xref: /openbmc/linux/mm/migrate.c (revision 7dd65feb)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 
36 #include "internal.h"
37 
38 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
39 
40 /*
41  * migrate_prep() needs to be called before we start compiling a list of pages
42  * to be migrated using isolate_lru_page().
43  */
44 int migrate_prep(void)
45 {
46 	/*
47 	 * Clear the LRU lists so pages can be isolated.
48 	 * Note that pages may be moved off the LRU after we have
49 	 * drained them. Those pages will fail to migrate like other
50 	 * pages that may be busy.
51 	 */
52 	lru_add_drain_all();
53 
54 	return 0;
55 }
56 
57 /*
58  * Add isolated pages on the list back to the LRU under page lock
59  * to avoid leaking evictable pages back onto unevictable list.
60  *
61  * returns the number of pages put back.
62  */
63 int putback_lru_pages(struct list_head *l)
64 {
65 	struct page *page;
66 	struct page *page2;
67 	int count = 0;
68 
69 	list_for_each_entry_safe(page, page2, l, lru) {
70 		list_del(&page->lru);
71 		dec_zone_page_state(page, NR_ISOLATED_ANON +
72 				page_is_file_cache(page));
73 		putback_lru_page(page);
74 		count++;
75 	}
76 	return count;
77 }
78 
79 /*
80  * Restore a potential migration pte to a working pte entry
81  */
82 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
83 				 unsigned long addr, void *old)
84 {
85 	struct mm_struct *mm = vma->vm_mm;
86 	swp_entry_t entry;
87  	pgd_t *pgd;
88  	pud_t *pud;
89  	pmd_t *pmd;
90 	pte_t *ptep, pte;
91  	spinlock_t *ptl;
92 
93  	pgd = pgd_offset(mm, addr);
94 	if (!pgd_present(*pgd))
95 		goto out;
96 
97 	pud = pud_offset(pgd, addr);
98 	if (!pud_present(*pud))
99 		goto out;
100 
101 	pmd = pmd_offset(pud, addr);
102 	if (!pmd_present(*pmd))
103 		goto out;
104 
105 	ptep = pte_offset_map(pmd, addr);
106 
107 	if (!is_swap_pte(*ptep)) {
108 		pte_unmap(ptep);
109 		goto out;
110  	}
111 
112  	ptl = pte_lockptr(mm, pmd);
113  	spin_lock(ptl);
114 	pte = *ptep;
115 	if (!is_swap_pte(pte))
116 		goto unlock;
117 
118 	entry = pte_to_swp_entry(pte);
119 
120 	if (!is_migration_entry(entry) ||
121 	    migration_entry_to_page(entry) != old)
122 		goto unlock;
123 
124 	get_page(new);
125 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
126 	if (is_write_migration_entry(entry))
127 		pte = pte_mkwrite(pte);
128 	flush_cache_page(vma, addr, pte_pfn(pte));
129 	set_pte_at(mm, addr, ptep, pte);
130 
131 	if (PageAnon(new))
132 		page_add_anon_rmap(new, vma, addr);
133 	else
134 		page_add_file_rmap(new);
135 
136 	/* No need to invalidate - it was non-present before */
137 	update_mmu_cache(vma, addr, pte);
138 unlock:
139 	pte_unmap_unlock(ptep, ptl);
140 out:
141 	return SWAP_AGAIN;
142 }
143 
144 /*
145  * Get rid of all migration entries and replace them by
146  * references to the indicated page.
147  */
148 static void remove_migration_ptes(struct page *old, struct page *new)
149 {
150 	rmap_walk(new, remove_migration_pte, old);
151 }
152 
153 /*
154  * Something used the pte of a page under migration. We need to
155  * get to the page and wait until migration is finished.
156  * When we return from this function the fault will be retried.
157  *
158  * This function is called from do_swap_page().
