xref: /openbmc/linux/mm/migrate.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once radix-tree replacement of page migration started, page_count
327 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 	 * against a page without get_page().
329 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 	 * will occur again.
331 	 */
332 	if (!get_page_unless_zero(page))
333 		goto out;
334 	pte_unmap_unlock(ptep, ptl);
335 	wait_on_page_locked(page);
336 	put_page(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	wait_on_page_locked(page);
371 	put_page(page);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 							enum migrate_mode mode)
382 {
383 	struct buffer_head *bh = head;
384 
385 	/* Simple case, sync compaction */
386 	if (mode != MIGRATE_ASYNC) {
387 		do {
388 			get_bh(bh);
389 			lock_buffer(bh);
390 			bh = bh->b_this_page;
391 
392 		} while (bh != head);
393 
394 		return true;
395 	}
396 
397 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
398 	do {
399 		get_bh(bh);
400 		if (!trylock_buffer(bh)) {
401 			/*
402 			 * We failed to lock the buffer and cannot stall in
403 			 * async migration. Release the taken locks
404 			 */
405 			struct buffer_head *failed_bh = bh;
406 			put_bh(failed_bh);
407 			bh = head;
408 			while (bh != failed_bh) {
409 				unlock_buffer(bh);
410 				put_bh(bh);
411 				bh = bh->b_this_page;
412 			}
413 			return false;
414 		}
415 
416 		bh = bh->b_this_page;
417 	} while (bh != head);
418 	return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 							enum migrate_mode mode)
423 {
424 	return true;
425 }
426 #endif /* CONFIG_BLOCK */
427 
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437 		struct page *newpage, struct page *page,
438 		struct buffer_head *head, enum migrate_mode mode,
439 		int extra_count)
440 {
441 	struct zone *oldzone, *newzone;
442 	int dirty;
443 	int expected_count = 1 + extra_count;
444 	void **pslot;
445 
446 	/*
447 	 * Device public or private pages have an extra refcount as they are
448 	 * ZONE_DEVICE pages.
449 	 */
450 	expected_count += is_device_private_page(page);
451 	expected_count += is_device_public_page(page);
452 
453 	if (!mapping) {
454 		/* Anonymous page without mapping */
455 		if (page_count(page) != expected_count)
456 			return -EAGAIN;
457 
458 		/* No turning back from here */
459 		newpage->index = page->index;
460 		newpage->mapping = page->mapping;
461 		if (PageSwapBacked(page))
462 			__SetPageSwapBacked(newpage);
463 
464 		return MIGRATEPAGE_SUCCESS;
465 	}
466 
467 	oldzone = page_zone(page);
468 	newzone = page_zone(newpage);
469 
470 	xa_lock_irq(&mapping->i_pages);
471 
472 	pslot = radix_tree_lookup_slot(&mapping->i_pages,
473  					page_index(page));
474 
475 	expected_count += hpage_nr_pages(page) + page_has_private(page);
476 	if (page_count(page) != expected_count ||
477 		radix_tree_deref_slot_protected(pslot,
478 					&mapping->i_pages.xa_lock) != page) {
479 		xa_unlock_irq(&mapping->i_pages);
480 		return -EAGAIN;
481 	}
482 
483 	if (!page_ref_freeze(page, expected_count)) {
484 		xa_unlock_irq(&mapping->i_pages);
485 		return -EAGAIN;
486 	}
487 
488 	/*
489 	 * In the async migration case of moving a page with buffers, lock the
490 	 * buffers using trylock before the mapping is moved. If the mapping
491 	 * was moved, we later failed to lock the buffers and could not move
492 	 * the mapping back due to an elevated page count, we would have to
493 	 * block waiting on other references to be dropped.
494 	 */
495 	if (mode == MIGRATE_ASYNC && head &&
496 			!buffer_migrate_lock_buffers(head, mode)) {
497 		page_ref_unfreeze(page, expected_count);
498 		xa_unlock_irq(&mapping->i_pages);
499 		return -EAGAIN;
500 	}
501 
502 	/*
503 	 * Now we know that no one else is looking at the page:
504 	 * no turning back from here.
