; 752 int rc; 753 754 /* 755 * Block others from accessing the page when we get around to 756 * establishing additional references. We are the only one 757 * holding a reference to the new page at this point. 758 */ 759 if (!trylock_page(newpage)) 760 BUG(); 761 762 /* Prepare mapping for the new page.*/ 763 newpage->index = page->index; 764 newpage->mapping = page->mapping; 765 if (PageSwapBacked(page)) 766 SetPageSwapBacked(newpage); 767 768 mapping = page_mapping(page); 769 if (!mapping) 770 rc = migrate_page(mapping, newpage, page, mode); 771 else if (mapping->a_ops->migratepage) 772 /* 773 * Most pages have a mapping and most filesystems provide a 774 * migratepage callback. Anonymous pages are part of swap 775 * space which also has its own migratepage callback. This 776 * is the most common path for page migration. 777 */ 778 rc = mapping->a_ops->migratepage(mapping, 779 newpage, page, mode); 780 else 781 rc = fallback_migrate_page(mapping, newpage, page, mode); 782 783 if (rc != MIGRATEPAGE_SUCCESS) { 784 newpage->mapping = NULL; 785 } else { 786 mem_cgroup_migrate(page, newpage, false); 787 if (page_was_mapped) 788 remove_migration_ptes(page, newpage); 789 page->mapping = NULL; 790 } 791 792 unlock_page(newpage); 793 794 return rc; 795 } 796 797 static int __unmap_and_move(struct page *page, struct page *newpage, 798 int force, enum migrate_mode mode) 799 { 800 int rc = -EAGAIN; 801 int page_was_mapped = 0; 802 struct anon_vma *anon_vma = NULL; 803 804 if (!trylock_page(page)) { 805 if (!force || mode == MIGRATE_ASYNC) 806 goto out; 807 808 /* 809 * It's not safe for direct compaction to call lock_page. 810 * For example, during page readahead pages are added locked 811 * to the LRU. Later, when the IO completes the pages are 812 * marked uptodate and unlocked. However, the queueing 813 * could be merging multiple pages for one bio (e.g. 814 * mpage_readpages). If an allocation happens for the 815 * second or third page, the process can end up locking 816 * the same page twice and deadlocking. Rather than 817 * trying to be clever about what pages can be locked, 818 * avoid the use of lock_page for direct compaction 819 * altogether. 820 */ 821 if (current->flags & PF_MEMALLOC) 822 goto out; 823 824 lock_page(page); 825 } 826 827 if (PageWriteback(page)) { 828 /* 829 * Only in the case of a full synchronous migration is it 830 * necessary to wait for PageWriteback. In the async case, 831 * the retry loop is too short and in the sync-light case, 832 * the overhead of stalling is too much 833 */ 834 if (mode != MIGRATE_SYNC) { 835 rc = -EBUSY; 836 goto out_unlock; 837 } 838 if (!force) 839 goto out_unlock; 840 wait_on_page_writeback(page); 841 } 842 /* 843 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 844 * we cannot notice that anon_vma is freed while we migrates a page. 845 * This get_anon_vma() delays freeing anon_vma pointer until the end 846 * of migration. File cache pages are no problem because of page_lock() 847 * File Caches may use write_page() or lock_page() in migration, then, 848 * just care Anon page here. 849 */ 850 if (PageAnon(page) && !PageKsm(page)) { 851 /* 852 * Only page_lock_anon_vma_read() understands the subtleties of 853 * getting a hold on an anon_vma from outside one of its mms. 854 */ 855 anon_vma = page_get_anon_vma(page); 856 if (anon_vma) { 857 /* 858 * Anon page 859 */ 860 } else if (PageSwapCache(page)) { 861 /* 862 * We cannot be sure that the anon_vma of an unmapped 863 * swapcache page is safe to use because we don't 864 * know in advance if the VMA that this page belonged 865 * to still exists. If the VMA and others sharing the 866 * data have been freed, then the anon_vma could 867 * already be invalid. 868 * 869 * To avoid this possibility, swapcache pages get 870 * migrated but are not remapped when migration 871 * completes 872 */ 873 } else { 874 goto out_unlock; 875 } 876 } 877 878 if (unlikely(isolated_balloon_page(page))) { 879 /* 880 * A ballooned page does not need any special attention from 881 * physical to virtual reverse mapping procedures. 882 * Skip any attempt to unmap PTEs or to remap swap cache, 883 * in order to avoid burning cycles at rmap level, and perform 884 * the page migration right away (proteced by page lock). 