1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __PageMovable because LRU folio's mapping cannot have 161 * PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 if (pte_swp_soft_dirty(old_pte)) 215 pte = pte_mksoft_dirty(pte); 216 217 entry = pte_to_swp_entry(old_pte); 218 if (!is_migration_entry_young(entry)) 219 pte = pte_mkold(pte); 220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 221 pte = pte_mkdirty(pte); 222 if (is_writable_migration_entry(entry)) 223 pte = pte_mkwrite(pte, vma); 224 else if (pte_swp_uffd_wp(old_pte)) 225 pte = pte_mkuffd_wp(pte); 226 227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 228 rmap_flags |= RMAP_EXCLUSIVE; 229 230 if (unlikely(is_device_private_page(new))) { 231 if (pte_write(pte)) 232 entry = make_writable_device_private_entry( 233 page_to_pfn(new)); 234 else 235 entry = make_readable_device_private_entry( 236 page_to_pfn(new)); 237 pte = swp_entry_to_pte(entry); 238 if (pte_swp_soft_dirty(old_pte)) 239 pte = pte_swp_mksoft_dirty(pte); 240 if (pte_swp_uffd_wp(old_pte)) 241 pte = pte_swp_mkuffd_wp(pte); 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 if (folio_test_hugetlb(folio)) { 246 struct hstate *h = hstate_vma(vma); 247 unsigned int shift = huge_page_shift(h); 248 unsigned long psize = huge_page_size(h); 249 250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 251 if (folio_test_anon(folio)) 252 hugepage_add_anon_rmap(new, vma, pvmw.address, 253 rmap_flags); 254 else 255 page_dup_file_rmap(new, true); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 257 psize); 258 } else 259 #endif 260 { 261 if (folio_test_anon(folio)) 262 page_add_anon_rmap(new, vma, pvmw.address, 263 rmap_flags); 264 else 265 page_add_file_rmap(new, vma, false); 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 } 268 if (vma->vm_flags & VM_LOCKED) 269 mlock_drain_local(); 270 271 trace_remove_migration_pte(pvmw.address, pte_val(pte), 272 compound_order(new)); 273 274 /* No need to invalidate - it was non-present before */ 275 update_mmu_cache(vma, pvmw.address, pvmw.pte); 276 } 277 278 return true; 279 } 280 281 /* 282 * Get rid of all migration entries and replace them by 283 * references to the indicated page. 284 */ 285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 286 { 287 struct rmap_walk_control rwc = { 288 .rmap_one = remove_migration_pte, 289 .arg = src, 290 }; 291 292 if (locked) 293 rmap_walk_locked(dst, &rwc); 294 else 295 rmap_walk(dst, &rwc); 296 } 297 298 /* 299 * Something used the pte of a page under migration. We need to 300 * get to the page and wait until migration is finished. 301 * When we return from this function the fault will be retried. 302 */ 303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 304 unsigned long address) 305 { 306 spinlock_t *ptl; 307 pte_t *ptep; 308 pte_t pte; 309 swp_entry_t entry; 310 311 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 312 if (!ptep) 313 return; 314 315 pte = ptep_get(ptep); 316 pte_unmap(ptep); 317 318 if (!is_swap_pte(pte)) 319 goto out; 320 321 entry = pte_to_swp_entry(pte); 322 if (!is_migration_entry(entry)) 323 goto out; 324 325 migration_entry_wait_on_locked(entry, ptl); 326 return; 327 out: 328 spin_unlock(ptl); 329 } 330 331 #ifdef CONFIG_HUGETLB_PAGE 332 /* 333 * The vma read lock must be held upon entry. Holding that lock prevents either 334 * the pte or the ptl from being freed. 335 * 336 * This function will release the vma lock before returning. 337 */ 338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 339 { 340 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 341 pte_t pte; 342 343 hugetlb_vma_assert_locked(vma); 344 spin_lock(ptl); 345 pte = huge_ptep_get(ptep); 346 347 if (unlikely(!is_hugetlb_entry_migration(pte))) { 348 spin_unlock(ptl); 349 hugetlb_vma_unlock_read(vma); 350 } else { 351 /* 352 * If migration entry existed, safe to release vma lock 353 * here because the pgtable page won't be freed without the 354 * pgtable lock released. See comment right above pgtable 355 * lock release in migration_entry_wait_on_locked(). 356 */ 357 hugetlb_vma_unlock_read(vma); 358 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 359 } 360 } 361 #endif 362 363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 365 { 366 spinlock_t *ptl; 367 368 ptl = pmd_lock(mm, pmd); 369 if (!is_pmd_migration_entry(*pmd)) 370 goto unlock; 371 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 static int folio_expected_refs(struct address_space *mapping, 379 struct folio *folio) 380 { 381 int refs = 1; 382 if (!mapping) 383 return refs; 384 385 refs += folio_nr_pages(folio); 386 if (folio_test_private(folio)) 387 refs++; 388 389 return refs; 390 } 391 392 /* 393 * Replace the page in the mapping. 394 * 395 * The number of remaining references must be: 396 * 1 for anonymous pages without a mapping 397 * 2 for pages with a mapping 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 399 */ 400 int folio_migrate_mapping(struct address_space *mapping, 401 struct folio *newfolio, struct folio *folio, int extra_count) 402 { 403 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 404 struct zone *oldzone, *newzone; 405 int dirty; 406 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 407 long nr = folio_nr_pages(folio); 408 long entries, i; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (folio_ref_count(folio) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newfolio->index = folio->index; 417 newfolio->mapping = folio->mapping; 418 if (folio_test_swapbacked(folio)) 419 __folio_set_swapbacked(newfolio); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = folio_zone(folio); 425 newzone = folio_zone(newfolio); 426 427 xas_lock_irq(&xas); 428 if (!folio_ref_freeze(folio, expected_count)) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 /* 434 * Now we know that no one else is looking at the folio: 435 * no turning back from here. 436 */ 437 newfolio->index = folio->index; 438 newfolio->mapping = folio->mapping; 439 folio_ref_add(newfolio, nr); /* add cache reference */ 440 if (folio_test_swapbacked(folio)) { 441 __folio_set_swapbacked(newfolio); 442 if (folio_test_swapcache(folio)) { 443 folio_set_swapcache(newfolio); 444 newfolio->private = folio_get_private(folio); 445 } 446 entries = nr; 447 } else { 448 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 449 entries = 1; 450 } 451 452 /* Move dirty while page refs frozen and newpage not yet exposed */ 453 dirty = folio_test_dirty(folio); 454 if (dirty) { 455 folio_clear_dirty(folio); 456 folio_set_dirty(newfolio); 457 } 458 459 /* Swap cache still stores N entries instead of a high-order entry */ 460 for (i = 0; i < entries; i++) { 461 xas_store(&xas, newfolio); 462 xas_next(&xas); 463 } 464 465 /* 466 * Drop cache reference from old page by unfreezing 467 * to one less reference. 468 * We know this isn't the last reference. 469 */ 470 folio_ref_unfreeze(folio, expected_count - nr); 471 472 xas_unlock(&xas); 473 /* Leave irq disabled to prevent preemption while updating stats */ 474 475 /* 476 * If moved to a different zone then also account 477 * the page for that zone. Other VM counters will be 478 * taken care of when we establish references to the 479 * new page and drop references to the old page. 480 * 481 * Note that anonymous pages are accounted for 482 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 483 * are mapped to swap space. 484 */ 485 if (newzone != oldzone) { 486 struct lruvec *old_lruvec, *new_lruvec; 487 struct mem_cgroup *memcg; 488 489 memcg = folio_memcg(folio); 490 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 491 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 492 493 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 494 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 495 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 496 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 497 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 498 499 if (folio_test_pmd_mappable(folio)) { 500 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 501 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 502 } 503 } 504 #ifdef CONFIG_SWAP 505 if (folio_test_swapcache(folio)) { 506 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 507 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 508 } 509 #endif 510 if (dirty && mapping_can_writeback(mapping)) { 511 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 512 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 513 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 514 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 515 } 516 } 517 local_irq_enable(); 518 519 return MIGRATEPAGE_SUCCESS; 520 } 521 EXPORT_SYMBOL(folio_migrate_mapping); 522 523 /* 524 * The expected number of remaining references is the same as that 525 * of folio_migrate_mapping(). 