505 	 */
506 	newpage->index = page->index;
507 	newpage->mapping = page->mapping;
508 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509 	if (PageSwapBacked(page)) {
510 		__SetPageSwapBacked(newpage);
511 		if (PageSwapCache(page)) {
512 			SetPageSwapCache(newpage);
513 			set_page_private(newpage, page_private(page));
514 		}
515 	} else {
516 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
517 	}
518 
519 	/* Move dirty while page refs frozen and newpage not yet exposed */
520 	dirty = PageDirty(page);
521 	if (dirty) {
522 		ClearPageDirty(page);
523 		SetPageDirty(newpage);
524 	}
525 
526 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 	if (PageTransHuge(page)) {
528 		int i;
529 		int index = page_index(page);
530 
531 		for (i = 1; i < HPAGE_PMD_NR; i++) {
532 			pslot = radix_tree_lookup_slot(&mapping->i_pages,
533 						       index + i);
534 			radix_tree_replace_slot(&mapping->i_pages, pslot,
535 						newpage + i);
536 		}
537 	}
538 
539 	/*
540 	 * Drop cache reference from old page by unfreezing
541 	 * to one less reference.
542 	 * We know this isn't the last reference.
543 	 */
544 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
545 
546 	xa_unlock(&mapping->i_pages);
547 	/* Leave irq disabled to prevent preemption while updating stats */
548 
549 	/*
550 	 * If moved to a different zone then also account
551 	 * the page for that zone. Other VM counters will be
552 	 * taken care of when we establish references to the
553 	 * new page and drop references to the old page.
554 	 *
555 	 * Note that anonymous pages are accounted for
556 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
557 	 * are mapped to swap space.
558 	 */
559 	if (newzone != oldzone) {
560 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
561 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
562 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
563 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
564 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
565 		}
566 		if (dirty && mapping_cap_account_dirty(mapping)) {
567 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
568 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
569 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
570 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
571 		}
572 	}
573 	local_irq_enable();
574 
575 	return MIGRATEPAGE_SUCCESS;
576 }
577 EXPORT_SYMBOL(migrate_page_move_mapping);
578 
579 /*
580  * The expected number of remaining references is the same as that
581  * of migrate_page_move_mapping().
582  */
583 int migrate_huge_page_move_mapping(struct address_space *mapping,
584 				   struct page *newpage, struct page *page)
585 {
586 	int expected_count;
587 	void **pslot;
588 
589 	xa_lock_irq(&mapping->i_pages);
590 
591 	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
592 
593 	expected_count = 2 + page_has_private(page);
594 	if (page_count(page) != expected_count ||
595 		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
596 		xa_unlock_irq(&mapping->i_pages);
597 		return -EAGAIN;
598 	}
599 
600 	if (!page_ref_freeze(page, expected_count)) {
601 		xa_unlock_irq(&mapping->i_pages);
602 		return -EAGAIN;
603 	}
604 
605 	newpage->index = page->index;
606 	newpage->mapping = page->mapping;
607 
608 	get_page(newpage);
609 
610 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
611 
612 	page_ref_unfreeze(page, expected_count - 1);
613 
614 	xa_unlock_irq(&mapping->i_pages);
615 
616 	return MIGRATEPAGE_SUCCESS;
617 }
618 
619 /*
620  * Gigantic pages are so large that we do not guarantee that page++ pointer
621  * arithmetic will work across the entire page.  We need something more
622  * specialized.
