1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 50 #include <asm/tlbflush.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/migrate.h> 54 55 #include "internal.h" 56 57 /* 58 * migrate_prep() needs to be called before we start compiling a list of pages 59 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 60 * undesirable, use migrate_prep_local() 61 */ 62 int migrate_prep(void) 63 { 64 /* 65 * Clear the LRU lists so pages can be isolated. 66 * Note that pages may be moved off the LRU after we have 67 * drained them. Those pages will fail to migrate like other 68 * pages that may be busy. 69 */ 70 lru_add_drain_all(); 71 72 return 0; 73 } 74 75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 76 int migrate_prep_local(void) 77 { 78 lru_add_drain(); 79 80 return 0; 81 } 82 83 int isolate_movable_page(struct page *page, isolate_mode_t mode) 84 { 85 struct address_space *mapping; 86 87 /* 88 * Avoid burning cycles with pages that are yet under __free_pages(), 89 * or just got freed under us. 90 * 91 * In case we 'win' a race for a movable page being freed under us and 92 * raise its refcount preventing __free_pages() from doing its job 93 * the put_page() at the end of this block will take care of 94 * release this page, thus avoiding a nasty leakage. 95 */ 96 if (unlikely(!get_page_unless_zero(page))) 97 goto out; 98 99 /* 100 * Check PageMovable before holding a PG_lock because page's owner 101 * assumes anybody doesn't touch PG_lock of newly allocated page 102 * so unconditionally grapping the lock ruins page's owner side. 103 */ 104 if (unlikely(!__PageMovable(page))) 105 goto out_putpage; 106 /* 107 * As movable pages are not isolated from LRU lists, concurrent 108 * compaction threads can race against page migration functions 109 * as well as race against the releasing a page. 110 * 111 * In order to avoid having an already isolated movable page 112 * being (wrongly) re-isolated while it is under migration, 113 * or to avoid attempting to isolate pages being released, 114 * lets be sure we have the page lock 115 * before proceeding with the movable page isolation steps. 116 */ 117 if (unlikely(!trylock_page(page))) 118 goto out_putpage; 119 120 if (!PageMovable(page) || PageIsolated(page)) 121 goto out_no_isolated; 122 123 mapping = page_mapping(page); 124 VM_BUG_ON_PAGE(!mapping, page); 125 126 if (!mapping->a_ops->isolate_page(page, mode)) 127 goto out_no_isolated; 128 129 /* Driver shouldn't use PG_isolated bit of page->flags */ 130 WARN_ON_ONCE(PageIsolated(page)); 131 __SetPageIsolated(page); 132 unlock_page(page); 133 134 return 0; 135 136 out_no_isolated: 137 unlock_page(page); 138 out_putpage: 139 put_page(page); 140 out: 141 return -EBUSY; 142 } 143 144 /* It should be called on page which is PG_movable */ 145 void putback_movable_page(struct page *page) 146 { 147 struct address_space *mapping; 148 149 VM_BUG_ON_PAGE(!PageLocked(page), page); 150 VM_BUG_ON_PAGE(!PageMovable(page), page); 151 VM_BUG_ON_PAGE(!PageIsolated(page), page); 152 153 mapping = page_mapping(page); 154 mapping->a_ops->putback_page(page); 155 __ClearPageIsolated(page); 156 } 157 158 /* 159 * Put previously isolated pages back onto the appropriate lists 160 * from where they were once taken off for compaction/migration. 161 * 162 * This function shall be used whenever the isolated pageset has been 163 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 164 * and isolate_huge_page(). 165 */ 166 void putback_movable_pages(struct list_head *l) 167 { 168 struct page *page; 169 struct page *page2; 170 171 list_for_each_entry_safe(page, page2, l, lru) { 172 if (unlikely(PageHuge(page))) { 173 putback_active_hugepage(page); 174 continue; 175 } 176 list_del(&page->lru); 177 /* 178 * We isolated non-lru movable page so here we can use 179 * __PageMovable because LRU page's mapping cannot have 180 * PAGE_MAPPING_MOVABLE. 181 */ 182 if (unlikely(__PageMovable(page))) { 183 VM_BUG_ON_PAGE(!PageIsolated(page), page); 184 lock_page(page); 185 if (PageMovable(page)) 186 putback_movable_page(page); 187 else 188 __ClearPageIsolated(page); 189 unlock_page(page); 190 put_page(page); 191 } else { 192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 193 page_is_file_cache(page), -hpage_nr_pages(page)); 194 putback_lru_page(page); 195 } 196 } 197 } 198 199 /* 200 * Restore a potential migration pte to a working pte entry 201 */ 202 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 203 unsigned long addr, void *old) 204 { 205 struct page_vma_mapped_walk pvmw = { 206 .page = old, 207 .vma = vma, 208 .address = addr, 209 .flags = PVMW_SYNC | PVMW_MIGRATION, 210 }; 211 struct page *new; 212 pte_t pte; 213 swp_entry_t entry; 214 215 VM_BUG_ON_PAGE(PageTail(page), page); 216 while (page_vma_mapped_walk(&pvmw)) { 217 if (PageKsm(page)) 218 new = page; 219 else 220 new = page - pvmw.page->index + 221 linear_page_index(vma, pvmw.address); 222 223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 224 /* PMD-mapped THP migration entry */ 225 if (!pvmw.pte) { 226 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 227 remove_migration_pmd(&pvmw, new); 228 continue; 229 } 230 #endif 231 232 get_page(new); 233 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 234 if (pte_swp_soft_dirty(*pvmw.pte)) 235 pte = pte_mksoft_dirty(pte); 236 237 /* 238 * Recheck VMA as permissions can change since migration started 239 */ 240 entry = pte_to_swp_entry(*pvmw.pte); 241 if (is_write_migration_entry(entry)) 242 pte = maybe_mkwrite(pte, vma); 243 244 if (unlikely(is_zone_device_page(new))) { 245 if (is_device_private_page(new)) { 246 entry = make_device_private_entry(new, pte_write(pte)); 247 pte = swp_entry_to_pte(entry); 248 } else if (is_device_public_page(new)) { 249 pte = pte_mkdevmap(pte); 250 flush_dcache_page(new); 251 } 252 } else 253 flush_dcache_page(new); 254 255 #ifdef CONFIG_HUGETLB_PAGE 256 if (PageHuge(new)) { 257 pte = pte_mkhuge(pte); 258 pte = arch_make_huge_pte(pte, vma, new, 0); 259 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 260 if (PageAnon(new)) 261 hugepage_add_anon_rmap(new, vma, pvmw.address); 262 else 263 page_dup_rmap(new, true); 264 } else 265 #endif 266 { 267 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 268 269 if (PageAnon(new)) 270 page_add_anon_rmap(new, vma, pvmw.address, false); 271 else 272 page_add_file_rmap(new, false); 273 } 274 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 275 mlock_vma_page(new); 276 277 /* No need to invalidate - it was non-present before */ 278 update_mmu_cache(vma, pvmw.address, pvmw.pte); 279 } 280 281 return true; 282 } 283 284 /* 285 * Get rid of all migration entries and replace them by 286 * references to the indicated page. 287 */ 288 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 289 { 290 struct rmap_walk_control rwc = { 291 .rmap_one = remove_migration_pte, 292 .arg = old, 293 }; 294 295 if (locked) 296 rmap_walk_locked(new, &rwc); 297 else 298 rmap_walk(new, &rwc); 299 } 300 301 /* 302 * Something used the pte of a page under migration. We need to 303 * get to the page and wait until migration is finished. 304 * When we return from this function the fault will be retried. 305 */ 306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 307 spinlock_t *ptl) 308 { 309 pte_t pte; 310 swp_entry_t entry; 311 struct page *page; 312 313 spin_lock(ptl); 314 pte = *ptep; 315 if (!is_swap_pte(pte)) 316 goto out; 317 318 entry = pte_to_swp_entry(pte); 319 if (!is_migration_entry(entry)) 320 goto out; 321 322 page = migration_entry_to_page(entry); 323 324 /* 325 * Once radix-tree replacement of page migration started, page_count 326 * *must* be zero. And, we don't want to call wait_on_page_locked() 327 * against a page without get_page(). 328 * So, we use get_page_unless_zero(), here. Even failed, page fault 329 * will occur again. 330 */ 331 if (!get_page_unless_zero(page)) 332 goto out; 333 pte_unmap_unlock(ptep, ptl); 334 wait_on_page_locked(page); 335 put_page(page); 336 return; 337 out: 338 pte_unmap_unlock(ptep, ptl); 339 } 340 341 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 342 unsigned long address) 343 { 344 spinlock_t *ptl = pte_lockptr(mm, pmd); 345 pte_t *ptep = pte_offset_map(pmd, address); 346 __migration_entry_wait(mm, ptep, ptl); 347 } 348 349 void migration_entry_wait_huge(struct vm_area_struct *vma, 350 struct mm_struct *mm, pte_t *pte) 351 { 352 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 353 __migration_entry_wait(mm, pte, ptl); 354 } 355 356 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 357 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 358 { 359 spinlock_t *ptl; 360 struct page *page; 361 362 ptl = pmd_lock(mm, pmd); 363 if (!is_pmd_migration_entry(*pmd)) 364 goto unlock; 365 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 366 if (!get_page_unless_zero(page)) 367 goto unlock; 368 spin_unlock(ptl); 369 wait_on_page_locked(page); 370 put_page(page); 371 return; 372 unlock: 373 spin_unlock(ptl); 374 } 375 #endif 376 377 #ifdef CONFIG_BLOCK 378 /* Returns true if all buffers are successfully locked */ 379 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 380 enum migrate_mode mode) 381 { 382 struct buffer_head *bh = head; 383 384 /* Simple case, sync compaction */ 385 if (mode != MIGRATE_ASYNC) { 386 do { 387 get_bh(bh); 388 lock_buffer(bh); 389 bh = bh->b_this_page; 390 391 } while (bh != head); 392 393 return true; 394 } 395 396 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 397 do { 398 get_bh(bh); 399 if (!trylock_buffer(bh)) { 400 /* 401 * We failed to lock the buffer and cannot stall in 402 * async migration. Release the taken locks 403 */ 404 struct buffer_head *failed_bh = bh; 405 put_bh(failed_bh); 406 bh = head; 407 while (bh != failed_bh) { 408 unlock_buffer(bh); 409 put_bh(bh); 410 bh = bh->b_this_page; 411 } 412 return false; 413 } 414 415 bh = bh->b_this_page; 416 } while (bh != head); 417 return true; 418 } 419 #else 420 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 421 enum migrate_mode mode) 422 { 423 return true; 424 } 425 #endif /* CONFIG_BLOCK */ 426 427 /* 428 * Replace the page in the mapping. 429 * 430 * The number of remaining references must be: 431 * 1 for anonymous pages without a mapping 432 * 2 for pages with a mapping 433 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 434 */ 435 int migrate_page_move_mapping(struct address_space *mapping, 436 struct page *newpage, struct page *page, 437 struct buffer_head *head, enum migrate_mode mode, 438 int extra_count) 439 { 440 struct zone *oldzone, *newzone; 441 int dirty; 442 int expected_count = 1 + extra_count; 443 void **pslot; 444 445 /* 446 * Device public or private pages have an extra refcount as they are 447 * ZONE_DEVICE pages. 