xref: /openbmc/linux/mm/migrate.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		list_del(&page->lru);
104 		dec_zone_page_state(page, NR_ISOLATED_ANON +
105 				page_is_file_cache(page));
106 		if (unlikely(balloon_page_movable(page)))
107 			balloon_page_putback(page);
108 		else
109 			putback_lru_page(page);
110 	}
111 }
112 
113 /*
114  * Restore a potential migration pte to a working pte entry
115  */
116 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 				 unsigned long addr, void *old)
118 {
119 	struct mm_struct *mm = vma->vm_mm;
120 	swp_entry_t entry;
121  	pmd_t *pmd;
122 	pte_t *ptep, pte;
123  	spinlock_t *ptl;
124 
125 	if (unlikely(PageHuge(new))) {
126 		ptep = huge_pte_offset(mm, addr);
127 		if (!ptep)
128 			goto out;
129 		ptl = &mm->page_table_lock;
130 	} else {
131 		pmd = mm_find_pmd(mm, addr);
132 		if (!pmd)
133 			goto out;
134 		if (pmd_trans_huge(*pmd))
135 			goto out;
136 
137 		ptep = pte_offset_map(pmd, addr);
138 
139 		/*
140 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
141 		 * can race mremap's move_ptes(), which skips anon_vma lock.
142 		 */
143 
144 		ptl = pte_lockptr(mm, pmd);
145 	}
146 
147  	spin_lock(ptl);
148 	pte = *ptep;
149 	if (!is_swap_pte(pte))
150 		goto unlock;
151 
152 	entry = pte_to_swp_entry(pte);
153 
154 	if (!is_migration_entry(entry) ||
155 	    migration_entry_to_page(entry) != old)
156 		goto unlock;
157 
158 	get_page(new);
159 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 	if (is_write_migration_entry(entry))
161 		pte = pte_mkwrite(pte);
162 #ifdef CONFIG_HUGETLB_PAGE
163 	if (PageHuge(new)) {
164 		pte = pte_mkhuge(pte);
165 		pte = arch_make_huge_pte(pte, vma, new, 0);
166 	}
167 #endif
168 	flush_cache_page(vma, addr, pte_pfn(pte));
169 	set_pte_at(mm, addr, ptep, pte);
170 
171 	if (PageHuge(new)) {
172 		if (PageAnon(new))
173 			hugepage_add_anon_rmap(new, vma, addr);
174 		else
175 			page_dup_rmap(new);
176 	} else if (PageAnon(new))
177 		page_add_anon_rmap(new, vma, addr);
178 	else
179 		page_add_file_rmap(new);
180 
181 	/* No need to invalidate - it was non-present before */
182 	update_mmu_cache(vma, addr, ptep);
183 unlock:
184 	pte_unmap_unlock(ptep, ptl);
185 out:
186 	return SWAP_AGAIN;
187 }
188 
189 /*
190  * Get rid of all migration entries and replace them by
191  * references to the indicated page.
192  */
193 static void remove_migration_ptes(struct page *old, struct page *new)
194 {
195 	rmap_walk(new, remove_migration_pte, old);
196 }
197 
198 /*
199  * Something used the pte of a page under migration. We need to
200  * get to the page and wait until migration is finished.
201  * When we return from this function the fault will be retried.
202  */
203 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
204 				unsigned long address)
205 {
206 	pte_t *ptep, pte;
207 	spinlock_t *ptl;
208 	swp_entry_t entry;
209 	struct page *page;
210 
211 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
212 	pte = *ptep;
213 	if (!is_swap_pte(pte))
214 		goto out;
215 
216 	entry = pte_to_swp_entry(pte);
217 	if (!is_migration_entry(entry))
218 		goto out;
219 
220 	page = migration_entry_to_page(entry);
221 
222 	/*
223 	 * Once radix-tree replacement of page migration started, page_count
224 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 	 * against a page without get_page().
226 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
227 	 * will occur again.
228 	 */
229 	if (!get_page_unless_zero(page))
230 		goto out;
231 	pte_unmap_unlock(ptep, ptl);
232 	wait_on_page_locked(page);
233 	put_page(page);
234 	return;
235 out:
236 	pte_unmap_unlock(ptep, ptl);
237 }
238 
239 #ifdef CONFIG_BLOCK
240 /* Returns true if all buffers are successfully locked */
241 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
242 							enum migrate_mode mode)
243 {
244 	struct buffer_head *bh = head;
245 
246 	/* Simple case, sync compaction */
247 	if (mode != MIGRATE_ASYNC) {
248 		do {
249 			get_bh(bh);
250 			lock_buffer(bh);
251 			bh = bh->b_this_page;
252 
253 		} while (bh != head);
254 
255 		return true;
256 	}
257 
258 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
259 	do {
260 		get_bh(bh);
261 		if (!trylock_buffer(bh)) {
262 			/*
263 			 * We failed to lock the buffer and cannot stall in
264 			 * async migration. Release the taken locks
265 			 */
266 			struct buffer_head *failed_bh = bh;
267 			put_bh(failed_bh);
268 			bh = head;
269 			while (bh != failed_bh) {
270 				unlock_buffer(bh);
271 				put_bh(bh);
272 				bh = bh->b_this_page;
273 			}
274 			return false;
275 		}
276 
277 		bh = bh->b_this_page;
278 	} while (bh != head);
279 	return true;
280 }
281 #else
282 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
283 							enum migrate_mode mode)
284 {
285 	return true;
286 }
287 #endif /* CONFIG_BLOCK */
288 
289 /*
290  * Replace the page in the mapping.
291  *
292  * The number of remaining references must be:
293  * 1 for anonymous pages without a mapping
294  * 2 for pages with a mapping
295  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
296  */
297 static int migrate_page_move_mapping(struct address_space *mapping,
298 		struct page *newpage, struct page *page,
299 		struct buffer_head *head, enum migrate_mode mode)
300 {
301 	int expected_count = 0;
302 	void **pslot;
303 
304 	if (!mapping) {
305 		/* Anonymous page without mapping */
306 		if (page_count(page) != 1)
307 			return -EAGAIN;
308 		return MIGRATEPAGE_SUCCESS;
309 	}
310 
311 	spin_lock_irq(&mapping->tree_lock);
312 
313 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
314  					page_index(page));
315 
316 	expected_count = 2 + page_has_private(page);
317 	if (page_count(page) != expected_count ||
318 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
319 		spin_unlock_irq(&mapping->tree_lock);
320 		return -EAGAIN;
321 	}
322 
323 	if (!page_freeze_refs(page, expected_count)) {
324 		spin_unlock_irq(&mapping->tree_lock);
325 		return -EAGAIN;
326 	}
327 
328 	/*
329 	 * In the async migration case of moving a page with buffers, lock the
330 	 * buffers using trylock before the mapping is moved. If the mapping
331 	 * was moved, we later failed to lock the buffers and could not move
332 	 * the mapping back due to an elevated page count, we would have to
333 	 * block waiting on other references to be dropped.
