1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/memcontrol.h> 33 #include <linux/syscalls.h> 34 35 #include "internal.h" 36 37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 38 39 /* 40 * migrate_prep() needs to be called before we start compiling a list of pages 41 * to be migrated using isolate_lru_page(). 42 */ 43 int migrate_prep(void) 44 { 45 /* 46 * Clear the LRU lists so pages can be isolated. 47 * Note that pages may be moved off the LRU after we have 48 * drained them. Those pages will fail to migrate like other 49 * pages that may be busy. 50 */ 51 lru_add_drain_all(); 52 53 return 0; 54 } 55 56 /* 57 * Add isolated pages on the list back to the LRU under page lock 58 * to avoid leaking evictable pages back onto unevictable list. 59 * 60 * returns the number of pages put back. 61 */ 62 int putback_lru_pages(struct list_head *l) 63 { 64 struct page *page; 65 struct page *page2; 66 int count = 0; 67 68 list_for_each_entry_safe(page, page2, l, lru) { 69 list_del(&page->lru); 70 putback_lru_page(page); 71 count++; 72 } 73 return count; 74 } 75 76 /* 77 * Restore a potential migration pte to a working pte entry 78 */ 79 static void remove_migration_pte(struct vm_area_struct *vma, 80 struct page *old, struct page *new) 81 { 82 struct mm_struct *mm = vma->vm_mm; 83 swp_entry_t entry; 84 pgd_t *pgd; 85 pud_t *pud; 86 pmd_t *pmd; 87 pte_t *ptep, pte; 88 spinlock_t *ptl; 89 unsigned long addr = page_address_in_vma(new, vma); 90 91 if (addr == -EFAULT) 92 return; 93 94 pgd = pgd_offset(mm, addr); 95 if (!pgd_present(*pgd)) 96 return; 97 98 pud = pud_offset(pgd, addr); 99 if (!pud_present(*pud)) 100 return; 101 102 pmd = pmd_offset(pud, addr); 103 if (!pmd_present(*pmd)) 104 return; 105 106 ptep = pte_offset_map(pmd, addr); 107 108 if (!is_swap_pte(*ptep)) { 109 pte_unmap(ptep); 110 return; 111 } 112 113 ptl = pte_lockptr(mm, pmd); 114 spin_lock(ptl); 115 pte = *ptep; 116 if (!is_swap_pte(pte)) 117 goto out; 118 119 entry = pte_to_swp_entry(pte); 120 121 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 122 goto out; 123 124 get_page(new); 125 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 126 if (is_write_migration_entry(entry)) 127 pte = pte_mkwrite(pte); 128 flush_cache_page(vma, addr, pte_pfn(pte)); 129 set_pte_at(mm, addr, ptep, pte); 130 131 if (PageAnon(new)) 132 page_add_anon_rmap(new, vma, addr); 133 else 134 page_add_file_rmap(new); 135 136 /* No need to invalidate - it was non-present before */ 137 update_mmu_cache(vma, addr, pte); 138 139 out: 140 pte_unmap_unlock(ptep, ptl); 141 } 142 143 /* 144 * Note that remove_file_migration_ptes will only work on regular mappings, 145 * Nonlinear mappings do not use migration entries. 146 */ 147 static void remove_file_migration_ptes(struct page *old, struct page *new) 148 { 149 struct vm_area_struct *vma; 150 struct address_space *mapping = page_mapping(new); 151 struct prio_tree_iter iter; 152 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 153 154 if (!mapping) 155 return; 156 157 spin_lock(&mapping->i_mmap_lock); 158 159 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 160 remove_migration_pte(vma, old, new); 161 162 spin_unlock(&mapping->i_mmap_lock); 163 } 164 165 /* 166 * Must hold mmap_sem lock on at least one of the vmas containing 167 * the page so that the anon_vma cannot vanish. 