885 */ 886 rc = balloon_page_migrate(newpage, page, mode); 887 goto out_unlock; 888 } 889 890 /* 891 * Corner case handling: 892 * 1. When a new swap-cache page is read into, it is added to the LRU 893 * and treated as swapcache but it has no rmap yet. 894 * Calling try_to_unmap() against a page->mapping==NULL page will 895 * trigger a BUG. So handle it here. 896 * 2. An orphaned page (see truncate_complete_page) might have 897 * fs-private metadata. The page can be picked up due to memory 898 * offlining. Everywhere else except page reclaim, the page is 899 * invisible to the vm, so the page can not be migrated. So try to 900 * free the metadata, so the page can be freed. 901 */ 902 if (!page->mapping) { 903 VM_BUG_ON_PAGE(PageAnon(page), page); 904 if (page_has_private(page)) { 905 try_to_free_buffers(page); 906 goto out_unlock; 907 } 908 goto skip_unmap; 909 } 910 911 /* Establish migration ptes or remove ptes */ 912 if (page_mapped(page)) { 913 try_to_unmap(page, 914 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 915 page_was_mapped = 1; 916 } 917 918 skip_unmap: 919 if (!page_mapped(page)) 920 rc = move_to_new_page(newpage, page, page_was_mapped, mode); 921 922 if (rc && page_was_mapped) 923 remove_migration_ptes(page, page); 924 925 /* Drop an anon_vma reference if we took one */ 926 if (anon_vma) 927 put_anon_vma(anon_vma); 928 929 out_unlock: 930 unlock_page(page); 931 out: 932 return rc; 933 } 934 935 /* 936 * Obtain the lock on page, remove all ptes and migrate the page 937 * to the newly allocated page in newpage. 938 */ 939 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page, 940 unsigned long private, struct page *page, int force, 941 enum migrate_mode mode) 942 { 943 int rc = 0; 944 int *result = NULL; 945 struct page *newpage = get_new_page(page, private, &result); 946 947 if (!newpage) 948 return -ENOMEM; 949 950 if (page_count(page) == 1) { 951 /* page was freed from under us. So we are done. */ 952 goto out; 953 } 954 955 if (unlikely(PageTransHuge(page))) 956 if (unlikely(split_huge_page(page))) 957 goto out; 958 959 rc = __unmap_and_move(page, newpage, force, mode); 960 961 out: 962 if (rc != -EAGAIN) { 963 /* 964 * A page that has been migrated has all references 965 * removed and will be freed. A page that has not been 966 * migrated will have kepts its references and be 967 * restored. 968 */ 969 list_del(&page->lru); 970 dec_zone_page_state(page, NR_ISOLATED_ANON + 971 page_is_file_cache(page)); 972 putback_lru_page(page); 973 } 974 975 /* 976 * If migration was not successful and there's a freeing callback, use 977 * it. Otherwise, putback_lru_page() will drop the reference grabbed 978 * during isolation. 979 */ 980 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 981 ClearPageSwapBacked(newpage); 982 put_new_page(newpage, private); 983 } else if (unlikely(__is_movable_balloon_page(newpage))) { 984 /* drop our reference, page already in the balloon */ 985 put_page(newpage); 986 } else 987 putback_lru_page(newpage); 988 989 if (result) { 990 if (rc) 991 *result = rc; 992 else 993 *result = page_to_nid(newpage); 994 } 995 return rc; 996 } 997 998 /* 999 * Counterpart of unmap_and_move_page() for hugepage migration. 1000 * 1001 * This function doesn't wait the completion of hugepage I/O 1002 * because there is no race between I/O and migration for hugepage. 1003 * Note that currently hugepage I/O occurs only in direct I/O 1004 * where no lock is held and PG_writeback is irrelevant, 1005 * and writeback status of all subpages are counted in the reference 1006 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1007 * under direct I/O, the reference of the head page is 512 and a bit more.) 1008 * This means that when we try to migrate hugepage whose subpages are 1009 * doing direct I/O, some references remain after try_to_unmap() and 1010 * hugepage migration fails without data corruption. 1011 * 1012 * There is also no race when direct I/O is issued on the page under migration, 1013 * because then pte is replaced with migration swap entry and direct I/O code 1014 * will wait in the page fault for migration to complete. 