159  */
160 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
161 				unsigned long address)
162 {
163 	pte_t *ptep, pte;
164 	spinlock_t *ptl;
165 	swp_entry_t entry;
166 	struct page *page;
167 
168 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
169 	pte = *ptep;
170 	if (!is_swap_pte(pte))
171 		goto out;
172 
173 	entry = pte_to_swp_entry(pte);
174 	if (!is_migration_entry(entry))
175 		goto out;
176 
177 	page = migration_entry_to_page(entry);
178 
179 	/*
180 	 * Once radix-tree replacement of page migration started, page_count
181 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
182 	 * against a page without get_page().
183 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
184 	 * will occur again.
185 	 */
186 	if (!get_page_unless_zero(page))
187 		goto out;
188 	pte_unmap_unlock(ptep, ptl);
189 	wait_on_page_locked(page);
190 	put_page(page);
191 	return;
192 out:
193 	pte_unmap_unlock(ptep, ptl);
194 }
195 
196 /*
197  * Replace the page in the mapping.
198  *
199  * The number of remaining references must be:
200  * 1 for anonymous pages without a mapping
201  * 2 for pages with a mapping
202  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
203  */
204 static int migrate_page_move_mapping(struct address_space *mapping,
205 		struct page *newpage, struct page *page)
206 {
207 	int expected_count;
208 	void **pslot;
209 
210 	if (!mapping) {
211 		/* Anonymous page without mapping */
212 		if (page_count(page) != 1)
213 			return -EAGAIN;
214 		return 0;
215 	}
216 
217 	spin_lock_irq(&mapping->tree_lock);
218 
219 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
220  					page_index(page));
221 
222 	expected_count = 2 + page_has_private(page);
223 	if (page_count(page) != expected_count ||
224 			(struct page *)radix_tree_deref_slot(pslot) != page) {
225 		spin_unlock_irq(&mapping->tree_lock);
226 		return -EAGAIN;
227 	}
228 
229 	if (!page_freeze_refs(page, expected_count)) {
230 		spin_unlock_irq(&mapping->tree_lock);
231 		return -EAGAIN;
232 	}
233 
234 	/*
235 	 * Now we know that no one else is looking at the page.
236 	 */
237 	get_page(newpage);	/* add cache reference */
238 	if (PageSwapCache(page)) {
239 		SetPageSwapCache(newpage);
240 		set_page_private(newpage, page_private(page));
241 	}
242 
243 	radix_tree_replace_slot(pslot, newpage);
244 
245 	page_unfreeze_refs(page, expected_count);
246 	/*
247 	 * Drop cache reference from old page.
248 	 * We know this isn't the last reference.
249 	 */
250 	__put_page(page);
251 
252 	/*
253 	 * If moved to a different zone then also account
254 	 * the page for that zone. Other VM counters will be
255 	 * taken care of when we establish references to the
256 	 * new page and drop references to the old page.
257 	 *
258 	 * Note that anonymous pages are accounted for
259 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
260 	 * are mapped to swap space.
261 	 */
262 	__dec_zone_page_state(page, NR_FILE_PAGES);
263 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
264 	if (PageSwapBacked(page)) {
265 		__dec_zone_page_state(page, NR_SHMEM);
266 		__inc_zone_page_state(newpage, NR_SHMEM);
267 	}
268 	spin_unlock_irq(&mapping->tree_lock);
269 
270 	return 0;
271 }
272 
273 /*
274  * Copy the page to its new location
275  */
276 static void migrate_page_copy(struct page *newpage, struct page *page)
277 {
278 	int anon;
279 
280 	copy_highpage(newpage, page);
281 
282 	if (PageError(page))
283 		SetPageError(newpage);
284 	if (PageReferenced(page))
285 		SetPageReferenced(newpage);
286 	if (PageUptodate(page))
287 		SetPageUptodate(newpage);
288 	if (TestClearPageActive(page)) {
289 		VM_BUG_ON(PageUnevictable(page));
290 		SetPageActive(newpage);
291 	} else if (TestClearPageUnevictable(page))
292 		SetPageUnevictable(newpage);
293 	if (PageChecked(page))
294 		SetPageChecked(newpage);
295 	if (PageMappedToDisk(page))
296 		SetPageMappedToDisk(newpage);
297 
298 	if (PageDirty(page)) {
299 		clear_page_dirty_for_io(page);
300 		/*
301 		 * Want to mark the page and the radix tree as dirty, and
302 		 * redo the accounting that clear_page_dirty_for_io undid,
303 		 * but we can't use set_page_dirty because that function
304 		 * is actually a signal that all of the page has become dirty.