168 */ 169 static void remove_anon_migration_ptes(struct page *old, struct page *new) 170 { 171 struct anon_vma *anon_vma; 172 struct vm_area_struct *vma; 173 unsigned long mapping; 174 175 mapping = (unsigned long)new->mapping; 176 177 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 178 return; 179 180 /* 181 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 182 */ 183 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 184 spin_lock(&anon_vma->lock); 185 186 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 187 remove_migration_pte(vma, old, new); 188 189 spin_unlock(&anon_vma->lock); 190 } 191 192 /* 193 * Get rid of all migration entries and replace them by 194 * references to the indicated page. 195 */ 196 static void remove_migration_ptes(struct page *old, struct page *new) 197 { 198 if (PageAnon(new)) 199 remove_anon_migration_ptes(old, new); 200 else 201 remove_file_migration_ptes(old, new); 202 } 203 204 /* 205 * Something used the pte of a page under migration. We need to 206 * get to the page and wait until migration is finished. 207 * When we return from this function the fault will be retried. 208 * 209 * This function is called from do_swap_page(). 210 */ 211 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 212 unsigned long address) 213 { 214 pte_t *ptep, pte; 215 spinlock_t *ptl; 216 swp_entry_t entry; 217 struct page *page; 218 219 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 220 pte = *ptep; 221 if (!is_swap_pte(pte)) 222 goto out; 223 224 entry = pte_to_swp_entry(pte); 225 if (!is_migration_entry(entry)) 226 goto out; 227 228 page = migration_entry_to_page(entry); 229 230 /* 231 * Once radix-tree replacement of page migration started, page_count 232 * *must* be zero. And, we don't want to call wait_on_page_locked() 233 * against a page without get_page(). 234 * So, we use get_page_unless_zero(), here. Even failed, page fault 235 * will occur again. 236 */ 237 if (!get_page_unless_zero(page)) 238 goto out; 239 pte_unmap_unlock(ptep, ptl); 240 wait_on_page_locked(page); 241 put_page(page); 242 return; 243 out: 244 pte_unmap_unlock(ptep, ptl); 245 } 246 247 /* 248 * Replace the page in the mapping. 249 * 250 * The number of remaining references must be: 251 * 1 for anonymous pages without a mapping 252 * 2 for pages with a mapping 253 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 254 */ 255 static int migrate_page_move_mapping(struct address_space *mapping, 256 struct page *newpage, struct page *page) 257 { 258 int expected_count; 259 void **pslot; 260 261 if (!mapping) { 262 /* Anonymous page without mapping */ 263 if (page_count(page) != 1) 264 return -EAGAIN; 265 return 0; 266 } 267 268 spin_lock_irq(&mapping->tree_lock); 269 270 pslot = radix_tree_lookup_slot(&mapping->page_tree, 271 page_index(page)); 272 273 expected_count = 2 + !!page_has_private(page); 274 if (page_count(page) != expected_count || 275 (struct page *)radix_tree_deref_slot(pslot) != page) { 276 spin_unlock_irq(&mapping->tree_lock); 277 return -EAGAIN; 278 } 279 280 if (!page_freeze_refs(page, expected_count)) { 281 spin_unlock_irq(&mapping->tree_lock); 282 return -EAGAIN; 283 } 284 285 /* 286 * Now we know that no one else is looking at the page. 287 */ 288 get_page(newpage); /* add cache reference */ 289 if (PageSwapCache(page)) { 290 SetPageSwapCache(newpage); 291 set_page_private(newpage, page_private(page)); 292 } 293 294 radix_tree_replace_slot(pslot, newpage); 295 296 page_unfreeze_refs(page, expected_count); 297 /* 298 * Drop cache reference from old page. 299 * We know this isn't the last reference. 