448 */ 449 expected_count += is_device_private_page(page); 450 expected_count += is_device_public_page(page); 451 452 if (!mapping) { 453 /* Anonymous page without mapping */ 454 if (page_count(page) != expected_count) 455 return -EAGAIN; 456 457 /* No turning back from here */ 458 newpage->index = page->index; 459 newpage->mapping = page->mapping; 460 if (PageSwapBacked(page)) 461 __SetPageSwapBacked(newpage); 462 463 return MIGRATEPAGE_SUCCESS; 464 } 465 466 oldzone = page_zone(page); 467 newzone = page_zone(newpage); 468 469 spin_lock_irq(&mapping->tree_lock); 470 471 pslot = radix_tree_lookup_slot(&mapping->page_tree, 472 page_index(page)); 473 474 expected_count += 1 + page_has_private(page); 475 if (page_count(page) != expected_count || 476 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 477 spin_unlock_irq(&mapping->tree_lock); 478 return -EAGAIN; 479 } 480 481 if (!page_ref_freeze(page, expected_count)) { 482 spin_unlock_irq(&mapping->tree_lock); 483 return -EAGAIN; 484 } 485 486 /* 487 * In the async migration case of moving a page with buffers, lock the 488 * buffers using trylock before the mapping is moved. If the mapping 489 * was moved, we later failed to lock the buffers and could not move 490 * the mapping back due to an elevated page count, we would have to 491 * block waiting on other references to be dropped. 492 */ 493 if (mode == MIGRATE_ASYNC && head && 494 !buffer_migrate_lock_buffers(head, mode)) { 495 page_ref_unfreeze(page, expected_count); 496 spin_unlock_irq(&mapping->tree_lock); 497 return -EAGAIN; 498 } 499 500 /* 501 * Now we know that no one else is looking at the page: 502 * no turning back from here. 503 */ 504 newpage->index = page->index; 505 newpage->mapping = page->mapping; 506 get_page(newpage); /* add cache reference */ 507 if (PageSwapBacked(page)) { 508 __SetPageSwapBacked(newpage); 509 if (PageSwapCache(page)) { 510 SetPageSwapCache(newpage); 511 set_page_private(newpage, page_private(page)); 512 } 513 } else { 514 VM_BUG_ON_PAGE(PageSwapCache(page), page); 515 } 516 517 /* Move dirty while page refs frozen and newpage not yet exposed */ 518 dirty = PageDirty(page); 519 if (dirty) { 520 ClearPageDirty(page); 521 SetPageDirty(newpage); 522 } 523 524 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 525 526 /* 527 * Drop cache reference from old page by unfreezing 528 * to one less reference. 529 * We know this isn't the last reference. 530 */ 531 page_ref_unfreeze(page, expected_count - 1); 532 533 spin_unlock(&mapping->tree_lock); 534 /* Leave irq disabled to prevent preemption while updating stats */ 535 536 /* 537 * If moved to a different zone then also account 538 * the page for that zone. Other VM counters will be 539 * taken care of when we establish references to the 540 * new page and drop references to the old page. 541 * 542 * Note that anonymous pages are accounted for 543 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 544 * are mapped to swap space. 545 */ 546 if (newzone != oldzone) { 547 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 548 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 549 if (PageSwapBacked(page) && !PageSwapCache(page)) { 550 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 551 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 552 } 553 if (dirty && mapping_cap_account_dirty(mapping)) { 554 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 555 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 556 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 557 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 558 } 559 } 560 local_irq_enable(); 561 562 return MIGRATEPAGE_SUCCESS; 563 } 564 EXPORT_SYMBOL(migrate_page_move_mapping); 565 566 /* 567 * The expected number of remaining references is the same as that 568 * of migrate_page_move_mapping(). 569 */ 570 int migrate_huge_page_move_mapping(struct address_space *mapping, 571 struct page *newpage, struct page *page) 572 { 573 int expected_count; 574 void **pslot; 575 576 spin_lock_irq(&mapping->tree_lock); 577 578 pslot = radix_tree_lookup_slot(&mapping->page_tree, 579 page_index(page)); 580 581 expected_count = 2 + page_has_private(page); 582 if (page_count(page) != expected_count || 583 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 584 spin_unlock_irq(&mapping->tree_lock); 585 return -EAGAIN; 586 } 587 588 if (!page_ref_freeze(page, expected_count)) { 589 spin_unlock_irq(&mapping->tree_lock); 590 return -EAGAIN; 591 } 592 593 newpage->index = page->index; 594 newpage->mapping = page->mapping; 595 596 get_page(newpage); 597 598 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 599 600 page_ref_unfreeze(page, expected_count - 1); 601 602 spin_unlock_irq(&mapping->tree_lock); 603 604 return MIGRATEPAGE_SUCCESS; 605 } 606 607 /* 608 * Gigantic pages are so large that we do not guarantee that page++ pointer 609 * arithmetic will work across the entire page. We need something more 610 * specialized. 611 */ 612 static void __copy_gigantic_page(struct page *dst, struct page *src, 613 int nr_pages) 614 { 615 int i; 616 struct page *dst_base = dst; 617 struct page *src_base = src; 618 619 for (i = 0; i < nr_pages; ) { 620 cond_resched(); 621 copy_highpage(dst, src); 622 623 i++; 624 dst = mem_map_next(dst, dst_base, i); 625 src = mem_map_next(src, src_base, i); 626 } 627 } 628 629 static void copy_huge_page(struct page *dst, struct page *src) 630 { 631 int i; 632 int nr_pages; 633 634 if (PageHuge(src)) { 635 /* hugetlbfs page */ 636 struct hstate *h = page_hstate(src); 637 nr_pages = pages_per_huge_page(h); 638 639 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 640 __copy_gigantic_page(dst, src, nr_pages); 641 return; 642 } 643 } else { 644 /* thp page */ 645 BUG_ON(!PageTransHuge(src)); 646 nr_pages = hpage_nr_pages(src); 647 } 648 649 for (i = 0; i < nr_pages; i++) { 650 cond_resched(); 651 copy_highpage(dst + i, src + i); 652 } 653 } 654 655 /* 656 * Copy the page to its new location 657 */ 658 void migrate_page_states(struct page *newpage, struct page *page) 659 { 660 int cpupid; 661 662 if (PageError(page)) 663 SetPageError(newpage); 664 if (PageReferenced(page)) 665 SetPageReferenced(newpage); 666 if (PageUptodate(page)) 667 SetPageUptodate(newpage); 668 if (TestClearPageActive(page)) { 669 VM_BUG_ON_PAGE(PageUnevictable(page), page); 670 SetPageActive(newpage); 671 } else if (TestClearPageUnevictable(page)) 672 SetPageUnevictable(newpage); 673 if (PageChecked(page)) 674 SetPageChecked(newpage); 675 if (PageMappedToDisk(page)) 676 SetPageMappedToDisk(newpage); 677 678 /* Move dirty on pages not done by migrate_page_move_mapping() */ 679 if (PageDirty(page)) 680 SetPageDirty(newpage); 681 682 if (page_is_young(page)) 683 set_page_young(newpage); 684 if (page_is_idle(page)) 685 set_page_idle(newpage); 686 687 /* 688 * Copy NUMA information to the new page, to prevent over-eager 689 * future migrations of this same page. 690 */ 691 cpupid = page_cpupid_xchg_last(page, -1); 692 page_cpupid_xchg_last(newpage, cpupid); 693 694 ksm_migrate_page(newpage, page); 695 /* 696 * Please do not reorder this without considering how mm/ksm.c's 697 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 698 */ 699 if (PageSwapCache(page)) 700 ClearPageSwapCache(page); 701 ClearPagePrivate(page); 702 set_page_private(page, 0); 703 704 /* 705 * If any waiters have accumulated on the new page then 706 * wake them up. 707 */ 708 if (PageWriteback(newpage)) 709 end_page_writeback(newpage); 710 711 copy_page_owner(page, newpage); 712 713 mem_cgroup_migrate(page, newpage); 714 } 715 EXPORT_SYMBOL(migrate_page_states); 716 717 void migrate_page_copy(struct page *newpage, struct page *page) 718 { 719 if (PageHuge(page) || PageTransHuge(page)) 720 copy_huge_page(newpage, page); 721 else 722 copy_highpage(newpage, page); 723 724 migrate_page_states(newpage, page); 725 } 726 EXPORT_SYMBOL(migrate_page_copy); 727 728 /************************************************************ 729 * Migration functions 730 ***********************************************************/ 731 732 /* 733 * Common logic to directly migrate a single LRU page suitable for 734 * pages that do not use PagePrivate/PagePrivate2. 735 * 736 * Pages are locked upon entry and exit. 737 */ 738 int migrate_page(struct address_space *mapping, 739 struct page *newpage, struct page *page, 740 enum migrate_mode mode) 741 { 742 int rc; 743 744 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 745 746 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 747 748 if (rc != MIGRATEPAGE_SUCCESS) 749 return rc; 750 751 if (mode != MIGRATE_SYNC_NO_COPY) 752 migrate_page_copy(newpage, page); 753 else 754 migrate_page_states(newpage, page); 755 return MIGRATEPAGE_SUCCESS; 756 } 757 EXPORT_SYMBOL(migrate_page); 758 759 #ifdef CONFIG_BLOCK 760 /* 761 * Migration function for pages with buffers. This function can only be used 762 * if the underlying filesystem guarantees that no other references to "page" 763 * exist. 764 */ 765 int buffer_migrate_page(struct address_space *mapping, 766 struct page *newpage, struct page *page, enum migrate_mode mode) 767 { 768 struct buffer_head *bh, *head; 769 int rc; 770 771 if (!page_has_buffers(page)) 772 return migrate_page(mapping, newpage, page, mode); 773 774 head = page_buffers(page); 775 776 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 777 778 if (rc != MIGRATEPAGE_SUCCESS) 779 return rc; 780 781 /* 782 * In the async case, migrate_page_move_mapping locked the buffers 783 * with an IRQ-safe spinlock held. In the sync case, the buffers 784 * need to be locked now 785 */ 786 if (mode != MIGRATE_ASYNC) 787 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 788 789 ClearPagePrivate(page); 790 set_page_private(newpage, page_private(page)); 791 set_page_private(page, 0); 792 put_page(page); 793 get_page(newpage); 794 795 bh = head; 796 do { 797 set_bh_page(bh, newpage, bh_offset(bh)); 798 bh = bh->b_this_page; 799 800 } while (bh != head); 801 802 SetPagePrivate(newpage); 803 804 if (mode != MIGRATE_SYNC_NO_COPY) 805 migrate_page_copy(newpage, page); 806 else 807 migrate_page_states(newpage, page); 808 809 bh = head; 810 do { 811 unlock_buffer(bh); 812 put_bh(bh); 813 bh = bh->b_this_page; 814 815 } while (bh != head); 816 817 return MIGRATEPAGE_SUCCESS; 818 } 819 EXPORT_SYMBOL(buffer_migrate_page); 820 #endif 821 822 /* 823 * Writeback a page to clean the dirty state 824 */ 825 static int writeout(struct address_space *mapping, struct page *page) 826 { 827 struct writeback_control wbc = { 828 .sync_mode = WB_SYNC_NONE, 829 .nr_to_write = 1, 830 .range_start = 0, 831 .range_end = LLONG_MAX, 832 .for_reclaim = 1 833 }; 834 int rc; 835 836 if (!mapping->a_ops->writepage) 837 /* No write method for the address space */ 838 return -EINVAL; 839 840 if (!clear_page_dirty_for_io(page)) 841 /* Someone else already triggered a write */ 842 return -EAGAIN; 843 844 /* 845 * A dirty page may imply that the underlying filesystem has 846 * the page on some queue. So the page must be clean for 847 * migration. Writeout may mean we loose the lock and the 848 * page state is no longer what we checked for earlier. 