1015 */ 1016 static int unmap_and_move_huge_page(new_page_t get_new_page, 1017 free_page_t put_new_page, unsigned long private, 1018 struct page *hpage, int force, 1019 enum migrate_mode mode) 1020 { 1021 int rc = 0; 1022 int *result = NULL; 1023 int page_was_mapped = 0; 1024 struct page *new_hpage; 1025 struct anon_vma *anon_vma = NULL; 1026 1027 /* 1028 * Movability of hugepages depends on architectures and hugepage size. 1029 * This check is necessary because some callers of hugepage migration 1030 * like soft offline and memory hotremove don't walk through page 1031 * tables or check whether the hugepage is pmd-based or not before 1032 * kicking migration. 1033 */ 1034 if (!hugepage_migration_supported(page_hstate(hpage))) { 1035 putback_active_hugepage(hpage); 1036 return -ENOSYS; 1037 } 1038 1039 new_hpage = get_new_page(hpage, private, &result); 1040 if (!new_hpage) 1041 return -ENOMEM; 1042 1043 rc = -EAGAIN; 1044 1045 if (!trylock_page(hpage)) { 1046 if (!force || mode != MIGRATE_SYNC) 1047 goto out; 1048 lock_page(hpage); 1049 } 1050 1051 if (PageAnon(hpage)) 1052 anon_vma = page_get_anon_vma(hpage); 1053 1054 if (page_mapped(hpage)) { 1055 try_to_unmap(hpage, 1056 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1057 page_was_mapped = 1; 1058 } 1059 1060 if (!page_mapped(hpage)) 1061 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode); 1062 1063 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped) 1064 remove_migration_ptes(hpage, hpage); 1065 1066 if (anon_vma) 1067 put_anon_vma(anon_vma); 1068 1069 if (rc == MIGRATEPAGE_SUCCESS) 1070 hugetlb_cgroup_migrate(hpage, new_hpage); 1071 1072 unlock_page(hpage); 1073 out: 1074 if (rc != -EAGAIN) 1075 putback_active_hugepage(hpage); 1076 1077 /* 1078 * If migration was not successful and there's a freeing callback, use 1079 * it. Otherwise, put_page() will drop the reference grabbed during 1080 * isolation. 1081 */ 1082 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1083 put_new_page(new_hpage, private); 1084 else 1085 put_page(new_hpage); 1086 1087 if (result) { 1088 if (rc) 1089 *result = rc; 1090 else 1091 *result = page_to_nid(new_hpage); 1092 } 1093 return rc; 1094 } 1095 1096 /* 1097 * migrate_pages - migrate the pages specified in a list, to the free pages 1098 * supplied as the target for the page migration 1099 * 1100 * @from: The list of pages to be migrated. 1101 * @get_new_page: The function used to allocate free pages to be used 1102 * as the target of the page migration. 1103 * @put_new_page: The function used to free target pages if migration 1104 * fails, or NULL if no special handling is necessary. 1105 * @private: Private data to be passed on to get_new_page() 1106 * @mode: The migration mode that specifies the constraints for 1107 * page migration, if any. 1108 * @reason: The reason for page migration. 1109 * 1110 * The function returns after 10 attempts or if no pages are movable any more 1111 * because the list has become empty or no retryable pages exist any more. 1112 * The caller should call putback_lru_pages() to return pages to the LRU 1113 * or free list only if ret != 0. 1114 * 1115 * Returns the number of pages that were not migrated, or an error code. 1116 */ 1117 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1118 free_page_t put_new_page, unsigned long private, 1119 enum migrate_mode mode, int reason) 1120 { 1121 int retry = 1; 1122 int nr_failed = 0; 1123 int nr_succeeded = 0; 1124 int pass = 0; 1125 struct page *page; 1126 struct page *page2; 1127 int swapwrite = current->flags & PF_SWAPWRITE; 1128 int rc; 1129 1130 if (!swapwrite) 1131 current->flags |= PF_SWAPWRITE; 1132 1133 for(pass = 0; pass < 10 && retry; pass++) { 1134 retry = 0; 1135 1136 list_for_each_entry_safe(page, page2, from, lru) { 1137 cond_resched(); 1138 1139 if (PageHuge(page)) 1140 rc = unmap_and_move_huge_page(get_new_page, 1141 put_new_page, private, page, 1142 pass > 2, mode); 1143 else 1144 rc = unmap_and_move(get_new_page, put_new_page, 1145 private, page, pass > 2, mode); 1146 1147 switch(rc) { 1148 case -ENOMEM: 1149 goto out; 1150 case -EAGAIN: 1151 retry++; 1152 break; 1153 case MIGRATEPAGE_SUCCESS: 1154 nr_succeeded++; 1155 