300 */ 301 __put_page(page); 302 303 /* 304 * If moved to a different zone then also account 305 * the page for that zone. Other VM counters will be 306 * taken care of when we establish references to the 307 * new page and drop references to the old page. 308 * 309 * Note that anonymous pages are accounted for 310 * via NR_FILE_PAGES and NR_ANON_PAGES if they 311 * are mapped to swap space. 312 */ 313 __dec_zone_page_state(page, NR_FILE_PAGES); 314 __inc_zone_page_state(newpage, NR_FILE_PAGES); 315 316 spin_unlock_irq(&mapping->tree_lock); 317 318 return 0; 319 } 320 321 /* 322 * Copy the page to its new location 323 */ 324 static void migrate_page_copy(struct page *newpage, struct page *page) 325 { 326 int anon; 327 328 copy_highpage(newpage, page); 329 330 if (PageError(page)) 331 SetPageError(newpage); 332 if (PageReferenced(page)) 333 SetPageReferenced(newpage); 334 if (PageUptodate(page)) 335 SetPageUptodate(newpage); 336 if (TestClearPageActive(page)) { 337 VM_BUG_ON(PageUnevictable(page)); 338 SetPageActive(newpage); 339 } else 340 unevictable_migrate_page(newpage, page); 341 if (PageChecked(page)) 342 SetPageChecked(newpage); 343 if (PageMappedToDisk(page)) 344 SetPageMappedToDisk(newpage); 345 346 if (PageDirty(page)) { 347 clear_page_dirty_for_io(page); 348 /* 349 * Want to mark the page and the radix tree as dirty, and 350 * redo the accounting that clear_page_dirty_for_io undid, 351 * but we can't use set_page_dirty because that function 352 * is actually a signal that all of the page has become dirty. 353 * Wheras only part of our page may be dirty. 354 */ 355 __set_page_dirty_nobuffers(newpage); 356 } 357 358 mlock_migrate_page(newpage, page); 359 360 ClearPageSwapCache(page); 361 ClearPagePrivate(page); 362 set_page_private(page, 0); 363 /* page->mapping contains a flag for PageAnon() */ 364 anon = PageAnon(page); 365 page->mapping = NULL; 366 367 /* 368 * If any waiters have accumulated on the new page then 369 * wake them up. 370 */ 371 if (PageWriteback(newpage)) 372 end_page_writeback(newpage); 373 } 374 375 /************************************************************ 376 * Migration functions 377 ***********************************************************/ 378 379 /* Always fail migration. Used for mappings that are not movable */ 380 int fail_migrate_page(struct address_space *mapping, 381 struct page *newpage, struct page *page) 382 { 383 return -EIO; 384 } 385 EXPORT_SYMBOL(fail_migrate_page); 386 387 /* 388 * Common logic to directly migrate a single page suitable for 389 * pages that do not use PagePrivate/PagePrivate2. 390 * 391 * Pages are locked upon entry and exit. 392 */ 393 int migrate_page(struct address_space *mapping, 394 struct page *newpage, struct page *page) 395 { 396 int rc; 397 398 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 399 400 rc = migrate_page_move_mapping(mapping, newpage, page); 401 402 if (rc) 403 return rc; 404 405 migrate_page_copy(newpage, page); 406 return 0; 407 } 408 EXPORT_SYMBOL(migrate_page); 409 410 #ifdef CONFIG_BLOCK 411 /* 412 * Migration function for pages with buffers. This function can only be used 413 * if the underlying filesystem guarantees that no other references to "page" 414 * exist. 