334 	 */
335 	if (mode == MIGRATE_ASYNC && head &&
336 			!buffer_migrate_lock_buffers(head, mode)) {
337 		page_unfreeze_refs(page, expected_count);
338 		spin_unlock_irq(&mapping->tree_lock);
339 		return -EAGAIN;
340 	}
341 
342 	/*
343 	 * Now we know that no one else is looking at the page.
344 	 */
345 	get_page(newpage);	/* add cache reference */
346 	if (PageSwapCache(page)) {
347 		SetPageSwapCache(newpage);
348 		set_page_private(newpage, page_private(page));
349 	}
350 
351 	radix_tree_replace_slot(pslot, newpage);
352 
353 	/*
354 	 * Drop cache reference from old page by unfreezing
355 	 * to one less reference.
356 	 * We know this isn't the last reference.
357 	 */
358 	page_unfreeze_refs(page, expected_count - 1);
359 
360 	/*
361 	 * If moved to a different zone then also account
362 	 * the page for that zone. Other VM counters will be
363 	 * taken care of when we establish references to the
364 	 * new page and drop references to the old page.
365 	 *
366 	 * Note that anonymous pages are accounted for
367 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
368 	 * are mapped to swap space.
369 	 */
370 	__dec_zone_page_state(page, NR_FILE_PAGES);
371 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
372 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
373 		__dec_zone_page_state(page, NR_SHMEM);
374 		__inc_zone_page_state(newpage, NR_SHMEM);
375 	}
376 	spin_unlock_irq(&mapping->tree_lock);
377 
378 	return MIGRATEPAGE_SUCCESS;
379 }
380 
381 /*
382  * The expected number of remaining references is the same as that
383  * of migrate_page_move_mapping().
384  */
385 int migrate_huge_page_move_mapping(struct address_space *mapping,
386 				   struct page *newpage, struct page *page)
387 {
388 	int expected_count;
389 	void **pslot;
390 
391 	if (!mapping) {
392 		if (page_count(page) != 1)
393 			return -EAGAIN;
394 		return MIGRATEPAGE_SUCCESS;
395 	}
396 
397 	spin_lock_irq(&mapping->tree_lock);
398 
399 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
400 					page_index(page));
401 
402 	expected_count = 2 + page_has_private(page);
403 	if (page_count(page) != expected_count ||
404 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
405 		spin_unlock_irq(&mapping->tree_lock);
406 		return -EAGAIN;
407 	}
408 
409 	if (!page_freeze_refs(page, expected_count)) {
410 		spin_unlock_irq(&mapping->tree_lock);
411 		return -EAGAIN;
412 	}
413 
414 	get_page(newpage);
415 
416 	radix_tree_replace_slot(pslot, newpage);
417 
418 	page_unfreeze_refs(page, expected_count - 1);
419 
420 	spin_unlock_irq(&mapping->tree_lock);
421 	return MIGRATEPAGE_SUCCESS;
422 }
423 
424 /*
425  * Copy the page to its new location
426  */
427 void migrate_page_copy(struct page *newpage, struct page *page)
428 {
429 	if (PageHuge(page) || PageTransHuge(page))
430 		copy_huge_page(newpage, page);
431 	else
432 		copy_highpage(newpage, page);
433 
434 	if (PageError(page))
435 		SetPageError(newpage);
436 	if (PageReferenced(page))
437 		SetPageReferenced(newpage);
438 	if (PageUptodate(page))
439 		SetPageUptodate(newpage);
440 	if (TestClearPageActive(page)) {
441 		VM_BUG_ON(PageUnevictable(page));
442 		SetPageActive(newpage);
443 	} else if (TestClearPageUnevictable(page))
444 		SetPageUnevictable(newpage);
445 	if (PageChecked(page))
446 		SetPageChecked(newpage);
447 	if (PageMappedToDisk(page))
448 		SetPageMappedToDisk(newpage);
449 
450 	if (PageDirty(page)) {
451 		clear_page_dirty_for_io(page);
452 		/*
453 		 * Want to mark the page and the radix tree as dirty, and
454 		 * redo the accounting that clear_page_dirty_for_io undid,
455 		 * but we can't use set_page_dirty because that function
456 		 * is actually a signal that all of the page has become dirty.
457 		 * Whereas only part of our page may be dirty.
458 		 */
459 		if (PageSwapBacked(page))
460 			SetPageDirty(newpage);
461 		else
462 			__set_page_dirty_nobuffers(newpage);
463  	}
464 
465 	mlock_migrate_page(newpage, page);
466 	ksm_migrate_page(newpage, page);
467 	/*
468 	 * Please do not reorder this without considering how mm/ksm.c's
469 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
470 	 */
471 	ClearPageSwapCache(page);
472 	ClearPagePrivate(page);
473 	set_page_private(page, 0);
474 
475 	/*
476 	 * If any waiters have accumulated on the new page then
477 	 * wake them up.
478 	 */
479 	if (PageWriteback(newpage))
480 		end_page_writeback(newpage);
481 }
482 
483 /************************************************************
484  *                    Migration functions
485  ***********************************************************/
486 
487 /* Always fail migration. Used for mappings that are not movable */
488 int fail_migrate_page(struct address_space *mapping,
489 			struct page *newpage, struct page *page)
490 {
491 	return -EIO;
492 }
493 EXPORT_SYMBOL(fail_migrate_page);
494 
495 /*
496  * Common logic to directly migrate a single page suitable for
497  * pages that do not use PagePrivate/PagePrivate2.
498  *
499  * Pages are locked upon entry and exit.
500  */
501 int migrate_page(struct address_space *mapping,
502 		struct page *newpage, struct page *page,
503 		enum migrate_mode mode)
504 {
505 	int rc;
506 
507 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
508 
509 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
510 
511 	if (rc != MIGRATEPAGE_SUCCESS)
512 		return rc;
513 
514 	migrate_page_copy(newpage, page);
515 	return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page);
518 
519 #ifdef CONFIG_BLOCK
520 /*
521  * Migration function for pages with buffers. This function can only be used
522  * if the underlying filesystem guarantees that no other references to "page"
523  * exist.