305 		 * Wheras only part of our page may be dirty.
306 		 */
307 		__set_page_dirty_nobuffers(newpage);
308  	}
309 
310 	mlock_migrate_page(newpage, page);
311 	ksm_migrate_page(newpage, page);
312 
313 	ClearPageSwapCache(page);
314 	ClearPagePrivate(page);
315 	set_page_private(page, 0);
316 	/* page->mapping contains a flag for PageAnon() */
317 	anon = PageAnon(page);
318 	page->mapping = NULL;
319 
320 	/*
321 	 * If any waiters have accumulated on the new page then
322 	 * wake them up.
323 	 */
324 	if (PageWriteback(newpage))
325 		end_page_writeback(newpage);
326 }
327 
328 /************************************************************
329  *                    Migration functions
330  ***********************************************************/
331 
332 /* Always fail migration. Used for mappings that are not movable */
333 int fail_migrate_page(struct address_space *mapping,
334 			struct page *newpage, struct page *page)
335 {
336 	return -EIO;
337 }
338 EXPORT_SYMBOL(fail_migrate_page);
339 
340 /*
341  * Common logic to directly migrate a single page suitable for
342  * pages that do not use PagePrivate/PagePrivate2.
343  *
344  * Pages are locked upon entry and exit.
345  */
346 int migrate_page(struct address_space *mapping,
347 		struct page *newpage, struct page *page)
348 {
349 	int rc;
350 
351 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
352 
353 	rc = migrate_page_move_mapping(mapping, newpage, page);
354 
355 	if (rc)
356 		return rc;
357 
358 	migrate_page_copy(newpage, page);
359 	return 0;
360 }
361 EXPORT_SYMBOL(migrate_page);
362 
363 #ifdef CONFIG_BLOCK
364 /*
365  * Migration function for pages with buffers. This function can only be used
366  * if the underlying filesystem guarantees that no other references to "page"
367  * exist.
368  */
369 int buffer_migrate_page(struct address_space *mapping,
370 		struct page *newpage, struct page *page)
371 {
372 	struct buffer_head *bh, *head;
373 	int rc;
374 
375 	if (!page_has_buffers(page))
376 		return migrate_page(mapping, newpage, page);
377 
378 	head = page_buffers(page);
379 
380 	rc = migrate_page_move_mapping(mapping, newpage, page);
381 
382 	if (rc)
383 		return rc;
384 
385 	bh = head;
386 	do {
387 		get_bh(bh);
388 		lock_buffer(bh);
389 		bh = bh->b_this_page;
390 
391 	} while (bh != head);
392 
393 	ClearPagePrivate(page);
394 	set_page_private(newpage, page_private(page));
395 	set_page_private(page, 0);
396 	put_page(page);
397 	get_page(newpage);
398 
399 	bh = head;
400 	do {
401 		set_bh_page(bh, newpage, bh_offset(bh));
402 		bh = bh->b_this_page;
403 
404 	} while (bh != head);
405 
406 	SetPagePrivate(newpage);
407 
408 	migrate_page_copy(newpage, page);
409 
410 	bh = head;
411 	do {
412 		unlock_buffer(bh);
413  		put_bh(bh);
414 		bh = bh->b_this_page;
415 
416 	} while (bh != head);
417 
418 	return 0;
419 }
420 EXPORT_SYMBOL(buffer_migrate_page);
421 #endif
422 
423 /*
424  * Writeback a page to clean the dirty state
425  */
426 static int writeout(struct address_space *mapping, struct page *page)
427 {
428 	struct writeback_control wbc = {
429 		.sync_mode = WB_SYNC_NONE,
430 		.nr_to_write = 1,
431 		.range_start = 0,
432 		.range_end = LLONG_MAX,
433 		.nonblocking = 1,
434 		.for_reclaim = 1
435 	};
436 	int rc;
437 
438 	if (!mapping->a_ops->writepage)
439 		/* No write method for the address space */
440 		return -EINVAL;
441 
442 	if (!clear_page_dirty_for_io(page))
443 		/* Someone else already triggered a write */
444 		return -EAGAIN;
445 
446 	/*
447 	 * A dirty page may imply that the underlying filesystem has
448 	 * the page on some queue. So the page must be clean for
449 	 * migration. Writeout may mean we loose the lock and the
450 	 * page state is no longer what we checked for earlier.