415 */ 416 int buffer_migrate_page(struct address_space *mapping, 417 struct page *newpage, struct page *page) 418 { 419 struct buffer_head *bh, *head; 420 int rc; 421 422 if (!page_has_buffers(page)) 423 return migrate_page(mapping, newpage, page); 424 425 head = page_buffers(page); 426 427 rc = migrate_page_move_mapping(mapping, newpage, page); 428 429 if (rc) 430 return rc; 431 432 bh = head; 433 do { 434 get_bh(bh); 435 lock_buffer(bh); 436 bh = bh->b_this_page; 437 438 } while (bh != head); 439 440 ClearPagePrivate(page); 441 set_page_private(newpage, page_private(page)); 442 set_page_private(page, 0); 443 put_page(page); 444 get_page(newpage); 445 446 bh = head; 447 do { 448 set_bh_page(bh, newpage, bh_offset(bh)); 449 bh = bh->b_this_page; 450 451 } while (bh != head); 452 453 SetPagePrivate(newpage); 454 455 migrate_page_copy(newpage, page); 456 457 bh = head; 458 do { 459 unlock_buffer(bh); 460 put_bh(bh); 461 bh = bh->b_this_page; 462 463 } while (bh != head); 464 465 return 0; 466 } 467 EXPORT_SYMBOL(buffer_migrate_page); 468 #endif 469 470 /* 471 * Writeback a page to clean the dirty state 472 */ 473 static int writeout(struct address_space *mapping, struct page *page) 474 { 475 struct writeback_control wbc = { 476 .sync_mode = WB_SYNC_NONE, 477 .nr_to_write = 1, 478 .range_start = 0, 479 .range_end = LLONG_MAX, 480 .nonblocking = 1, 481 .for_reclaim = 1 482 }; 483 int rc; 484 485 if (!mapping->a_ops->writepage) 486 /* No write method for the address space */ 487 return -EINVAL; 488 489 if (!clear_page_dirty_for_io(page)) 490 /* Someone else already triggered a write */ 491 return -EAGAIN; 492 493 /* 494 * A dirty page may imply that the underlying filesystem has 495 * the page on some queue. So the page must be clean for 496 * migration. Writeout may mean we loose the lock and the 497 * page state is no longer what we checked for earlier. 498 * At this point we know that the migration attempt cannot 499 * be successful. 500 */ 501 remove_migration_ptes(page, page); 502 503 rc = mapping->a_ops->writepage(page, &wbc); 504 505 if (rc != AOP_WRITEPAGE_ACTIVATE) 506 /* unlocked. Relock */ 507 lock_page(page); 508 509 return (rc < 0) ? -EIO : -EAGAIN; 510 } 511 512 /* 513 * Default handling if a filesystem does not provide a migration function. 514 */ 515 static int fallback_migrate_page(struct address_space *mapping, 516 struct page *newpage, struct page *page) 517 { 518 if (PageDirty(page)) 519 return writeout(mapping, page); 520 521 /* 522 * Buffers may be managed in a filesystem specific way. 523 * We must have no buffers or drop them. 524 */ 525 if (page_has_private(page) && 526 !try_to_release_page(page, GFP_KERNEL)) 527 return -EAGAIN; 528 529 return migrate_page(mapping, newpage, page); 530 } 531 532 /* 533 * Move a page to a newly allocated page 534 * The page is locked and all ptes have been successfully removed. 535 * 536 * The new page will have replaced the old page if this function 537 * is successful. 538 * 539 * Return value: 540 * < 0 - error code 541 * == 0 - success 542 */ 543 static int move_to_new_page(struct page *newpage, struct page *page) 544 { 545 struct address_space *mapping; 546 int rc; 547 548 /* 549 * Block others from accessing the page when we get around to 550 * establishing additional references. We are the only one 551 * holding a reference to the new page at this point. 552 */ 553 if (!trylock_page(newpage)) 554 BUG(); 555 556 /* Prepare mapping for the new page.*/ 557 newpage->index = page->index; 558 newpage->mapping = page->mapping; 559 if (PageSwapBacked(page)) 560 SetPageSwapBacked(newpage); 561 562 mapping = page_mapping(page); 563 if (!mapping) 564 rc = migrate_page(mapping, newpage, page); 565 else if (mapping->a_ops->migratepage) 566 /* 567 * Most pages have a mapping and most filesystems 568 * should provide a migration function. Anonymous 569 * pages are part of swap space which also has its 570 * own migration function. This is the most common 571 * path for page migration. 