xref: /openbmc/linux/mm/migrate.c (revision 82ced6fd)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
34 
35 #include "internal.h"
36 
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 
39 /*
40  * migrate_prep() needs to be called before we start compiling a list of pages
41  * to be migrated using isolate_lru_page().
42  */
43 int migrate_prep(void)
44 {
45 	/*
46 	 * Clear the LRU lists so pages can be isolated.
47 	 * Note that pages may be moved off the LRU after we have
48 	 * drained them. Those pages will fail to migrate like other
49 	 * pages that may be busy.
50 	 */
51 	lru_add_drain_all();
52 
53 	return 0;
54 }
55 
56 /*
57  * Add isolated pages on the list back to the LRU under page lock
58  * to avoid leaking evictable pages back onto unevictable list.
59  *
60  * returns the number of pages put back.
61  */
62 int putback_lru_pages(struct list_head *l)
63 {
64 	struct page *page;
65 	struct page *page2;
66 	int count = 0;
67 
68 	list_for_each_entry_safe(page, page2, l, lru) {
69 		list_del(&page->lru);
70 		putback_lru_page(page);
71 		count++;
72 	}
73 	return count;
74 }
75 
76 /*
77  * Restore a potential migration pte to a working pte entry
78  */
79 static void remove_migration_pte(struct vm_area_struct *vma,
80 		struct page *old, struct page *new)
81 {
82 	struct mm_struct *mm = vma->vm_mm;
83 	swp_entry_t entry;
84  	pgd_t *pgd;
85  	pud_t *pud;
86  	pmd_t *pmd;
87 	pte_t *ptep, pte;
88  	spinlock_t *ptl;
89 	unsigned long addr = page_address_in_vma(new, vma);
90 
91 	if (addr == -EFAULT)
92 		return;
93 
94  	pgd = pgd_offset(mm, addr);
95 	if (!pgd_present(*pgd))
96                 return;
97 
98 	pud = pud_offset(pgd, addr);
99 	if (!pud_present(*pud))
100                 return;
101 
102 	pmd = pmd_offset(pud, addr);
103 	if (!pmd_present(*pmd))
104 		return;
105 
106 	ptep = pte_offset_map(pmd, addr);
107 
108 	if (!is_swap_pte(*ptep)) {
109 		pte_unmap(ptep);
110  		return;
111  	}
112 
113  	ptl = pte_lockptr(mm, pmd);
114  	spin_lock(ptl);
115 	pte = *ptep;
116 	if (!is_swap_pte(pte))
117 		goto out;
118 
119 	entry = pte_to_swp_entry(pte);
120 
121 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122 		goto out;
123 
124 	get_page(new);
125 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
126 	if (is_write_migration_entry(entry))
127 		pte = pte_mkwrite(pte);
128 	flush_cache_page(vma, addr, pte_pfn(pte));
129 	set_pte_at(mm, addr, ptep, pte);
130 
131 	if (PageAnon(new))
132 		page_add_anon_rmap(new, vma, addr);
133 	else
134 		page_add_file_rmap(new);
135 
136 	/* No need to invalidate - it was non-present before */
137 	update_mmu_cache(vma, addr, pte);
138 
139 out:
140 	pte_unmap_unlock(ptep, ptl);
141 }
142 
143 /*
144  * Note that remove_file_migration_ptes will only work on regular mappings,
145  * Nonlinear mappings do not use migration entries.
146  */
147 static void remove_file_migration_ptes(struct page *old, struct page *new)
148 {
149 	struct vm_area_struct *vma;
150 	struct address_space *mapping = page_mapping(new);
151 	struct prio_tree_iter iter;
152 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
153 
154 	if (!mapping)
155 		return;
156 
157 	spin_lock(&mapping->i_mmap_lock);
158 
159 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
160 		remove_migration_pte(vma, old, new);
161 
162 	spin_unlock(&mapping->i_mmap_lock);
163 }
164 
165 /*
166  * Must hold mmap_sem lock on at least one of the vmas containing
167  * the page so that the anon_vma cannot vanish.