849 * At this point we know that the migration attempt cannot 850 * be successful. 851 */ 852 remove_migration_ptes(page, page, false); 853 854 rc = mapping->a_ops->writepage(page, &wbc); 855 856 if (rc != AOP_WRITEPAGE_ACTIVATE) 857 /* unlocked. Relock */ 858 lock_page(page); 859 860 return (rc < 0) ? -EIO : -EAGAIN; 861 } 862 863 /* 864 * Default handling if a filesystem does not provide a migration function. 865 */ 866 static int fallback_migrate_page(struct address_space *mapping, 867 struct page *newpage, struct page *page, enum migrate_mode mode) 868 { 869 if (PageDirty(page)) { 870 /* Only writeback pages in full synchronous migration */ 871 switch (mode) { 872 case MIGRATE_SYNC: 873 case MIGRATE_SYNC_NO_COPY: 874 break; 875 default: 876 return -EBUSY; 877 } 878 return writeout(mapping, page); 879 } 880 881 /* 882 * Buffers may be managed in a filesystem specific way. 883 * We must have no buffers or drop them. 884 */ 885 if (page_has_private(page) && 886 !try_to_release_page(page, GFP_KERNEL)) 887 return -EAGAIN; 888 889 return migrate_page(mapping, newpage, page, mode); 890 } 891 892 /* 893 * Move a page to a newly allocated page 894 * The page is locked and all ptes have been successfully removed. 895 * 896 * The new page will have replaced the old page if this function 897 * is successful. 898 * 899 * Return value: 900 * < 0 - error code 901 * MIGRATEPAGE_SUCCESS - success 902 */ 903 static int move_to_new_page(struct page *newpage, struct page *page, 904 enum migrate_mode mode) 905 { 906 struct address_space *mapping; 907 int rc = -EAGAIN; 908 bool is_lru = !__PageMovable(page); 909 910 VM_BUG_ON_PAGE(!PageLocked(page), page); 911 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 912 913 mapping = page_mapping(page); 914 915 if (likely(is_lru)) { 916 if (!mapping) 917 rc = migrate_page(mapping, newpage, page, mode); 918 else if (mapping->a_ops->migratepage) 919 /* 920 * Most pages have a mapping and most filesystems 921 * provide a migratepage callback. Anonymous pages 922 * are part of swap space which also has its own 923 * migratepage callback. This is the most common path 924 * for page migration. 925 */ 926 rc = mapping->a_ops->migratepage(mapping, newpage, 927 page, mode); 928 else 929 rc = fallback_migrate_page(mapping, newpage, 930 page, mode); 931 } else { 932 /* 933 * In case of non-lru page, it could be released after 934 * isolation step. In that case, we shouldn't try migration. 935 */ 936 VM_BUG_ON_PAGE(!PageIsolated(page), page); 937 if (!PageMovable(page)) { 938 rc = MIGRATEPAGE_SUCCESS; 939 __ClearPageIsolated(page); 940 goto out; 941 } 942 943 rc = mapping->a_ops->migratepage(mapping, newpage, 944 page, mode); 945 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 946 !PageIsolated(page)); 947 } 948 949 /* 950 * When successful, old pagecache page->mapping must be cleared before 951 * page is freed; but stats require that PageAnon be left as PageAnon. 952 */ 953 if (rc == MIGRATEPAGE_SUCCESS) { 954 if (__PageMovable(page)) { 955 VM_BUG_ON_PAGE(!PageIsolated(page), page); 956 957 /* 958 * We clear PG_movable under page_lock so any compactor 959 * cannot try to migrate this page. 960 */ 961 __ClearPageIsolated(page); 962 } 963 964 /* 965 * Anonymous and movable page->mapping will be cleard by 966 * free_pages_prepare so don't reset it here for keeping 967 * the type to work PageAnon, for example. 968 */ 969 if (!PageMappingFlags(page)) 970 page->mapping = NULL; 971 } 972 out: 973 return rc; 974 } 975 976 static int __unmap_and_move(struct page *page, struct page *newpage, 977 int force, enum migrate_mode mode) 978 { 979 int rc = -EAGAIN; 980 int page_was_mapped = 0; 981 struct anon_vma *anon_vma = NULL; 982 bool is_lru = !__PageMovable(page); 983 984 if (!trylock_page(page)) { 985 if (!force || mode == MIGRATE_ASYNC) 986 goto out; 987 988 /* 989 * It's not safe for direct compaction to call lock_page. 990 * For example, during page readahead pages are added locked 991 * to the LRU. Later, when the IO completes the pages are 992 * marked uptodate and unlocked. However, the queueing 993 * could be merging multiple pages for one bio (e.g. 994 * mpage_readpages). If an allocation happens for the 995 * second or third page, the process can end up locking 996 * the same page twice and deadlocking. Rather than 997 * trying to be clever about what pages can be locked, 998 * avoid the use of lock_page for direct compaction 999 * altogether. 1000 */ 1001 if (current->flags & PF_MEMALLOC) 1002 goto out; 1003 1004 lock_page(page); 1005 } 1006 1007 if (PageWriteback(page)) { 1008 /* 1009 * Only in the case of a full synchronous migration is it 1010 * necessary to wait for PageWriteback. In the async case, 1011 * the retry loop is too short and in the sync-light case, 1012 * the overhead of stalling is too much 1013 */ 1014 switch (mode) { 1015 case MIGRATE_SYNC: 1016 case MIGRATE_SYNC_NO_COPY: 1017 break; 1018 default: 1019 rc = -EBUSY; 1020 goto out_unlock; 1021 } 1022 if (!force) 1023 goto out_unlock; 1024 wait_on_page_writeback(page); 1025 } 1026 1027 /* 1028 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1029 * we cannot notice that anon_vma is freed while we migrates a page. 1030 * This get_anon_vma() delays freeing anon_vma pointer until the end 1031 * of migration. File cache pages are no problem because of page_lock() 1032 * File Caches may use write_page() or lock_page() in migration, then, 1033 * just care Anon page here. 1034 * 1035 * Only page_get_anon_vma() understands the subtleties of 1036 * getting a hold on an anon_vma from outside one of its mms. 1037 * But if we cannot get anon_vma, then we won't need it anyway, 1038 * because that implies that the anon page is no longer mapped 1039 * (and cannot be remapped so long as we hold the page lock). 1040 */ 1041 if (PageAnon(page) && !PageKsm(page)) 1042 anon_vma = page_get_anon_vma(page); 1043 1044 /* 1045 * Block others from accessing the new page when we get around to 1046 * establishing additional references. We are usually the only one 1047 * holding a reference to newpage at this point. We used to have a BUG 1048 * here if trylock_page(newpage) fails, but would like to allow for 1049 * cases where there might be a race with the previous use of newpage. 1050 * This is much like races on refcount of oldpage: just don't BUG(). 1051 */ 1052 if (unlikely(!trylock_page(newpage))) 1053 goto out_unlock; 1054 1055 if (unlikely(!is_lru)) { 1056 rc = move_to_new_page(newpage, page, mode); 1057 goto out_unlock_both; 1058 } 1059 1060 /* 1061 * Corner case handling: 1062 * 1. When a new swap-cache page is read into, it is added to the LRU 1063 * and treated as swapcache but it has no rmap yet. 1064 * Calling try_to_unmap() against a page->mapping==NULL page will 1065 * trigger a BUG. So handle it here. 1066 * 2. An orphaned page (see truncate_complete_page) might have 1067 * fs-private metadata. The page can be picked up due to memory 1068 * offlining. Everywhere else except page reclaim, the page is 1069 * invisible to the vm, so the page can not be migrated. So try to 1070 * free the metadata, so the page can be freed. 1071 */ 1072 if (!page->mapping) { 1073 VM_BUG_ON_PAGE(PageAnon(page), page); 1074 if (page_has_private(page)) { 1075 try_to_free_buffers(page); 1076 goto out_unlock_both; 1077 } 1078 } else if (page_mapped(page)) { 1079 /* Establish migration ptes */ 1080 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1081 page); 1082 try_to_unmap(page, 1083 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1084 page_was_mapped = 1; 1085 } 1086 1087 if (!page_mapped(page)) 1088 rc = move_to_new_page(newpage, page, mode); 1089 1090 if (page_was_mapped) 1091 remove_migration_ptes(page, 1092 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1093 1094 out_unlock_both: 1095 unlock_page(newpage); 1096 out_unlock: 1097 /* Drop an anon_vma reference if we took one */ 1098 if (anon_vma) 1099 put_anon_vma(anon_vma); 1100 unlock_page(page); 1101 out: 1102 /* 1103 * If migration is successful, decrease refcount of the newpage 1104 * which will not free the page because new page owner increased 1105 * refcounter. As well, if it is LRU page, add the page to LRU 1106 * list in here. 1107 */ 1108 if (rc == MIGRATEPAGE_SUCCESS) { 1109 if (unlikely(__PageMovable(newpage))) 1110 put_page(newpage); 1111 else 1112 putback_lru_page(newpage); 1113 } 1114 1115 return rc; 1116 } 1117 1118 /* 1119 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1120 * around it. 1121 */ 1122 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1123 #define ICE_noinline noinline 1124 #else 1125 #define ICE_noinline 1126 #endif 1127 1128 /* 1129 * Obtain the lock on page, remove all ptes and migrate the page 1130 * to the newly allocated page in newpage. 1131 */ 1132 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1133 free_page_t put_new_page, 1134 unsigned long private, struct page *page, 1135 int force, enum migrate_mode mode, 1136 enum migrate_reason reason) 1137 { 1138 int rc = MIGRATEPAGE_SUCCESS; 1139 int *result = NULL; 1140 struct page *newpage; 1141 1142 newpage = get_new_page(page, private, &result); 1143 if (!newpage) 1144 return -ENOMEM; 1145 1146 if (page_count(page) == 1) { 1147 /* page was freed from under us. So we are done. */ 1148 ClearPageActive(page); 1149 ClearPageUnevictable(page); 1150 if (unlikely(__PageMovable(page))) { 1151 lock_page(page); 1152 if (!PageMovable(page)) 1153 __ClearPageIsolated(page); 1154 unlock_page(page); 1155 } 1156 if (put_new_page) 1157 put_new_page(newpage, private); 1158 else 1159 put_page(newpage); 1160 goto out; 1161 } 1162 1163 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) { 1164 lock_page(page); 1165 rc = split_huge_page(page); 1166 unlock_page(page); 1167 if (rc) 1168 goto out; 1169 } 1170 1171 rc = __unmap_and_move(page, newpage, force, mode); 1172 if (rc == MIGRATEPAGE_SUCCESS) 1173 set_page_owner_migrate_reason(newpage, reason); 1174 1175 out: 1176 if (rc != -EAGAIN) { 1177 /* 1178 * A page that has been migrated has all references 1179 * removed and will be freed. A page that has not been 1180 * migrated will have kepts its references and be 1181 * restored. 