572 */ 573 rc = mapping->a_ops->migratepage(mapping, 574 newpage, page); 575 else 576 rc = fallback_migrate_page(mapping, newpage, page); 577 578 if (!rc) { 579 remove_migration_ptes(page, newpage); 580 } else 581 newpage->mapping = NULL; 582 583 unlock_page(newpage); 584 585 return rc; 586 } 587 588 /* 589 * Obtain the lock on page, remove all ptes and migrate the page 590 * to the newly allocated page in newpage. 591 */ 592 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 593 struct page *page, int force) 594 { 595 int rc = 0; 596 int *result = NULL; 597 struct page *newpage = get_new_page(page, private, &result); 598 int rcu_locked = 0; 599 int charge = 0; 600 struct mem_cgroup *mem; 601 602 if (!newpage) 603 return -ENOMEM; 604 605 if (page_count(page) == 1) { 606 /* page was freed from under us. So we are done. */ 607 goto move_newpage; 608 } 609 610 /* prepare cgroup just returns 0 or -ENOMEM */ 611 rc = -EAGAIN; 612 613 if (!trylock_page(page)) { 614 if (!force) 615 goto move_newpage; 616 lock_page(page); 617 } 618 619 /* charge against new page */ 620 charge = mem_cgroup_prepare_migration(page, &mem); 621 if (charge == -ENOMEM) { 622 rc = -ENOMEM; 623 goto unlock; 624 } 625 BUG_ON(charge); 626 627 if (PageWriteback(page)) { 628 if (!force) 629 goto uncharge; 630 wait_on_page_writeback(page); 631 } 632 /* 633 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 634 * we cannot notice that anon_vma is freed while we migrates a page. 635 * This rcu_read_lock() delays freeing anon_vma pointer until the end 636 * of migration. File cache pages are no problem because of page_lock() 637 * File Caches may use write_page() or lock_page() in migration, then, 638 * just care Anon page here. 639 */ 640 if (PageAnon(page)) { 641 rcu_read_lock(); 642 rcu_locked = 1; 643 } 644 645 /* 646 * Corner case handling: 647 * 1. When a new swap-cache page is read into, it is added to the LRU 648 * and treated as swapcache but it has no rmap yet. 649 * Calling try_to_unmap() against a page->mapping==NULL page will 650 * trigger a BUG. So handle it here. 651 * 2. An orphaned page (see truncate_complete_page) might have 652 * fs-private metadata. The page can be picked up due to memory 653 * offlining. Everywhere else except page reclaim, the page is 654 * invisible to the vm, so the page can not be migrated. So try to 655 * free the metadata, so the page can be freed. 656 */ 657 if (!page->mapping) { 658 if (!PageAnon(page) && page_has_private(page)) { 659 /* 660 * Go direct to try_to_free_buffers() here because 661 * a) that's what try_to_release_page() would do anyway 662 * b) we may be under rcu_read_lock() here, so we can't 663 * use GFP_KERNEL which is what try_to_release_page() 664 * needs to be effective. 665 */ 666 try_to_free_buffers(page); 667 } 668 goto rcu_unlock; 669 } 670 671 /* Establish migration ptes or remove ptes */ 672 try_to_unmap(page, 1); 673 674 if (!page_mapped(page)) 675 rc = move_to_new_page(newpage, page); 676 677 if (rc) 678 remove_migration_ptes(page, page); 679 rcu_unlock: 680 if (rcu_locked) 681 rcu_read_unlock(); 682 uncharge: 683 if (!charge) 684 mem_cgroup_end_migration(mem, page, newpage); 685 unlock: 686 unlock_page(page); 687 688 if (rc != -EAGAIN) { 689 /* 690 * A page that has been migrated has all references 691 * removed and will be freed. A page that has not been 692 * migrated will have kepts its references and be 693 * restored. 