break; 1156 default: 1157 /* 1158 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1159 * unlike -EAGAIN case, the failed page is 1160 * removed from migration page list and not 1161 * retried in the next outer loop. 1162 */ 1163 nr_failed++; 1164 break; 1165 } 1166 } 1167 } 1168 rc = nr_failed + retry; 1169 out: 1170 if (nr_succeeded) 1171 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1172 if (nr_failed) 1173 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1174 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1175 1176 if (!swapwrite) 1177 current->flags &= ~PF_SWAPWRITE; 1178 1179 return rc; 1180 } 1181 1182 #ifdef CONFIG_NUMA 1183 /* 1184 * Move a list of individual pages 1185 */ 1186 struct page_to_node { 1187 unsigned long addr; 1188 struct page *page; 1189 int node; 1190 int status; 1191 }; 1192 1193 static struct page *new_page_node(struct page *p, unsigned long private, 1194 int **result) 1195 { 1196 struct page_to_node *pm = (struct page_to_node *)private; 1197 1198 while (pm->node != MAX_NUMNODES && pm->page != p) 1199 pm++; 1200 1201 if (pm->node == MAX_NUMNODES) 1202 return NULL; 1203 1204 *result = &pm->status; 1205 1206 if (PageHuge(p)) 1207 return alloc_huge_page_node(page_hstate(compound_head(p)), 1208 pm->node); 1209 else 1210 return alloc_pages_exact_node(pm->node, 1211 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1212 } 1213 1214 /* 1215 * Move a set of pages as indicated in the pm array. The addr 1216 * field must be set to the virtual address of the page to be moved 1217 * and the node number must contain a valid target node. 1218 * The pm array ends with node = MAX_NUMNODES. 1219 */ 1220 static int do_move_page_to_node_array(struct mm_struct *mm, 1221 struct page_to_node *pm, 1222 int migrate_all) 1223 { 1224 int err; 1225 struct page_to_node *pp; 1226 LIST_HEAD(pagelist); 1227 1228 down_read(&mm->mmap_sem); 1229 1230 /* 1231 * Build a list of pages to migrate 1232 */ 1233 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1234 struct vm_area_struct *vma; 1235 struct page *page; 1236 1237 err = -EFAULT; 1238 vma = find_vma(mm, pp->addr); 1239 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1240 goto set_status; 1241 1242 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1243 1244 err = PTR_ERR(page); 1245 if (IS_ERR(page)) 1246 goto set_status; 1247 1248 err = -ENOENT; 1249 if (!page) 1250 goto set_status; 1251 1252 /* Use PageReserved to check for zero page */ 1253 if (PageReserved(page)) 1254 goto put_and_set; 1255 1256 pp->page = page; 1257 err = page_to_nid(page); 1258 1259 if (err == pp->node) 1260 /* 1261 * Node already in the right place 1262 */ 1263 goto put_and_set; 1264 1265 err = -EACCES; 1266 if (page_mapcount(page) > 1 && 1267 !migrate_all) 1268 goto put_and_set; 1269 1270 if (PageHuge(page)) { 1271 isolate_huge_page(page, &pagelist); 1272 goto put_and_set; 1273 } 1274 1275 err = isolate_lru_page(page); 1276 if (!err) { 1277 list_add_tail(&page->lru, &pagelist); 1278 inc_zone_page_state(page, NR_ISOLATED_ANON + 1279 page_is_file_cache(page)); 1280 } 1281 put_and_set: 1282 /* 1283 * Either remove the duplicate refcount from 1284 * isolate_lru_page() or drop the page ref if it was 1285 * not isolated. 1286 */ 1287 put_page(page); 1288 set_status: 1289 pp->status = err; 1290 } 1291 1292 err = 0; 1293 if (!list_empty(&pagelist)) { 1294 err = migrate_pages(&pagelist, new_page_node, NULL, 1295 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1296 if (err) 1297 putback_movable_pages(&pagelist); 1298 } 1299 1300 up_read(&mm->mmap_sem); 1301 return err; 1302 } 1303 1304 /* 1305 * Migrate an array of page address onto an array of nodes and fill 1306 * the corresponding array of status. 