1182 */ 1183 list_del(&page->lru); 1184 1185 /* 1186 * Compaction can migrate also non-LRU pages which are 1187 * not accounted to NR_ISOLATED_*. They can be recognized 1188 * as __PageMovable 1189 */ 1190 if (likely(!__PageMovable(page))) 1191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1192 page_is_file_cache(page), -hpage_nr_pages(page)); 1193 } 1194 1195 /* 1196 * If migration is successful, releases reference grabbed during 1197 * isolation. Otherwise, restore the page to right list unless 1198 * we want to retry. 1199 */ 1200 if (rc == MIGRATEPAGE_SUCCESS) { 1201 put_page(page); 1202 if (reason == MR_MEMORY_FAILURE) { 1203 /* 1204 * Set PG_HWPoison on just freed page 1205 * intentionally. Although it's rather weird, 1206 * it's how HWPoison flag works at the moment. 1207 */ 1208 if (!test_set_page_hwpoison(page)) 1209 num_poisoned_pages_inc(); 1210 } 1211 } else { 1212 if (rc != -EAGAIN) { 1213 if (likely(!__PageMovable(page))) { 1214 putback_lru_page(page); 1215 goto put_new; 1216 } 1217 1218 lock_page(page); 1219 if (PageMovable(page)) 1220 putback_movable_page(page); 1221 else 1222 __ClearPageIsolated(page); 1223 unlock_page(page); 1224 put_page(page); 1225 } 1226 put_new: 1227 if (put_new_page) 1228 put_new_page(newpage, private); 1229 else 1230 put_page(newpage); 1231 } 1232 1233 if (result) { 1234 if (rc) 1235 *result = rc; 1236 else 1237 *result = page_to_nid(newpage); 1238 } 1239 return rc; 1240 } 1241 1242 /* 1243 * Counterpart of unmap_and_move_page() for hugepage migration. 1244 * 1245 * This function doesn't wait the completion of hugepage I/O 1246 * because there is no race between I/O and migration for hugepage. 1247 * Note that currently hugepage I/O occurs only in direct I/O 1248 * where no lock is held and PG_writeback is irrelevant, 1249 * and writeback status of all subpages are counted in the reference 1250 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1251 * under direct I/O, the reference of the head page is 512 and a bit more.) 1252 * This means that when we try to migrate hugepage whose subpages are 1253 * doing direct I/O, some references remain after try_to_unmap() and 1254 * hugepage migration fails without data corruption. 1255 * 1256 * There is also no race when direct I/O is issued on the page under migration, 1257 * because then pte is replaced with migration swap entry and direct I/O code 1258 * will wait in the page fault for migration to complete. 1259 */ 1260 static int unmap_and_move_huge_page(new_page_t get_new_page, 1261 free_page_t put_new_page, unsigned long private, 1262 struct page *hpage, int force, 1263 enum migrate_mode mode, int reason) 1264 { 1265 int rc = -EAGAIN; 1266 int *result = NULL; 1267 int page_was_mapped = 0; 1268 struct page *new_hpage; 1269 struct anon_vma *anon_vma = NULL; 1270 1271 /* 1272 * Movability of hugepages depends on architectures and hugepage size. 1273 * This check is necessary because some callers of hugepage migration 1274 * like soft offline and memory hotremove don't walk through page 1275 * tables or check whether the hugepage is pmd-based or not before 1276 * kicking migration. 1277 */ 1278 if (!hugepage_migration_supported(page_hstate(hpage))) { 1279 putback_active_hugepage(hpage); 1280 return -ENOSYS; 1281 } 1282 1283 new_hpage = get_new_page(hpage, private, &result); 1284 if (!new_hpage) 1285 return -ENOMEM; 1286 1287 if (!trylock_page(hpage)) { 1288 if (!force) 1289 goto out; 1290 switch (mode) { 1291 case MIGRATE_SYNC: 1292 case MIGRATE_SYNC_NO_COPY: 1293 break; 1294 default: 1295 goto out; 1296 } 1297 lock_page(hpage); 1298 } 1299 1300 if (PageAnon(hpage)) 1301 anon_vma = page_get_anon_vma(hpage); 1302 1303 if (unlikely(!trylock_page(new_hpage))) 1304 goto put_anon; 1305 1306 if (page_mapped(hpage)) { 1307 try_to_unmap(hpage, 1308 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1309 page_was_mapped = 1; 1310 } 1311 1312 if (!page_mapped(hpage)) 1313 rc = move_to_new_page(new_hpage, hpage, mode); 1314 1315 if (page_was_mapped) 1316 remove_migration_ptes(hpage, 1317 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1318 1319 unlock_page(new_hpage); 1320 1321 put_anon: 1322 if (anon_vma) 1323 put_anon_vma(anon_vma); 1324 1325 if (rc == MIGRATEPAGE_SUCCESS) { 1326 move_hugetlb_state(hpage, new_hpage, reason); 1327 put_new_page = NULL; 1328 } 1329 1330 unlock_page(hpage); 1331 out: 1332 if (rc != -EAGAIN) 1333 putback_active_hugepage(hpage); 1334 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage)) 1335 num_poisoned_pages_inc(); 1336 1337 /* 1338 * If migration was not successful and there's a freeing callback, use 1339 * it. Otherwise, put_page() will drop the reference grabbed during 1340 * isolation. 1341 */ 1342 if (put_new_page) 1343 put_new_page(new_hpage, private); 1344 else 1345 putback_active_hugepage(new_hpage); 1346 1347 if (result) { 1348 if (rc) 1349 *result = rc; 1350 else 1351 *result = page_to_nid(new_hpage); 1352 } 1353 return rc; 1354 } 1355 1356 /* 1357 * migrate_pages - migrate the pages specified in a list, to the free pages 1358 * supplied as the target for the page migration 1359 * 1360 * @from: The list of pages to be migrated. 1361 * @get_new_page: The function used to allocate free pages to be used 1362 * as the target of the page migration. 1363 * @put_new_page: The function used to free target pages if migration 1364 * fails, or NULL if no special handling is necessary. 1365 * @private: Private data to be passed on to get_new_page() 1366 * @mode: The migration mode that specifies the constraints for 1367 * page migration, if any. 1368 * @reason: The reason for page migration. 1369 * 1370 * The function returns after 10 attempts or if no pages are movable any more 1371 * because the list has become empty or no retryable pages exist any more. 1372 * The caller should call putback_movable_pages() to return pages to the LRU 1373 * or free list only if ret != 0. 1374 * 1375 * Returns the number of pages that were not migrated, or an error code. 1376 */ 1377 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1378 free_page_t put_new_page, unsigned long private, 1379 enum migrate_mode mode, int reason) 1380 { 1381 int retry = 1; 1382 int nr_failed = 0; 1383 int nr_succeeded = 0; 1384 int pass = 0; 1385 struct page *page; 1386 struct page *page2; 1387 int swapwrite = current->flags & PF_SWAPWRITE; 1388 int rc; 1389 1390 if (!swapwrite) 1391 current->flags |= PF_SWAPWRITE; 1392 1393 for(pass = 0; pass < 10 && retry; pass++) { 1394 retry = 0; 1395 1396 list_for_each_entry_safe(page, page2, from, lru) { 1397 cond_resched(); 1398 1399 if (PageHuge(page)) 1400 rc = unmap_and_move_huge_page(get_new_page, 1401 put_new_page, private, page, 1402 pass > 2, mode, reason); 1403 else 1404 rc = unmap_and_move(get_new_page, put_new_page, 1405 private, page, pass > 2, mode, 1406 reason); 1407 1408 switch(rc) { 1409 case -ENOMEM: 1410 nr_failed++; 1411 goto out; 1412 case -EAGAIN: 1413 retry++; 1414 break; 1415 case MIGRATEPAGE_SUCCESS: 1416 nr_succeeded++; 1417 break; 1418 default: 1419 /* 1420 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1421 * unlike -EAGAIN case, the failed page is 1422 * removed from migration page list and not 1423 * retried in the next outer loop. 1424 */ 1425 nr_failed++; 1426 break; 1427 } 1428 } 1429 } 1430 nr_failed += retry; 1431 rc = nr_failed; 1432 out: 1433 if (nr_succeeded) 1434 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1435 if (nr_failed) 1436 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1437 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1438 1439 if (!swapwrite) 1440 current->flags &= ~PF_SWAPWRITE; 1441 1442 return rc; 1443 } 1444 1445 #ifdef CONFIG_NUMA 1446 /* 1447 * Move a list of individual pages 1448 */ 1449 struct page_to_node { 1450 unsigned long addr; 1451 struct page *page; 1452 int node; 1453 int status; 1454 }; 1455 1456 static struct page *new_page_node(struct page *p, unsigned long private, 1457 int **result) 1458 { 1459 struct page_to_node *pm = (struct page_to_node *)private; 1460 1461 while (pm->node != MAX_NUMNODES && pm->page != p) 1462 pm++; 1463 1464 if (pm->node == MAX_NUMNODES) 1465 return NULL; 1466 1467 *result = &pm->status; 1468 1469 if (PageHuge(p)) 1470 return alloc_huge_page_node(page_hstate(compound_head(p)), 1471 pm->node); 1472 else if (thp_migration_supported() && PageTransHuge(p)) { 1473 struct page *thp; 1474 1475 thp = alloc_pages_node(pm->node, 1476 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1477 HPAGE_PMD_ORDER); 1478 if (!thp) 1479 return NULL; 1480 prep_transhuge_page(thp); 1481 return thp; 1482 } else 1483 return __alloc_pages_node(pm->node, 1484 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1485 } 1486 1487 /* 1488 * Move a set of pages as indicated in the pm array. The addr 1489 * field must be set to the virtual address of the page to be moved 1490 * and the node number must contain a valid target node. 1491 * The pm array ends with node = MAX_NUMNODES. 1492 */ 1493 static int do_move_page_to_node_array(struct mm_struct *mm, 1494 struct page_to_node *pm, 1495 int migrate_all) 1496 { 1497 int err; 1498 struct page_to_node *pp; 1499 LIST_HEAD(pagelist); 1500 1501 down_read(&mm->mmap_sem); 1502 1503 /* 1504 * Build a list of pages to migrate 1505 */ 1506 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1507 struct vm_area_struct *vma; 1508 struct page *page; 1509 struct page *head; 1510 unsigned int follflags; 1511 1512 err = -EFAULT; 1513 vma = find_vma(mm, pp->addr); 1514 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1515 goto set_status; 1516 1517 /* FOLL_DUMP to ignore special (like zero) pages */ 1518 follflags = FOLL_GET | FOLL_DUMP; 1519 if (!thp_migration_supported()) 1520 follflags |= FOLL_SPLIT; 1521 page = follow_page(vma, pp->addr, follflags); 1522 1523 err = PTR_ERR(page); 1524 if (IS_ERR(page)) 1525 goto set_status; 1526 1527 err = -ENOENT; 1528 if (!page) 1529 goto set_status; 1530 1531 err = page_to_nid(page); 1532 1533 if (err == pp->node) 1534 /* 1535 * Node already in the right place 1536 */ 1537 goto put_and_set; 1538 1539 err = -EACCES; 1540 if (page_mapcount(page) > 1 && 1541 !migrate_all) 1542 goto put_and_set; 1543 1544 if (PageHuge(page)) { 1545 if (PageHead(page)) { 1546 isolate_huge_page(page, &pagelist); 1547 err = 0; 1548 pp->page = page; 1549 } 1550 goto put_and_set; 1551 } 1552 1553 pp->page = compound_head(page); 1554 head = compound_head(page); 1555 err = isolate_lru_page(head); 1556 if (!err) { 1557 list_add_tail(&head->lru, &pagelist); 1558 mod_node_page_state(page_pgdat(head), 1559 NR_ISOLATED_ANON + page_is_file_cache(head), 1560 hpage_nr_pages(head)); 1561 } 1562 put_and_set: 1563 /* 1564 * Either remove the duplicate refcount from 1565 * isolate_lru_page() or drop the page ref if it was 1566 * not isolated. 