623  */
624 static void __copy_gigantic_page(struct page *dst, struct page *src,
625 				int nr_pages)
626 {
627 	int i;
628 	struct page *dst_base = dst;
629 	struct page *src_base = src;
630 
631 	for (i = 0; i < nr_pages; ) {
632 		cond_resched();
633 		copy_highpage(dst, src);
634 
635 		i++;
636 		dst = mem_map_next(dst, dst_base, i);
637 		src = mem_map_next(src, src_base, i);
638 	}
639 }
640 
641 static void copy_huge_page(struct page *dst, struct page *src)
642 {
643 	int i;
644 	int nr_pages;
645 
646 	if (PageHuge(src)) {
647 		/* hugetlbfs page */
648 		struct hstate *h = page_hstate(src);
649 		nr_pages = pages_per_huge_page(h);
650 
651 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
652 			__copy_gigantic_page(dst, src, nr_pages);
653 			return;
654 		}
655 	} else {
656 		/* thp page */
657 		BUG_ON(!PageTransHuge(src));
658 		nr_pages = hpage_nr_pages(src);
659 	}
660 
661 	for (i = 0; i < nr_pages; i++) {
662 		cond_resched();
663 		copy_highpage(dst + i, src + i);
664 	}
665 }
666 
667 /*
668  * Copy the page to its new location
669  */
670 void migrate_page_states(struct page *newpage, struct page *page)
671 {
672 	int cpupid;
673 
674 	if (PageError(page))
675 		SetPageError(newpage);
676 	if (PageReferenced(page))
677 		SetPageReferenced(newpage);
678 	if (PageUptodate(page))
679 		SetPageUptodate(newpage);
680 	if (TestClearPageActive(page)) {
681 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
682 		SetPageActive(newpage);
683 	} else if (TestClearPageUnevictable(page))
684 		SetPageUnevictable(newpage);
685 	if (PageChecked(page))
686 		SetPageChecked(newpage);
687 	if (PageMappedToDisk(page))
688 		SetPageMappedToDisk(newpage);
689 
690 	/* Move dirty on pages not done by migrate_page_move_mapping() */
691 	if (PageDirty(page))
692 		SetPageDirty(newpage);
693 
694 	if (page_is_young(page))
695 		set_page_young(newpage);
696 	if (page_is_idle(page))
697 		set_page_idle(newpage);
698 
699 	/*
700 	 * Copy NUMA information to the new page, to prevent over-eager
701 	 * future migrations of this same page.
702 	 */
703 	cpupid = page_cpupid_xchg_last(page, -1);
704 	page_cpupid_xchg_last(newpage, cpupid);
705 
706 	ksm_migrate_page(newpage, page);
707 	/*
708 	 * Please do not reorder this without considering how mm/ksm.c's
709 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
710 	 */
711 	if (PageSwapCache(page))
712 		ClearPageSwapCache(page);
713 	ClearPagePrivate(page);
714 	set_page_private(page, 0);
715 
716 	/*
717 	 * If any waiters have accumulated on the new page then
718 	 * wake them up.
719 	 */
720 	if (PageWriteback(newpage))
721 		end_page_writeback(newpage);
722 
723 	copy_page_owner(page, newpage);
724 
725 	mem_cgroup_migrate(page, newpage);
726 }
727 EXPORT_SYMBOL(migrate_page_states);
728 
729 void migrate_page_copy(struct page *newpage, struct page *page)
730 {
731 	if (PageHuge(page) || PageTransHuge(page))
732 		copy_huge_page(newpage, page);
733 	else
734 		copy_highpage(newpage, page);
735 
736 	migrate_page_states(newpage, page);
737 }
738 EXPORT_SYMBOL(migrate_page_copy);
739 
740 /************************************************************
741  *                    Migration functions
742  ***********************************************************/
743 
744 /*
745  * Common logic to directly migrate a single LRU page suitable for
746  * pages that do not use PagePrivate/PagePrivate2.
747  *
748  * Pages are locked upon entry and exit.
749  */
750 int migrate_page(struct address_space *mapping,
751 		struct page *newpage, struct page *page,
752 		enum migrate_mode mode)
753 {
754 	int rc;
755 
756 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
757 
758 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
759 
760 	if (rc != MIGRATEPAGE_SUCCESS)
761 		return rc;
762 
763 	if (mode != MIGRATE_SYNC_NO_COPY)
764 		migrate_page_copy(newpage, page);
765 	else
766 		migrate_page_states(newpage, page);
767 	return MIGRATEPAGE_SUCCESS;
768 }
769 EXPORT_SYMBOL(migrate_page);
770 
771 #ifdef CONFIG_BLOCK
772 /*
773  * Migration function for pages with buffers. This function can only be used
774  * if the underlying filesystem guarantees that no other references to "page"
775  * exist.