1307 */ 1308 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1309 unsigned long nr_pages, 1310 const void __user * __user *pages, 1311 const int __user *nodes, 1312 int __user *status, int flags) 1313 { 1314 struct page_to_node *pm; 1315 unsigned long chunk_nr_pages; 1316 unsigned long chunk_start; 1317 int err; 1318 1319 err = -ENOMEM; 1320 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1321 if (!pm) 1322 goto out; 1323 1324 migrate_prep(); 1325 1326 /* 1327 * Store a chunk of page_to_node array in a page, 1328 * but keep the last one as a marker 1329 */ 1330 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1331 1332 for (chunk_start = 0; 1333 chunk_start < nr_pages; 1334 chunk_start += chunk_nr_pages) { 1335 int j; 1336 1337 if (chunk_start + chunk_nr_pages > nr_pages) 1338 chunk_nr_pages = nr_pages - chunk_start; 1339 1340 /* fill the chunk pm with addrs and nodes from user-space */ 1341 for (j = 0; j < chunk_nr_pages; j++) { 1342 const void __user *p; 1343 int node; 1344 1345 err = -EFAULT; 1346 if (get_user(p, pages + j + chunk_start)) 1347 goto out_pm; 1348 pm[j].addr = (unsigned long) p; 1349 1350 if (get_user(node, nodes + j + chunk_start)) 1351 goto out_pm; 1352 1353 err = -ENODEV; 1354 if (node < 0 || node >= MAX_NUMNODES) 1355 goto out_pm; 1356 1357 if (!node_state(node, N_MEMORY)) 1358 goto out_pm; 1359 1360 err = -EACCES; 1361 if (!node_isset(node, task_nodes)) 1362 goto out_pm; 1363 1364 pm[j].node = node; 1365 } 1366 1367 /* End marker for this chunk */ 1368 pm[chunk_nr_pages].node = MAX_NUMNODES; 1369 1370 /* Migrate this chunk */ 1371 err = do_move_page_to_node_array(mm, pm, 1372 flags & MPOL_MF_MOVE_ALL); 1373 if (err < 0) 1374 goto out_pm; 1375 1376 /* Return status information */ 1377 for (j = 0; j < chunk_nr_pages; j++) 1378 if (put_user(pm[j].status, status + j + chunk_start)) { 1379 err = -EFAULT; 1380 goto out_pm; 1381 } 1382 } 1383 err = 0; 1384 1385 out_pm: 1386 free_page((unsigned long)pm); 1387 out: 1388 return err; 1389 } 1390 1391 /* 1392 * Determine the nodes of an array of pages and store it in an array of status. 1393 */ 1394 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1395 const void __user **pages, int *status) 1396 { 1397 unsigned long i; 1398 1399 down_read(&mm->mmap_sem); 1400 1401 for (i = 0; i < nr_pages; i++) { 1402 unsigned long addr = (unsigned long)(*pages); 1403 struct vm_area_struct *vma; 1404 struct page *page; 1405 int err = -EFAULT; 1406 1407 vma = find_vma(mm, addr); 1408 if (!vma || addr < vma->vm_start) 1409 goto set_status; 1410 1411 page = follow_page(vma, addr, 0); 1412 1413 err = PTR_ERR(page); 1414 if (IS_ERR(page)) 1415 goto set_status; 1416 1417 err = -ENOENT; 1418 /* Use PageReserved to check for zero page */ 1419 if (!page || PageReserved(page)) 1420 goto set_status; 1421 1422 err = page_to_nid(page); 1423 set_status: 1424 *status = err; 1425 1426 pages++; 1427 status++; 1428 } 1429 1430 up_read(&mm->mmap_sem); 1431 } 1432 1433 /* 1434 * Determine the nodes of a user array of pages and store it in 1435 * a user array of status. 1436 */ 1437 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1438 const void __user * __user *pages, 1439 int __user *status) 1440 { 1441 #define DO_PAGES_STAT_CHUNK_NR 16 1442 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1443 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1444 1445 while (nr_pages) { 1446 unsigned long chunk_nr; 1447 1448 chunk_nr = nr_pages; 1449 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1450 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1451 1452 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1453 break; 1454 1455 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1456 1457 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1458 break; 1459 1460 pages += chunk_nr; 1461 status += chunk_nr; 1462 nr_pages -= chunk_nr; 1463 } 1464 return nr_pages ? -EFAULT : 0; 1465 } 1466 1467 /* 1468 * Move a list of pages in the address space of the currently executing 1469 * process. 1470 */ 1471 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1472 const void __user * __user *, pages, 1473 const int __user *, nodes, 1474 int __user *, status, int, flags) 1475 { 1476 const struct cred *cred = current_cred(), *tcred; 1477 struct task_struct *task; 1478 struct mm_struct *mm; 1479 int err; 1480 nodemask_t task_nodes; 1481 1482 /* Check flags */ 1483 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1484 return -EINVAL; 1485 1486 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1487 return -EPERM; 1488 1489 /* Find the mm_struct */ 1490 rcu_read_lock(); 1491 task = pid ? find_task_by_vpid(pid) : current; 1492 if (!task) { 1493 rcu_read_unlock(); 1494 return -ESRCH; 1495 } 1496 get_task_struct(task); 1497 1498 /* 1499 * Check if this process has the right to modify the specified 1500 * process. The right exists if the process has administrative 1501 * capabilities, superuser privileges or the same 1502 * userid as the target process. 