524  */
525 int buffer_migrate_page(struct address_space *mapping,
526 		struct page *newpage, struct page *page, enum migrate_mode mode)
527 {
528 	struct buffer_head *bh, *head;
529 	int rc;
530 
531 	if (!page_has_buffers(page))
532 		return migrate_page(mapping, newpage, page, mode);
533 
534 	head = page_buffers(page);
535 
536 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
537 
538 	if (rc != MIGRATEPAGE_SUCCESS)
539 		return rc;
540 
541 	/*
542 	 * In the async case, migrate_page_move_mapping locked the buffers
543 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
544 	 * need to be locked now
545 	 */
546 	if (mode != MIGRATE_ASYNC)
547 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
548 
549 	ClearPagePrivate(page);
550 	set_page_private(newpage, page_private(page));
551 	set_page_private(page, 0);
552 	put_page(page);
553 	get_page(newpage);
554 
555 	bh = head;
556 	do {
557 		set_bh_page(bh, newpage, bh_offset(bh));
558 		bh = bh->b_this_page;
559 
560 	} while (bh != head);
561 
562 	SetPagePrivate(newpage);
563 
564 	migrate_page_copy(newpage, page);
565 
566 	bh = head;
567 	do {
568 		unlock_buffer(bh);
569  		put_bh(bh);
570 		bh = bh->b_this_page;
571 
572 	} while (bh != head);
573 
574 	return MIGRATEPAGE_SUCCESS;
575 }
576 EXPORT_SYMBOL(buffer_migrate_page);
577 #endif
578 
579 /*
580  * Writeback a page to clean the dirty state
581  */
582 static int writeout(struct address_space *mapping, struct page *page)
583 {
584 	struct writeback_control wbc = {
585 		.sync_mode = WB_SYNC_NONE,
586 		.nr_to_write = 1,
587 		.range_start = 0,
588 		.range_end = LLONG_MAX,
589 		.for_reclaim = 1
590 	};
591 	int rc;
592 
593 	if (!mapping->a_ops->writepage)
594 		/* No write method for the address space */
595 		return -EINVAL;
596 
597 	if (!clear_page_dirty_for_io(page))
598 		/* Someone else already triggered a write */
599 		return -EAGAIN;
600 
601 	/*
602 	 * A dirty page may imply that the underlying filesystem has
603 	 * the page on some queue. So the page must be clean for
604 	 * migration. Writeout may mean we loose the lock and the
605 	 * page state is no longer what we checked for earlier.
606 	 * At this point we know that the migration attempt cannot
607 	 * be successful.
608 	 */
609 	remove_migration_ptes(page, page);
610 
611 	rc = mapping->a_ops->writepage(page, &wbc);
612 
613 	if (rc != AOP_WRITEPAGE_ACTIVATE)
614 		/* unlocked. Relock */
615 		lock_page(page);
616 
617 	return (rc < 0) ? -EIO : -EAGAIN;
618 }
619 
620 /*
621  * Default handling if a filesystem does not provide a migration function.
622  */
623 static int fallback_migrate_page(struct address_space *mapping,
624 	struct page *newpage, struct page *page, enum migrate_mode mode)
625 {
626 	if (PageDirty(page)) {
627 		/* Only writeback pages in full synchronous migration */
628 		if (mode != MIGRATE_SYNC)
629 			return -EBUSY;
630 		return writeout(mapping, page);
631 	}
632 
633 	/*
634 	 * Buffers may be managed in a filesystem specific way.
635 	 * We must have no buffers or drop them.
636 	 */
637 	if (page_has_private(page) &&
638 	    !try_to_release_page(page, GFP_KERNEL))
639 		return -EAGAIN;
640 
641 	return migrate_page(mapping, newpage, page, mode);
642 }
643 
644 /*
645  * Move a page to a newly allocated page
646  * The page is locked and all ptes have been successfully removed.
647  *
648  * The new page will have replaced the old page if this function
649  * is successful.
650  *
651  * Return value:
652  *   < 0 - error code
653  *  MIGRATEPAGE_SUCCESS - success
654  */
655 static int move_to_new_page(struct page *newpage, struct page *page,
656 				int remap_swapcache, enum migrate_mode mode)
657 {
658 	struct address_space *mapping;
659 	int rc;
660 
661 	/*
662 	 * Block others from accessing the page when we get around to
663 	 * establishing additional references. We are the only one
664 	 * holding a reference to the new page at this point.
665 	 */
666 	if (!trylock_page(newpage))
667 		BUG();
668 
669 	/* Prepare mapping for the new page.*/
670 	newpage->index = page->index;
671 	newpage->mapping = page->mapping;
672 	if (PageSwapBacked(page))
673 		SetPageSwapBacked(newpage);
674 
675 	mapping = page_mapping(page);
676 	if (!mapping)
677 		rc = migrate_page(mapping, newpage, page, mode);
678 	else if (mapping->a_ops->migratepage)
679 		/*
680 		 * Most pages have a mapping and most filesystems provide a
681 		 * migratepage callback. Anonymous pages are part of swap
682 		 * space which also has its own migratepage callback. This
683 		 * is the most common path for page migration.
684 		 */
685 		rc = mapping->a_ops->migratepage(mapping,
686 						newpage, page, mode);
687 	else
688 		rc = fallback_migrate_page(mapping, newpage, page, mode);
689 
690 	if (rc != MIGRATEPAGE_SUCCESS) {
691 		newpage->mapping = NULL;
692 	} else {
693 		if (remap_swapcache)
694 			remove_migration_ptes(page, newpage);
695 		page->mapping = NULL;
696 	}
697 
698 	unlock_page(newpage);
699 
700 	return rc;
701 }
702 
703 static int __unmap_and_move(struct page *page, struct page *newpage,
704 				int force, enum migrate_mode mode)
705 {
706 	int rc = -EAGAIN;
707 	int remap_swapcache = 1;
708 	struct mem_cgroup *mem;
709 	struct anon_vma *anon_vma = NULL;
710 
711 	if (!trylock_page(page)) {
712 		if (!force || mode == MIGRATE_ASYNC)
713 			goto out;
714 
715 		/*
716 		 * It's not safe for direct compaction to call lock_page.
717 		 * For example, during page readahead pages are added locked
718 		 * to the LRU. Later, when the IO completes the pages are
719 		 * marked uptodate and unlocked. However, the queueing
720 		 * could be merging multiple pages for one bio (e.g.