694 */ 695 list_del(&page->lru); 696 putback_lru_page(page); 697 } 698 699 move_newpage: 700 701 /* 702 * Move the new page to the LRU. If migration was not successful 703 * then this will free the page. 704 */ 705 putback_lru_page(newpage); 706 707 if (result) { 708 if (rc) 709 *result = rc; 710 else 711 *result = page_to_nid(newpage); 712 } 713 return rc; 714 } 715 716 /* 717 * migrate_pages 718 * 719 * The function takes one list of pages to migrate and a function 720 * that determines from the page to be migrated and the private data 721 * the target of the move and allocates the page. 722 * 723 * The function returns after 10 attempts or if no pages 724 * are movable anymore because to has become empty 725 * or no retryable pages exist anymore. All pages will be 726 * returned to the LRU or freed. 727 * 728 * Return: Number of pages not migrated or error code. 729 */ 730 int migrate_pages(struct list_head *from, 731 new_page_t get_new_page, unsigned long private) 732 { 733 int retry = 1; 734 int nr_failed = 0; 735 int pass = 0; 736 struct page *page; 737 struct page *page2; 738 int swapwrite = current->flags & PF_SWAPWRITE; 739 int rc; 740 741 if (!swapwrite) 742 current->flags |= PF_SWAPWRITE; 743 744 for(pass = 0; pass < 10 && retry; pass++) { 745 retry = 0; 746 747 list_for_each_entry_safe(page, page2, from, lru) { 748 cond_resched(); 749 750 rc = unmap_and_move(get_new_page, private, 751 page, pass > 2); 752 753 switch(rc) { 754 case -ENOMEM: 755 goto out; 756 case -EAGAIN: 757 retry++; 758 break; 759 case 0: 760 break; 761 default: 762 /* Permanent failure */ 763 nr_failed++; 764 break; 765 } 766 } 767 } 768 rc = 0; 769 out: 770 if (!swapwrite) 771 current->flags &= ~PF_SWAPWRITE; 772 773 putback_lru_pages(from); 774 775 if (rc) 776 return rc; 777 778 return nr_failed + retry; 779 } 780 781 #ifdef CONFIG_NUMA 782 /* 783 * Move a list of individual pages 784 */ 785 struct page_to_node { 786 unsigned long addr; 787 struct page *page; 788 int node; 789 int status; 790 }; 791 792 static struct page *new_page_node(struct page *p, unsigned long private, 793 int **result) 794 { 795 struct page_to_node *pm = (struct page_to_node *)private; 796 797 while (pm->node != MAX_NUMNODES && pm->page != p) 798 pm++; 799 800 if (pm->node == MAX_NUMNODES) 801 return NULL; 802 803 *result = &pm->status; 804 805 return alloc_pages_node(pm->node, 806 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 807 } 808 809 /* 810 * Move a set of pages as indicated in the pm array. The addr 811 * field must be set to the virtual address of the page to be moved 812 * and the node number must contain a valid target node. 813 * The pm array ends with node = MAX_NUMNODES. 814 */ 815 static int do_move_page_to_node_array(struct mm_struct *mm, 816 struct page_to_node *pm, 817 int migrate_all) 818 { 819 int err; 820 struct page_to_node *pp; 821 LIST_HEAD(pagelist); 822 823 migrate_prep(); 824 down_read(&mm->mmap_sem); 825 826 /* 827 * Build a list of pages to migrate 828 */ 829 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 830 struct vm_area_struct *vma; 831 struct page *page; 832 833 err = -EFAULT; 834 vma = find_vma(mm, pp->addr); 835 if (!vma || !vma_migratable(vma)) 836 goto set_status; 837 838 page = follow_page(vma, pp->addr, FOLL_GET); 839 840 err = PTR_ERR(page); 841 if (IS_ERR(page)) 842 goto set_status; 843 844 err = -ENOENT; 845 if (!page) 846 goto set_status; 847 848 if (PageReserved(page)) /* Check for zero page */ 849 goto put_and_set; 850 851 pp->page = page; 852 err = page_to_nid(page); 853 854 if (err == pp->node) 855 /* 856 * Node already in the right place 857 */ 858 goto put_and_set; 859 860 err = -EACCES; 861 if (page_mapcount(page) > 1 && 862 !migrate_all) 863 goto put_and_set; 864 865 err = isolate_lru_page(page); 866 if (!err) 867 list_add_tail(&page->lru, &pagelist); 868 put_and_set: 869 /* 870 * Either remove the duplicate refcount from 871 * isolate_lru_page() or drop the page ref if it was 872 * not isolated. 