776  */
777 int buffer_migrate_page(struct address_space *mapping,
778 		struct page *newpage, struct page *page, enum migrate_mode mode)
779 {
780 	struct buffer_head *bh, *head;
781 	int rc;
782 
783 	if (!page_has_buffers(page))
784 		return migrate_page(mapping, newpage, page, mode);
785 
786 	head = page_buffers(page);
787 
788 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
789 
790 	if (rc != MIGRATEPAGE_SUCCESS)
791 		return rc;
792 
793 	/*
794 	 * In the async case, migrate_page_move_mapping locked the buffers
795 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
796 	 * need to be locked now
797 	 */
798 	if (mode != MIGRATE_ASYNC)
799 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
800 
801 	ClearPagePrivate(page);
802 	set_page_private(newpage, page_private(page));
803 	set_page_private(page, 0);
804 	put_page(page);
805 	get_page(newpage);
806 
807 	bh = head;
808 	do {
809 		set_bh_page(bh, newpage, bh_offset(bh));
810 		bh = bh->b_this_page;
811 
812 	} while (bh != head);
813 
814 	SetPagePrivate(newpage);
815 
816 	if (mode != MIGRATE_SYNC_NO_COPY)
817 		migrate_page_copy(newpage, page);
818 	else
819 		migrate_page_states(newpage, page);
820 
821 	bh = head;
822 	do {
823 		unlock_buffer(bh);
824 		put_bh(bh);
825 		bh = bh->b_this_page;
826 
827 	} while (bh != head);
828 
829 	return MIGRATEPAGE_SUCCESS;
830 }
831 EXPORT_SYMBOL(buffer_migrate_page);
832 #endif
833 
834 /*
835  * Writeback a page to clean the dirty state
836  */
837 static int writeout(struct address_space *mapping, struct page *page)
838 {
839 	struct writeback_control wbc = {
840 		.sync_mode = WB_SYNC_NONE,
841 		.nr_to_write = 1,
842 		.range_start = 0,
843 		.range_end = LLONG_MAX,
844 		.for_reclaim = 1
845 	};
846 	int rc;
847 
848 	if (!mapping->a_ops->writepage)
849 		/* No write method for the address space */
850 		return -EINVAL;
851 
852 	if (!clear_page_dirty_for_io(page))
853 		/* Someone else already triggered a write */
854 		return -EAGAIN;
855 
856 	/*
857 	 * A dirty page may imply that the underlying filesystem has
858 	 * the page on some queue. So the page must be clean for
859 	 * migration. Writeout may mean we loose the lock and the
860 	 * page state is no longer what we checked for earlier.
861 	 * At this point we know that the migration attempt cannot
862 	 * be successful.
863 	 */
864 	remove_migration_ptes(page, page, false);
865 
866 	rc = mapping->a_ops->writepage(page, &wbc);
867 
868 	if (rc != AOP_WRITEPAGE_ACTIVATE)
869 		/* unlocked. Relock */
870 		lock_page(page);
871 
872 	return (rc < 0) ? -EIO : -EAGAIN;
873 }
874 
875 /*
876  * Default handling if a filesystem does not provide a migration function.
877  */
878 static int fallback_migrate_page(struct address_space *mapping,
879 	struct page *newpage, struct page *page, enum migrate_mode mode)
880 {
881 	if (PageDirty(page)) {
882 		/* Only writeback pages in full synchronous migration */
883 		switch (mode) {
884 		case MIGRATE_SYNC:
885 		case MIGRATE_SYNC_NO_COPY:
886 			break;
887 		default:
888 			return -EBUSY;
889 		}
890 		return writeout(mapping, page);
891 	}
892 
893 	/*
894 	 * Buffers may be managed in a filesystem specific way.
895 	 * We must have no buffers or drop them.
896 	 */
897 	if (page_has_private(page) &&
898 	    !try_to_release_page(page, GFP_KERNEL))
899 		return -EAGAIN;
900 
901 	return migrate_page(mapping, newpage, page, mode);
902 }
903 
904 /*
905  * Move a page to a newly allocated page
906  * The page is locked and all ptes have been successfully removed.