1567 */ 1568 put_page(page); 1569 set_status: 1570 pp->status = err; 1571 } 1572 1573 err = 0; 1574 if (!list_empty(&pagelist)) { 1575 err = migrate_pages(&pagelist, new_page_node, NULL, 1576 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1577 if (err) 1578 putback_movable_pages(&pagelist); 1579 } 1580 1581 up_read(&mm->mmap_sem); 1582 return err; 1583 } 1584 1585 /* 1586 * Migrate an array of page address onto an array of nodes and fill 1587 * the corresponding array of status. 1588 */ 1589 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1590 unsigned long nr_pages, 1591 const void __user * __user *pages, 1592 const int __user *nodes, 1593 int __user *status, int flags) 1594 { 1595 struct page_to_node *pm; 1596 unsigned long chunk_nr_pages; 1597 unsigned long chunk_start; 1598 int err; 1599 1600 err = -ENOMEM; 1601 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1602 if (!pm) 1603 goto out; 1604 1605 migrate_prep(); 1606 1607 /* 1608 * Store a chunk of page_to_node array in a page, 1609 * but keep the last one as a marker 1610 */ 1611 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1612 1613 for (chunk_start = 0; 1614 chunk_start < nr_pages; 1615 chunk_start += chunk_nr_pages) { 1616 int j; 1617 1618 if (chunk_start + chunk_nr_pages > nr_pages) 1619 chunk_nr_pages = nr_pages - chunk_start; 1620 1621 /* fill the chunk pm with addrs and nodes from user-space */ 1622 for (j = 0; j < chunk_nr_pages; j++) { 1623 const void __user *p; 1624 int node; 1625 1626 err = -EFAULT; 1627 if (get_user(p, pages + j + chunk_start)) 1628 goto out_pm; 1629 pm[j].addr = (unsigned long) p; 1630 1631 if (get_user(node, nodes + j + chunk_start)) 1632 goto out_pm; 1633 1634 err = -ENODEV; 1635 if (node < 0 || node >= MAX_NUMNODES) 1636 goto out_pm; 1637 1638 if (!node_state(node, N_MEMORY)) 1639 goto out_pm; 1640 1641 err = -EACCES; 1642 if (!node_isset(node, task_nodes)) 1643 goto out_pm; 1644 1645 pm[j].node = node; 1646 } 1647 1648 /* End marker for this chunk */ 1649 pm[chunk_nr_pages].node = MAX_NUMNODES; 1650 1651 /* Migrate this chunk */ 1652 err = do_move_page_to_node_array(mm, pm, 1653 flags & MPOL_MF_MOVE_ALL); 1654 if (err < 0) 1655 goto out_pm; 1656 1657 /* Return status information */ 1658 for (j = 0; j < chunk_nr_pages; j++) 1659 if (put_user(pm[j].status, status + j + chunk_start)) { 1660 err = -EFAULT; 1661 goto out_pm; 1662 } 1663 } 1664 err = 0; 1665 1666 out_pm: 1667 free_page((unsigned long)pm); 1668 out: 1669 return err; 1670 } 1671 1672 /* 1673 * Determine the nodes of an array of pages and store it in an array of status. 1674 */ 1675 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1676 const void __user **pages, int *status) 1677 { 1678 unsigned long i; 1679 1680 down_read(&mm->mmap_sem); 1681 1682 for (i = 0; i < nr_pages; i++) { 1683 unsigned long addr = (unsigned long)(*pages); 1684 struct vm_area_struct *vma; 1685 struct page *page; 1686 int err = -EFAULT; 1687 1688 vma = find_vma(mm, addr); 1689 if (!vma || addr < vma->vm_start) 1690 goto set_status; 1691 1692 /* FOLL_DUMP to ignore special (like zero) pages */ 1693 page = follow_page(vma, addr, FOLL_DUMP); 1694 1695 err = PTR_ERR(page); 1696 if (IS_ERR(page)) 1697 goto set_status; 1698 1699 err = page ? page_to_nid(page) : -ENOENT; 1700 set_status: 1701 *status = err; 1702 1703 pages++; 1704 status++; 1705 } 1706 1707 up_read(&mm->mmap_sem); 1708 } 1709 1710 /* 1711 * Determine the nodes of a user array of pages and store it in 1712 * a user array of status. 1713 */ 1714 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1715 const void __user * __user *pages, 1716 int __user *status) 1717 { 1718 #define DO_PAGES_STAT_CHUNK_NR 16 1719 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1720 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1721 1722 while (nr_pages) { 1723 unsigned long chunk_nr; 1724 1725 chunk_nr = nr_pages; 1726 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1727 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1728 1729 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1730 break; 1731 1732 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1733 1734 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1735 break; 1736 1737 pages += chunk_nr; 1738 status += chunk_nr; 1739 nr_pages -= chunk_nr; 1740 } 1741 return nr_pages ? -EFAULT : 0; 1742 } 1743 1744 /* 1745 * Move a list of pages in the address space of the currently executing 1746 * process. 1747 */ 1748 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1749 const void __user * __user *, pages, 1750 const int __user *, nodes, 1751 int __user *, status, int, flags) 1752 { 1753 struct task_struct *task; 1754 struct mm_struct *mm; 1755 int err; 1756 nodemask_t task_nodes; 1757 1758 /* Check flags */ 1759 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1760 return -EINVAL; 1761 1762 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1763 return -EPERM; 1764 1765 /* Find the mm_struct */ 1766 rcu_read_lock(); 1767 task = pid ? find_task_by_vpid(pid) : current; 1768 if (!task) { 1769 rcu_read_unlock(); 1770 return -ESRCH; 1771 } 1772 get_task_struct(task); 1773 1774 /* 1775 * Check if this process has the right to modify the specified 1776 * process. Use the regular "ptrace_may_access()" checks. 1777 */ 1778 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1779 rcu_read_unlock(); 1780 err = -EPERM; 1781 goto out; 1782 } 1783 rcu_read_unlock(); 1784 1785 err = security_task_movememory(task); 1786 if (err) 1787 goto out; 1788 1789 task_nodes = cpuset_mems_allowed(task); 1790 mm = get_task_mm(task); 1791 put_task_struct(task); 1792 1793 if (!mm) 1794 return -EINVAL; 1795 1796 if (nodes) 1797 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1798 nodes, status, flags); 1799 else 1800 err = do_pages_stat(mm, nr_pages, pages, status); 1801 1802 mmput(mm); 1803 return err; 1804 1805 out: 1806 put_task_struct(task); 1807 return err; 1808 } 1809 1810 #ifdef CONFIG_NUMA_BALANCING 1811 /* 1812 * Returns true if this is a safe migration target node for misplaced NUMA 1813 * pages. Currently it only checks the watermarks which crude 1814 */ 1815 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1816 unsigned long nr_migrate_pages) 1817 { 1818 int z; 1819 1820 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1821 struct zone *zone = pgdat->node_zones + z; 1822 1823 if (!populated_zone(zone)) 1824 continue; 1825 1826 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1827 if (!zone_watermark_ok(zone, 0, 1828 high_wmark_pages(zone) + 1829 nr_migrate_pages, 1830 0, 0)) 1831 continue; 1832 return true; 1833 } 1834 return false; 1835 } 1836 1837 static struct page *alloc_misplaced_dst_page(struct page *page, 1838 unsigned long data, 1839 int **result) 1840 { 1841 int nid = (int) data; 1842 struct page *newpage; 1843 1844 newpage = __alloc_pages_node(nid, 1845 (GFP_HIGHUSER_MOVABLE | 1846 __GFP_THISNODE | __GFP_NOMEMALLOC | 1847 __GFP_NORETRY | __GFP_NOWARN) & 1848 ~__GFP_RECLAIM, 0); 1849 1850 return newpage; 1851 } 1852 1853 /* 1854 * page migration rate limiting control. 1855 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1856 * window of time. Default here says do not migrate more than 1280M per second. 1857 */ 1858 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1859 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1860 1861 /* Returns true if the node is migrate rate-limited after the update */ 1862 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1863 unsigned long nr_pages) 1864 { 1865 /* 1866 * Rate-limit the amount of data that is being migrated to a node. 1867 * Optimal placement is no good if the memory bus is saturated and 1868 * all the time is being spent migrating! 1869 */ 1870 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1871 spin_lock(&pgdat->numabalancing_migrate_lock); 1872 pgdat->numabalancing_migrate_nr_pages = 0; 1873 pgdat->numabalancing_migrate_next_window = jiffies + 1874 msecs_to_jiffies(migrate_interval_millisecs); 1875 spin_unlock(&pgdat->numabalancing_migrate_lock); 1876 } 1877 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1878 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1879 nr_pages); 1880 return true; 1881 } 1882 1883 /* 1884 * This is an unlocked non-atomic update so errors are possible. 1885 * The consequences are failing to migrate when we potentiall should 1886 * have which is not severe enough to warrant locking. If it is ever 1887 * a problem, it can be converted to a per-cpu counter. 1888 */ 1889 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1890 return false; 1891 } 1892 1893 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1894 { 1895 int page_lru; 1896 1897 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1898 1899 /* Avoid migrating to a node that is nearly full */ 1900 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1901 return 0; 1902 1903 if (isolate_lru_page(page)) 1904 return 0; 1905 1906 /* 1907 * migrate_misplaced_transhuge_page() skips page migration's usual 1908 * check on page_count(), so we must do it here, now that the page 1909 * has been isolated: a GUP pin, or any other pin, prevents migration. 1910 * The expected page count is 3: 1 for page's mapcount and 1 for the 1911 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1912 */ 1913 if (PageTransHuge(page) && page_count(page) != 3) { 1914 putback_lru_page(page); 1915 return 0; 1916 } 1917 1918 page_lru = page_is_file_cache(page); 1919 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1920 hpage_nr_pages(page)); 1921 1922 /* 1923 * Isolating the page has taken another reference, so the 1924 * caller's reference can be safely dropped without the page 1925 * disappearing underneath us during migration. 1926 */ 1927 put_page(page); 1928 return 1; 1929 } 1930 1931 bool pmd_trans_migrating(pmd_t pmd) 1932 { 1933 struct page *page = pmd_page(pmd); 1934 return PageLocked(page); 1935 } 1936 1937 /* 1938 * Attempt to migrate a misplaced page to the specified destination 1939 * node. Caller is expected to have an elevated reference count on 1940 * the page that will be dropped by this function before returning. 