1503 */ 1504 tcred = __task_cred(task); 1505 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1506 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1507 !capable(CAP_SYS_NICE)) { 1508 rcu_read_unlock(); 1509 err = -EPERM; 1510 goto out; 1511 } 1512 rcu_read_unlock(); 1513 1514 err = security_task_movememory(task); 1515 if (err) 1516 goto out; 1517 1518 task_nodes = cpuset_mems_allowed(task); 1519 mm = get_task_mm(task); 1520 put_task_struct(task); 1521 1522 if (!mm) 1523 return -EINVAL; 1524 1525 if (nodes) 1526 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1527 nodes, status, flags); 1528 else 1529 err = do_pages_stat(mm, nr_pages, pages, status); 1530 1531 mmput(mm); 1532 return err; 1533 1534 out: 1535 put_task_struct(task); 1536 return err; 1537 } 1538 1539 #ifdef CONFIG_NUMA_BALANCING 1540 /* 1541 * Returns true if this is a safe migration target node for misplaced NUMA 1542 * pages. Currently it only checks the watermarks which crude 1543 */ 1544 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1545 unsigned long nr_migrate_pages) 1546 { 1547 int z; 1548 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1549 struct zone *zone = pgdat->node_zones + z; 1550 1551 if (!populated_zone(zone)) 1552 continue; 1553 1554 if (!zone_reclaimable(zone)) 1555 continue; 1556 1557 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1558 if (!zone_watermark_ok(zone, 0, 1559 high_wmark_pages(zone) + 1560 nr_migrate_pages, 1561 0, 0)) 1562 continue; 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 static struct page *alloc_misplaced_dst_page(struct page *page, 1569 unsigned long data, 1570 int **result) 1571 { 1572 int nid = (int) data; 1573 struct page *newpage; 1574 1575 newpage = alloc_pages_exact_node(nid, 1576 (GFP_HIGHUSER_MOVABLE | 1577 __GFP_THISNODE | __GFP_NOMEMALLOC | 1578 __GFP_NORETRY | __GFP_NOWARN) & 1579 ~GFP_IOFS, 0); 1580 1581 return newpage; 1582 } 1583 1584 /* 1585 * page migration rate limiting control. 1586 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1587 * window of time. Default here says do not migrate more than 1280M per second. 1588 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However 1589 * as it is faults that reset the window, pte updates will happen unconditionally 1590 * if there has not been a fault since @pteupdate_interval_millisecs after the 1591 * throttle window closed. 1592 */ 1593 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1594 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; 1595 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1596 1597 /* Returns true if NUMA migration is currently rate limited */ 1598 bool migrate_ratelimited(int node) 1599 { 1600 pg_data_t *pgdat = NODE_DATA(node); 1601 1602 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + 1603 msecs_to_jiffies(pteupdate_interval_millisecs))) 1604 return false; 1605 1606 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) 1607 return false; 1608 1609 return true; 1610 } 1611 1612 /* Returns true if the node is migrate rate-limited after the update */ 1613 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1614 unsigned long nr_pages) 1615 { 1616 /* 1617 * Rate-limit the amount of data that is being migrated to a node. 1618 * Optimal placement is no good if the memory bus is saturated and 1619 * all the time is being spent migrating! 1620 */ 1621 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1622 spin_lock(&pgdat->numabalancing_migrate_lock); 1623 pgdat->numabalancing_migrate_nr_pages = 0; 1624 pgdat->numabalancing_migrate_next_window = jiffies + 1625 msecs_to_jiffies(migrate_interval_millisecs); 1626 spin_unlock(&pgdat->numabalancing_migrate_lock); 1627 } 1628 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1629 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1630 nr_pages); 1631 return true; 1632 } 1633 1634 /* 1635 * This is an unlocked non-atomic update so errors are possible. 