721 		 * mpage_readpages). If an allocation happens for the
722 		 * second or third page, the process can end up locking
723 		 * the same page twice and deadlocking. Rather than
724 		 * trying to be clever about what pages can be locked,
725 		 * avoid the use of lock_page for direct compaction
726 		 * altogether.
727 		 */
728 		if (current->flags & PF_MEMALLOC)
729 			goto out;
730 
731 		lock_page(page);
732 	}
733 
734 	/* charge against new page */
735 	mem_cgroup_prepare_migration(page, newpage, &mem);
736 
737 	if (PageWriteback(page)) {
738 		/*
739 		 * Only in the case of a full syncronous migration is it
740 		 * necessary to wait for PageWriteback. In the async case,
741 		 * the retry loop is too short and in the sync-light case,
742 		 * the overhead of stalling is too much
743 		 */
744 		if (mode != MIGRATE_SYNC) {
745 			rc = -EBUSY;
746 			goto uncharge;
747 		}
748 		if (!force)
749 			goto uncharge;
750 		wait_on_page_writeback(page);
751 	}
752 	/*
753 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
754 	 * we cannot notice that anon_vma is freed while we migrates a page.
755 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
756 	 * of migration. File cache pages are no problem because of page_lock()
757 	 * File Caches may use write_page() or lock_page() in migration, then,
758 	 * just care Anon page here.
759 	 */
760 	if (PageAnon(page) && !PageKsm(page)) {
761 		/*
762 		 * Only page_lock_anon_vma_read() understands the subtleties of
763 		 * getting a hold on an anon_vma from outside one of its mms.
764 		 */
765 		anon_vma = page_get_anon_vma(page);
766 		if (anon_vma) {
767 			/*
768 			 * Anon page
769 			 */
770 		} else if (PageSwapCache(page)) {
771 			/*
772 			 * We cannot be sure that the anon_vma of an unmapped
773 			 * swapcache page is safe to use because we don't
774 			 * know in advance if the VMA that this page belonged
775 			 * to still exists. If the VMA and others sharing the
776 			 * data have been freed, then the anon_vma could
777 			 * already be invalid.
778 			 *
779 			 * To avoid this possibility, swapcache pages get
780 			 * migrated but are not remapped when migration
781 			 * completes
782 			 */
783 			remap_swapcache = 0;
784 		} else {
785 			goto uncharge;
786 		}
787 	}
788 
789 	if (unlikely(balloon_page_movable(page))) {
790 		/*
791 		 * A ballooned page does not need any special attention from
792 		 * physical to virtual reverse mapping procedures.
793 		 * Skip any attempt to unmap PTEs or to remap swap cache,
794 		 * in order to avoid burning cycles at rmap level, and perform
795 		 * the page migration right away (proteced by page lock).
796 		 */
797 		rc = balloon_page_migrate(newpage, page, mode);
798 		goto uncharge;
799 	}
800 
801 	/*
802 	 * Corner case handling:
803 	 * 1. When a new swap-cache page is read into, it is added to the LRU
804 	 * and treated as swapcache but it has no rmap yet.
805 	 * Calling try_to_unmap() against a page->mapping==NULL page will
806 	 * trigger a BUG.  So handle it here.
807 	 * 2. An orphaned page (see truncate_complete_page) might have
808 	 * fs-private metadata. The page can be picked up due to memory
809 	 * offlining.  Everywhere else except page reclaim, the page is
810 	 * invisible to the vm, so the page can not be migrated.  So try to
811 	 * free the metadata, so the page can be freed.
812 	 */
813 	if (!page->mapping) {
814 		VM_BUG_ON(PageAnon(page));
815 		if (page_has_private(page)) {
816 			try_to_free_buffers(page);
817 			goto uncharge;
818 		}
819 		goto skip_unmap;
820 	}
821 
822 	/* Establish migration ptes or remove ptes */
823 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
824 
825 skip_unmap:
826 	if (!page_mapped(page))
827 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
828 
829 	if (rc && remap_swapcache)
830 		remove_migration_ptes(page, page);
831 
832 	/* Drop an anon_vma reference if we took one */
833 	if (anon_vma)
834 		put_anon_vma(anon_vma);
835 
836 uncharge:
837 	mem_cgroup_end_migration(mem, page, newpage,
838 				 (rc == MIGRATEPAGE_SUCCESS ||
839 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
840 	unlock_page(page);
841 out:
842 	return rc;
843 }
844 
845 /*
846  * Obtain the lock on page, remove all ptes and migrate the page
847  * to the newly allocated page in newpage.
848  */
849 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
850 			struct page *page, int force, enum migrate_mode mode)
851 {
852 	int rc = 0;
853 	int *result = NULL;
854 	struct page *newpage = get_new_page(page, private, &result);
855 
856 	if (!newpage)
857 		return -ENOMEM;
858 
859 	if (page_count(page) == 1) {
860 		/* page was freed from under us. So we are done. */
861 		goto out;
862 	}
863 
864 	if (unlikely(PageTransHuge(page)))
865 		if (unlikely(split_huge_page(page)))
866 			goto out;
867 
868 	rc = __unmap_and_move(page, newpage, force, mode);
869 
870 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
871 		/*
872 		 * A ballooned page has been migrated already.
873 		 * Now, it's the time to wrap-up counters,
874 		 * handle the page back to Buddy and return.
875 		 */
876 		dec_zone_page_state(page, NR_ISOLATED_ANON +
877 				    page_is_file_cache(page));
878 		balloon_page_free(page);
879 		return MIGRATEPAGE_SUCCESS;
880 	}
881 out:
882 	if (rc != -EAGAIN) {
883 		/*
884 		 * A page that has been migrated has all references
885 		 * removed and will be freed. A page that has not been
886 		 * migrated will have kepts its references and be
887 		 * restored.
888 		 */
889 		list_del(&page->lru);
890 		dec_zone_page_state(page, NR_ISOLATED_ANON +
891 				page_is_file_cache(page));
892 		putback_lru_page(page);
893 	}
894 	/*
895 	 * Move the new page to the LRU. If migration was not successful
896 	 * then this will free the page.
897 	 */
898 	putback_lru_page(newpage);
899 	if (result) {
900 		if (rc)
901 			*result = rc;
902 		else
903 			*result = page_to_nid(newpage);
904 	}
905 	return rc;
906 }
907 
908 /*
909  * Counterpart of unmap_and_move_page() for hugepage migration.