907  *
908  * The new page will have replaced the old page if this function
909  * is successful.
910  *
911  * Return value:
912  *   < 0 - error code
913  *  MIGRATEPAGE_SUCCESS - success
914  */
915 static int move_to_new_page(struct page *newpage, struct page *page,
916 				enum migrate_mode mode)
917 {
918 	struct address_space *mapping;
919 	int rc = -EAGAIN;
920 	bool is_lru = !__PageMovable(page);
921 
922 	VM_BUG_ON_PAGE(!PageLocked(page), page);
923 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
924 
925 	mapping = page_mapping(page);
926 
927 	if (likely(is_lru)) {
928 		if (!mapping)
929 			rc = migrate_page(mapping, newpage, page, mode);
930 		else if (mapping->a_ops->migratepage)
931 			/*
932 			 * Most pages have a mapping and most filesystems
933 			 * provide a migratepage callback. Anonymous pages
934 			 * are part of swap space which also has its own
935 			 * migratepage callback. This is the most common path
936 			 * for page migration.
937 			 */
938 			rc = mapping->a_ops->migratepage(mapping, newpage,
939 							page, mode);
940 		else
941 			rc = fallback_migrate_page(mapping, newpage,
942 							page, mode);
943 	} else {
944 		/*
945 		 * In case of non-lru page, it could be released after
946 		 * isolation step. In that case, we shouldn't try migration.
947 		 */
948 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
949 		if (!PageMovable(page)) {
950 			rc = MIGRATEPAGE_SUCCESS;
951 			__ClearPageIsolated(page);
952 			goto out;
953 		}
954 
955 		rc = mapping->a_ops->migratepage(mapping, newpage,
956 						page, mode);
957 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
958 			!PageIsolated(page));
959 	}
960 
961 	/*
962 	 * When successful, old pagecache page->mapping must be cleared before
963 	 * page is freed; but stats require that PageAnon be left as PageAnon.
964 	 */
965 	if (rc == MIGRATEPAGE_SUCCESS) {
966 		if (__PageMovable(page)) {
967 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
968 
969 			/*
970 			 * We clear PG_movable under page_lock so any compactor
971 			 * cannot try to migrate this page.
972 			 */
973 			__ClearPageIsolated(page);
974 		}
975 
976 		/*
977 		 * Anonymous and movable page->mapping will be cleard by
978 		 * free_pages_prepare so don't reset it here for keeping
979 		 * the type to work PageAnon, for example.
980 		 */
981 		if (!PageMappingFlags(page))
982 			page->mapping = NULL;
983 	}
984 out:
985 	return rc;
986 }
987 
988 static int __unmap_and_move(struct page *page, struct page *newpage,
989 				int force, enum migrate_mode mode)
990 {
991 	int rc = -EAGAIN;
992 	int page_was_mapped = 0;
993 	struct anon_vma *anon_vma = NULL;
994 	bool is_lru = !__PageMovable(page);
995 
996 	if (!trylock_page(page)) {
997 		if (!force || mode == MIGRATE_ASYNC)
998 			goto out;
999 
1000 		/*
1001 		 * It's not safe for direct compaction to call lock_page.
1002 		 * For example, during page readahead pages are added locked
1003 		 * to the LRU. Later, when the IO completes the pages are
1004 		 * marked uptodate and unlocked. However, the queueing
1005 		 * could be merging multiple pages for one bio (e.g.
1006 		 * mpage_readpages). If an allocation happens for the
1007 		 * second or third page, the process can end up locking
1008 		 * the same page twice and deadlocking. Rather than
1009 		 * trying to be clever about what pages can be locked,
1010 		 * avoid the use of lock_page for direct compaction
1011 		 * altogether.