168  */
169 static void remove_anon_migration_ptes(struct page *old, struct page *new)
170 {
171 	struct anon_vma *anon_vma;
172 	struct vm_area_struct *vma;
173 	unsigned long mapping;
174 
175 	mapping = (unsigned long)new->mapping;
176 
177 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
178 		return;
179 
180 	/*
181 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
182 	 */
183 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
184 	spin_lock(&anon_vma->lock);
185 
186 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
187 		remove_migration_pte(vma, old, new);
188 
189 	spin_unlock(&anon_vma->lock);
190 }
191 
192 /*
193  * Get rid of all migration entries and replace them by
194  * references to the indicated page.
195  */
196 static void remove_migration_ptes(struct page *old, struct page *new)
197 {
198 	if (PageAnon(new))
199 		remove_anon_migration_ptes(old, new);
200 	else
201 		remove_file_migration_ptes(old, new);
202 }
203 
204 /*
205  * Something used the pte of a page under migration. We need to
206  * get to the page and wait until migration is finished.
207  * When we return from this function the fault will be retried.
208  *
209  * This function is called from do_swap_page().
210  */
211 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
212 				unsigned long address)
213 {
214 	pte_t *ptep, pte;
215 	spinlock_t *ptl;
216 	swp_entry_t entry;
217 	struct page *page;
218 
219 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
220 	pte = *ptep;
221 	if (!is_swap_pte(pte))
222 		goto out;
223 
224 	entry = pte_to_swp_entry(pte);
225 	if (!is_migration_entry(entry))
226 		goto out;
227 
228 	page = migration_entry_to_page(entry);
229 
230 	/*
231 	 * Once radix-tree replacement of page migration started, page_count
232 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
233 	 * against a page without get_page().
234 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
235 	 * will occur again.
236 	 */
237 	if (!get_page_unless_zero(page))
238 		goto out;
239 	pte_unmap_unlock(ptep, ptl);
240 	wait_on_page_locked(page);
241 	put_page(page);
242 	return;
243 out:
244 	pte_unmap_unlock(ptep, ptl);
245 }
246 
247 /*
248  * Replace the page in the mapping.
249  *
250  * The number of remaining references must be:
251  * 1 for anonymous pages without a mapping
252  * 2 for pages with a mapping
253  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
254  */
255 static int migrate_page_move_mapping(struct address_space *mapping,
256 		struct page *newpage, struct page *page)
257 {
258 	int expected_count;
259 	void **pslot;
260 
261 	if (!mapping) {
262 		/* Anonymous page without mapping */
263 		if (page_count(page) != 1)
264 			return -EAGAIN;
265 		return 0;
266 	}
267 
268 	spin_lock_irq(&mapping->tree_lock);
269 
270 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
271  					page_index(page));
272 
273 	expected_count = 2 + !!page_has_private(page);
274 	if (page_count(page) != expected_count ||
275 			(struct page *)radix_tree_deref_slot(pslot) != page) {
276 		spin_unlock_irq(&mapping->tree_lock);
277 		return -EAGAIN;
278 	}
279 
280 	if (!page_freeze_refs(page, expected_count)) {
281 		spin_unlock_irq(&mapping->tree_lock);
282 		return -EAGAIN;
283 	}
284 
285 	/*
286 	 * Now we know that no one else is looking at the page.
287 	 */
288 	get_page(newpage);	/* add cache reference */
289 	if (PageSwapCache(page)) {
290 		SetPageSwapCache(newpage);
291 		set_page_private(newpage, page_private(page));
292 	}
293 
294 	radix_tree_replace_slot(pslot, newpage);
295 
296 	page_unfreeze_refs(page, expected_count);
297 	/*
298 	 * Drop cache reference from old page.
299 	 * We know this isn't the last reference.
300 	 */
301 	__put_page(page);
302 
303 	/*
304 	 * If moved to a different zone then also account
305 	 * the page for that zone. Other VM counters will be
306 	 * taken care of when we establish references to the
307 	 * new page and drop references to the old page.
308 	 *
309 	 * Note that anonymous pages are accounted for
310 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
311 	 * are mapped to swap space.