526 */ 527 int migrate_huge_page_move_mapping(struct address_space *mapping, 528 struct folio *dst, struct folio *src) 529 { 530 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 531 int expected_count; 532 533 xas_lock_irq(&xas); 534 expected_count = 2 + folio_has_private(src); 535 if (!folio_ref_freeze(src, expected_count)) { 536 xas_unlock_irq(&xas); 537 return -EAGAIN; 538 } 539 540 dst->index = src->index; 541 dst->mapping = src->mapping; 542 543 folio_get(dst); 544 545 xas_store(&xas, dst); 546 547 folio_ref_unfreeze(src, expected_count - 1); 548 549 xas_unlock_irq(&xas); 550 551 return MIGRATEPAGE_SUCCESS; 552 } 553 554 /* 555 * Copy the flags and some other ancillary information 556 */ 557 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 558 { 559 int cpupid; 560 561 if (folio_test_error(folio)) 562 folio_set_error(newfolio); 563 if (folio_test_referenced(folio)) 564 folio_set_referenced(newfolio); 565 if (folio_test_uptodate(folio)) 566 folio_mark_uptodate(newfolio); 567 if (folio_test_clear_active(folio)) { 568 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 569 folio_set_active(newfolio); 570 } else if (folio_test_clear_unevictable(folio)) 571 folio_set_unevictable(newfolio); 572 if (folio_test_workingset(folio)) 573 folio_set_workingset(newfolio); 574 if (folio_test_checked(folio)) 575 folio_set_checked(newfolio); 576 /* 577 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 578 * migration entries. We can still have PG_anon_exclusive set on an 579 * effectively unmapped and unreferenced first sub-pages of an 580 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 581 */ 582 if (folio_test_mappedtodisk(folio)) 583 folio_set_mappedtodisk(newfolio); 584 585 /* Move dirty on pages not done by folio_migrate_mapping() */ 586 if (folio_test_dirty(folio)) 587 folio_set_dirty(newfolio); 588 589 if (folio_test_young(folio)) 590 folio_set_young(newfolio); 591 if (folio_test_idle(folio)) 592 folio_set_idle(newfolio); 593 594 /* 595 * Copy NUMA information to the new page, to prevent over-eager 596 * future migrations of this same page. 597 */ 598 cpupid = page_cpupid_xchg_last(&folio->page, -1); 599 /* 600 * For memory tiering mode, when migrate between slow and fast 601 * memory node, reset cpupid, because that is used to record 602 * page access time in slow memory node. 603 */ 604 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 605 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 606 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 607 608 if (f_toptier != t_toptier) 609 cpupid = -1; 610 } 611 page_cpupid_xchg_last(&newfolio->page, cpupid); 612 613 folio_migrate_ksm(newfolio, folio); 614 /* 615 * Please do not reorder this without considering how mm/ksm.c's 616 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 617 */ 618 if (folio_test_swapcache(folio)) 619 folio_clear_swapcache(folio); 620 folio_clear_private(folio); 621 622 /* page->private contains hugetlb specific flags */ 623 if (!folio_test_hugetlb(folio)) 624 folio->private = NULL; 625 626 /* 627 * If any waiters have accumulated on the new page then 628 * wake them up. 629 */ 630 if (folio_test_writeback(newfolio)) 631 folio_end_writeback(newfolio); 632 633 /* 634 * PG_readahead shares the same bit with PG_reclaim. The above 635 * end_page_writeback() may clear PG_readahead mistakenly, so set the 636 * bit after that. 637 */ 638 if (folio_test_readahead(folio)) 639 folio_set_readahead(newfolio); 640 641 folio_copy_owner(newfolio, folio); 642 643 if (!folio_test_hugetlb(folio)) 644 mem_cgroup_migrate(folio, newfolio); 645 } 646 EXPORT_SYMBOL(folio_migrate_flags); 647 648 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 649 { 650 folio_copy(newfolio, folio); 651 folio_migrate_flags(newfolio, folio); 652 } 653 EXPORT_SYMBOL(folio_migrate_copy); 654 655 /************************************************************ 656 * Migration functions 657 ***********************************************************/ 658 659 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 660 struct folio *src, enum migrate_mode mode, int extra_count) 661 { 662 int rc; 663 664 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 665 666 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 667 668 if (rc != MIGRATEPAGE_SUCCESS) 669 return rc; 670 671 if (mode != MIGRATE_SYNC_NO_COPY) 672 folio_migrate_copy(dst, src); 673 else 674 folio_migrate_flags(dst, src); 675 return MIGRATEPAGE_SUCCESS; 676 } 677 678 /** 679 * migrate_folio() - Simple folio migration. 680 * @mapping: The address_space containing the folio. 681 * @dst: The folio to migrate the data to. 682 * @src: The folio containing the current data. 683 * @mode: How to migrate the page. 684 * 685 * Common logic to directly migrate a single LRU folio suitable for 686 * folios that do not use PagePrivate/PagePrivate2. 687 * 688 * Folios are locked upon entry and exit. 689 */ 690 int migrate_folio(struct address_space *mapping, struct folio *dst, 691 struct folio *src, enum migrate_mode mode) 692 { 693 return migrate_folio_extra(mapping, dst, src, mode, 0); 694 } 695 EXPORT_SYMBOL(migrate_folio); 696 697 #ifdef CONFIG_BUFFER_HEAD 698 /* Returns true if all buffers are successfully locked */ 699 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 700 enum migrate_mode mode) 701 { 702 struct buffer_head *bh = head; 703 struct buffer_head *failed_bh; 704 705 do { 706 if (!trylock_buffer(bh)) { 707 if (mode == MIGRATE_ASYNC) 708 goto unlock; 709 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 710 goto unlock; 711 lock_buffer(bh); 712 } 713 714 bh = bh->b_this_page; 715 } while (bh != head); 716 717 return true; 718 719 unlock: 720 /* We failed to lock the buffer and cannot stall. */ 721 failed_bh = bh; 722 bh = head; 723 while (bh != failed_bh) { 724 unlock_buffer(bh); 725 bh = bh->b_this_page; 726 } 727 728 return false; 729 } 730 731 static int __buffer_migrate_folio(struct address_space *mapping, 732 struct folio *dst, struct folio *src, enum migrate_mode mode, 733 bool check_refs) 734 { 735 struct buffer_head *bh, *head; 736 int rc; 737 int expected_count; 738 739 head = folio_buffers(src); 740 if (!head) 741 return migrate_folio(mapping, dst, src, mode); 742 743 /* Check whether page does not have extra refs before we do more work */ 744 expected_count = folio_expected_refs(mapping, src); 745 if (folio_ref_count(src) != expected_count) 746 return -EAGAIN; 747 748 if (!buffer_migrate_lock_buffers(head, mode)) 749 return -EAGAIN; 750 751 if (check_refs) { 752 bool busy; 753 bool invalidated = false; 754 755 recheck_buffers: 756 busy = false; 757 spin_lock(&mapping->private_lock); 758 bh = head; 759 do { 760 if (atomic_read(&bh->b_count)) { 761 busy = true; 762 break; 763 } 764 bh = bh->b_this_page; 765 } while (bh != head); 766 if (busy) { 767 if (invalidated) { 768 rc = -EAGAIN; 769 goto unlock_buffers; 770 } 771 spin_unlock(&mapping->private_lock); 772 invalidate_bh_lrus(); 773 invalidated = true; 774 goto recheck_buffers; 775 } 776 } 777 778 rc = folio_migrate_mapping(mapping, dst, src, 0); 779 if (rc != MIGRATEPAGE_SUCCESS) 780 goto unlock_buffers; 781 782 folio_attach_private(dst, folio_detach_private(src)); 783 784 bh = head; 785 do { 786 folio_set_bh(bh, dst, bh_offset(bh)); 787 bh = bh->b_this_page; 788 } while (bh != head); 789 790 if (mode != MIGRATE_SYNC_NO_COPY) 791 folio_migrate_copy(dst, src); 792 else 793 folio_migrate_flags(dst, src); 794 795 rc = MIGRATEPAGE_SUCCESS; 796 unlock_buffers: 797 if (check_refs) 798 spin_unlock(&mapping->private_lock); 799 bh = head; 800 do { 801 unlock_buffer(bh); 802 bh = bh->b_this_page; 803 } while (bh != head); 804 805 return rc; 806 } 807 808 /** 809 * buffer_migrate_folio() - Migration function for folios with buffers. 810 * @mapping: The address space containing @src. 811 * @dst: The folio to migrate to. 812 * @src: The folio to migrate from. 813 * @mode: How to migrate the folio. 814 * 815 * This function can only be used if the underlying filesystem guarantees 816 * that no other references to @src exist. For example attached buffer 817 * heads are accessed only under the folio lock. If your filesystem cannot 818 * provide this guarantee, buffer_migrate_folio_norefs() may be more 819 * appropriate. 820 * 821 * Return: 0 on success or a negative errno on failure. 822 */ 823 int buffer_migrate_folio(struct address_space *mapping, 824 struct folio *dst, struct folio *src, enum migrate_mode mode) 825 { 826 return __buffer_migrate_folio(mapping, dst, src, mode, false); 827 } 828 EXPORT_SYMBOL(buffer_migrate_folio); 829 830 /** 831 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 832 * @mapping: The address space containing @src. 833 * @dst: The folio to migrate to. 834 * @src: The folio to migrate from. 835 * @mode: How to migrate the folio. 