873 */ 874 put_page(page); 875 set_status: 876 pp->status = err; 877 } 878 879 err = 0; 880 if (!list_empty(&pagelist)) 881 err = migrate_pages(&pagelist, new_page_node, 882 (unsigned long)pm); 883 884 up_read(&mm->mmap_sem); 885 return err; 886 } 887 888 /* 889 * Migrate an array of page address onto an array of nodes and fill 890 * the corresponding array of status. 891 */ 892 static int do_pages_move(struct mm_struct *mm, struct task_struct *task, 893 unsigned long nr_pages, 894 const void __user * __user *pages, 895 const int __user *nodes, 896 int __user *status, int flags) 897 { 898 struct page_to_node *pm; 899 nodemask_t task_nodes; 900 unsigned long chunk_nr_pages; 901 unsigned long chunk_start; 902 int err; 903 904 task_nodes = cpuset_mems_allowed(task); 905 906 err = -ENOMEM; 907 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 908 if (!pm) 909 goto out; 910 /* 911 * Store a chunk of page_to_node array in a page, 912 * but keep the last one as a marker 913 */ 914 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 915 916 for (chunk_start = 0; 917 chunk_start < nr_pages; 918 chunk_start += chunk_nr_pages) { 919 int j; 920 921 if (chunk_start + chunk_nr_pages > nr_pages) 922 chunk_nr_pages = nr_pages - chunk_start; 923 924 /* fill the chunk pm with addrs and nodes from user-space */ 925 for (j = 0; j < chunk_nr_pages; j++) { 926 const void __user *p; 927 int node; 928 929 err = -EFAULT; 930 if (get_user(p, pages + j + chunk_start)) 931 goto out_pm; 932 pm[j].addr = (unsigned long) p; 933 934 if (get_user(node, nodes + j + chunk_start)) 935 goto out_pm; 936 937 err = -ENODEV; 938 if (!node_state(node, N_HIGH_MEMORY)) 939 goto out_pm; 940 941 err = -EACCES; 942 if (!node_isset(node, task_nodes)) 943 goto out_pm; 944 945 pm[j].node = node; 946 } 947 948 /* End marker for this chunk */ 949 pm[chunk_nr_pages].node = MAX_NUMNODES; 950 951 /* Migrate this chunk */ 952 err = do_move_page_to_node_array(mm, pm, 953 flags & MPOL_MF_MOVE_ALL); 954 if (err < 0) 955 goto out_pm; 956 957 /* Return status information */ 958 for (j = 0; j < chunk_nr_pages; j++) 959 if (put_user(pm[j].status, status + j + chunk_start)) { 960 err = -EFAULT; 961 goto out_pm; 962 } 963 } 964 err = 0; 965 966 out_pm: 967 free_page((unsigned long)pm); 968 out: 969 return err; 970 } 971 972 /* 973 * Determine the nodes of an array of pages and store it in an array of status. 974 */ 975 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 976 const void __user **pages, int *status) 977 { 978 unsigned long i; 979 980 down_read(&mm->mmap_sem); 981 982 for (i = 0; i < nr_pages; i++) { 983 unsigned long addr = (unsigned long)(*pages); 984 struct vm_area_struct *vma; 985 struct page *page; 986 int err = -EFAULT; 987 988 vma = find_vma(mm, addr); 989 if (!vma) 990 goto set_status; 991 992 page = follow_page(vma, addr, 0); 993 994 err = PTR_ERR(page); 995 if (IS_ERR(page)) 996 goto set_status; 997 998 err = -ENOENT; 999 /* Use PageReserved to check for zero page */ 1000 if (!page || PageReserved(page)) 1001 goto set_status; 1002 1003 err = page_to_nid(page); 1004 set_status: 1005 *status = err; 1006 1007 pages++; 1008 status++; 1009 } 1010 1011 up_read(&mm->mmap_sem); 1012 } 1013 1014 /* 1015 * Determine the nodes of a user array of pages and store it in 1016 * a user array of status. 