312 	 */
313 	__dec_zone_page_state(page, NR_FILE_PAGES);
314 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
315 
316 	spin_unlock_irq(&mapping->tree_lock);
317 
318 	return 0;
319 }
320 
321 /*
322  * Copy the page to its new location
323  */
324 static void migrate_page_copy(struct page *newpage, struct page *page)
325 {
326 	int anon;
327 
328 	copy_highpage(newpage, page);
329 
330 	if (PageError(page))
331 		SetPageError(newpage);
332 	if (PageReferenced(page))
333 		SetPageReferenced(newpage);
334 	if (PageUptodate(page))
335 		SetPageUptodate(newpage);
336 	if (TestClearPageActive(page)) {
337 		VM_BUG_ON(PageUnevictable(page));
338 		SetPageActive(newpage);
339 	} else
340 		unevictable_migrate_page(newpage, page);
341 	if (PageChecked(page))
342 		SetPageChecked(newpage);
343 	if (PageMappedToDisk(page))
344 		SetPageMappedToDisk(newpage);
345 
346 	if (PageDirty(page)) {
347 		clear_page_dirty_for_io(page);
348 		/*
349 		 * Want to mark the page and the radix tree as dirty, and
350 		 * redo the accounting that clear_page_dirty_for_io undid,
351 		 * but we can't use set_page_dirty because that function
352 		 * is actually a signal that all of the page has become dirty.
353 		 * Wheras only part of our page may be dirty.
354 		 */
355 		__set_page_dirty_nobuffers(newpage);
356  	}
357 
358 	mlock_migrate_page(newpage, page);
359 
360 	ClearPageSwapCache(page);
361 	ClearPagePrivate(page);
362 	set_page_private(page, 0);
363 	/* page->mapping contains a flag for PageAnon() */
364 	anon = PageAnon(page);
365 	page->mapping = NULL;
366 
367 	/*
368 	 * If any waiters have accumulated on the new page then
369 	 * wake them up.
370 	 */
371 	if (PageWriteback(newpage))
372 		end_page_writeback(newpage);
373 }
374 
375 /************************************************************
376  *                    Migration functions
377  ***********************************************************/
378 
379 /* Always fail migration. Used for mappings that are not movable */
380 int fail_migrate_page(struct address_space *mapping,
381 			struct page *newpage, struct page *page)
382 {
383 	return -EIO;
384 }
385 EXPORT_SYMBOL(fail_migrate_page);
386 
387 /*
388  * Common logic to directly migrate a single page suitable for
389  * pages that do not use PagePrivate/PagePrivate2.
390  *
391  * Pages are locked upon entry and exit.
392  */
393 int migrate_page(struct address_space *mapping,
394 		struct page *newpage, struct page *page)
395 {
396 	int rc;
397 
398 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
399 
400 	rc = migrate_page_move_mapping(mapping, newpage, page);
401 
402 	if (rc)
403 		return rc;
404 
405 	migrate_page_copy(newpage, page);
406 	return 0;
407 }
408 EXPORT_SYMBOL(migrate_page);
409 
410 #ifdef CONFIG_BLOCK
411 /*
412  * Migration function for pages with buffers. This function can only be used
413  * if the underlying filesystem guarantees that no other references to "page"
414  * exist.