451 	 * At this point we know that the migration attempt cannot
452 	 * be successful.
453 	 */
454 	remove_migration_ptes(page, page);
455 
456 	rc = mapping->a_ops->writepage(page, &wbc);
457 
458 	if (rc != AOP_WRITEPAGE_ACTIVATE)
459 		/* unlocked. Relock */
460 		lock_page(page);
461 
462 	return (rc < 0) ? -EIO : -EAGAIN;
463 }
464 
465 /*
466  * Default handling if a filesystem does not provide a migration function.
467  */
468 static int fallback_migrate_page(struct address_space *mapping,
469 	struct page *newpage, struct page *page)
470 {
471 	if (PageDirty(page))
472 		return writeout(mapping, page);
473 
474 	/*
475 	 * Buffers may be managed in a filesystem specific way.
476 	 * We must have no buffers or drop them.
477 	 */
478 	if (page_has_private(page) &&
479 	    !try_to_release_page(page, GFP_KERNEL))
480 		return -EAGAIN;
481 
482 	return migrate_page(mapping, newpage, page);
483 }
484 
485 /*
486  * Move a page to a newly allocated page
487  * The page is locked and all ptes have been successfully removed.
488  *
489  * The new page will have replaced the old page if this function
490  * is successful.
491  *
492  * Return value:
493  *   < 0 - error code
494  *  == 0 - success
495  */
496 static int move_to_new_page(struct page *newpage, struct page *page)
497 {
498 	struct address_space *mapping;
499 	int rc;
500 
501 	/*
502 	 * Block others from accessing the page when we get around to
503 	 * establishing additional references. We are the only one
504 	 * holding a reference to the new page at this point.
505 	 */
506 	if (!trylock_page(newpage))
507 		BUG();
508 
509 	/* Prepare mapping for the new page.*/
510 	newpage->index = page->index;
511 	newpage->mapping = page->mapping;
512 	if (PageSwapBacked(page))
513 		SetPageSwapBacked(newpage);
514 
515 	mapping = page_mapping(page);
516 	if (!mapping)
517 		rc = migrate_page(mapping, newpage, page);
518 	else if (mapping->a_ops->migratepage)
519 		/*
520 		 * Most pages have a mapping and most filesystems
521 		 * should provide a migration function. Anonymous
522 		 * pages are part of swap space which also has its
523 		 * own migration function. This is the most common
524 		 * path for page migration.
525 		 */
526 		rc = mapping->a_ops->migratepage(mapping,
527 						newpage, page);
528 	else
529 		rc = fallback_migrate_page(mapping, newpage, page);
530 
531 	if (!rc)
532 		remove_migration_ptes(page, newpage);
533 	else
534 		newpage->mapping = NULL;
535 
536 	unlock_page(newpage);
537 
538 	return rc;
539 }
540 
541 /*
542  * Obtain the lock on page, remove all ptes and migrate the page
543  * to the newly allocated page in newpage.
544  */
545 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
546 			struct page *page, int force, int offlining)
547 {
548 	int rc = 0;
549 	int *result = NULL;
550 	struct page *newpage = get_new_page(page, private, &result);
551 	int rcu_locked = 0;
552 	int charge = 0;
553 	struct mem_cgroup *mem = NULL;
554 
555 	if (!newpage)
556 		return -ENOMEM;
557 
558 	if (page_count(page) == 1) {
559 		/* page was freed from under us. So we are done. */
560 		goto move_newpage;
561 	}
562 
563 	/* prepare cgroup just returns 0 or -ENOMEM */
564 	rc = -EAGAIN;
565 
566 	if (!trylock_page(page)) {
567 		if (!force)
568 			goto move_newpage;
569 		lock_page(page);
570 	}
571 
572 	/*
573 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
574 	 * and can safely migrate a KSM page.  The other cases have skipped
575 	 * PageKsm along with PageReserved - but it is only now when we have
576 	 * the page lock that we can be certain it will not go KSM beneath us
577 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
578 	 * its pagecount raised, but only here do we take the page lock which
579 	 * serializes that).