1941 */ 1942 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1943 int node) 1944 { 1945 pg_data_t *pgdat = NODE_DATA(node); 1946 int isolated; 1947 int nr_remaining; 1948 LIST_HEAD(migratepages); 1949 1950 /* 1951 * Don't migrate file pages that are mapped in multiple processes 1952 * with execute permissions as they are probably shared libraries. 1953 */ 1954 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1955 (vma->vm_flags & VM_EXEC)) 1956 goto out; 1957 1958 /* 1959 * Rate-limit the amount of data that is being migrated to a node. 1960 * Optimal placement is no good if the memory bus is saturated and 1961 * all the time is being spent migrating! 1962 */ 1963 if (numamigrate_update_ratelimit(pgdat, 1)) 1964 goto out; 1965 1966 isolated = numamigrate_isolate_page(pgdat, page); 1967 if (!isolated) 1968 goto out; 1969 1970 list_add(&page->lru, &migratepages); 1971 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1972 NULL, node, MIGRATE_ASYNC, 1973 MR_NUMA_MISPLACED); 1974 if (nr_remaining) { 1975 if (!list_empty(&migratepages)) { 1976 list_del(&page->lru); 1977 dec_node_page_state(page, NR_ISOLATED_ANON + 1978 page_is_file_cache(page)); 1979 putback_lru_page(page); 1980 } 1981 isolated = 0; 1982 } else 1983 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1984 BUG_ON(!list_empty(&migratepages)); 1985 return isolated; 1986 1987 out: 1988 put_page(page); 1989 return 0; 1990 } 1991 #endif /* CONFIG_NUMA_BALANCING */ 1992 1993 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1994 /* 1995 * Migrates a THP to a given target node. page must be locked and is unlocked 1996 * before returning. 1997 */ 1998 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1999 struct vm_area_struct *vma, 2000 pmd_t *pmd, pmd_t entry, 2001 unsigned long address, 2002 struct page *page, int node) 2003 { 2004 spinlock_t *ptl; 2005 pg_data_t *pgdat = NODE_DATA(node); 2006 int isolated = 0; 2007 struct page *new_page = NULL; 2008 int page_lru = page_is_file_cache(page); 2009 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2010 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 2011 2012 /* 2013 * Rate-limit the amount of data that is being migrated to a node. 2014 * Optimal placement is no good if the memory bus is saturated and 2015 * all the time is being spent migrating! 2016 */ 2017 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 2018 goto out_dropref; 2019 2020 new_page = alloc_pages_node(node, 2021 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2022 HPAGE_PMD_ORDER); 2023 if (!new_page) 2024 goto out_fail; 2025 prep_transhuge_page(new_page); 2026 2027 isolated = numamigrate_isolate_page(pgdat, page); 2028 if (!isolated) { 2029 put_page(new_page); 2030 goto out_fail; 2031 } 2032 2033 /* Prepare a page as a migration target */ 2034 __SetPageLocked(new_page); 2035 if (PageSwapBacked(page)) 2036 __SetPageSwapBacked(new_page); 2037 2038 /* anon mapping, we can simply copy page->mapping to the new page: */ 2039 new_page->mapping = page->mapping; 2040 new_page->index = page->index; 2041 migrate_page_copy(new_page, page); 2042 WARN_ON(PageLRU(new_page)); 2043 2044 /* Recheck the target PMD */ 2045 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2046 ptl = pmd_lock(mm, pmd); 2047 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2048 spin_unlock(ptl); 2049 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2050 2051 /* Reverse changes made by migrate_page_copy() */ 2052 if (TestClearPageActive(new_page)) 2053 SetPageActive(page); 2054 if (TestClearPageUnevictable(new_page)) 2055 SetPageUnevictable(page); 2056 2057 unlock_page(new_page); 2058 put_page(new_page); /* Free it */ 2059 2060 /* Retake the callers reference and putback on LRU */ 2061 get_page(page); 2062 putback_lru_page(page); 2063 mod_node_page_state(page_pgdat(page), 2064 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2065 2066 goto out_unlock; 2067 } 2068 2069 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2070 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2071 2072 /* 2073 * Clear the old entry under pagetable lock and establish the new PTE. 2074 * Any parallel GUP will either observe the old page blocking on the 2075 * page lock, block on the page table lock or observe the new page. 2076 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2077 * guarantee the copy is visible before the pagetable update. 2078 */ 2079 flush_cache_range(vma, mmun_start, mmun_end); 2080 page_add_anon_rmap(new_page, vma, mmun_start, true); 2081 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2082 set_pmd_at(mm, mmun_start, pmd, entry); 2083 update_mmu_cache_pmd(vma, address, &entry); 2084 2085 page_ref_unfreeze(page, 2); 2086 mlock_migrate_page(new_page, page); 2087 page_remove_rmap(page, true); 2088 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2089 2090 spin_unlock(ptl); 2091 /* 2092 * No need to double call mmu_notifier->invalidate_range() callback as 2093 * the above pmdp_huge_clear_flush_notify() did already call it. 2094 */ 2095 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2096 2097 /* Take an "isolate" reference and put new page on the LRU. */ 2098 get_page(new_page); 2099 putback_lru_page(new_page); 2100 2101 unlock_page(new_page); 2102 unlock_page(page); 2103 put_page(page); /* Drop the rmap reference */ 2104 put_page(page); /* Drop the LRU isolation reference */ 2105 2106 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2107 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2108 2109 mod_node_page_state(page_pgdat(page), 2110 NR_ISOLATED_ANON + page_lru, 2111 -HPAGE_PMD_NR); 2112 return isolated; 2113 2114 out_fail: 2115 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2116 out_dropref: 2117 ptl = pmd_lock(mm, pmd); 2118 if (pmd_same(*pmd, entry)) { 2119 entry = pmd_modify(entry, vma->vm_page_prot); 2120 set_pmd_at(mm, mmun_start, pmd, entry); 2121 update_mmu_cache_pmd(vma, address, &entry); 2122 } 2123 spin_unlock(ptl); 2124 2125 out_unlock: 2126 unlock_page(page); 2127 put_page(page); 2128 return 0; 2129 } 2130 #endif /* CONFIG_NUMA_BALANCING */ 2131 2132 #endif /* CONFIG_NUMA */ 2133 2134 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2135 struct migrate_vma { 2136 struct vm_area_struct *vma; 2137 unsigned long *dst; 2138 unsigned long *src; 2139 unsigned long cpages; 2140 unsigned long npages; 2141 unsigned long start; 2142 unsigned long end; 2143 }; 2144 2145 static int migrate_vma_collect_hole(unsigned long start, 2146 unsigned long end, 2147 struct mm_walk *walk) 2148 { 2149 struct migrate_vma *migrate = walk->private; 2150 unsigned long addr; 2151 2152 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2153 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2154 migrate->dst[migrate->npages] = 0; 2155 migrate->npages++; 2156 migrate->cpages++; 2157 } 2158 2159 return 0; 2160 } 2161 2162 static int migrate_vma_collect_skip(unsigned long start, 2163 unsigned long end, 2164 struct mm_walk *walk) 2165 { 2166 struct migrate_vma *migrate = walk->private; 2167 unsigned long addr; 2168 2169 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2170 migrate->dst[migrate->npages] = 0; 2171 migrate->src[migrate->npages++] = 0; 2172 } 2173 2174 return 0; 2175 } 2176 2177 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2178 unsigned long start, 2179 unsigned long end, 2180 struct mm_walk *walk) 2181 { 2182 struct migrate_vma *migrate = walk->private; 2183 struct vm_area_struct *vma = walk->vma; 2184 struct mm_struct *mm = vma->vm_mm; 2185 unsigned long addr = start, unmapped = 0; 2186 spinlock_t *ptl; 2187 pte_t *ptep; 2188 2189 again: 2190 if (pmd_none(*pmdp)) 2191 return migrate_vma_collect_hole(start, end, walk); 2192 2193 if (pmd_trans_huge(*pmdp)) { 2194 struct page *page; 2195 2196 ptl = pmd_lock(mm, pmdp); 2197 if (unlikely(!pmd_trans_huge(*pmdp))) { 2198 spin_unlock(ptl); 2199 goto again; 2200 } 2201 2202 page = pmd_page(*pmdp); 2203 if (is_huge_zero_page(page)) { 2204 spin_unlock(ptl); 2205 split_huge_pmd(vma, pmdp, addr); 2206 if (pmd_trans_unstable(pmdp)) 2207 return migrate_vma_collect_skip(start, end, 2208 walk); 2209 } else { 2210 int ret; 2211 2212 get_page(page); 2213 spin_unlock(ptl); 2214 if (unlikely(!trylock_page(page))) 2215 return migrate_vma_collect_skip(start, end, 2216 walk); 2217 ret = split_huge_page(page); 2218 unlock_page(page); 2219 put_page(page); 2220 if (ret) 2221 return migrate_vma_collect_skip(start, end, 2222 walk); 2223 if (pmd_none(*pmdp)) 2224 return migrate_vma_collect_hole(start, end, 2225 walk); 2226 } 2227 } 2228 2229 if (unlikely(pmd_bad(*pmdp))) 2230 return migrate_vma_collect_skip(start, end, walk); 2231 2232 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2233 arch_enter_lazy_mmu_mode(); 2234 2235 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2236 unsigned long mpfn, pfn; 2237 struct page *page; 2238 swp_entry_t entry; 2239 pte_t pte; 2240 2241 pte = *ptep; 2242 pfn = pte_pfn(pte); 2243 2244 if (pte_none(pte)) { 2245 mpfn = MIGRATE_PFN_MIGRATE; 2246 migrate->cpages++; 2247 pfn = 0; 2248 goto next; 2249 } 2250 2251 if (!pte_present(pte)) { 2252 mpfn = pfn = 0; 2253 2254 /* 2255 * Only care about unaddressable device page special 2256 * page table entry. Other special swap entries are not 2257 * migratable, and we ignore regular swapped page. 2258 */ 2259 entry = pte_to_swp_entry(pte); 2260 if (!is_device_private_entry(entry)) 2261 goto next; 2262 2263 page = device_private_entry_to_page(entry); 2264 mpfn = migrate_pfn(page_to_pfn(page))| 2265 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2266 if (is_write_device_private_entry(entry)) 2267 mpfn |= MIGRATE_PFN_WRITE; 2268 } else { 2269 if (is_zero_pfn(pfn)) { 2270 mpfn = MIGRATE_PFN_MIGRATE; 2271 migrate->cpages++; 2272 pfn = 0; 2273 goto next; 2274 } 2275 page = _vm_normal_page(migrate->vma, addr, pte, true); 2276 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2277 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2278 } 2279 2280 /* FIXME support THP */ 2281 if (!page || !page->mapping || PageTransCompound(page)) { 2282 mpfn = pfn = 0; 2283 goto next; 2284 } 2285 pfn = page_to_pfn(page); 2286 2287 /* 2288 * By getting a reference on the page we pin it and that blocks 2289 * any kind of migration. Side effect is that it "freezes" the 2290 * pte. 2291 * 2292 * We drop this reference after isolating the page from the lru 2293 * for non device page (device page are not on the lru and thus 2294 * can't be dropped from it). 