415  */
416 int buffer_migrate_page(struct address_space *mapping,
417 		struct page *newpage, struct page *page)
418 {
419 	struct buffer_head *bh, *head;
420 	int rc;
421 
422 	if (!page_has_buffers(page))
423 		return migrate_page(mapping, newpage, page);
424 
425 	head = page_buffers(page);
426 
427 	rc = migrate_page_move_mapping(mapping, newpage, page);
428 
429 	if (rc)
430 		return rc;
431 
432 	bh = head;
433 	do {
434 		get_bh(bh);
435 		lock_buffer(bh);
436 		bh = bh->b_this_page;
437 
438 	} while (bh != head);
439 
440 	ClearPagePrivate(page);
441 	set_page_private(newpage, page_private(page));
442 	set_page_private(page, 0);
443 	put_page(page);
444 	get_page(newpage);
445 
446 	bh = head;
447 	do {
448 		set_bh_page(bh, newpage, bh_offset(bh));
449 		bh = bh->b_this_page;
450 
451 	} while (bh != head);
452 
453 	SetPagePrivate(newpage);
454 
455 	migrate_page_copy(newpage, page);
456 
457 	bh = head;
458 	do {
459 		unlock_buffer(bh);
460  		put_bh(bh);
461 		bh = bh->b_this_page;
462 
463 	} while (bh != head);
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL(buffer_migrate_page);
468 #endif
469 
470 /*
471  * Writeback a page to clean the dirty state
472  */
473 static int writeout(struct address_space *mapping, struct page *page)
474 {
475 	struct writeback_control wbc = {
476 		.sync_mode = WB_SYNC_NONE,
477 		.nr_to_write = 1,
478 		.range_start = 0,
479 		.range_end = LLONG_MAX,
480 		.nonblocking = 1,
481 		.for_reclaim = 1
482 	};
483 	int rc;
484 
485 	if (!mapping->a_ops->writepage)
486 		/* No write method for the address space */
487 		return -EINVAL;
488 
489 	if (!clear_page_dirty_for_io(page))
490 		/* Someone else already triggered a write */
491 		return -EAGAIN;
492 
493 	/*
494 	 * A dirty page may imply that the underlying filesystem has
495 	 * the page on some queue. So the page must be clean for
496 	 * migration. Writeout may mean we loose the lock and the
497 	 * page state is no longer what we checked for earlier.
498 	 * At this point we know that the migration attempt cannot
499 	 * be successful.
500 	 */
501 	remove_migration_ptes(page, page);
502 
503 	rc = mapping->a_ops->writepage(page, &wbc);
504 
505 	if (rc != AOP_WRITEPAGE_ACTIVATE)
506 		/* unlocked. Relock */
507 		lock_page(page);
508 
509 	return (rc < 0) ? -EIO : -EAGAIN;
510 }
511 
512 /*
513  * Default handling if a filesystem does not provide a migration function.
514  */
515 static int fallback_migrate_page(struct address_space *mapping,
516 	struct page *newpage, struct page *page)
517 {
518 	if (PageDirty(page))
519 		return writeout(mapping, page);
520 
521 	/*
522 	 * Buffers may be managed in a filesystem specific way.
523 	 * We must have no buffers or drop them.
524 	 */
525 	if (page_has_private(page) &&
526 	    !try_to_release_page(page, GFP_KERNEL))
527 		return -EAGAIN;
528 
529 	return migrate_page(mapping, newpage, page);
530 }
531 
532 /*
533  * Move a page to a newly allocated page
534  * The page is locked and all ptes have been successfully removed.
535  *
536  * The new page will have replaced the old page if this function
537  * is successful.
538  *
539  * Return value:
540  *   < 0 - error code
541  *  == 0 - success
542  */
543 static int move_to_new_page(struct page *newpage, struct page *page)
544 {
545 	struct address_space *mapping;
546 	int rc;
547 
548 	/*
549 	 * Block others from accessing the page when we get around to
550 	 * establishing additional references. We are the only one
551 	 * holding a reference to the new page at this point.
552 	 */
553 	if (!trylock_page(newpage))
554 		BUG();
555 
556 	/* Prepare mapping for the new page.*/
557 	newpage->index = page->index;
558 	newpage->mapping = page->mapping;
559 	if (PageSwapBacked(page))
560 		SetPageSwapBacked(newpage);
561 
562 	mapping = page_mapping(page);
563 	if (!mapping)
564 		rc = migrate_page(mapping, newpage, page);
565 	else if (mapping->a_ops->migratepage)
566 		/*
567 		 * Most pages have a mapping and most filesystems
568 		 * should provide a migration function. Anonymous
569 		 * pages are part of swap space which also has its
570 		 * own migration function. This is the most common
571 		 * path for page migration.
572 		 */
573 		rc = mapping->a_ops->migratepage(mapping,
574 						newpage, page);
575 	else
576 		rc = fallback_migrate_page(mapping, newpage, page);
577 
578 	if (!rc) {
579 		remove_migration_ptes(page, newpage);
580 	} else
581 		newpage->mapping = NULL;
582 
583 	unlock_page(newpage);
584 
585 	return rc;
586 }
587 
588 /*
589  * Obtain the lock on page, remove all ptes and migrate the page
590  * to the newly allocated page in newpage.