580 	 */
581 	if (PageKsm(page) && !offlining) {
582 		rc = -EBUSY;
583 		goto unlock;
584 	}
585 
586 	/* charge against new page */
587 	charge = mem_cgroup_prepare_migration(page, &mem);
588 	if (charge == -ENOMEM) {
589 		rc = -ENOMEM;
590 		goto unlock;
591 	}
592 	BUG_ON(charge);
593 
594 	if (PageWriteback(page)) {
595 		if (!force)
596 			goto uncharge;
597 		wait_on_page_writeback(page);
598 	}
599 	/*
600 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
601 	 * we cannot notice that anon_vma is freed while we migrates a page.
602 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
603 	 * of migration. File cache pages are no problem because of page_lock()
604 	 * File Caches may use write_page() or lock_page() in migration, then,
605 	 * just care Anon page here.
606 	 */
607 	if (PageAnon(page)) {
608 		rcu_read_lock();
609 		rcu_locked = 1;
610 	}
611 
612 	/*
613 	 * Corner case handling:
614 	 * 1. When a new swap-cache page is read into, it is added to the LRU
615 	 * and treated as swapcache but it has no rmap yet.
616 	 * Calling try_to_unmap() against a page->mapping==NULL page will
617 	 * trigger a BUG.  So handle it here.
618 	 * 2. An orphaned page (see truncate_complete_page) might have
619 	 * fs-private metadata. The page can be picked up due to memory
620 	 * offlining.  Everywhere else except page reclaim, the page is
621 	 * invisible to the vm, so the page can not be migrated.  So try to
622 	 * free the metadata, so the page can be freed.
623 	 */
624 	if (!page->mapping) {
625 		if (!PageAnon(page) && page_has_private(page)) {
626 			/*
627 			 * Go direct to try_to_free_buffers() here because
628 			 * a) that's what try_to_release_page() would do anyway
629 			 * b) we may be under rcu_read_lock() here, so we can't
630 			 *    use GFP_KERNEL which is what try_to_release_page()
631 			 *    needs to be effective.
632 			 */
633 			try_to_free_buffers(page);
634 			goto rcu_unlock;
635 		}
636 		goto skip_unmap;
637 	}
638 
639 	/* Establish migration ptes or remove ptes */
640 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
641 
642 skip_unmap:
643 	if (!page_mapped(page))
644 		rc = move_to_new_page(newpage, page);
645 
646 	if (rc)
647 		remove_migration_ptes(page, page);
648 rcu_unlock:
649 	if (rcu_locked)
650 		rcu_read_unlock();
651 uncharge:
652 	if (!charge)
653 		mem_cgroup_end_migration(mem, page, newpage);
654 unlock:
655 	unlock_page(page);
656 
657 	if (rc != -EAGAIN) {
658  		/*
659  		 * A page that has been migrated has all references
660  		 * removed and will be freed. A page that has not been
661  		 * migrated will have kepts its references and be
662  		 * restored.
663  		 */
664  		list_del(&page->lru);
665 		dec_zone_page_state(page, NR_ISOLATED_ANON +
666 				page_is_file_cache(page));
667 		putback_lru_page(page);
668 	}
669 
670 move_newpage:
671 
672 	/*
673 	 * Move the new page to the LRU. If migration was not successful
674 	 * then this will free the page.
675 	 */
676 	putback_lru_page(newpage);
677 
678 	if (result) {
679 		if (rc)
680 			*result = rc;
681 		else
682 			*result = page_to_nid(newpage);
683 	}
684 	return rc;
685 }
686 
687 /*
688  * migrate_pages
689  *
690  * The function takes one list of pages to migrate and a function
691  * that determines from the page to be migrated and the private data
692  * the target of the move and allocates the page.