836 * 837 * Like buffer_migrate_folio() except that this variant is more careful 838 * and checks that there are also no buffer head references. This function 839 * is the right one for mappings where buffer heads are directly looked 840 * up and referenced (such as block device mappings). 841 * 842 * Return: 0 on success or a negative errno on failure. 843 */ 844 int buffer_migrate_folio_norefs(struct address_space *mapping, 845 struct folio *dst, struct folio *src, enum migrate_mode mode) 846 { 847 return __buffer_migrate_folio(mapping, dst, src, mode, true); 848 } 849 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 850 #endif /* CONFIG_BUFFER_HEAD */ 851 852 int filemap_migrate_folio(struct address_space *mapping, 853 struct folio *dst, struct folio *src, enum migrate_mode mode) 854 { 855 int ret; 856 857 ret = folio_migrate_mapping(mapping, dst, src, 0); 858 if (ret != MIGRATEPAGE_SUCCESS) 859 return ret; 860 861 if (folio_get_private(src)) 862 folio_attach_private(dst, folio_detach_private(src)); 863 864 if (mode != MIGRATE_SYNC_NO_COPY) 865 folio_migrate_copy(dst, src); 866 else 867 folio_migrate_flags(dst, src); 868 return MIGRATEPAGE_SUCCESS; 869 } 870 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 871 872 /* 873 * Writeback a folio to clean the dirty state 874 */ 875 static int writeout(struct address_space *mapping, struct folio *folio) 876 { 877 struct writeback_control wbc = { 878 .sync_mode = WB_SYNC_NONE, 879 .nr_to_write = 1, 880 .range_start = 0, 881 .range_end = LLONG_MAX, 882 .for_reclaim = 1 883 }; 884 int rc; 885 886 if (!mapping->a_ops->writepage) 887 /* No write method for the address space */ 888 return -EINVAL; 889 890 if (!folio_clear_dirty_for_io(folio)) 891 /* Someone else already triggered a write */ 892 return -EAGAIN; 893 894 /* 895 * A dirty folio may imply that the underlying filesystem has 896 * the folio on some queue. So the folio must be clean for 897 * migration. Writeout may mean we lose the lock and the 898 * folio state is no longer what we checked for earlier. 899 * At this point we know that the migration attempt cannot 900 * be successful. 901 */ 902 remove_migration_ptes(folio, folio, false); 903 904 rc = mapping->a_ops->writepage(&folio->page, &wbc); 905 906 if (rc != AOP_WRITEPAGE_ACTIVATE) 907 /* unlocked. Relock */ 908 folio_lock(folio); 909 910 return (rc < 0) ? -EIO : -EAGAIN; 911 } 912 913 /* 914 * Default handling if a filesystem does not provide a migration function. 915 */ 916 static int fallback_migrate_folio(struct address_space *mapping, 917 struct folio *dst, struct folio *src, enum migrate_mode mode) 918 { 919 if (folio_test_dirty(src)) { 920 /* Only writeback folios in full synchronous migration */ 921 switch (mode) { 922 case MIGRATE_SYNC: 923 case MIGRATE_SYNC_NO_COPY: 924 break; 925 default: 926 return -EBUSY; 927 } 928 return writeout(mapping, src); 929 } 930 931 /* 932 * Buffers may be managed in a filesystem specific way. 933 * We must have no buffers or drop them. 934 */ 935 if (!filemap_release_folio(src, GFP_KERNEL)) 936 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 937 938 return migrate_folio(mapping, dst, src, mode); 939 } 940 941 /* 942 * Move a page to a newly allocated page 943 * The page is locked and all ptes have been successfully removed. 944 * 945 * The new page will have replaced the old page if this function 946 * is successful. 947 * 948 * Return value: 949 * < 0 - error code 950 * MIGRATEPAGE_SUCCESS - success 951 */ 952 static int move_to_new_folio(struct folio *dst, struct folio *src, 953 enum migrate_mode mode) 954 { 955 int rc = -EAGAIN; 956 bool is_lru = !__PageMovable(&src->page); 957 958 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 959 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 960 961 if (likely(is_lru)) { 962 struct address_space *mapping = folio_mapping(src); 963 964 if (!mapping) 965 rc = migrate_folio(mapping, dst, src, mode); 966 else if (mapping->a_ops->migrate_folio) 967 /* 968 * Most folios have a mapping and most filesystems 969 * provide a migrate_folio callback. Anonymous folios 970 * are part of swap space which also has its own 971 * migrate_folio callback. This is the most common path 972 * for page migration. 973 */ 974 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 975 mode); 976 else 977 rc = fallback_migrate_folio(mapping, dst, src, mode); 978 } else { 979 const struct movable_operations *mops; 980 981 /* 982 * In case of non-lru page, it could be released after 983 * isolation step. In that case, we shouldn't try migration. 984 */ 985 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 986 if (!folio_test_movable(src)) { 987 rc = MIGRATEPAGE_SUCCESS; 988 folio_clear_isolated(src); 989 goto out; 990 } 991 992 mops = folio_movable_ops(src); 993 rc = mops->migrate_page(&dst->page, &src->page, mode); 994 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 995 !folio_test_isolated(src)); 996 } 997 998 /* 999 * When successful, old pagecache src->mapping must be cleared before 1000 * src is freed; but stats require that PageAnon be left as PageAnon. 1001 */ 1002 if (rc == MIGRATEPAGE_SUCCESS) { 1003 if (__PageMovable(&src->page)) { 1004 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1005 1006 /* 1007 * We clear PG_movable under page_lock so any compactor 1008 * cannot try to migrate this page. 1009 */ 1010 folio_clear_isolated(src); 1011 } 1012 1013 /* 1014 * Anonymous and movable src->mapping will be cleared by 1015 * free_pages_prepare so don't reset it here for keeping 1016 * the type to work PageAnon, for example. 1017 */ 1018 if (!folio_mapping_flags(src)) 1019 src->mapping = NULL; 1020 1021 if (likely(!folio_is_zone_device(dst))) 1022 flush_dcache_folio(dst); 1023 } 1024 out: 1025 return rc; 1026 } 1027 1028 /* 1029 * To record some information during migration, we use some unused 1030 * fields (mapping and private) of struct folio of the newly allocated 1031 * destination folio. This is safe because nobody is using them 1032 * except us. 1033 */ 1034 union migration_ptr { 1035 struct anon_vma *anon_vma; 1036 struct address_space *mapping; 1037 }; 1038 static void __migrate_folio_record(struct folio *dst, 1039 unsigned long page_was_mapped, 1040 struct anon_vma *anon_vma) 1041 { 1042 union migration_ptr ptr = { .anon_vma = anon_vma }; 1043 dst->mapping = ptr.mapping; 1044 dst->private = (void *)page_was_mapped; 1045 } 1046 1047 static void __migrate_folio_extract(struct folio *dst, 1048 int *page_was_mappedp, 1049 struct anon_vma **anon_vmap) 1050 { 1051 union migration_ptr ptr = { .mapping = dst->mapping }; 1052 *anon_vmap = ptr.anon_vma; 1053 *page_was_mappedp = (unsigned long)dst->private; 1054 dst->mapping = NULL; 1055 dst->private = NULL; 1056 } 1057 1058 /* Restore the source folio to the original state upon failure */ 1059 static void migrate_folio_undo_src(struct folio *src, 1060 int page_was_mapped, 1061 struct anon_vma *anon_vma, 1062 bool locked, 1063 struct list_head *ret) 1064 { 1065 if (page_was_mapped) 1066 remove_migration_ptes(src, src, false); 1067 /* Drop an anon_vma reference if we took one */ 1068 if (anon_vma) 1069 put_anon_vma(anon_vma); 1070 if (locked) 1071 folio_unlock(src); 1072 if (ret) 1073 list_move_tail(&src->lru, ret); 1074 } 1075 1076 /* Restore the destination folio to the original state upon failure */ 1077 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1078 free_folio_t put_new_folio, unsigned long private) 1079 { 1080 if (locked) 1081 folio_unlock(dst); 1082 if (put_new_folio) 1083 put_new_folio(dst, private); 1084 else 1085 folio_put(dst); 1086 } 1087 1088 /* Cleanup src folio upon migration success */ 1089 static void migrate_folio_done(struct folio *src, 1090 enum migrate_reason reason) 1091 { 1092 /* 1093 * Compaction can migrate also non-LRU pages which are 1094 * not accounted to NR_ISOLATED_*. They can be recognized 1095 * as __PageMovable 1096 */ 1097 if (likely(!__folio_test_movable(src))) 1098 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1099 folio_is_file_lru(src), -folio_nr_pages(src)); 1100 1101 if (reason != MR_MEMORY_FAILURE) 1102 /* We release the page in page_handle_poison. */ 1103 folio_put(src); 1104 } 1105 1106 /* Obtain the lock on page, remove all ptes. */ 1107 static int migrate_folio_unmap(new_folio_t get_new_folio, 1108 free_folio_t put_new_folio, unsigned long private, 1109 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1110 enum migrate_reason reason, struct list_head *ret) 1111 { 1112 struct folio *dst; 1113 int rc = -EAGAIN; 1114 int page_was_mapped = 0; 1115 struct anon_vma *anon_vma = NULL; 1116 bool is_lru = !