591  */
592 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
593 			struct page *page, int force)
594 {
595 	int rc = 0;
596 	int *result = NULL;
597 	struct page *newpage = get_new_page(page, private, &result);
598 	int rcu_locked = 0;
599 	int charge = 0;
600 	struct mem_cgroup *mem;
601 
602 	if (!newpage)
603 		return -ENOMEM;
604 
605 	if (page_count(page) == 1) {
606 		/* page was freed from under us. So we are done. */
607 		goto move_newpage;
608 	}
609 
610 	/* prepare cgroup just returns 0 or -ENOMEM */
611 	rc = -EAGAIN;
612 
613 	if (!trylock_page(page)) {
614 		if (!force)
615 			goto move_newpage;
616 		lock_page(page);
617 	}
618 
619 	/* charge against new page */
620 	charge = mem_cgroup_prepare_migration(page, &mem);
621 	if (charge == -ENOMEM) {
622 		rc = -ENOMEM;
623 		goto unlock;
624 	}
625 	BUG_ON(charge);
626 
627 	if (PageWriteback(page)) {
628 		if (!force)
629 			goto uncharge;
630 		wait_on_page_writeback(page);
631 	}
632 	/*
633 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
634 	 * we cannot notice that anon_vma is freed while we migrates a page.
635 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
636 	 * of migration. File cache pages are no problem because of page_lock()
637 	 * File Caches may use write_page() or lock_page() in migration, then,
638 	 * just care Anon page here.
639 	 */
640 	if (PageAnon(page)) {
641 		rcu_read_lock();
642 		rcu_locked = 1;
643 	}
644 
645 	/*
646 	 * Corner case handling:
647 	 * 1. When a new swap-cache page is read into, it is added to the LRU
648 	 * and treated as swapcache but it has no rmap yet.
649 	 * Calling try_to_unmap() against a page->mapping==NULL page will
650 	 * trigger a BUG.  So handle it here.
651 	 * 2. An orphaned page (see truncate_complete_page) might have
652 	 * fs-private metadata. The page can be picked up due to memory
653 	 * offlining.  Everywhere else except page reclaim, the page is
654 	 * invisible to the vm, so the page can not be migrated.  So try to
655 	 * free the metadata, so the page can be freed.
656 	 */
657 	if (!page->mapping) {
658 		if (!PageAnon(page) && page_has_private(page)) {
659 			/*
660 			 * Go direct to try_to_free_buffers() here because
661 			 * a) that's what try_to_release_page() would do anyway
662 			 * b) we may be under rcu_read_lock() here, so we can't
663 			 *    use GFP_KERNEL which is what try_to_release_page()
664 			 *    needs to be effective.
665 			 */
666 			try_to_free_buffers(page);
667 		}
668 		goto rcu_unlock;
669 	}
670 
671 	/* Establish migration ptes or remove ptes */
672 	try_to_unmap(page, 1);
673 
674 	if (!page_mapped(page))
675 		rc = move_to_new_page(newpage, page);
676 
677 	if (rc)
678 		remove_migration_ptes(page, page);
679 rcu_unlock:
680 	if (rcu_locked)
681 		rcu_read_unlock();
682 uncharge:
683 	if (!charge)
684 		mem_cgroup_end_migration(mem, page, newpage);
685 unlock:
686 	unlock_page(page);
687 
688 	if (rc != -EAGAIN) {
689  		/*
690  		 * A page that has been migrated has all references
691  		 * removed and will be freed. A page that has not been
692  		 * migrated will have kepts its references and be
693  		 * restored.
694  		 */
695  		list_del(&page->lru);
696 		putback_lru_page(page);
697 	}
698 
699 move_newpage:
700 
701 	/*
702 	 * Move the new page to the LRU. If migration was not successful
703 	 * then this will free the page.