910  *
911  * This function doesn't wait the completion of hugepage I/O
912  * because there is no race between I/O and migration for hugepage.
913  * Note that currently hugepage I/O occurs only in direct I/O
914  * where no lock is held and PG_writeback is irrelevant,
915  * and writeback status of all subpages are counted in the reference
916  * count of the head page (i.e. if all subpages of a 2MB hugepage are
917  * under direct I/O, the reference of the head page is 512 and a bit more.)
918  * This means that when we try to migrate hugepage whose subpages are
919  * doing direct I/O, some references remain after try_to_unmap() and
920  * hugepage migration fails without data corruption.
921  *
922  * There is also no race when direct I/O is issued on the page under migration,
923  * because then pte is replaced with migration swap entry and direct I/O code
924  * will wait in the page fault for migration to complete.
925  */
926 static int unmap_and_move_huge_page(new_page_t get_new_page,
927 				unsigned long private, struct page *hpage,
928 				int force, enum migrate_mode mode)
929 {
930 	int rc = 0;
931 	int *result = NULL;
932 	struct page *new_hpage = get_new_page(hpage, private, &result);
933 	struct anon_vma *anon_vma = NULL;
934 
935 	if (!new_hpage)
936 		return -ENOMEM;
937 
938 	rc = -EAGAIN;
939 
940 	if (!trylock_page(hpage)) {
941 		if (!force || mode != MIGRATE_SYNC)
942 			goto out;
943 		lock_page(hpage);
944 	}
945 
946 	if (PageAnon(hpage))
947 		anon_vma = page_get_anon_vma(hpage);
948 
949 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
950 
951 	if (!page_mapped(hpage))
952 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
953 
954 	if (rc)
955 		remove_migration_ptes(hpage, hpage);
956 
957 	if (anon_vma)
958 		put_anon_vma(anon_vma);
959 
960 	if (!rc)
961 		hugetlb_cgroup_migrate(hpage, new_hpage);
962 
963 	unlock_page(hpage);
964 out:
965 	put_page(new_hpage);
966 	if (result) {
967 		if (rc)
968 			*result = rc;
969 		else
970 			*result = page_to_nid(new_hpage);
971 	}
972 	return rc;
973 }
974 
975 /*
976  * migrate_pages
977  *
978  * The function takes one list of pages to migrate and a function
979  * that determines from the page to be migrated and the private data
980  * the target of the move and allocates the page.
981  *
982  * The function returns after 10 attempts or if no pages
983  * are movable anymore because to has become empty
984  * or no retryable pages exist anymore.
985  * Caller should call putback_lru_pages to return pages to the LRU
986  * or free list only if ret != 0.
987  *
988  * Return: Number of pages not migrated or error code.
989  */
990 int migrate_pages(struct list_head *from, new_page_t get_new_page,
991 		unsigned long private, enum migrate_mode mode, int reason)
992 {
993 	int retry = 1;
994 	int nr_failed = 0;
995 	int nr_succeeded = 0;
996 	int pass = 0;
997 	struct page *page;
998 	struct page *page2;
999 	int swapwrite = current->flags & PF_SWAPWRITE;
1000 	int rc;
1001 
1002 	if (!swapwrite)
1003 		current->flags |= PF_SWAPWRITE;
1004 
1005 	for(pass = 0; pass < 10 && retry; pass++) {
1006 		retry = 0;
1007 
1008 		list_for_each_entry_safe(page, page2, from, lru) {
1009 			cond_resched();
1010 
1011 			rc = unmap_and_move(get_new_page, private,
1012 						page, pass > 2, mode);
1013 
1014 			switch(rc) {
1015 			case -ENOMEM:
1016 				goto out;
1017 			case -EAGAIN:
1018 				retry++;
1019 				break;
1020 			case MIGRATEPAGE_SUCCESS:
1021 				nr_succeeded++;
1022 				break;
1023 			default:
1024 				/* Permanent failure */
1025 				nr_failed++;
1026 				break;
1027 			}
1028 		}
1029 	}
1030 	rc = nr_failed + retry;
1031 out:
1032 	if (nr_succeeded)
1033 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1034 	if (nr_failed)
1035 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1036 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1037 
1038 	if (!swapwrite)
1039 		current->flags &= ~PF_SWAPWRITE;
1040 
1041 	return rc;
1042 }
1043 
1044 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1045 		      unsigned long private, enum migrate_mode mode)
1046 {
1047 	int pass, rc;
1048 
1049 	for (pass = 0; pass < 10; pass++) {
1050 		rc = unmap_and_move_huge_page(get_new_page, private,
1051 						hpage, pass > 2, mode);
1052 		switch (rc) {
1053 		case -ENOMEM:
1054 			goto out;
1055 		case -EAGAIN:
1056 			/* try again */
1057 			cond_resched();
1058 			break;
1059 		case MIGRATEPAGE_SUCCESS:
1060 			goto out;
1061 		default:
1062 			rc = -EIO;
1063 			goto out;
1064 		}
1065 	}
1066 out:
1067 	return rc;
1068 }
1069 
1070 #ifdef CONFIG_NUMA
1071 /*
1072  * Move a list of individual pages
1073  */
1074 struct page_to_node {
1075 	unsigned long addr;
1076 	struct page *page;
1077 	int node;
1078 	int status;
1079 };
1080 
1081 static struct page *new_page_node(struct page *p, unsigned long private,
1082 		int **result)
1083 {
1084 	struct page_to_node *pm = (struct page_to_node *)private;
1085 
1086 	while (pm->node != MAX_NUMNODES && pm->page != p)
1087 		pm++;
1088 
1089 	if (pm->node == MAX_NUMNODES)
1090 		return NULL;
1091 
1092 	*result = &pm->status;
1093 
1094 	return alloc_pages_exact_node(pm->node,
1095 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1096 }
1097 
1098 /*
1099  * Move a set of pages as indicated in the pm array. The addr
1100  * field must be set to the virtual address of the page to be moved
1101  * and the node number must contain a valid target node.
1102  * The pm array ends with node = MAX_NUMNODES.