2295 */ 2296 get_page(page); 2297 migrate->cpages++; 2298 2299 /* 2300 * Optimize for the common case where page is only mapped once 2301 * in one process. If we can lock the page, then we can safely 2302 * set up a special migration page table entry now. 2303 */ 2304 if (trylock_page(page)) { 2305 pte_t swp_pte; 2306 2307 mpfn |= MIGRATE_PFN_LOCKED; 2308 ptep_get_and_clear(mm, addr, ptep); 2309 2310 /* Setup special migration page table entry */ 2311 entry = make_migration_entry(page, pte_write(pte)); 2312 swp_pte = swp_entry_to_pte(entry); 2313 if (pte_soft_dirty(pte)) 2314 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2315 set_pte_at(mm, addr, ptep, swp_pte); 2316 2317 /* 2318 * This is like regular unmap: we remove the rmap and 2319 * drop page refcount. Page won't be freed, as we took 2320 * a reference just above. 2321 */ 2322 page_remove_rmap(page, false); 2323 put_page(page); 2324 2325 if (pte_present(pte)) 2326 unmapped++; 2327 } 2328 2329 next: 2330 migrate->dst[migrate->npages] = 0; 2331 migrate->src[migrate->npages++] = mpfn; 2332 } 2333 arch_leave_lazy_mmu_mode(); 2334 pte_unmap_unlock(ptep - 1, ptl); 2335 2336 /* Only flush the TLB if we actually modified any entries */ 2337 if (unmapped) 2338 flush_tlb_range(walk->vma, start, end); 2339 2340 return 0; 2341 } 2342 2343 /* 2344 * migrate_vma_collect() - collect pages over a range of virtual addresses 2345 * @migrate: migrate struct containing all migration information 2346 * 2347 * This will walk the CPU page table. For each virtual address backed by a 2348 * valid page, it updates the src array and takes a reference on the page, in 2349 * order to pin the page until we lock it and unmap it. 2350 */ 2351 static void migrate_vma_collect(struct migrate_vma *migrate) 2352 { 2353 struct mm_walk mm_walk; 2354 2355 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2356 mm_walk.pte_entry = NULL; 2357 mm_walk.pte_hole = migrate_vma_collect_hole; 2358 mm_walk.hugetlb_entry = NULL; 2359 mm_walk.test_walk = NULL; 2360 mm_walk.vma = migrate->vma; 2361 mm_walk.mm = migrate->vma->vm_mm; 2362 mm_walk.private = migrate; 2363 2364 mmu_notifier_invalidate_range_start(mm_walk.mm, 2365 migrate->start, 2366 migrate->end); 2367 walk_page_range(migrate->start, migrate->end, &mm_walk); 2368 mmu_notifier_invalidate_range_end(mm_walk.mm, 2369 migrate->start, 2370 migrate->end); 2371 2372 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2373 } 2374 2375 /* 2376 * migrate_vma_check_page() - check if page is pinned or not 2377 * @page: struct page to check 2378 * 2379 * Pinned pages cannot be migrated. This is the same test as in 2380 * migrate_page_move_mapping(), except that here we allow migration of a 2381 * ZONE_DEVICE page. 2382 */ 2383 static bool migrate_vma_check_page(struct page *page) 2384 { 2385 /* 2386 * One extra ref because caller holds an extra reference, either from 2387 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2388 * a device page. 2389 */ 2390 int extra = 1; 2391 2392 /* 2393 * FIXME support THP (transparent huge page), it is bit more complex to 2394 * check them than regular pages, because they can be mapped with a pmd 2395 * or with a pte (split pte mapping). 2396 */ 2397 if (PageCompound(page)) 2398 return false; 2399 2400 /* Page from ZONE_DEVICE have one extra reference */ 2401 if (is_zone_device_page(page)) { 2402 /* 2403 * Private page can never be pin as they have no valid pte and 2404 * GUP will fail for those. Yet if there is a pending migration 2405 * a thread might try to wait on the pte migration entry and 2406 * will bump the page reference count. Sadly there is no way to 2407 * differentiate a regular pin from migration wait. Hence to 2408 * avoid 2 racing thread trying to migrate back to CPU to enter 2409 * infinite loop (one stoping migration because the other is 2410 * waiting on pte migration entry). We always return true here. 2411 * 2412 * FIXME proper solution is to rework migration_entry_wait() so 2413 * it does not need to take a reference on page. 2414 */ 2415 if (is_device_private_page(page)) 2416 return true; 2417 2418 /* 2419 * Only allow device public page to be migrated and account for 2420 * the extra reference count imply by ZONE_DEVICE pages. 2421 */ 2422 if (!is_device_public_page(page)) 2423 return false; 2424 extra++; 2425 } 2426 2427 /* For file back page */ 2428 if (page_mapping(page)) 2429 extra += 1 + page_has_private(page); 2430 2431 if ((page_count(page) - extra) > page_mapcount(page)) 2432 return false; 2433 2434 return true; 2435 } 2436 2437 /* 2438 * migrate_vma_prepare() - lock pages and isolate them from the lru 2439 * @migrate: migrate struct containing all migration information 2440 * 2441 * This locks pages that have been collected by migrate_vma_collect(). Once each 2442 * page is locked it is isolated from the lru (for non-device pages). Finally, 2443 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2444 * migrated by concurrent kernel threads. 2445 */ 2446 static void migrate_vma_prepare(struct migrate_vma *migrate) 2447 { 2448 const unsigned long npages = migrate->npages; 2449 const unsigned long start = migrate->start; 2450 unsigned long addr, i, restore = 0; 2451 bool allow_drain = true; 2452 2453 lru_add_drain(); 2454 2455 for (i = 0; (i < npages) && migrate->cpages; i++) { 2456 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2457 bool remap = true; 2458 2459 if (!page) 2460 continue; 2461 2462 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2463 /* 2464 * Because we are migrating several pages there can be 2465 * a deadlock between 2 concurrent migration where each 2466 * are waiting on each other page lock. 2467 * 2468 * Make migrate_vma() a best effort thing and backoff 2469 * for any page we can not lock right away. 2470 */ 2471 if (!trylock_page(page)) { 2472 migrate->src[i] = 0; 2473 migrate->cpages--; 2474 put_page(page); 2475 continue; 2476 } 2477 remap = false; 2478 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2479 } 2480 2481 /* ZONE_DEVICE pages are not on LRU */ 2482 if (!is_zone_device_page(page)) { 2483 if (!PageLRU(page) && allow_drain) { 2484 /* Drain CPU's pagevec */ 2485 lru_add_drain_all(); 2486 allow_drain = false; 2487 } 2488 2489 if (isolate_lru_page(page)) { 2490 if (remap) { 2491 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2492 migrate->cpages--; 2493 restore++; 2494 } else { 2495 migrate->src[i] = 0; 2496 unlock_page(page); 2497 migrate->cpages--; 2498 put_page(page); 2499 } 2500 continue; 2501 } 2502 2503 /* Drop the reference we took in collect */ 2504 put_page(page); 2505 } 2506 2507 if (!migrate_vma_check_page(page)) { 2508 if (remap) { 2509 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2510 migrate->cpages--; 2511 restore++; 2512 2513 if (!is_zone_device_page(page)) { 2514 get_page(page); 2515 putback_lru_page(page); 2516 } 2517 } else { 2518 migrate->src[i] = 0; 2519 unlock_page(page); 2520 migrate->cpages--; 2521 2522 if (!is_zone_device_page(page)) 2523 putback_lru_page(page); 2524 else 2525 put_page(page); 2526 } 2527 } 2528 } 2529 2530 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2531 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2532 2533 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2534 continue; 2535 2536 remove_migration_pte(page, migrate->vma, addr, page); 2537 2538 migrate->src[i] = 0; 2539 unlock_page(page); 2540 put_page(page); 2541 restore--; 2542 } 2543 } 2544 2545 /* 2546 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2547 * @migrate: migrate struct containing all migration information 2548 * 2549 * Replace page mapping (CPU page table pte) with a special migration pte entry 2550 * and check again if it has been pinned. Pinned pages are restored because we 2551 * cannot migrate them. 2552 * 2553 * This is the last step before we call the device driver callback to allocate 2554 * destination memory and copy contents of original page over to new page. 2555 */ 2556 static void migrate_vma_unmap(struct migrate_vma *migrate) 2557 { 2558 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2559 const unsigned long npages = migrate->npages; 2560 const unsigned long start = migrate->start; 2561 unsigned long addr, i, restore = 0; 2562 2563 for (i = 0; i < npages; i++) { 2564 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2565 2566 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2567 continue; 2568 2569 if (page_mapped(page)) { 2570 try_to_unmap(page, flags); 2571 if (page_mapped(page)) 2572 goto restore; 2573 } 2574 2575 if (migrate_vma_check_page(page)) 2576 continue; 2577 2578 restore: 2579 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2580 migrate->cpages--; 2581 restore++; 2582 } 2583 2584 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2585 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2586 2587 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2588 continue; 2589 2590 remove_migration_ptes(page, page, false); 2591 2592 migrate->src[i] = 0; 2593 unlock_page(page); 2594 restore--; 2595 2596 if (is_zone_device_page(page)) 2597 put_page(page); 2598 else 2599 putback_lru_page(page); 2600 } 2601 } 2602 2603 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2604 unsigned long addr, 2605 struct page *page, 2606 unsigned long *src, 2607 unsigned long *dst) 2608 { 2609 struct vm_area_struct *vma = migrate->vma; 2610 struct mm_struct *mm = vma->vm_mm; 2611 struct mem_cgroup *memcg; 2612 bool flush = false; 2613 spinlock_t *ptl; 2614 pte_t entry; 2615 pgd_t *pgdp; 2616 p4d_t *p4dp; 2617 pud_t *pudp; 2618 pmd_t *pmdp; 2619 pte_t *ptep; 2620 2621 /* Only allow populating anonymous memory */ 2622 if (!vma_is_anonymous(vma)) 2623 goto abort; 2624 2625 pgdp = pgd_offset(mm, addr); 2626 p4dp = p4d_alloc(mm, pgdp, addr); 2627 if (!p4dp) 2628 goto abort; 2629 pudp = pud_alloc(mm, p4dp, addr); 2630 if (!pudp) 2631 goto abort; 2632 pmdp = pmd_alloc(mm, pudp, addr); 2633 if (!pmdp) 2634 goto abort; 2635 2636 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2637 goto abort; 2638 2639 /* 2640 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2641 * pte_offset_map() on pmds where a huge pmd might be created 2642 * from a different thread. 2643 * 2644 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2645 * parallel threads are excluded by other means. 2646 * 2647 * Here we only have down_read(mmap_sem). 2648 */ 2649 if (pte_alloc(mm, pmdp, addr)) 2650 goto abort; 2651 2652 /* See the comment in pte_alloc_one_map() */ 2653 if (unlikely(pmd_trans_unstable(pmdp))) 2654 goto abort; 2655 2656 if (unlikely(anon_vma_prepare(vma))) 2657 goto abort; 2658 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2659 goto abort; 2660 2661 /* 2662 * The memory barrier inside __SetPageUptodate makes sure that 2663 * preceding stores to the page contents become visible before 2664 * the set_pte_at() write. 