704 	 */
705 	putback_lru_page(newpage);
706 
707 	if (result) {
708 		if (rc)
709 			*result = rc;
710 		else
711 			*result = page_to_nid(newpage);
712 	}
713 	return rc;
714 }
715 
716 /*
717  * migrate_pages
718  *
719  * The function takes one list of pages to migrate and a function
720  * that determines from the page to be migrated and the private data
721  * the target of the move and allocates the page.
722  *
723  * The function returns after 10 attempts or if no pages
724  * are movable anymore because to has become empty
725  * or no retryable pages exist anymore. All pages will be
726  * returned to the LRU or freed.
727  *
728  * Return: Number of pages not migrated or error code.
729  */
730 int migrate_pages(struct list_head *from,
731 		new_page_t get_new_page, unsigned long private)
732 {
733 	int retry = 1;
734 	int nr_failed = 0;
735 	int pass = 0;
736 	struct page *page;
737 	struct page *page2;
738 	int swapwrite = current->flags & PF_SWAPWRITE;
739 	int rc;
740 
741 	if (!swapwrite)
742 		current->flags |= PF_SWAPWRITE;
743 
744 	for(pass = 0; pass < 10 && retry; pass++) {
745 		retry = 0;
746 
747 		list_for_each_entry_safe(page, page2, from, lru) {
748 			cond_resched();
749 
750 			rc = unmap_and_move(get_new_page, private,
751 						page, pass > 2);
752 
753 			switch(rc) {
754 			case -ENOMEM:
755 				goto out;
756 			case -EAGAIN:
757 				retry++;
758 				break;
759 			case 0:
760 				break;
761 			default:
762 				/* Permanent failure */
763 				nr_failed++;
764 				break;
765 			}
766 		}
767 	}
768 	rc = 0;
769 out:
770 	if (!swapwrite)
771 		current->flags &= ~PF_SWAPWRITE;
772 
773 	putback_lru_pages(from);
774 
775 	if (rc)
776 		return rc;
777 
778 	return nr_failed + retry;
779 }
780 
781 #ifdef CONFIG_NUMA
782 /*
783  * Move a list of individual pages
784  */
785 struct page_to_node {
786 	unsigned long addr;
787 	struct page *page;
788 	int node;
789 	int status;
790 };
791 
792 static struct page *new_page_node(struct page *p, unsigned long private,
793 		int **result)
794 {
795 	struct page_to_node *pm = (struct page_to_node *)private;
796 
797 	while (pm->node != MAX_NUMNODES && pm->page != p)
798 		pm++;
799 
800 	if (pm->node == MAX_NUMNODES)
801 		return NULL;
802 
803 	*result = &pm->status;
804 
805 	return alloc_pages_node(pm->node,
806 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
807 }
808 
809 /*
810  * Move a set of pages as indicated in the pm array. The addr
811  * field must be set to the virtual address of the page to be moved
812  * and the node number must contain a valid target node.
813  * The pm array ends with node = MAX_NUMNODES.
814  */
815 static int do_move_page_to_node_array(struct mm_struct *mm,
816 				      struct page_to_node *pm,
817 				      int migrate_all)
818 {
819 	int err;
820 	struct page_to_node *pp;
821 	LIST_HEAD(pagelist);
822 
823 	migrate_prep();
824 	down_read(&mm->mmap_sem);
825 
826 	/*
827 	 * Build a list of pages to migrate
828 	 */
829 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
830 		struct vm_area_struct *vma;
831 		struct page *page;
832 
833 		err = -EFAULT;
834 		vma = find_vma(mm, pp->addr);
835 		if (!vma || !vma_migratable(vma))
836 			goto set_status;
837 
838 		page = follow_page(vma, pp->addr, FOLL_GET);
839 
840 		err = PTR_ERR(page);
841 		if (IS_ERR(page))
842 			goto set_status;
843 
844 		err = -ENOENT;
845 		if (!page)
846 			goto set_status;
847 
848 		if (PageReserved(page))		/* Check for zero page */
849 			goto put_and_set;
850 
851 		pp->page = page;
852 		err = page_to_nid(page);
853 
854 		if (err == pp->node)
855 			/*
856 			 * Node already in the right place
857 			 */
858 			goto put_and_set;
859 
860 		err = -EACCES;
861 		if (page_mapcount(page) > 1 &&
862 				!migrate_all)
863 			goto put_and_set;
864 
865 		err = isolate_lru_page(page);
866 		if (!err)
867 			list_add_tail(&page->lru, &pagelist);
868 put_and_set:
869 		/*
870 		 * Either remove the duplicate refcount from
871 		 * isolate_lru_page() or drop the page ref if it was
872 		 * not isolated.