__PageMovable(&src->page); 1117 bool locked = false; 1118 bool dst_locked = false; 1119 1120 if (folio_ref_count(src) == 1) { 1121 /* Folio was freed from under us. So we are done. */ 1122 folio_clear_active(src); 1123 folio_clear_unevictable(src); 1124 /* free_pages_prepare() will clear PG_isolated. */ 1125 list_del(&src->lru); 1126 migrate_folio_done(src, reason); 1127 return MIGRATEPAGE_SUCCESS; 1128 } 1129 1130 dst = get_new_folio(src, private); 1131 if (!dst) 1132 return -ENOMEM; 1133 *dstp = dst; 1134 1135 dst->private = NULL; 1136 1137 if (!folio_trylock(src)) { 1138 if (mode == MIGRATE_ASYNC) 1139 goto out; 1140 1141 /* 1142 * It's not safe for direct compaction to call lock_page. 1143 * For example, during page readahead pages are added locked 1144 * to the LRU. Later, when the IO completes the pages are 1145 * marked uptodate and unlocked. However, the queueing 1146 * could be merging multiple pages for one bio (e.g. 1147 * mpage_readahead). If an allocation happens for the 1148 * second or third page, the process can end up locking 1149 * the same page twice and deadlocking. Rather than 1150 * trying to be clever about what pages can be locked, 1151 * avoid the use of lock_page for direct compaction 1152 * altogether. 1153 */ 1154 if (current->flags & PF_MEMALLOC) 1155 goto out; 1156 1157 /* 1158 * In "light" mode, we can wait for transient locks (eg 1159 * inserting a page into the page table), but it's not 1160 * worth waiting for I/O. 1161 */ 1162 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1163 goto out; 1164 1165 folio_lock(src); 1166 } 1167 locked = true; 1168 1169 if (folio_test_writeback(src)) { 1170 /* 1171 * Only in the case of a full synchronous migration is it 1172 * necessary to wait for PageWriteback. In the async case, 1173 * the retry loop is too short and in the sync-light case, 1174 * the overhead of stalling is too much 1175 */ 1176 switch (mode) { 1177 case MIGRATE_SYNC: 1178 case MIGRATE_SYNC_NO_COPY: 1179 break; 1180 default: 1181 rc = -EBUSY; 1182 goto out; 1183 } 1184 folio_wait_writeback(src); 1185 } 1186 1187 /* 1188 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1189 * we cannot notice that anon_vma is freed while we migrate a page. 1190 * This get_anon_vma() delays freeing anon_vma pointer until the end 1191 * of migration. File cache pages are no problem because of page_lock() 1192 * File Caches may use write_page() or lock_page() in migration, then, 1193 * just care Anon page here. 1194 * 1195 * Only folio_get_anon_vma() understands the subtleties of 1196 * getting a hold on an anon_vma from outside one of its mms. 1197 * But if we cannot get anon_vma, then we won't need it anyway, 1198 * because that implies that the anon page is no longer mapped 1199 * (and cannot be remapped so long as we hold the page lock). 1200 */ 1201 if (folio_test_anon(src) && !folio_test_ksm(src)) 1202 anon_vma = folio_get_anon_vma(src); 1203 1204 /* 1205 * Block others from accessing the new page when we get around to 1206 * establishing additional references. We are usually the only one 1207 * holding a reference to dst at this point. We used to have a BUG 1208 * here if folio_trylock(dst) fails, but would like to allow for 1209 * cases where there might be a race with the previous use of dst. 1210 * This is much like races on refcount of oldpage: just don't BUG(). 1211 */ 1212 if (unlikely(!folio_trylock(dst))) 1213 goto out; 1214 dst_locked = true; 1215 1216 if (unlikely(!is_lru)) { 1217 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1218 return MIGRATEPAGE_UNMAP; 1219 } 1220 1221 /* 1222 * Corner case handling: 1223 * 1. When a new swap-cache page is read into, it is added to the LRU 1224 * and treated as swapcache but it has no rmap yet. 1225 * Calling try_to_unmap() against a src->mapping==NULL page will 1226 * trigger a BUG. So handle it here. 1227 * 2. An orphaned page (see truncate_cleanup_page) might have 1228 * fs-private metadata. The page can be picked up due to memory 1229 * offlining. Everywhere else except page reclaim, the page is 1230 * invisible to the vm, so the page can not be migrated. So try to 1231 * free the metadata, so the page can be freed. 1232 */ 1233 if (!src->mapping) { 1234 if (folio_test_private(src)) { 1235 try_to_free_buffers(src); 1236 goto out; 1237 } 1238 } else if (folio_mapped(src)) { 1239 /* Establish migration ptes */ 1240 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1241 !folio_test_ksm(src) && !anon_vma, src); 1242 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1243 page_was_mapped = 1; 1244 } 1245 1246 if (!folio_mapped(src)) { 1247 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1248 return MIGRATEPAGE_UNMAP; 1249 } 1250 1251 out: 1252 /* 1253 * A folio that has not been unmapped will be restored to 1254 * right list unless we want to retry. 1255 */ 1256 if (rc == -EAGAIN) 1257 ret = NULL; 1258 1259 migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret); 1260 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1261 1262 return rc; 1263 } 1264 1265 /* Migrate the folio to the newly allocated folio in dst. */ 1266 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1267 struct folio *src, struct folio *dst, 1268 enum migrate_mode mode, enum migrate_reason reason, 1269 struct list_head *ret) 1270 { 1271 int rc; 1272 int page_was_mapped = 0; 1273 struct anon_vma *anon_vma = NULL; 1274 bool is_lru = !__PageMovable(&src->page); 1275 struct list_head *prev; 1276 1277 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1278 prev = dst->lru.prev; 1279 list_del(&dst->lru); 1280 1281 rc = move_to_new_folio(dst, src, mode); 1282 if (rc) 1283 goto out; 1284 1285 if (unlikely(!is_lru)) 1286 goto out_unlock_both; 1287 1288 /* 1289 * When successful, push dst to LRU immediately: so that if it 1290 * turns out to be an mlocked page, remove_migration_ptes() will 1291 * automatically build up the correct dst->mlock_count for it. 1292 * 1293 * We would like to do something similar for the old page, when 1294 * unsuccessful, and other cases when a page has been temporarily 1295 * isolated from the unevictable LRU: but this case is the easiest. 1296 */ 1297 folio_add_lru(dst); 1298 if (page_was_mapped) 1299 lru_add_drain(); 1300 1301 if (page_was_mapped) 1302 remove_migration_ptes(src, dst, false); 1303 1304 out_unlock_both: 1305 folio_unlock(dst); 1306 set_page_owner_migrate_reason(&dst->page, reason); 1307 /* 1308 * If migration is successful, decrease refcount of dst, 1309 * which will not free the page because new page owner increased 1310 * refcounter. 1311 */ 1312 folio_put(dst); 1313 1314 /* 1315 * A folio that has been migrated has all references removed 1316 * and will be freed. 1317 */ 1318 list_del(&src->lru); 1319 /* Drop an anon_vma reference if we took one */ 1320 if (anon_vma) 1321 put_anon_vma(anon_vma); 1322 folio_unlock(src); 1323 migrate_folio_done(src, reason); 1324 1325 return rc; 1326 out: 1327 /* 1328 * A folio that has not been migrated will be restored to 1329 * right list unless we want to retry. 1330 */ 1331 if (rc == -EAGAIN) { 1332 list_add(&dst->lru, prev); 1333 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1334 return rc; 1335 } 1336 1337 migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret); 1338 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1339 1340 return rc; 1341 } 1342 1343 /* 1344 * Counterpart of unmap_and_move_page() for hugepage migration. 1345 * 1346 * This function doesn't wait the completion of hugepage I/O 1347 * because there is no race between I/O and migration for hugepage. 1348 * Note that currently hugepage I/O occurs only in direct I/O 1349 * where no lock is held and PG_writeback is irrelevant, 1350 * and writeback status of all subpages are counted in the reference 1351 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1352 * under direct I/O, the reference of the head page is 512 and a bit more.) 1353 * This means that when we try to migrate hugepage whose subpages are 1354 * doing direct I/O, some references remain after try_to_unmap() and 1355 * hugepage migration fails without data corruption. 1356 * 1357 * There is also no race when direct I/O is issued on the page under migration, 1358 * because then pte is replaced with migration swap entry and direct I/O code 1359 * will wait in the page fault for migration to complete. 