2665 */ 2666 __SetPageUptodate(page); 2667 2668 if (is_zone_device_page(page)) { 2669 if (is_device_private_page(page)) { 2670 swp_entry_t swp_entry; 2671 2672 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2673 entry = swp_entry_to_pte(swp_entry); 2674 } else if (is_device_public_page(page)) { 2675 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2676 if (vma->vm_flags & VM_WRITE) 2677 entry = pte_mkwrite(pte_mkdirty(entry)); 2678 entry = pte_mkdevmap(entry); 2679 } 2680 } else { 2681 entry = mk_pte(page, vma->vm_page_prot); 2682 if (vma->vm_flags & VM_WRITE) 2683 entry = pte_mkwrite(pte_mkdirty(entry)); 2684 } 2685 2686 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2687 2688 if (pte_present(*ptep)) { 2689 unsigned long pfn = pte_pfn(*ptep); 2690 2691 if (!is_zero_pfn(pfn)) { 2692 pte_unmap_unlock(ptep, ptl); 2693 mem_cgroup_cancel_charge(page, memcg, false); 2694 goto abort; 2695 } 2696 flush = true; 2697 } else if (!pte_none(*ptep)) { 2698 pte_unmap_unlock(ptep, ptl); 2699 mem_cgroup_cancel_charge(page, memcg, false); 2700 goto abort; 2701 } 2702 2703 /* 2704 * Check for usefaultfd but do not deliver the fault. Instead, 2705 * just back off. 2706 */ 2707 if (userfaultfd_missing(vma)) { 2708 pte_unmap_unlock(ptep, ptl); 2709 mem_cgroup_cancel_charge(page, memcg, false); 2710 goto abort; 2711 } 2712 2713 inc_mm_counter(mm, MM_ANONPAGES); 2714 page_add_new_anon_rmap(page, vma, addr, false); 2715 mem_cgroup_commit_charge(page, memcg, false, false); 2716 if (!is_zone_device_page(page)) 2717 lru_cache_add_active_or_unevictable(page, vma); 2718 get_page(page); 2719 2720 if (flush) { 2721 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2722 ptep_clear_flush_notify(vma, addr, ptep); 2723 set_pte_at_notify(mm, addr, ptep, entry); 2724 update_mmu_cache(vma, addr, ptep); 2725 } else { 2726 /* No need to invalidate - it was non-present before */ 2727 set_pte_at(mm, addr, ptep, entry); 2728 update_mmu_cache(vma, addr, ptep); 2729 } 2730 2731 pte_unmap_unlock(ptep, ptl); 2732 *src = MIGRATE_PFN_MIGRATE; 2733 return; 2734 2735 abort: 2736 *src &= ~MIGRATE_PFN_MIGRATE; 2737 } 2738 2739 /* 2740 * migrate_vma_pages() - migrate meta-data from src page to dst page 2741 * @migrate: migrate struct containing all migration information 2742 * 2743 * This migrates struct page meta-data from source struct page to destination 2744 * struct page. This effectively finishes the migration from source page to the 2745 * destination page. 2746 */ 2747 static void migrate_vma_pages(struct migrate_vma *migrate) 2748 { 2749 const unsigned long npages = migrate->npages; 2750 const unsigned long start = migrate->start; 2751 struct vm_area_struct *vma = migrate->vma; 2752 struct mm_struct *mm = vma->vm_mm; 2753 unsigned long addr, i, mmu_start; 2754 bool notified = false; 2755 2756 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2757 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2758 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2759 struct address_space *mapping; 2760 int r; 2761 2762 if (!newpage) { 2763 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2764 continue; 2765 } 2766 2767 if (!page) { 2768 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2769 continue; 2770 } 2771 if (!notified) { 2772 mmu_start = addr; 2773 notified = true; 2774 mmu_notifier_invalidate_range_start(mm, 2775 mmu_start, 2776 migrate->end); 2777 } 2778 migrate_vma_insert_page(migrate, addr, newpage, 2779 &migrate->src[i], 2780 &migrate->dst[i]); 2781 continue; 2782 } 2783 2784 mapping = page_mapping(page); 2785 2786 if (is_zone_device_page(newpage)) { 2787 if (is_device_private_page(newpage)) { 2788 /* 2789 * For now only support private anonymous when 2790 * migrating to un-addressable device memory. 2791 */ 2792 if (mapping) { 2793 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2794 continue; 2795 } 2796 } else if (!is_device_public_page(newpage)) { 2797 /* 2798 * Other types of ZONE_DEVICE page are not 2799 * supported. 2800 */ 2801 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2802 continue; 2803 } 2804 } 2805 2806 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2807 if (r != MIGRATEPAGE_SUCCESS) 2808 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2809 } 2810 2811 /* 2812 * No need to double call mmu_notifier->invalidate_range() callback as 2813 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2814 * did already call it. 2815 */ 2816 if (notified) 2817 mmu_notifier_invalidate_range_only_end(mm, mmu_start, 2818 migrate->end); 2819 } 2820 2821 /* 2822 * migrate_vma_finalize() - restore CPU page table entry 2823 * @migrate: migrate struct containing all migration information 2824 * 2825 * This replaces the special migration pte entry with either a mapping to the 2826 * new page if migration was successful for that page, or to the original page 2827 * otherwise. 2828 * 2829 * This also unlocks the pages and puts them back on the lru, or drops the extra 2830 * refcount, for device pages. 2831 */ 2832 static void migrate_vma_finalize(struct migrate_vma *migrate) 2833 { 2834 const unsigned long npages = migrate->npages; 2835 unsigned long i; 2836 2837 for (i = 0; i < npages; i++) { 2838 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2839 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2840 2841 if (!page) { 2842 if (newpage) { 2843 unlock_page(newpage); 2844 put_page(newpage); 2845 } 2846 continue; 2847 } 2848 2849 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2850 if (newpage) { 2851 unlock_page(newpage); 2852 put_page(newpage); 2853 } 2854 newpage = page; 2855 } 2856 2857 remove_migration_ptes(page, newpage, false); 2858 unlock_page(page); 2859 migrate->cpages--; 2860 2861 if (is_zone_device_page(page)) 2862 put_page(page); 2863 else 2864 putback_lru_page(page); 2865 2866 if (newpage != page) { 2867 unlock_page(newpage); 2868 if (is_zone_device_page(newpage)) 2869 put_page(newpage); 2870 else 2871 putback_lru_page(newpage); 2872 } 2873 } 2874 } 2875 2876 /* 2877 * migrate_vma() - migrate a range of memory inside vma 2878 * 2879 * @ops: migration callback for allocating destination memory and copying 2880 * @vma: virtual memory area containing the range to be migrated 2881 * @start: start address of the range to migrate (inclusive) 2882 * @end: end address of the range to migrate (exclusive) 2883 * @src: array of hmm_pfn_t containing source pfns 2884 * @dst: array of hmm_pfn_t containing destination pfns 2885 * @private: pointer passed back to each of the callback 2886 * Returns: 0 on success, error code otherwise 2887 * 2888 * This function tries to migrate a range of memory virtual address range, using 2889 * callbacks to allocate and copy memory from source to destination. First it 2890 * collects all the pages backing each virtual address in the range, saving this 2891 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2892 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2893 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2894 * in the corresponding src array entry. It then restores any pages that are 2895 * pinned, by remapping and unlocking those pages. 2896 * 2897 * At this point it calls the alloc_and_copy() callback. For documentation on 2898 * what is expected from that callback, see struct migrate_vma_ops comments in 2899 * include/linux/migrate.h 2900 * 2901 * After the alloc_and_copy() callback, this function goes over each entry in 2902 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2903 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2904 * then the function tries to migrate struct page information from the source 2905 * struct page to the destination struct page. If it fails to migrate the struct 2906 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2907 * array. 2908 * 2909 * At this point all successfully migrated pages have an entry in the src 2910 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2911 * array entry with MIGRATE_PFN_VALID flag set. 2912 * 2913 * It then calls the finalize_and_map() callback. See comments for "struct 2914 * migrate_vma_ops", in include/linux/migrate.h for details about 2915 * finalize_and_map() behavior. 2916 * 2917 * After the finalize_and_map() callback, for successfully migrated pages, this 2918 * function updates the CPU page table to point to new pages, otherwise it 2919 * restores the CPU page table to point to the original source pages. 2920 * 2921 * Function returns 0 after the above steps, even if no pages were migrated 2922 * (The function only returns an error if any of the arguments are invalid.) 2923 * 2924 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2925 * unsigned long entries. 2926 */ 2927 int migrate_vma(const struct migrate_vma_ops *ops, 2928 struct vm_area_struct *vma, 2929 unsigned long start, 2930 unsigned long end, 2931 unsigned long *src, 2932 unsigned long *dst, 2933 void *private) 2934 { 2935 struct migrate_vma migrate; 2936 2937 /* Sanity check the arguments */ 2938 start &= PAGE_MASK; 2939 end &= PAGE_MASK; 2940 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) 2941 return -EINVAL; 2942 if (start < vma->vm_start || start >= vma->vm_end) 2943 return -EINVAL; 2944 if (end <= vma->vm_start || end > vma->vm_end) 2945 return -EINVAL; 2946 if (!ops || !src || !dst || start >= end) 2947 return -EINVAL; 2948 2949 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2950 migrate.src = src; 2951 migrate.dst = dst; 2952 migrate.start = start; 2953 migrate.npages = 0; 2954 migrate.cpages = 0; 2955 migrate.end = end; 2956 migrate.vma = vma; 2957 2958 /* Collect, and try to unmap source pages */ 2959 migrate_vma_collect(&migrate); 2960 if (!migrate.cpages) 2961 return 0; 2962 2963 /* Lock and isolate page */ 2964 migrate_vma_prepare(&migrate); 2965 if (!migrate.cpages) 2966 return 0; 2967 2968 /* Unmap pages */ 2969 migrate_vma_unmap(&migrate); 2970 if (!migrate.cpages) 2971 return 0; 2972 2973 /* 2974 * At this point pages are locked and unmapped, and thus they have 2975 * stable content and can safely be copied to destination memory that 2976 * is allocated by the callback. 2977 * 2978 * Note that migration can fail in migrate_vma_struct_page() for each 2979 * individual page. 2980 */ 2981 ops->alloc_and_copy(vma, src, dst, start, end, private); 2982 2983 /* This does the real migration of struct page */ 2984 migrate_vma_pages(&migrate); 2985 2986 ops->finalize_and_map(vma, src, dst, start, end, private); 2987 2988 /* Unlock and remap pages */ 2989 migrate_vma_finalize(&migrate); 2990 2991 return 0; 2992 } 2993 EXPORT_SYMBOL(migrate_vma); 2994 #endif /* defined(MIGRATE_VMA_HELPER) */ 2995