873 		 */
874 		put_page(page);
875 set_status:
876 		pp->status = err;
877 	}
878 
879 	err = 0;
880 	if (!list_empty(&pagelist))
881 		err = migrate_pages(&pagelist, new_page_node,
882 				(unsigned long)pm);
883 
884 	up_read(&mm->mmap_sem);
885 	return err;
886 }
887 
888 /*
889  * Migrate an array of page address onto an array of nodes and fill
890  * the corresponding array of status.
891  */
892 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
893 			 unsigned long nr_pages,
894 			 const void __user * __user *pages,
895 			 const int __user *nodes,
896 			 int __user *status, int flags)
897 {
898 	struct page_to_node *pm;
899 	nodemask_t task_nodes;
900 	unsigned long chunk_nr_pages;
901 	unsigned long chunk_start;
902 	int err;
903 
904 	task_nodes = cpuset_mems_allowed(task);
905 
906 	err = -ENOMEM;
907 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
908 	if (!pm)
909 		goto out;
910 	/*
911 	 * Store a chunk of page_to_node array in a page,
912 	 * but keep the last one as a marker
913 	 */
914 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
915 
916 	for (chunk_start = 0;
917 	     chunk_start < nr_pages;
918 	     chunk_start += chunk_nr_pages) {
919 		int j;
920 
921 		if (chunk_start + chunk_nr_pages > nr_pages)
922 			chunk_nr_pages = nr_pages - chunk_start;
923 
924 		/* fill the chunk pm with addrs and nodes from user-space */
925 		for (j = 0; j < chunk_nr_pages; j++) {
926 			const void __user *p;
927 			int node;
928 
929 			err = -EFAULT;
930 			if (get_user(p, pages + j + chunk_start))
931 				goto out_pm;
932 			pm[j].addr = (unsigned long) p;
933 
934 			if (get_user(node, nodes + j + chunk_start))
935 				goto out_pm;
936 
937 			err = -ENODEV;
938 			if (!node_state(node, N_HIGH_MEMORY))
939 				goto out_pm;
940 
941 			err = -EACCES;
942 			if (!node_isset(node, task_nodes))
943 				goto out_pm;
944 
945 			pm[j].node = node;
946 		}
947 
948 		/* End marker for this chunk */
949 		pm[chunk_nr_pages].node = MAX_NUMNODES;
950 
951 		/* Migrate this chunk */
952 		err = do_move_page_to_node_array(mm, pm,
953 						 flags & MPOL_MF_MOVE_ALL);
954 		if (err < 0)
955 			goto out_pm;
956 
957 		/* Return status information */
958 		for (j = 0; j < chunk_nr_pages; j++)
959 			if (put_user(pm[j].status, status + j + chunk_start)) {
960 				err = -EFAULT;
961 				goto out_pm;
962 			}
963 	}
964 	err = 0;
965 
966 out_pm:
967 	free_page((unsigned long)pm);
968 out:
969 	return err;
970 }
971 
972 /*
973  * Determine the nodes of an array of pages and store it in an array of status.
974  */
975 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
976 				const void __user **pages, int *status)
977 {
978 	unsigned long i;
979 
980 	down_read(&mm->mmap_sem);
981 
982 	for (i = 0; i < nr_pages; i++) {
983 		unsigned long addr = (unsigned long)(*pages);
984 		struct vm_area_struct *vma;
985 		struct page *page;
986 		int err = -EFAULT;
987 
988 		vma = find_vma(mm, addr);
989 		if (!vma)
990 			goto set_status;
991 
992 		page = follow_page(vma, addr, 0);
993 
994 		err = PTR_ERR(page);
995 		if (IS_ERR(page))
996 			goto set_status;
997 
998 		err = -ENOENT;
999 		/* Use PageReserved to check for zero page */
1000 		if (!page || PageReserved(page))
1001 			goto set_status;
1002 
1003 		err = page_to_nid(page);
1004 set_status:
1005 		*status = err;
1006 
1007 		pages++;
1008 		status++;
1009 	}
1010 
1011 	up_read(&mm->mmap_sem);
1012 }
1013 
1014 /*
1015  * Determine the nodes of a user array of pages and store it in
1016  * a user array of status.