693  *
694  * The function returns after 10 attempts or if no pages
695  * are movable anymore because to has become empty
696  * or no retryable pages exist anymore. All pages will be
697  * returned to the LRU or freed.
698  *
699  * Return: Number of pages not migrated or error code.
700  */
701 int migrate_pages(struct list_head *from,
702 		new_page_t get_new_page, unsigned long private, int offlining)
703 {
704 	int retry = 1;
705 	int nr_failed = 0;
706 	int pass = 0;
707 	struct page *page;
708 	struct page *page2;
709 	int swapwrite = current->flags & PF_SWAPWRITE;
710 	int rc;
711 
712 	if (!swapwrite)
713 		current->flags |= PF_SWAPWRITE;
714 
715 	for(pass = 0; pass < 10 && retry; pass++) {
716 		retry = 0;
717 
718 		list_for_each_entry_safe(page, page2, from, lru) {
719 			cond_resched();
720 
721 			rc = unmap_and_move(get_new_page, private,
722 						page, pass > 2, offlining);
723 
724 			switch(rc) {
725 			case -ENOMEM:
726 				goto out;
727 			case -EAGAIN:
728 				retry++;
729 				break;
730 			case 0:
731 				break;
732 			default:
733 				/* Permanent failure */
734 				nr_failed++;
735 				break;
736 			}
737 		}
738 	}
739 	rc = 0;
740 out:
741 	if (!swapwrite)
742 		current->flags &= ~PF_SWAPWRITE;
743 
744 	putback_lru_pages(from);
745 
746 	if (rc)
747 		return rc;
748 
749 	return nr_failed + retry;
750 }
751 
752 #ifdef CONFIG_NUMA
753 /*
754  * Move a list of individual pages
755  */
756 struct page_to_node {
757 	unsigned long addr;
758 	struct page *page;
759 	int node;
760 	int status;
761 };
762 
763 static struct page *new_page_node(struct page *p, unsigned long private,
764 		int **result)
765 {
766 	struct page_to_node *pm = (struct page_to_node *)private;
767 
768 	while (pm->node != MAX_NUMNODES && pm->page != p)
769 		pm++;
770 
771 	if (pm->node == MAX_NUMNODES)
772 		return NULL;
773 
774 	*result = &pm->status;
775 
776 	return alloc_pages_exact_node(pm->node,
777 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
778 }
779 
780 /*
781  * Move a set of pages as indicated in the pm array. The addr
782  * field must be set to the virtual address of the page to be moved
783  * and the node number must contain a valid target node.
784  * The pm array ends with node = MAX_NUMNODES.
785  */
786 static int do_move_page_to_node_array(struct mm_struct *mm,
787 				      struct page_to_node *pm,
788 				      int migrate_all)
789 {
790 	int err;
791 	struct page_to_node *pp;
792 	LIST_HEAD(pagelist);
793 
794 	down_read(&mm->mmap_sem);
795 
796 	/*
797 	 * Build a list of pages to migrate
798 	 */
799 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
800 		struct vm_area_struct *vma;
801 		struct page *page;
802 
803 		err = -EFAULT;
804 		vma = find_vma(mm, pp->addr);
805 		if (!vma || !vma_migratable(vma))
806 			goto set_status;
807 
808 		page = follow_page(vma, pp->addr, FOLL_GET);
809 
810 		err = PTR_ERR(page);
811 		if (IS_ERR(page))
812 			goto set_status;
813 
814 		err = -ENOENT;
815 		if (!page)
816 			goto set_status;
817 
818 		/* Use PageReserved to check for zero page */
819 		if (PageReserved(page) || PageKsm(page))
820 			goto put_and_set;
821 
822 		pp->page = page;
823 		err = page_to_nid(page);
824 
825 		if (err == pp->node)
826 			/*
827 			 * Node already in the right place
828 			 */
829 			goto put_and_set;
830 
831 		err = -EACCES;
832 		if (page_mapcount(page) > 1 &&
833 				!migrate_all)
834 			goto put_and_set;
835 
836 		err = isolate_lru_page(page);
837 		if (!err) {
838 			list_add_tail(&page->lru, &pagelist);
839 			inc_zone_page_state(page, NR_ISOLATED_ANON +
840 					    page_is_file_cache(page));
841 		}
842 put_and_set:
843 		/*
844 		 * Either remove the duplicate refcount from
845 		 * isolate_lru_page() or drop the page ref if it was
846 		 * not isolated.