1636 * The consequences are failing to migrate when we potentiall should 1637 * have which is not severe enough to warrant locking. If it is ever 1638 * a problem, it can be converted to a per-cpu counter. 1639 */ 1640 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1641 return false; 1642 } 1643 1644 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1645 { 1646 int page_lru; 1647 1648 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1649 1650 /* Avoid migrating to a node that is nearly full */ 1651 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1652 return 0; 1653 1654 if (isolate_lru_page(page)) 1655 return 0; 1656 1657 /* 1658 * migrate_misplaced_transhuge_page() skips page migration's usual 1659 * check on page_count(), so we must do it here, now that the page 1660 * has been isolated: a GUP pin, or any other pin, prevents migration. 1661 * The expected page count is 3: 1 for page's mapcount and 1 for the 1662 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1663 */ 1664 if (PageTransHuge(page) && page_count(page) != 3) { 1665 putback_lru_page(page); 1666 return 0; 1667 } 1668 1669 page_lru = page_is_file_cache(page); 1670 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1671 hpage_nr_pages(page)); 1672 1673 /* 1674 * Isolating the page has taken another reference, so the 1675 * caller's reference can be safely dropped without the page 1676 * disappearing underneath us during migration. 1677 */ 1678 put_page(page); 1679 return 1; 1680 } 1681 1682 bool pmd_trans_migrating(pmd_t pmd) 1683 { 1684 struct page *page = pmd_page(pmd); 1685 return PageLocked(page); 1686 } 1687 1688 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd) 1689 { 1690 struct page *page = pmd_page(*pmd); 1691 wait_on_page_locked(page); 1692 } 1693 1694 /* 1695 * Attempt to migrate a misplaced page to the specified destination 1696 * node. Caller is expected to have an elevated reference count on 1697 * the page that will be dropped by this function before returning. 1698 */ 1699 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1700 int node) 1701 { 1702 pg_data_t *pgdat = NODE_DATA(node); 1703 int isolated; 1704 int nr_remaining; 1705 LIST_HEAD(migratepages); 1706 1707 /* 1708 * Don't migrate file pages that are mapped in multiple processes 1709 * with execute permissions as they are probably shared libraries. 1710 */ 1711 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1712 (vma->vm_flags & VM_EXEC)) 1713 goto out; 1714 1715 /* 1716 * Rate-limit the amount of data that is being migrated to a node. 1717 * Optimal placement is no good if the memory bus is saturated and 1718 * all the time is being spent migrating! 1719 */ 1720 if (numamigrate_update_ratelimit(pgdat, 1)) 1721 goto out; 1722 1723 isolated = numamigrate_isolate_page(pgdat, page); 1724 if (!isolated) 1725 goto out; 1726 1727 list_add(&page->lru, &migratepages); 1728 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1729 NULL, node, MIGRATE_ASYNC, 1730 MR_NUMA_MISPLACED); 1731 if (nr_remaining) { 1732 if (!list_empty(&migratepages)) { 1733 list_del(&page->lru); 1734 dec_zone_page_state(page, NR_ISOLATED_ANON + 1735 page_is_file_cache(page)); 1736 putback_lru_page(page); 1737 } 1738 isolated = 0; 1739 } else 1740 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1741 BUG_ON(!list_empty(&migratepages)); 1742 return isolated; 1743 1744 out: 1745 put_page(page); 1746 return 0; 1747 } 1748 #endif /* CONFIG_NUMA_BALANCING */ 1749 1750 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1751 /* 1752 * Migrates a THP to a given target node. page must be locked and is unlocked 1753 * before returning. 1754 */ 1755 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1756 struct vm_area_struct *vma, 1757 pmd_t *pmd, pmd_t entry, 1758 unsigned long address, 1759 struct page *page, int node) 1760 { 1761 spinlock_t *ptl; 1762 pg_data_t *pgdat = NODE_DATA(node); 1763 int isolated = 0; 1764 struct page *new_page = NULL; 1765 int page_lru = page_is_file_cache(page); 1766 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1767 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1768 pmd_t orig_entry; 1769 1770 /* 1771 * Rate-limit the amount of data that is being migrated to a node. 1772 * Optimal placement is no good if the memory bus is saturated and 1773 * all the time is being spent migrating! 