1360 */ 1361 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1362 free_folio_t put_new_folio, unsigned long private, 1363 struct folio *src, int force, enum migrate_mode mode, 1364 int reason, struct list_head *ret) 1365 { 1366 struct folio *dst; 1367 int rc = -EAGAIN; 1368 int page_was_mapped = 0; 1369 struct anon_vma *anon_vma = NULL; 1370 struct address_space *mapping = NULL; 1371 1372 if (folio_ref_count(src) == 1) { 1373 /* page was freed from under us. So we are done. */ 1374 folio_putback_active_hugetlb(src); 1375 return MIGRATEPAGE_SUCCESS; 1376 } 1377 1378 dst = get_new_folio(src, private); 1379 if (!dst) 1380 return -ENOMEM; 1381 1382 if (!folio_trylock(src)) { 1383 if (!force) 1384 goto out; 1385 switch (mode) { 1386 case MIGRATE_SYNC: 1387 case MIGRATE_SYNC_NO_COPY: 1388 break; 1389 default: 1390 goto out; 1391 } 1392 folio_lock(src); 1393 } 1394 1395 /* 1396 * Check for pages which are in the process of being freed. Without 1397 * folio_mapping() set, hugetlbfs specific move page routine will not 1398 * be called and we could leak usage counts for subpools. 1399 */ 1400 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1401 rc = -EBUSY; 1402 goto out_unlock; 1403 } 1404 1405 if (folio_test_anon(src)) 1406 anon_vma = folio_get_anon_vma(src); 1407 1408 if (unlikely(!folio_trylock(dst))) 1409 goto put_anon; 1410 1411 if (folio_mapped(src)) { 1412 enum ttu_flags ttu = 0; 1413 1414 if (!folio_test_anon(src)) { 1415 /* 1416 * In shared mappings, try_to_unmap could potentially 1417 * call huge_pmd_unshare. Because of this, take 1418 * semaphore in write mode here and set TTU_RMAP_LOCKED 1419 * to let lower levels know we have taken the lock. 1420 */ 1421 mapping = hugetlb_page_mapping_lock_write(&src->page); 1422 if (unlikely(!mapping)) 1423 goto unlock_put_anon; 1424 1425 ttu = TTU_RMAP_LOCKED; 1426 } 1427 1428 try_to_migrate(src, ttu); 1429 page_was_mapped = 1; 1430 1431 if (ttu & TTU_RMAP_LOCKED) 1432 i_mmap_unlock_write(mapping); 1433 } 1434 1435 if (!folio_mapped(src)) 1436 rc = move_to_new_folio(dst, src, mode); 1437 1438 if (page_was_mapped) 1439 remove_migration_ptes(src, 1440 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1441 1442 unlock_put_anon: 1443 folio_unlock(dst); 1444 1445 put_anon: 1446 if (anon_vma) 1447 put_anon_vma(anon_vma); 1448 1449 if (rc == MIGRATEPAGE_SUCCESS) { 1450 move_hugetlb_state(src, dst, reason); 1451 put_new_folio = NULL; 1452 } 1453 1454 out_unlock: 1455 folio_unlock(src); 1456 out: 1457 if (rc == MIGRATEPAGE_SUCCESS) 1458 folio_putback_active_hugetlb(src); 1459 else if (rc != -EAGAIN) 1460 list_move_tail(&src->lru, ret); 1461 1462 /* 1463 * If migration was not successful and there's a freeing callback, use 1464 * it. Otherwise, put_page() will drop the reference grabbed during 1465 * isolation. 1466 */ 1467 if (put_new_folio) 1468 put_new_folio(dst, private); 1469 else 1470 folio_putback_active_hugetlb(dst); 1471 1472 return rc; 1473 } 1474 1475 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1476 { 1477 int rc; 1478 1479 folio_lock(folio); 1480 rc = split_folio_to_list(folio, split_folios); 1481 folio_unlock(folio); 1482 if (!rc) 1483 list_move_tail(&folio->lru, split_folios); 1484 1485 return rc; 1486 } 1487 1488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1489 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1490 #else 1491 #define NR_MAX_BATCHED_MIGRATION 512 1492 #endif 1493 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1494 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1495 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1496 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1497 1498 struct migrate_pages_stats { 1499 int nr_succeeded; /* Normal and large folios migrated successfully, in 1500 units of base pages */ 1501 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1502 units of base pages. Untried folios aren't counted */ 1503 int nr_thp_succeeded; /* THP migrated successfully */ 1504 int nr_thp_failed; /* THP failed to be migrated */ 1505 int nr_thp_split; /* THP split before migrating */ 1506 }; 1507 1508 /* 1509 * Returns the number of hugetlb folios that were not migrated, or an error code 1510 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1511 * any more because the list has become empty or no retryable hugetlb folios 1512 * exist any more. It is caller's responsibility to call putback_movable_pages() 1513 * only if ret != 0. 1514 */ 1515 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1516 free_folio_t put_new_folio, unsigned long private, 1517 enum migrate_mode mode, int reason, 1518 struct migrate_pages_stats *stats, 1519 struct list_head *ret_folios) 1520 { 1521 int retry = 1; 1522 int nr_failed = 0; 1523 int nr_retry_pages = 0; 1524 int pass = 0; 1525 struct folio *folio, *folio2; 1526 int rc, nr_pages; 1527 1528 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1529 retry = 0; 1530 nr_retry_pages = 0; 1531 1532 list_for_each_entry_safe(folio, folio2, from, lru) { 1533 if (!folio_test_hugetlb(folio)) 1534 continue; 1535 1536 nr_pages = folio_nr_pages(folio); 1537 1538 cond_resched(); 1539 1540 /* 1541 * Migratability of hugepages depends on architectures and 1542 * their size. This check is necessary because some callers 1543 * of hugepage migration like soft offline and memory 1544 * hotremove don't walk through page tables or check whether 1545 * the hugepage is pmd-based or not before kicking migration. 1546 */ 1547 if (!hugepage_migration_supported(folio_hstate(folio))) { 1548 nr_failed++; 1549 stats->nr_failed_pages += nr_pages; 1550 list_move_tail(&folio->lru, ret_folios); 1551 continue; 1552 } 1553 1554 rc = unmap_and_move_huge_page(get_new_folio, 1555 put_new_folio, private, 1556 folio, pass > 2, mode, 1557 reason, ret_folios); 1558 /* 1559 * The rules are: 1560 * Success: hugetlb folio will be put back 1561 * -EAGAIN: stay on the from list 1562 * -ENOMEM: stay on the from list 1563 * Other errno: put on ret_folios list 1564 */ 1565 switch(rc) { 1566 case -ENOMEM: 1567 /* 1568 * When memory is low, don't bother to try to migrate 1569 * other folios, just exit. 1570 */ 1571 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1572 return -ENOMEM; 1573 case -EAGAIN: 1574 retry++; 1575 nr_retry_pages += nr_pages; 1576 break; 1577 case MIGRATEPAGE_SUCCESS: 1578 stats->nr_succeeded += nr_pages; 1579 break; 1580 default: 1581 /* 1582 * Permanent failure (-EBUSY, etc.): 1583 * unlike -EAGAIN case, the failed folio is 1584 * removed from migration folio list and not 1585 * retried in the next outer loop. 1586 */ 1587 nr_failed++; 1588 stats->nr_failed_pages += nr_pages; 1589 break; 1590 } 1591 } 1592 } 1593 /* 1594 * nr_failed is number of hugetlb folios failed to be migrated. After 1595 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1596 * folios as failed. 1597 */ 1598 nr_failed += retry; 1599 stats->nr_failed_pages += nr_retry_pages; 1600 1601 return nr_failed; 1602 } 1603 1604 /* 1605 * migrate_pages_batch() first unmaps folios in the from list as many as 1606 * possible, then move the unmapped folios. 1607 * 1608 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1609 * lock or bit when we have locked more than one folio. Which may cause 1610 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1611 * length of the from list must be <= 1. 1612 */ 1613 static int migrate_pages_batch(struct list_head *from, 1614 new_folio_t get_new_folio, free_folio_t put_new_folio, 1615 unsigned long private, enum migrate_mode mode, int reason, 1616 struct list_head *ret_folios, struct list_head *split_folios, 1617 struct migrate_pages_stats *stats, int nr_pass) 1618 { 1619 int retry = 1; 1620 int thp_retry = 1; 1621 int nr_failed = 0; 1622 int nr_retry_pages = 0; 1623 int pass = 0; 1624 bool is_thp = false; 1625 struct folio *folio, *folio2, *dst = NULL, *dst2; 1626 int rc, rc_saved = 0, nr_pages; 1627 LIST_HEAD(unmap_folios); 1628 LIST_HEAD(dst_folios); 1629 bool nosplit = (reason == MR_NUMA_MISPLACED); 1630 1631 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1632 !list_empty(from) && !list_is_singular(from)); 1633 1634 for (pass = 0; pass < nr_pass && retry; pass++) { 1635 retry = 0; 1636 thp_retry = 0; 1637 nr_retry_pages = 0; 1638 1639 list_for_each_entry_safe(folio, folio2, from, lru) { 1640 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1641 nr_pages = folio_nr_pages(folio); 1642 1643 cond_resched(); 1644 1645 /* 1646 * Large folio migration might be unsupported or 1647 * the allocation might be failed so we should retry 1648 * on the same folio with the large folio split 1649 * to normal folios. 1650 * 1651 * Split folios are put in split_folios, and 1652 * we will migrate them after the rest of the 1653 * list is processed. 