1017 */ 1018 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1019 const void __user * __user *pages, 1020 int __user *status) 1021 { 1022 #define DO_PAGES_STAT_CHUNK_NR 16 1023 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1024 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1025 unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1026 int err; 1027 1028 for (i = 0; i < nr_pages; i += chunk_nr) { 1029 if (chunk_nr + i > nr_pages) 1030 chunk_nr = nr_pages - i; 1031 1032 err = copy_from_user(chunk_pages, &pages[i], 1033 chunk_nr * sizeof(*chunk_pages)); 1034 if (err) { 1035 err = -EFAULT; 1036 goto out; 1037 } 1038 1039 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1040 1041 err = copy_to_user(&status[i], chunk_status, 1042 chunk_nr * sizeof(*chunk_status)); 1043 if (err) { 1044 err = -EFAULT; 1045 goto out; 1046 } 1047 } 1048 err = 0; 1049 1050 out: 1051 return err; 1052 } 1053 1054 /* 1055 * Move a list of pages in the address space of the currently executing 1056 * process. 1057 */ 1058 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1059 const void __user * __user *, pages, 1060 const int __user *, nodes, 1061 int __user *, status, int, flags) 1062 { 1063 const struct cred *cred = current_cred(), *tcred; 1064 struct task_struct *task; 1065 struct mm_struct *mm; 1066 int err; 1067 1068 /* Check flags */ 1069 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1070 return -EINVAL; 1071 1072 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1073 return -EPERM; 1074 1075 /* Find the mm_struct */ 1076 read_lock(&tasklist_lock); 1077 task = pid ? find_task_by_vpid(pid) : current; 1078 if (!task) { 1079 read_unlock(&tasklist_lock); 1080 return -ESRCH; 1081 } 1082 mm = get_task_mm(task); 1083 read_unlock(&tasklist_lock); 1084 1085 if (!mm) 1086 return -EINVAL; 1087 1088 /* 1089 * Check if this process has the right to modify the specified 1090 * process. The right exists if the process has administrative 1091 * capabilities, superuser privileges or the same 1092 * userid as the target process. 1093 */ 1094 rcu_read_lock(); 1095 tcred = __task_cred(task); 1096 if (cred->euid != tcred->suid && cred->euid != tcred->uid && 1097 cred->uid != tcred->suid && cred->uid != tcred->uid && 1098 !capable(CAP_SYS_NICE)) { 1099 rcu_read_unlock(); 1100 err = -EPERM; 1101 goto out; 1102 } 1103 rcu_read_unlock(); 1104 1105 err = security_task_movememory(task); 1106 if (err) 1107 goto out; 1108 1109 if (nodes) { 1110 err = do_pages_move(mm, task, nr_pages, pages, nodes, status, 1111 flags); 1112 } else { 1113 err = do_pages_stat(mm, nr_pages, pages, status); 1114 } 1115 1116 out: 1117 mmput(mm); 1118 return err; 1119 } 1120 1121 /* 1122 * Call migration functions in the vma_ops that may prepare 1123 * memory in a vm for migration. migration functions may perform 1124 * the migration for vmas that do not have an underlying page struct. 1125 */ 1126 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1127 const nodemask_t *from, unsigned long flags) 1128 { 1129 struct vm_area_struct *vma; 1130 int err = 0; 1131 1132 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1133 if (vma->vm_ops && vma->vm_ops->migrate) { 1134 err = vma->vm_ops->migrate(vma, to, from, flags); 1135 if (err) 1136 break; 1137 } 1138 } 1139 return err; 1140 } 1141 #endif 1142