1103  */
1104 static int do_move_page_to_node_array(struct mm_struct *mm,
1105 				      struct page_to_node *pm,
1106 				      int migrate_all)
1107 {
1108 	int err;
1109 	struct page_to_node *pp;
1110 	LIST_HEAD(pagelist);
1111 
1112 	down_read(&mm->mmap_sem);
1113 
1114 	/*
1115 	 * Build a list of pages to migrate
1116 	 */
1117 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1118 		struct vm_area_struct *vma;
1119 		struct page *page;
1120 
1121 		err = -EFAULT;
1122 		vma = find_vma(mm, pp->addr);
1123 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1124 			goto set_status;
1125 
1126 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1127 
1128 		err = PTR_ERR(page);
1129 		if (IS_ERR(page))
1130 			goto set_status;
1131 
1132 		err = -ENOENT;
1133 		if (!page)
1134 			goto set_status;
1135 
1136 		/* Use PageReserved to check for zero page */
1137 		if (PageReserved(page))
1138 			goto put_and_set;
1139 
1140 		pp->page = page;
1141 		err = page_to_nid(page);
1142 
1143 		if (err == pp->node)
1144 			/*
1145 			 * Node already in the right place
1146 			 */
1147 			goto put_and_set;
1148 
1149 		err = -EACCES;
1150 		if (page_mapcount(page) > 1 &&
1151 				!migrate_all)
1152 			goto put_and_set;
1153 
1154 		err = isolate_lru_page(page);
1155 		if (!err) {
1156 			list_add_tail(&page->lru, &pagelist);
1157 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1158 					    page_is_file_cache(page));
1159 		}
1160 put_and_set:
1161 		/*
1162 		 * Either remove the duplicate refcount from
1163 		 * isolate_lru_page() or drop the page ref if it was
1164 		 * not isolated.
1165 		 */
1166 		put_page(page);
1167 set_status:
1168 		pp->status = err;
1169 	}
1170 
1171 	err = 0;
1172 	if (!list_empty(&pagelist)) {
1173 		err = migrate_pages(&pagelist, new_page_node,
1174 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1175 		if (err)
1176 			putback_lru_pages(&pagelist);
1177 	}
1178 
1179 	up_read(&mm->mmap_sem);
1180 	return err;
1181 }
1182 
1183 /*
1184  * Migrate an array of page address onto an array of nodes and fill
1185  * the corresponding array of status.
1186  */
1187 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1188 			 unsigned long nr_pages,
1189 			 const void __user * __user *pages,
1190 			 const int __user *nodes,
1191 			 int __user *status, int flags)
1192 {
1193 	struct page_to_node *pm;
1194 	unsigned long chunk_nr_pages;
1195 	unsigned long chunk_start;
1196 	int err;
1197 
1198 	err = -ENOMEM;
1199 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1200 	if (!pm)
1201 		goto out;
1202 
1203 	migrate_prep();
1204 
1205 	/*
1206 	 * Store a chunk of page_to_node array in a page,
1207 	 * but keep the last one as a marker
1208 	 */
1209 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1210 
1211 	for (chunk_start = 0;
1212 	     chunk_start < nr_pages;
1213 	     chunk_start += chunk_nr_pages) {
1214 		int j;
1215 
1216 		if (chunk_start + chunk_nr_pages > nr_pages)
1217 			chunk_nr_pages = nr_pages - chunk_start;
1218 
1219 		/* fill the chunk pm with addrs and nodes from user-space */
1220 		for (j = 0; j < chunk_nr_pages; j++) {
1221 			const void __user *p;
1222 			int node;
1223 
1224 			err = -EFAULT;
1225 			if (get_user(p, pages + j + chunk_start))
1226 				goto out_pm;
1227 			pm[j].addr = (unsigned long) p;
1228 
1229 			if (get_user(node, nodes + j + chunk_start))
1230 				goto out_pm;
1231 
1232 			err = -ENODEV;
1233 			if (node < 0 || node >= MAX_NUMNODES)
1234 				goto out_pm;
1235 
1236 			if (!node_state(node, N_MEMORY))
1237 				goto out_pm;
1238 
1239 			err = -EACCES;
1240 			if (!node_isset(node, task_nodes))
1241 				goto out_pm;
1242 
1243 			pm[j].node = node;
1244 		}
1245 
1246 		/* End marker for this chunk */
1247 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1248 
1249 		/* Migrate this chunk */
1250 		err = do_move_page_to_node_array(mm, pm,
1251 						 flags & MPOL_MF_MOVE_ALL);
1252 		if (err < 0)
1253 			goto out_pm;
1254 
1255 		/* Return status information */
1256 		for (j = 0; j < chunk_nr_pages; j++)
1257 			if (put_user(pm[j].status, status + j + chunk_start)) {
1258 				err = -EFAULT;
1259 				goto out_pm;
1260 			}
1261 	}
1262 	err = 0;
1263 
1264 out_pm:
1265 	free_page((unsigned long)pm);
1266 out:
1267 	return err;
1268 }
1269 
1270 /*
1271  * Determine the nodes of an array of pages and store it in an array of status.
1272  */
1273 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1274 				const void __user **pages, int *status)
1275 {
1276 	unsigned long i;
1277 
1278 	down_read(&mm->mmap_sem);
1279 
1280 	for (i = 0; i < nr_pages; i++) {
1281 		unsigned long addr = (unsigned long)(*pages);
1282 		struct vm_area_struct *vma;
1283 		struct page *page;
1284 		int err = -EFAULT;
1285 
1286 		vma = find_vma(mm, addr);
1287 		if (!vma || addr < vma->vm_start)
1288 			goto set_status;
1289 
1290 		page = follow_page(vma, addr, 0);
1291 
1292 		err = PTR_ERR(page);
1293 		if (IS_ERR(page))
1294 			goto set_status;
1295 
1296 		err = -ENOENT;
1297 		/* Use PageReserved to check for zero page */
1298 		if (!page || PageReserved(page))
1299 			goto set_status;
1300 
1301 		err = page_to_nid(page);
1302 set_status:
1303 		*status = err;
1304 
1305 		pages++;
1306 		status++;
1307 	}
1308 
1309 	up_read(&mm->mmap_sem);
1310 }
1311 
1312 /*
1313  * Determine the nodes of a user array of pages and store it in
1314  * a user array of status.
1315  */
1316 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1317 			 const void __user * __user *pages,
1318 			 int __user *status)
1319 {
1320 #define DO_PAGES_STAT_CHUNK_NR 16
1321 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1322 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1323 
1324 	while (nr_pages) {
1325 		unsigned long chunk_nr;
1326 
1327 		chunk_nr = nr_pages;
1328 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1329 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1330 
1331 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1332 			break;
1333 
1334 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1335 
1336 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1337 			break;
1338 
1339 		pages += chunk_nr;
1340 		status += chunk_nr;
1341 		nr_pages -= chunk_nr;
1342 	}
1343 	return nr_pages ? -EFAULT : 0;
1344 }
1345 
1346 /*
1347  * Move a list of pages in the address space of the currently executing
1348  * process.