1774 */ 1775 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1776 goto out_dropref; 1777 1778 new_page = alloc_pages_node(node, 1779 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1780 HPAGE_PMD_ORDER); 1781 if (!new_page) 1782 goto out_fail; 1783 1784 isolated = numamigrate_isolate_page(pgdat, page); 1785 if (!isolated) { 1786 put_page(new_page); 1787 goto out_fail; 1788 } 1789 1790 if (mm_tlb_flush_pending(mm)) 1791 flush_tlb_range(vma, mmun_start, mmun_end); 1792 1793 /* Prepare a page as a migration target */ 1794 __set_page_locked(new_page); 1795 SetPageSwapBacked(new_page); 1796 1797 /* anon mapping, we can simply copy page->mapping to the new page: */ 1798 new_page->mapping = page->mapping; 1799 new_page->index = page->index; 1800 migrate_page_copy(new_page, page); 1801 WARN_ON(PageLRU(new_page)); 1802 1803 /* Recheck the target PMD */ 1804 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1805 ptl = pmd_lock(mm, pmd); 1806 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1807 fail_putback: 1808 spin_unlock(ptl); 1809 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1810 1811 /* Reverse changes made by migrate_page_copy() */ 1812 if (TestClearPageActive(new_page)) 1813 SetPageActive(page); 1814 if (TestClearPageUnevictable(new_page)) 1815 SetPageUnevictable(page); 1816 mlock_migrate_page(page, new_page); 1817 1818 unlock_page(new_page); 1819 put_page(new_page); /* Free it */ 1820 1821 /* Retake the callers reference and putback on LRU */ 1822 get_page(page); 1823 putback_lru_page(page); 1824 mod_zone_page_state(page_zone(page), 1825 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1826 1827 goto out_unlock; 1828 } 1829 1830 orig_entry = *pmd; 1831 entry = mk_pmd(new_page, vma->vm_page_prot); 1832 entry = pmd_mkhuge(entry); 1833 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1834 1835 /* 1836 * Clear the old entry under pagetable lock and establish the new PTE. 1837 * Any parallel GUP will either observe the old page blocking on the 1838 * page lock, block on the page table lock or observe the new page. 1839 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1840 * guarantee the copy is visible before the pagetable update. 1841 */ 1842 flush_cache_range(vma, mmun_start, mmun_end); 1843 page_add_anon_rmap(new_page, vma, mmun_start); 1844 pmdp_clear_flush_notify(vma, mmun_start, pmd); 1845 set_pmd_at(mm, mmun_start, pmd, entry); 1846 flush_tlb_range(vma, mmun_start, mmun_end); 1847 update_mmu_cache_pmd(vma, address, &entry); 1848 1849 if (page_count(page) != 2) { 1850 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1851 flush_tlb_range(vma, mmun_start, mmun_end); 1852 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1853 update_mmu_cache_pmd(vma, address, &entry); 1854 page_remove_rmap(new_page); 1855 goto fail_putback; 1856 } 1857 1858 mem_cgroup_migrate(page, new_page, false); 1859 1860 page_remove_rmap(page); 1861 1862 spin_unlock(ptl); 1863 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1864 1865 /* Take an "isolate" reference and put new page on the LRU. */ 1866 get_page(new_page); 1867 putback_lru_page(new_page); 1868 1869 unlock_page(new_page); 1870 unlock_page(page); 1871 put_page(page); /* Drop the rmap reference */ 1872 put_page(page); /* Drop the LRU isolation reference */ 1873 1874 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1875 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1876 1877 mod_zone_page_state(page_zone(page), 1878 NR_ISOLATED_ANON + page_lru, 1879 -HPAGE_PMD_NR); 1880 return isolated; 1881 1882 out_fail: 1883 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1884 out_dropref: 1885 ptl = pmd_lock(mm, pmd); 1886 if (pmd_same(*pmd, entry)) { 1887 entry = pmd_mknonnuma(entry); 1888 set_pmd_at(mm, mmun_start, pmd, entry); 1889 update_mmu_cache_pmd(vma, address, &entry); 1890 } 1891 spin_unlock(ptl); 1892 1893 out_unlock: 1894 unlock_page(page); 1895 put_page(page); 1896 return 0; 1897 } 1898 #endif /* CONFIG_NUMA_BALANCING */ 1899 1900 #endif /* CONFIG_NUMA */ 1901