847 		 */
848 		put_page(page);
849 set_status:
850 		pp->status = err;
851 	}
852 
853 	err = 0;
854 	if (!list_empty(&pagelist))
855 		err = migrate_pages(&pagelist, new_page_node,
856 				(unsigned long)pm, 0);
857 
858 	up_read(&mm->mmap_sem);
859 	return err;
860 }
861 
862 /*
863  * Migrate an array of page address onto an array of nodes and fill
864  * the corresponding array of status.
865  */
866 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
867 			 unsigned long nr_pages,
868 			 const void __user * __user *pages,
869 			 const int __user *nodes,
870 			 int __user *status, int flags)
871 {
872 	struct page_to_node *pm;
873 	nodemask_t task_nodes;
874 	unsigned long chunk_nr_pages;
875 	unsigned long chunk_start;
876 	int err;
877 
878 	task_nodes = cpuset_mems_allowed(task);
879 
880 	err = -ENOMEM;
881 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
882 	if (!pm)
883 		goto out;
884 
885 	migrate_prep();
886 
887 	/*
888 	 * Store a chunk of page_to_node array in a page,
889 	 * but keep the last one as a marker
890 	 */
891 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
892 
893 	for (chunk_start = 0;
894 	     chunk_start < nr_pages;
895 	     chunk_start += chunk_nr_pages) {
896 		int j;
897 
898 		if (chunk_start + chunk_nr_pages > nr_pages)
899 			chunk_nr_pages = nr_pages - chunk_start;
900 
901 		/* fill the chunk pm with addrs and nodes from user-space */
902 		for (j = 0; j < chunk_nr_pages; j++) {
903 			const void __user *p;
904 			int node;
905 
906 			err = -EFAULT;
907 			if (get_user(p, pages + j + chunk_start))
908 				goto out_pm;
909 			pm[j].addr = (unsigned long) p;
910 
911 			if (get_user(node, nodes + j + chunk_start))
912 				goto out_pm;
913 
914 			err = -ENODEV;
915 			if (!node_state(node, N_HIGH_MEMORY))
916 				goto out_pm;
917 
918 			err = -EACCES;
919 			if (!node_isset(node, task_nodes))
920 				goto out_pm;
921 
922 			pm[j].node = node;
923 		}
924 
925 		/* End marker for this chunk */
926 		pm[chunk_nr_pages].node = MAX_NUMNODES;
927 
928 		/* Migrate this chunk */
929 		err = do_move_page_to_node_array(mm, pm,
930 						 flags & MPOL_MF_MOVE_ALL);
931 		if (err < 0)
932 			goto out_pm;
933 
934 		/* Return status information */
935 		for (j = 0; j < chunk_nr_pages; j++)
936 			if (put_user(pm[j].status, status + j + chunk_start)) {
937 				err = -EFAULT;
938 				goto out_pm;
939 			}
940 	}
941 	err = 0;
942 
943 out_pm:
944 	free_page((unsigned long)pm);
945 out:
946 	return err;
947 }
948 
949 /*
950  * Determine the nodes of an array of pages and store it in an array of status.
951  */
952 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
953 				const void __user **pages, int *status)
954 {
955 	unsigned long i;
956 
957 	down_read(&mm->mmap_sem);
958 
959 	for (i = 0; i < nr_pages; i++) {
960 		unsigned long addr = (unsigned long)(*pages);
961 		struct vm_area_struct *vma;
962 		struct page *page;
963 		int err = -EFAULT;
964 
965 		vma = find_vma(mm, addr);
966 		if (!vma)
967 			goto set_status;
968 
969 		page = follow_page(vma, addr, 0);
970 
971 		err = PTR_ERR(page);
972 		if (IS_ERR(page))
973 			goto set_status;
974 
975 		err = -ENOENT;
976 		/* Use PageReserved to check for zero page */
977 		if (!page || PageReserved(page) || PageKsm(page))
978 			goto set_status;
979 
980 		err = page_to_nid(page);
981 set_status:
982 		*status = err;
983 
984 		pages++;
985 		status++;
986 	}
987 
988 	up_read(&mm->mmap_sem);
989 }
990 
991 /*
992  * Determine the nodes of a user array of pages and store it in
993  * a user array of status.