1349  */
1350 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1351 		const void __user * __user *, pages,
1352 		const int __user *, nodes,
1353 		int __user *, status, int, flags)
1354 {
1355 	const struct cred *cred = current_cred(), *tcred;
1356 	struct task_struct *task;
1357 	struct mm_struct *mm;
1358 	int err;
1359 	nodemask_t task_nodes;
1360 
1361 	/* Check flags */
1362 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1363 		return -EINVAL;
1364 
1365 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1366 		return -EPERM;
1367 
1368 	/* Find the mm_struct */
1369 	rcu_read_lock();
1370 	task = pid ? find_task_by_vpid(pid) : current;
1371 	if (!task) {
1372 		rcu_read_unlock();
1373 		return -ESRCH;
1374 	}
1375 	get_task_struct(task);
1376 
1377 	/*
1378 	 * Check if this process has the right to modify the specified
1379 	 * process. The right exists if the process has administrative
1380 	 * capabilities, superuser privileges or the same
1381 	 * userid as the target process.
1382 	 */
1383 	tcred = __task_cred(task);
1384 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1385 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1386 	    !capable(CAP_SYS_NICE)) {
1387 		rcu_read_unlock();
1388 		err = -EPERM;
1389 		goto out;
1390 	}
1391 	rcu_read_unlock();
1392 
1393  	err = security_task_movememory(task);
1394  	if (err)
1395 		goto out;
1396 
1397 	task_nodes = cpuset_mems_allowed(task);
1398 	mm = get_task_mm(task);
1399 	put_task_struct(task);
1400 
1401 	if (!mm)
1402 		return -EINVAL;
1403 
1404 	if (nodes)
1405 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1406 				    nodes, status, flags);
1407 	else
1408 		err = do_pages_stat(mm, nr_pages, pages, status);
1409 
1410 	mmput(mm);
1411 	return err;
1412 
1413 out:
1414 	put_task_struct(task);
1415 	return err;
1416 }
1417 
1418 /*
1419  * Call migration functions in the vma_ops that may prepare
1420  * memory in a vm for migration. migration functions may perform
1421  * the migration for vmas that do not have an underlying page struct.
1422  */
1423 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1424 	const nodemask_t *from, unsigned long flags)
1425 {
1426  	struct vm_area_struct *vma;
1427  	int err = 0;
1428 
1429 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1430  		if (vma->vm_ops && vma->vm_ops->migrate) {
1431  			err = vma->vm_ops->migrate(vma, to, from, flags);
1432  			if (err)
1433  				break;
1434  		}
1435  	}
1436  	return err;
1437 }
1438 
1439 #ifdef CONFIG_NUMA_BALANCING
1440 /*
1441  * Returns true if this is a safe migration target node for misplaced NUMA
1442  * pages. Currently it only checks the watermarks which crude
1443  */
1444 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1445 				   unsigned long nr_migrate_pages)
1446 {
1447 	int z;
1448 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1449 		struct zone *zone = pgdat->node_zones + z;
1450 
1451 		if (!populated_zone(zone))
1452 			continue;
1453 
1454 		if (zone->all_unreclaimable)
1455 			continue;
1456 
1457 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1458 		if (!zone_watermark_ok(zone, 0,
1459 				       high_wmark_pages(zone) +
1460 				       nr_migrate_pages,
1461 				       0, 0))
1462 			continue;
1463 		return true;
1464 	}
1465 	return false;
1466 }
1467 
1468 static struct page *alloc_misplaced_dst_page(struct page *page,
1469 					   unsigned long data,
1470 					   int **result)
1471 {
1472 	int nid = (int) data;
1473 	struct page *newpage;
1474 
1475 	newpage = alloc_pages_exact_node(nid,
1476 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1477 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1478 					  __GFP_NOWARN) &
1479 					 ~GFP_IOFS, 0);
1480 	if (newpage)
1481 		page_nid_xchg_last(newpage, page_nid_last(page));
1482 
1483 	return newpage;
1484 }
1485 
1486 /*
1487  * page migration rate limiting control.
1488  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1489  * window of time. Default here says do not migrate more than 1280M per second.
1490  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1491  * as it is faults that reset the window, pte updates will happen unconditionally
1492  * if there has not been a fault since @pteupdate_interval_millisecs after the
1493  * throttle window closed.
1494  */
1495 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1496 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1497 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1498 
1499 /* Returns true if NUMA migration is currently rate limited */
1500 bool migrate_ratelimited(int node)
1501 {
1502 	pg_data_t *pgdat = NODE_DATA(node);
1503 
1504 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1505 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1506 		return false;
1507 
1508 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1509 		return false;
1510 
1511 	return true;
1512 }
1513 
1514 /* Returns true if the node is migrate rate-limited after the update */
1515 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1516 {
1517 	bool rate_limited = false;
1518 
1519 	/*
1520 	 * Rate-limit the amount of data that is being migrated to a node.
1521 	 * Optimal placement is no good if the memory bus is saturated and
1522 	 * all the time is being spent migrating!
1523 	 */
1524 	spin_lock(&pgdat->numabalancing_migrate_lock);
1525 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1526 		pgdat->numabalancing_migrate_nr_pages = 0;
1527 		pgdat->numabalancing_migrate_next_window = jiffies +
1528 			msecs_to_jiffies(migrate_interval_millisecs);
1529 	}
1530 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1531 		rate_limited = true;
1532 	else
1533 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1534 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1535 
1536 	return rate_limited;
1537 }
1538 
1539 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1540 {
1541 	int page_lru;
1542 
1543 	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1544 
1545 	/* Avoid migrating to a node that is nearly full */
1546 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1547 		return 0;
1548 
1549 	if (isolate_lru_page(page))
1550 		return 0;
1551 
1552 	/*
1553 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1554 	 * check on page_count(), so we must do it here, now that the page
1555 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1556 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1557 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1558 	 */
1559 	if (PageTransHuge(page) && page_count(page) != 3) {
1560 		putback_lru_page(page);
1561 		return 0;
1562 	}
1563 
1564 	page_lru = page_is_file_cache(page);
1565 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1566 				hpage_nr_pages(page));
1567 
1568 	/*
1569 	 * Isolating the page has taken another reference, so the
1570 	 * caller's reference can be safely dropped without the page
1571 	 * disappearing underneath us during migration.