1654 */ 1655 if (!thp_migration_supported() && is_thp) { 1656 nr_failed++; 1657 stats->nr_thp_failed++; 1658 if (!try_split_folio(folio, split_folios)) { 1659 stats->nr_thp_split++; 1660 continue; 1661 } 1662 stats->nr_failed_pages += nr_pages; 1663 list_move_tail(&folio->lru, ret_folios); 1664 continue; 1665 } 1666 1667 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1668 private, folio, &dst, mode, reason, 1669 ret_folios); 1670 /* 1671 * The rules are: 1672 * Success: folio will be freed 1673 * Unmap: folio will be put on unmap_folios list, 1674 * dst folio put on dst_folios list 1675 * -EAGAIN: stay on the from list 1676 * -ENOMEM: stay on the from list 1677 * Other errno: put on ret_folios list 1678 */ 1679 switch(rc) { 1680 case -ENOMEM: 1681 /* 1682 * When memory is low, don't bother to try to migrate 1683 * other folios, move unmapped folios, then exit. 1684 */ 1685 nr_failed++; 1686 stats->nr_thp_failed += is_thp; 1687 /* Large folio NUMA faulting doesn't split to retry. */ 1688 if (folio_test_large(folio) && !nosplit) { 1689 int ret = try_split_folio(folio, split_folios); 1690 1691 if (!ret) { 1692 stats->nr_thp_split += is_thp; 1693 break; 1694 } else if (reason == MR_LONGTERM_PIN && 1695 ret == -EAGAIN) { 1696 /* 1697 * Try again to split large folio to 1698 * mitigate the failure of longterm pinning. 1699 */ 1700 retry++; 1701 thp_retry += is_thp; 1702 nr_retry_pages += nr_pages; 1703 /* Undo duplicated failure counting. */ 1704 nr_failed--; 1705 stats->nr_thp_failed -= is_thp; 1706 break; 1707 } 1708 } 1709 1710 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1711 /* nr_failed isn't updated for not used */ 1712 stats->nr_thp_failed += thp_retry; 1713 rc_saved = rc; 1714 if (list_empty(&unmap_folios)) 1715 goto out; 1716 else 1717 goto move; 1718 case -EAGAIN: 1719 retry++; 1720 thp_retry += is_thp; 1721 nr_retry_pages += nr_pages; 1722 break; 1723 case MIGRATEPAGE_SUCCESS: 1724 stats->nr_succeeded += nr_pages; 1725 stats->nr_thp_succeeded += is_thp; 1726 break; 1727 case MIGRATEPAGE_UNMAP: 1728 list_move_tail(&folio->lru, &unmap_folios); 1729 list_add_tail(&dst->lru, &dst_folios); 1730 break; 1731 default: 1732 /* 1733 * Permanent failure (-EBUSY, etc.): 1734 * unlike -EAGAIN case, the failed folio is 1735 * removed from migration folio list and not 1736 * retried in the next outer loop. 1737 */ 1738 nr_failed++; 1739 stats->nr_thp_failed += is_thp; 1740 stats->nr_failed_pages += nr_pages; 1741 break; 1742 } 1743 } 1744 } 1745 nr_failed += retry; 1746 stats->nr_thp_failed += thp_retry; 1747 stats->nr_failed_pages += nr_retry_pages; 1748 move: 1749 /* Flush TLBs for all unmapped folios */ 1750 try_to_unmap_flush(); 1751 1752 retry = 1; 1753 for (pass = 0; pass < nr_pass && retry; pass++) { 1754 retry = 0; 1755 thp_retry = 0; 1756 nr_retry_pages = 0; 1757 1758 dst = list_first_entry(&dst_folios, struct folio, lru); 1759 dst2 = list_next_entry(dst, lru); 1760 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1761 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1762 nr_pages = folio_nr_pages(folio); 1763 1764 cond_resched(); 1765 1766 rc = migrate_folio_move(put_new_folio, private, 1767 folio, dst, mode, 1768 reason, ret_folios); 1769 /* 1770 * The rules are: 1771 * Success: folio will be freed 1772 * -EAGAIN: stay on the unmap_folios list 1773 * Other errno: put on ret_folios list 1774 */ 1775 switch(rc) { 1776 case -EAGAIN: 1777 retry++; 1778 thp_retry += is_thp; 1779 nr_retry_pages += nr_pages; 1780 break; 1781 case MIGRATEPAGE_SUCCESS: 1782 stats->nr_succeeded += nr_pages; 1783 stats->nr_thp_succeeded += is_thp; 1784 break; 1785 default: 1786 nr_failed++; 1787 stats->nr_thp_failed += is_thp; 1788 stats->nr_failed_pages += nr_pages; 1789 break; 1790 } 1791 dst = dst2; 1792 dst2 = list_next_entry(dst, lru); 1793 } 1794 } 1795 nr_failed += retry; 1796 stats->nr_thp_failed += thp_retry; 1797 stats->nr_failed_pages += nr_retry_pages; 1798 1799 rc = rc_saved ? : nr_failed; 1800 out: 1801 /* Cleanup remaining folios */ 1802 dst = list_first_entry(&dst_folios, struct folio, lru); 1803 dst2 = list_next_entry(dst, lru); 1804 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1805 int page_was_mapped = 0; 1806 struct anon_vma *anon_vma = NULL; 1807 1808 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1809 migrate_folio_undo_src(folio, page_was_mapped, anon_vma, 1810 true, ret_folios); 1811 list_del(&dst->lru); 1812 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1813 dst = dst2; 1814 dst2 = list_next_entry(dst, lru); 1815 } 1816 1817 return rc; 1818 } 1819 1820 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1821 free_folio_t put_new_folio, unsigned long private, 1822 enum migrate_mode mode, int reason, 1823 struct list_head *ret_folios, struct list_head *split_folios, 1824 struct migrate_pages_stats *stats) 1825 { 1826 int rc, nr_failed = 0; 1827 LIST_HEAD(folios); 1828 struct migrate_pages_stats astats; 1829 1830 memset(&astats, 0, sizeof(astats)); 1831 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1832 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1833 reason, &folios, split_folios, &astats, 1834 NR_MAX_MIGRATE_ASYNC_RETRY); 1835 stats->nr_succeeded += astats.nr_succeeded; 1836 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1837 stats->nr_thp_split += astats.nr_thp_split; 1838 if (rc < 0) { 1839 stats->nr_failed_pages += astats.nr_failed_pages; 1840 stats->nr_thp_failed += astats.nr_thp_failed; 1841 list_splice_tail(&folios, ret_folios); 1842 return rc; 1843 } 1844 stats->nr_thp_failed += astats.nr_thp_split; 1845 nr_failed += astats.nr_thp_split; 1846 /* 1847 * Fall back to migrate all failed folios one by one synchronously. All 1848 * failed folios except split THPs will be retried, so their failure 1849 * isn't counted 1850 */ 1851 list_splice_tail_init(&folios, from); 1852 while (!list_empty(from)) { 1853 list_move(from->next, &folios); 1854 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1855 private, mode, reason, ret_folios, 1856 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1857 list_splice_tail_init(&folios, ret_folios); 1858 if (rc < 0) 1859 return rc; 1860 nr_failed += rc; 1861 } 1862 1863 return nr_failed; 1864 } 1865 1866 /* 1867 * migrate_pages - migrate the folios specified in a list, to the free folios 1868 * supplied as the target for the page migration 1869 * 1870 * @from: The list of folios to be migrated. 1871 * @get_new_folio: The function used to allocate free folios to be used 1872 * as the target of the folio migration. 1873 * @put_new_folio: The function used to free target folios if migration 1874 * fails, or NULL if no special handling is necessary. 1875 * @private: Private data to be passed on to get_new_folio() 1876 * @mode: The migration mode that specifies the constraints for 1877 * folio migration, if any. 1878 * @reason: The reason for folio migration. 1879 * @ret_succeeded: Set to the number of folios migrated successfully if 1880 * the caller passes a non-NULL pointer. 1881 * 1882 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1883 * are movable any more because the list has become empty or no retryable folios 1884 * exist any more. It is caller's responsibility to call putback_movable_pages() 1885 * only if ret != 0. 1886 * 1887 * Returns the number of {normal folio, large folio, hugetlb} that were not 1888 * migrated, or an error code. The number of large folio splits will be 1889 * considered as the number of non-migrated large folio, no matter how many 1890 * split folios of the large folio are migrated successfully. 1891 */ 1892 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1893 free_folio_t put_new_folio, unsigned long private, 1894 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1895 { 1896 int rc, rc_gather; 1897 int nr_pages; 1898 struct folio *folio, *folio2; 1899 LIST_HEAD(folios); 1900 LIST_HEAD(ret_folios); 1901 LIST_HEAD(split_folios); 1902 struct migrate_pages_stats stats; 1903 1904 trace_mm_migrate_pages_start(mode, reason); 1905 1906 memset(&stats, 0, sizeof(stats)); 1907 1908 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1909 mode, reason, &stats, &ret_folios); 1910 if (rc_gather < 0) 1911 goto out; 1912 1913 again: 1914 nr_pages = 0; 1915 list_for_each_entry_safe(folio, folio2, from, lru) { 1916 /* Retried hugetlb folios will be kept in list */ 1917 if (folio_test_hugetlb(folio)) { 1918 list_move_tail(&folio->lru, &ret_folios); 1919 continue; 1920 } 1921 1922 nr_pages += folio_nr_pages(folio); 1923 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1924 break; 1925 } 1926 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1927 list_cut_before(&folios, from, &folio2->lru); 1928 else 1929 list_splice_init(from, &folios); 1930 if (mode == MIGRATE_ASYNC) 1931 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1932 private, mode, reason, &ret_folios, 1933 &split_folios, &stats, 1934 NR_MAX_MIGRATE_PAGES_RETRY); 1935 else 1936 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1937 private, mode, reason, &ret_folios, 1938 &split_folios, &stats); 1939 list_splice_tail_init(&folios, &ret_folios); 1940 if (rc < 0) { 1941 rc_gather = rc; 1942 list_splice_tail(&split_folios, &ret_folios); 1943 goto out; 1944 } 1945 if (!list_empty(&split_folios)) { 1946 /* 1947 * Failure isn't counted since all split folios of a large folio 1948 * is counted as 1 failure already. And, we only try to migrate 1949 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1950 */ 1951 migrate_pages_batch(&split_folios, get_new_folio, 1952 put_new_folio, private, MIGRATE_ASYNC, reason, 1953 &ret_folios, NULL, &stats, 1); 1954 list_splice_tail_init(&split_folios, &ret_folios); 1955 } 1956 rc_gather += rc; 1957 if (!list_empty(from)) 1958 goto again; 1959 out: 1960 /* 1961 * Put the permanent failure folio back to migration list, they 1962 * will be put back to the right list by the caller. 