994  */
995 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
996 			 const void __user * __user *pages,
997 			 int __user *status)
998 {
999 #define DO_PAGES_STAT_CHUNK_NR 16
1000 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1001 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1002 	unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1003 	int err;
1004 
1005 	for (i = 0; i < nr_pages; i += chunk_nr) {
1006 		if (chunk_nr > nr_pages - i)
1007 			chunk_nr = nr_pages - i;
1008 
1009 		err = copy_from_user(chunk_pages, &pages[i],
1010 				     chunk_nr * sizeof(*chunk_pages));
1011 		if (err) {
1012 			err = -EFAULT;
1013 			goto out;
1014 		}
1015 
1016 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1017 
1018 		err = copy_to_user(&status[i], chunk_status,
1019 				   chunk_nr * sizeof(*chunk_status));
1020 		if (err) {
1021 			err = -EFAULT;
1022 			goto out;
1023 		}
1024 	}
1025 	err = 0;
1026 
1027 out:
1028 	return err;
1029 }
1030 
1031 /*
1032  * Move a list of pages in the address space of the currently executing
1033  * process.
1034  */
1035 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1036 		const void __user * __user *, pages,
1037 		const int __user *, nodes,
1038 		int __user *, status, int, flags)
1039 {
1040 	const struct cred *cred = current_cred(), *tcred;
1041 	struct task_struct *task;
1042 	struct mm_struct *mm;
1043 	int err;
1044 
1045 	/* Check flags */
1046 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1047 		return -EINVAL;
1048 
1049 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1050 		return -EPERM;
1051 
1052 	/* Find the mm_struct */
1053 	read_lock(&tasklist_lock);
1054 	task = pid ? find_task_by_vpid(pid) : current;
1055 	if (!task) {
1056 		read_unlock(&tasklist_lock);
1057 		return -ESRCH;
1058 	}
1059 	mm = get_task_mm(task);
1060 	read_unlock(&tasklist_lock);
1061 
1062 	if (!mm)
1063 		return -EINVAL;
1064 
1065 	/*
1066 	 * Check if this process has the right to modify the specified
1067 	 * process. The right exists if the process has administrative
1068 	 * capabilities, superuser privileges or the same
1069 	 * userid as the target process.
1070 	 */
1071 	rcu_read_lock();
1072 	tcred = __task_cred(task);
1073 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1074 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1075 	    !capable(CAP_SYS_NICE)) {
1076 		rcu_read_unlock();
1077 		err = -EPERM;
1078 		goto out;
1079 	}
1080 	rcu_read_unlock();
1081 
1082  	err = security_task_movememory(task);
1083  	if (err)
1084 		goto out;
1085 
1086 	if (nodes) {
1087 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1088 				    flags);
1089 	} else {
1090 		err = do_pages_stat(mm, nr_pages, pages, status);
1091 	}
1092 
1093 out:
1094 	mmput(mm);
1095 	return err;
1096 }
1097 
1098 /*
1099  * Call migration functions in the vma_ops that may prepare
1100  * memory in a vm for migration. migration functions may perform
1101  * the migration for vmas that do not have an underlying page struct.
1102  */
1103 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1104 	const nodemask_t *from, unsigned long flags)
1105 {
1106  	struct vm_area_struct *vma;
1107  	int err = 0;
1108 
1109 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1110  		if (vma->vm_ops && vma->vm_ops->migrate) {
1111  			err = vma->vm_ops->migrate(vma, to, from, flags);
1112  			if (err)
1113  				break;
1114  		}
1115  	}
1116  	return err;
1117 }
1118 #endif
1119