1572 	 */
1573 	put_page(page);
1574 	return 1;
1575 }
1576 
1577 /*
1578  * Attempt to migrate a misplaced page to the specified destination
1579  * node. Caller is expected to have an elevated reference count on
1580  * the page that will be dropped by this function before returning.
1581  */
1582 int migrate_misplaced_page(struct page *page, int node)
1583 {
1584 	pg_data_t *pgdat = NODE_DATA(node);
1585 	int isolated;
1586 	int nr_remaining;
1587 	LIST_HEAD(migratepages);
1588 
1589 	/*
1590 	 * Don't migrate pages that are mapped in multiple processes.
1591 	 * TODO: Handle false sharing detection instead of this hammer
1592 	 */
1593 	if (page_mapcount(page) != 1)
1594 		goto out;
1595 
1596 	/*
1597 	 * Rate-limit the amount of data that is being migrated to a node.
1598 	 * Optimal placement is no good if the memory bus is saturated and
1599 	 * all the time is being spent migrating!
1600 	 */
1601 	if (numamigrate_update_ratelimit(pgdat, 1))
1602 		goto out;
1603 
1604 	isolated = numamigrate_isolate_page(pgdat, page);
1605 	if (!isolated)
1606 		goto out;
1607 
1608 	list_add(&page->lru, &migratepages);
1609 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1610 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1611 	if (nr_remaining) {
1612 		putback_lru_pages(&migratepages);
1613 		isolated = 0;
1614 	} else
1615 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1616 	BUG_ON(!list_empty(&migratepages));
1617 	return isolated;
1618 
1619 out:
1620 	put_page(page);
1621 	return 0;
1622 }
1623 #endif /* CONFIG_NUMA_BALANCING */
1624 
1625 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1626 /*
1627  * Migrates a THP to a given target node. page must be locked and is unlocked
1628  * before returning.
1629  */
1630 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1631 				struct vm_area_struct *vma,
1632 				pmd_t *pmd, pmd_t entry,
1633 				unsigned long address,
1634 				struct page *page, int node)
1635 {
1636 	unsigned long haddr = address & HPAGE_PMD_MASK;
1637 	pg_data_t *pgdat = NODE_DATA(node);
1638 	int isolated = 0;
1639 	struct page *new_page = NULL;
1640 	struct mem_cgroup *memcg = NULL;
1641 	int page_lru = page_is_file_cache(page);
1642 
1643 	/*
1644 	 * Don't migrate pages that are mapped in multiple processes.
1645 	 * TODO: Handle false sharing detection instead of this hammer
1646 	 */
1647 	if (page_mapcount(page) != 1)
1648 		goto out_dropref;
1649 
1650 	/*
1651 	 * Rate-limit the amount of data that is being migrated to a node.
1652 	 * Optimal placement is no good if the memory bus is saturated and
1653 	 * all the time is being spent migrating!
1654 	 */
1655 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1656 		goto out_dropref;
1657 
1658 	new_page = alloc_pages_node(node,
1659 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1660 	if (!new_page)
1661 		goto out_fail;
1662 
1663 	page_nid_xchg_last(new_page, page_nid_last(page));
1664 
1665 	isolated = numamigrate_isolate_page(pgdat, page);
1666 	if (!isolated) {
1667 		put_page(new_page);
1668 		goto out_fail;
1669 	}
1670 
1671 	/* Prepare a page as a migration target */
1672 	__set_page_locked(new_page);
1673 	SetPageSwapBacked(new_page);
1674 
1675 	/* anon mapping, we can simply copy page->mapping to the new page: */
1676 	new_page->mapping = page->mapping;
1677 	new_page->index = page->index;
1678 	migrate_page_copy(new_page, page);
1679 	WARN_ON(PageLRU(new_page));
1680 
1681 	/* Recheck the target PMD */
1682 	spin_lock(&mm->page_table_lock);
1683 	if (unlikely(!pmd_same(*pmd, entry))) {
1684 		spin_unlock(&mm->page_table_lock);
1685 
1686 		/* Reverse changes made by migrate_page_copy() */
1687 		if (TestClearPageActive(new_page))
1688 			SetPageActive(page);
1689 		if (TestClearPageUnevictable(new_page))
1690 			SetPageUnevictable(page);
1691 		mlock_migrate_page(page, new_page);
1692 
1693 		unlock_page(new_page);
1694 		put_page(new_page);		/* Free it */
1695 
1696 		unlock_page(page);
1697 		putback_lru_page(page);
1698 
1699 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1700 		isolated = 0;
1701 		goto out;
1702 	}
1703 
1704 	/*
1705 	 * Traditional migration needs to prepare the memcg charge
1706 	 * transaction early to prevent the old page from being
1707 	 * uncharged when installing migration entries.  Here we can
1708 	 * save the potential rollback and start the charge transfer
1709 	 * only when migration is already known to end successfully.
1710 	 */
1711 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1712 
1713 	entry = mk_pmd(new_page, vma->vm_page_prot);
1714 	entry = pmd_mknonnuma(entry);
1715 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1716 	entry = pmd_mkhuge(entry);
1717 
1718 	page_add_new_anon_rmap(new_page, vma, haddr);
1719 
1720 	set_pmd_at(mm, haddr, pmd, entry);
1721 	update_mmu_cache_pmd(vma, address, &entry);
1722 	page_remove_rmap(page);
1723 	/*
1724 	 * Finish the charge transaction under the page table lock to
1725 	 * prevent split_huge_page() from dividing up the charge
1726 	 * before it's fully transferred to the new page.
1727 	 */
1728 	mem_cgroup_end_migration(memcg, page, new_page, true);
1729 	spin_unlock(&mm->page_table_lock);
1730 
1731 	unlock_page(new_page);
1732 	unlock_page(page);
1733 	put_page(page);			/* Drop the rmap reference */
1734 	put_page(page);			/* Drop the LRU isolation reference */
1735 
1736 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1737 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1738 
1739 out:
1740 	mod_zone_page_state(page_zone(page),
1741 			NR_ISOLATED_ANON + page_lru,
1742 			-HPAGE_PMD_NR);
1743 	return isolated;
1744 
1745 out_fail:
1746 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1747 out_dropref:
1748 	unlock_page(page);
1749 	put_page(page);
1750 	return 0;
1751 }
1752 #endif /* CONFIG_NUMA_BALANCING */
1753 
1754 #endif /* CONFIG_NUMA */
1755