1963 */ 1964 list_splice(&ret_folios, from); 1965 1966 /* 1967 * Return 0 in case all split folios of fail-to-migrate large folios 1968 * are migrated successfully. 1969 */ 1970 if (list_empty(from)) 1971 rc_gather = 0; 1972 1973 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 1974 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 1975 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 1976 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 1977 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 1978 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 1979 stats.nr_thp_succeeded, stats.nr_thp_failed, 1980 stats.nr_thp_split, mode, reason); 1981 1982 if (ret_succeeded) 1983 *ret_succeeded = stats.nr_succeeded; 1984 1985 return rc_gather; 1986 } 1987 1988 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 1989 { 1990 struct migration_target_control *mtc; 1991 gfp_t gfp_mask; 1992 unsigned int order = 0; 1993 int nid; 1994 int zidx; 1995 1996 mtc = (struct migration_target_control *)private; 1997 gfp_mask = mtc->gfp_mask; 1998 nid = mtc->nid; 1999 if (nid == NUMA_NO_NODE) 2000 nid = folio_nid(src); 2001 2002 if (folio_test_hugetlb(src)) { 2003 struct hstate *h = folio_hstate(src); 2004 2005 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2006 return alloc_hugetlb_folio_nodemask(h, nid, 2007 mtc->nmask, gfp_mask); 2008 } 2009 2010 if (folio_test_large(src)) { 2011 /* 2012 * clear __GFP_RECLAIM to make the migration callback 2013 * consistent with regular THP allocations. 2014 */ 2015 gfp_mask &= ~__GFP_RECLAIM; 2016 gfp_mask |= GFP_TRANSHUGE; 2017 order = folio_order(src); 2018 } 2019 zidx = zone_idx(folio_zone(src)); 2020 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2021 gfp_mask |= __GFP_HIGHMEM; 2022 2023 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2024 } 2025 2026 #ifdef CONFIG_NUMA 2027 2028 static int store_status(int __user *status, int start, int value, int nr) 2029 { 2030 while (nr-- > 0) { 2031 if (put_user(value, status + start)) 2032 return -EFAULT; 2033 start++; 2034 } 2035 2036 return 0; 2037 } 2038 2039 static int do_move_pages_to_node(struct mm_struct *mm, 2040 struct list_head *pagelist, int node) 2041 { 2042 int err; 2043 struct migration_target_control mtc = { 2044 .nid = node, 2045 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2046 }; 2047 2048 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2049 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2050 if (err) 2051 putback_movable_pages(pagelist); 2052 return err; 2053 } 2054 2055 /* 2056 * Resolves the given address to a struct page, isolates it from the LRU and 2057 * puts it to the given pagelist. 2058 * Returns: 2059 * errno - if the page cannot be found/isolated 2060 * 0 - when it doesn't have to be migrated because it is already on the 2061 * target node 2062 * 1 - when it has been queued 2063 */ 2064 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2065 int node, struct list_head *pagelist, bool migrate_all) 2066 { 2067 struct vm_area_struct *vma; 2068 unsigned long addr; 2069 struct page *page; 2070 int err; 2071 bool isolated; 2072 2073 mmap_read_lock(mm); 2074 addr = (unsigned long)untagged_addr_remote(mm, p); 2075 2076 err = -EFAULT; 2077 vma = vma_lookup(mm, addr); 2078 if (!vma || !vma_migratable(vma)) 2079 goto out; 2080 2081 /* FOLL_DUMP to ignore special (like zero) pages */ 2082 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2083 2084 err = PTR_ERR(page); 2085 if (IS_ERR(page)) 2086 goto out; 2087 2088 err = -ENOENT; 2089 if (!page) 2090 goto out; 2091 2092 if (is_zone_device_page(page)) 2093 goto out_putpage; 2094 2095 err = 0; 2096 if (page_to_nid(page) == node) 2097 goto out_putpage; 2098 2099 err = -EACCES; 2100 if (page_mapcount(page) > 1 && !migrate_all) 2101 goto out_putpage; 2102 2103 if (PageHuge(page)) { 2104 if (PageHead(page)) { 2105 isolated = isolate_hugetlb(page_folio(page), pagelist); 2106 err = isolated ? 1 : -EBUSY; 2107 } 2108 } else { 2109 struct page *head; 2110 2111 head = compound_head(page); 2112 isolated = isolate_lru_page(head); 2113 if (!isolated) { 2114 err = -EBUSY; 2115 goto out_putpage; 2116 } 2117 2118 err = 1; 2119 list_add_tail(&head->lru, pagelist); 2120 mod_node_page_state(page_pgdat(head), 2121 NR_ISOLATED_ANON + page_is_file_lru(head), 2122 thp_nr_pages(head)); 2123 } 2124 out_putpage: 2125 /* 2126 * Either remove the duplicate refcount from 2127 * isolate_lru_page() or drop the page ref if it was 2128 * not isolated. 2129 */ 2130 put_page(page); 2131 out: 2132 mmap_read_unlock(mm); 2133 return err; 2134 } 2135 2136 static int move_pages_and_store_status(struct mm_struct *mm, int node, 2137 struct list_head *pagelist, int __user *status, 2138 int start, int i, unsigned long nr_pages) 2139 { 2140 int err; 2141 2142 if (list_empty(pagelist)) 2143 return 0; 2144 2145 err = do_move_pages_to_node(mm, pagelist, node); 2146 if (err) { 2147 /* 2148 * Positive err means the number of failed 2149 * pages to migrate. Since we are going to 2150 * abort and return the number of non-migrated 2151 * pages, so need to include the rest of the 2152 * nr_pages that have not been attempted as 2153 * well. 2154 */ 2155 if (err > 0) 2156 err += nr_pages - i; 2157 return err; 2158 } 2159 return store_status(status, start, node, i - start); 2160 } 2161 2162 /* 2163 * Migrate an array of page address onto an array of nodes and fill 2164 * the corresponding array of status. 2165 */ 2166 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2167 unsigned long nr_pages, 2168 const void __user * __user *pages, 2169 const int __user *nodes, 2170 int __user *status, int flags) 2171 { 2172 compat_uptr_t __user *compat_pages = (void __user *)pages; 2173 int current_node = NUMA_NO_NODE; 2174 LIST_HEAD(pagelist); 2175 int start, i; 2176 int err = 0, err1; 2177 2178 lru_cache_disable(); 2179 2180 for (i = start = 0; i < nr_pages; i++) { 2181 const void __user *p; 2182 int node; 2183 2184 err = -EFAULT; 2185 if (in_compat_syscall()) { 2186 compat_uptr_t cp; 2187 2188 if (get_user(cp, compat_pages + i)) 2189 goto out_flush; 2190 2191 p = compat_ptr(cp); 2192 } else { 2193 if (get_user(p, pages + i)) 2194 goto out_flush; 2195 } 2196 if (get_user(node, nodes + i)) 2197 goto out_flush; 2198 2199 err = -ENODEV; 2200 if (node < 0 || node >= MAX_NUMNODES) 2201 goto out_flush; 2202 if (!node_state(node, N_MEMORY)) 2203 goto out_flush; 2204 2205 err = -EACCES; 2206 if (!node_isset(node, task_nodes)) 2207 goto out_flush; 2208 2209 if (current_node == NUMA_NO_NODE) { 2210 current_node = node; 2211 start = i; 2212 } else if (node != current_node) { 2213 err = move_pages_and_store_status(mm, current_node, 2214 &pagelist, status, start, i, nr_pages); 2215 if (err) 2216 goto out; 2217 start = i; 2218 current_node = node; 2219 } 2220 2221 /* 2222 * Errors in the page lookup or isolation are not fatal and we simply 2223 * report them via status 2224 */ 2225 err = add_page_for_migration(mm, p, current_node, &pagelist, 2226 flags & MPOL_MF_MOVE_ALL); 2227 2228 if (err > 0) { 2229 /* The page is successfully queued for migration */ 2230 continue; 2231 } 2232 2233 /* 2234 * The move_pages() man page does not have an -EEXIST choice, so 2235 * use -EFAULT instead. 2236 */ 2237 if (err == -EEXIST) 2238 err = -EFAULT; 2239 2240 /* 2241 * If the page is already on the target node (!err), store the 2242 * node, otherwise, store the err. 2243 */ 2244 err = store_status(status, i, err ? : current_node, 1); 2245 if (err) 2246 goto out_flush; 2247 2248 err = move_pages_and_store_status(mm, current_node, &pagelist, 2249 status, start, i, nr_pages); 2250 if (err) { 2251 /* We have accounted for page i */ 2252 if (err > 0) 2253 err--; 2254 goto out; 2255 } 2256 current_node = NUMA_NO_NODE; 2257 } 2258 out_flush: 2259 /* Make sure we do not overwrite the existing error */ 2260 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 2261 status, start, i, nr_pages); 2262 if (err >= 0) 2263 err = err1; 2264 out: 2265 lru_cache_enable(); 2266 return err; 2267 } 2268 2269 /* 2270 * Determine the nodes of an array of pages and store it in an array of status. 