1017  */
1018 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1019 			 const void __user * __user *pages,
1020 			 int __user *status)
1021 {
1022 #define DO_PAGES_STAT_CHUNK_NR 16
1023 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1024 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1025 	unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1026 	int err;
1027 
1028 	for (i = 0; i < nr_pages; i += chunk_nr) {
1029 		if (chunk_nr + i > nr_pages)
1030 			chunk_nr = nr_pages - i;
1031 
1032 		err = copy_from_user(chunk_pages, &pages[i],
1033 				     chunk_nr * sizeof(*chunk_pages));
1034 		if (err) {
1035 			err = -EFAULT;
1036 			goto out;
1037 		}
1038 
1039 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1040 
1041 		err = copy_to_user(&status[i], chunk_status,
1042 				   chunk_nr * sizeof(*chunk_status));
1043 		if (err) {
1044 			err = -EFAULT;
1045 			goto out;
1046 		}
1047 	}
1048 	err = 0;
1049 
1050 out:
1051 	return err;
1052 }
1053 
1054 /*
1055  * Move a list of pages in the address space of the currently executing
1056  * process.
1057  */
1058 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1059 		const void __user * __user *, pages,
1060 		const int __user *, nodes,
1061 		int __user *, status, int, flags)
1062 {
1063 	const struct cred *cred = current_cred(), *tcred;
1064 	struct task_struct *task;
1065 	struct mm_struct *mm;
1066 	int err;
1067 
1068 	/* Check flags */
1069 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1070 		return -EINVAL;
1071 
1072 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1073 		return -EPERM;
1074 
1075 	/* Find the mm_struct */
1076 	read_lock(&tasklist_lock);
1077 	task = pid ? find_task_by_vpid(pid) : current;
1078 	if (!task) {
1079 		read_unlock(&tasklist_lock);
1080 		return -ESRCH;
1081 	}
1082 	mm = get_task_mm(task);
1083 	read_unlock(&tasklist_lock);
1084 
1085 	if (!mm)
1086 		return -EINVAL;
1087 
1088 	/*
1089 	 * Check if this process has the right to modify the specified
1090 	 * process. The right exists if the process has administrative
1091 	 * capabilities, superuser privileges or the same
1092 	 * userid as the target process.
1093 	 */
1094 	rcu_read_lock();
1095 	tcred = __task_cred(task);
1096 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1097 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1098 	    !capable(CAP_SYS_NICE)) {
1099 		rcu_read_unlock();
1100 		err = -EPERM;
1101 		goto out;
1102 	}
1103 	rcu_read_unlock();
1104 
1105  	err = security_task_movememory(task);
1106  	if (err)
1107 		goto out;
1108 
1109 	if (nodes) {
1110 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1111 				    flags);
1112 	} else {
1113 		err = do_pages_stat(mm, nr_pages, pages, status);
1114 	}
1115 
1116 out:
1117 	mmput(mm);
1118 	return err;
1119 }
1120 
1121 /*
1122  * Call migration functions in the vma_ops that may prepare
1123  * memory in a vm for migration. migration functions may perform
1124  * the migration for vmas that do not have an underlying page struct.
1125  */
1126 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1127 	const nodemask_t *from, unsigned long flags)
1128 {
1129  	struct vm_area_struct *vma;
1130  	int err = 0;
1131 
1132 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1133  		if (vma->vm_ops && vma->vm_ops->migrate) {
1134  			err = vma->vm_ops->migrate(vma, to, from, flags);
1135  			if (err)
1136  				break;
1137  		}
1138  	}
1139  	return err;
1140 }
1141 #endif
1142