2271 */ 2272 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2273 const void __user **pages, int *status) 2274 { 2275 unsigned long i; 2276 2277 mmap_read_lock(mm); 2278 2279 for (i = 0; i < nr_pages; i++) { 2280 unsigned long addr = (unsigned long)(*pages); 2281 struct vm_area_struct *vma; 2282 struct page *page; 2283 int err = -EFAULT; 2284 2285 vma = vma_lookup(mm, addr); 2286 if (!vma) 2287 goto set_status; 2288 2289 /* FOLL_DUMP to ignore special (like zero) pages */ 2290 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2291 2292 err = PTR_ERR(page); 2293 if (IS_ERR(page)) 2294 goto set_status; 2295 2296 err = -ENOENT; 2297 if (!page) 2298 goto set_status; 2299 2300 if (!is_zone_device_page(page)) 2301 err = page_to_nid(page); 2302 2303 put_page(page); 2304 set_status: 2305 *status = err; 2306 2307 pages++; 2308 status++; 2309 } 2310 2311 mmap_read_unlock(mm); 2312 } 2313 2314 static int get_compat_pages_array(const void __user *chunk_pages[], 2315 const void __user * __user *pages, 2316 unsigned long chunk_nr) 2317 { 2318 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2319 compat_uptr_t p; 2320 int i; 2321 2322 for (i = 0; i < chunk_nr; i++) { 2323 if (get_user(p, pages32 + i)) 2324 return -EFAULT; 2325 chunk_pages[i] = compat_ptr(p); 2326 } 2327 2328 return 0; 2329 } 2330 2331 /* 2332 * Determine the nodes of a user array of pages and store it in 2333 * a user array of status. 2334 */ 2335 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2336 const void __user * __user *pages, 2337 int __user *status) 2338 { 2339 #define DO_PAGES_STAT_CHUNK_NR 16UL 2340 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2341 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2342 2343 while (nr_pages) { 2344 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2345 2346 if (in_compat_syscall()) { 2347 if (get_compat_pages_array(chunk_pages, pages, 2348 chunk_nr)) 2349 break; 2350 } else { 2351 if (copy_from_user(chunk_pages, pages, 2352 chunk_nr * sizeof(*chunk_pages))) 2353 break; 2354 } 2355 2356 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2357 2358 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2359 break; 2360 2361 pages += chunk_nr; 2362 status += chunk_nr; 2363 nr_pages -= chunk_nr; 2364 } 2365 return nr_pages ? -EFAULT : 0; 2366 } 2367 2368 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2369 { 2370 struct task_struct *task; 2371 struct mm_struct *mm; 2372 2373 /* 2374 * There is no need to check if current process has the right to modify 2375 * the specified process when they are same. 2376 */ 2377 if (!pid) { 2378 mmget(current->mm); 2379 *mem_nodes = cpuset_mems_allowed(current); 2380 return current->mm; 2381 } 2382 2383 /* Find the mm_struct */ 2384 rcu_read_lock(); 2385 task = find_task_by_vpid(pid); 2386 if (!task) { 2387 rcu_read_unlock(); 2388 return ERR_PTR(-ESRCH); 2389 } 2390 get_task_struct(task); 2391 2392 /* 2393 * Check if this process has the right to modify the specified 2394 * process. Use the regular "ptrace_may_access()" checks. 2395 */ 2396 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2397 rcu_read_unlock(); 2398 mm = ERR_PTR(-EPERM); 2399 goto out; 2400 } 2401 rcu_read_unlock(); 2402 2403 mm = ERR_PTR(security_task_movememory(task)); 2404 if (IS_ERR(mm)) 2405 goto out; 2406 *mem_nodes = cpuset_mems_allowed(task); 2407 mm = get_task_mm(task); 2408 out: 2409 put_task_struct(task); 2410 if (!mm) 2411 mm = ERR_PTR(-EINVAL); 2412 return mm; 2413 } 2414 2415 /* 2416 * Move a list of pages in the address space of the currently executing 2417 * process. 2418 */ 2419 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2420 const void __user * __user *pages, 2421 const int __user *nodes, 2422 int __user *status, int flags) 2423 { 2424 struct mm_struct *mm; 2425 int err; 2426 nodemask_t task_nodes; 2427 2428 /* Check flags */ 2429 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2430 return -EINVAL; 2431 2432 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2433 return -EPERM; 2434 2435 mm = find_mm_struct(pid, &task_nodes); 2436 if (IS_ERR(mm)) 2437 return PTR_ERR(mm); 2438 2439 if (nodes) 2440 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2441 nodes, status, flags); 2442 else 2443 err = do_pages_stat(mm, nr_pages, pages, status); 2444 2445 mmput(mm); 2446 return err; 2447 } 2448 2449 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2450 const void __user * __user *, pages, 2451 const int __user *, nodes, 2452 int __user *, status, int, flags) 2453 { 2454 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2455 } 2456 2457 #ifdef CONFIG_NUMA_BALANCING 2458 /* 2459 * Returns true if this is a safe migration target node for misplaced NUMA 2460 * pages. Currently it only checks the watermarks which is crude. 2461 */ 2462 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2463 unsigned long nr_migrate_pages) 2464 { 2465 int z; 2466 2467 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2468 struct zone *zone = pgdat->node_zones + z; 2469 2470 if (!managed_zone(zone)) 2471 continue; 2472 2473 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2474 if (!zone_watermark_ok(zone, 0, 2475 high_wmark_pages(zone) + 2476 nr_migrate_pages, 2477 ZONE_MOVABLE, 0)) 2478 continue; 2479 return true; 2480 } 2481 return false; 2482 } 2483 2484 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2485 unsigned long data) 2486 { 2487 int nid = (int) data; 2488 int order = folio_order(src); 2489 gfp_t gfp = __GFP_THISNODE; 2490 2491 if (order > 0) 2492 gfp |= GFP_TRANSHUGE_LIGHT; 2493 else { 2494 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2495 __GFP_NOWARN; 2496 gfp &= ~__GFP_RECLAIM; 2497 } 2498 return __folio_alloc_node(gfp, order, nid); 2499 } 2500 2501 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2502 { 2503 int nr_pages = thp_nr_pages(page); 2504 int order = compound_order(page); 2505 2506 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2507 2508 /* Do not migrate THP mapped by multiple processes */ 2509 if (PageTransHuge(page) && total_mapcount(page) > 1) 2510 return 0; 2511 2512 /* Avoid migrating to a node that is nearly full */ 2513 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2514 int z; 2515 2516 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2517 return 0; 2518 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2519 if (managed_zone(pgdat->node_zones + z)) 2520 break; 2521 } 2522 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2523 return 0; 2524 } 2525 2526 if (!isolate_lru_page(page)) 2527 return 0; 2528 2529 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2530 nr_pages); 2531 2532 /* 2533 * Isolating the page has taken another reference, so the 2534 * caller's reference can be safely dropped without the page 2535 * disappearing underneath us during migration. 2536 */ 2537 put_page(page); 2538 return 1; 2539 } 2540 2541 /* 2542 * Attempt to migrate a misplaced page to the specified destination 2543 * node. Caller is expected to have an elevated reference count on 2544 * the page that will be dropped by this function before returning. 2545 */ 2546 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2547 int node) 2548 { 2549 pg_data_t *pgdat = NODE_DATA(node); 2550 int isolated; 2551 int nr_remaining; 2552 unsigned int nr_succeeded; 2553 LIST_HEAD(migratepages); 2554 int nr_pages = thp_nr_pages(page); 2555 2556 /* 2557 * Don't migrate file pages that are mapped in multiple processes 2558 * with execute permissions as they are probably shared libraries. 2559 */ 2560 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2561 (vma->vm_flags & VM_EXEC)) 2562 goto out; 2563 2564 /* 2565 * Also do not migrate dirty pages as not all filesystems can move 2566 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2567 */ 2568 if (page_is_file_lru(page) && PageDirty(page)) 2569 goto out; 2570 2571 isolated = numamigrate_isolate_page(pgdat, page); 2572 if (!isolated) 2573 goto out; 2574 2575 list_add(&page->lru, &migratepages); 2576 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2577 NULL, node, MIGRATE_ASYNC, 2578 MR_NUMA_MISPLACED, &nr_succeeded); 2579 if (nr_remaining) { 2580 if (!list_empty(&migratepages)) { 2581 list_del(&page->lru); 2582 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2583 page_is_file_lru(page), -nr_pages); 2584 putback_lru_page(page); 2585 } 2586 isolated = 0; 2587 } 2588 if (nr_succeeded) { 2589 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2590 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2591 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2592 nr_succeeded); 2593 } 2594 BUG_ON(!list_empty(&migratepages)); 2595 return isolated; 2596 2597 out: 2598 put_page(page); 2599 return 0; 2600 } 2601 #endif /* CONFIG_NUMA_BALANCING */ 2602 #endif /* CONFIG_NUMA */ 2603