1012 		 */
1013 		if (current->flags & PF_MEMALLOC)
1014 			goto out;
1015 
1016 		lock_page(page);
1017 	}
1018 
1019 	if (PageWriteback(page)) {
1020 		/*
1021 		 * Only in the case of a full synchronous migration is it
1022 		 * necessary to wait for PageWriteback. In the async case,
1023 		 * the retry loop is too short and in the sync-light case,
1024 		 * the overhead of stalling is too much
1025 		 */
1026 		switch (mode) {
1027 		case MIGRATE_SYNC:
1028 		case MIGRATE_SYNC_NO_COPY:
1029 			break;
1030 		default:
1031 			rc = -EBUSY;
1032 			goto out_unlock;
1033 		}
1034 		if (!force)
1035 			goto out_unlock;
1036 		wait_on_page_writeback(page);
1037 	}
1038 
1039 	/*
1040 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041 	 * we cannot notice that anon_vma is freed while we migrates a page.
1042 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1043 	 * of migration. File cache pages are no problem because of page_lock()
1044 	 * File Caches may use write_page() or lock_page() in migration, then,
1045 	 * just care Anon page here.
1046 	 *
1047 	 * Only page_get_anon_vma() understands the subtleties of
1048 	 * getting a hold on an anon_vma from outside one of its mms.
1049 	 * But if we cannot get anon_vma, then we won't need it anyway,
1050 	 * because that implies that the anon page is no longer mapped
1051 	 * (and cannot be remapped so long as we hold the page lock).
1052 	 */
1053 	if (PageAnon(page) && !PageKsm(page))
1054 		anon_vma = page_get_anon_vma(page);
1055 
1056 	/*
1057 	 * Block others from accessing the new page when we get around to
1058 	 * establishing additional references. We are usually the only one
1059 	 * holding a reference to newpage at this point. We used to have a BUG
1060 	 * here if trylock_page(newpage) fails, but would like to allow for
1061 	 * cases where there might be a race with the previous use of newpage.
1062 	 * This is much like races on refcount of oldpage: just don't BUG().
1063 	 */
1064 	if (unlikely(!trylock_page(newpage)))
1065 		goto out_unlock;
1066 
1067 	if (unlikely(!is_lru)) {
1068 		rc = move_to_new_page(newpage, page, mode);
1069 		goto out_unlock_both;
1070 	}
1071 
1072 	/*
1073 	 * Corner case handling:
1074 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1075 	 * and treated as swapcache but it has no rmap yet.
1076 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1077 	 * trigger a BUG.  So handle it here.
1078 	 * 2. An orphaned page (see truncate_complete_page) might have
1079 	 * fs-private metadata. The page can be picked up due to memory
1080 	 * offlining.  Everywhere else except page reclaim, the page is
1081 	 * invisible to the vm, so the page can not be migrated.  So try to
1082 	 * free the metadata, so the page can be freed.
1083 	 */
1084 	if (!page->mapping) {
1085 		VM_BUG_ON_PAGE(PageAnon(page), page);
1086 		if (page_has_private(page)) {
1087 			try_to_free_buffers(page);
1088 			goto out_unlock_both;
1089 		}
1090 	} else if (page_mapped(page)) {
1091 		/* Establish migration ptes */
1092 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1093 				page);
1094 		try_to_unmap(page,
1095 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1096 		page_was_mapped = 1;
1097 	}
1098 
1099 	if (!page_mapped(page))
1100 		rc = move_to_new_page(newpage, page, mode);
1101 
1102 	if (page_was_mapped)
1103 		remove_migration_ptes(page,
1104 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1105 
1106 out_unlock_both:
1107 	unlock_page(newpage);
1108 out_unlock:
1109 	/* Drop an anon_vma reference if we took one */
1110 	if (anon_vma)
1111 		put_anon_vma(anon_vma);
1112 	unlock_page(page);
1113 out:
1114 	/*
1115 	 * If migration is successful, decrease refcount of the newpage
1116 	 * which will not free the page because new page owner increased
1117 	 * refcounter. As well, if it is LRU page, add the page to LRU
1118 	 * list in here.
1119 	 */
1120 	if (rc == MIGRATEPAGE_SUCCESS) {
1121 		if (unlikely(__PageMovable(newpage)))
1122 			put_page(newpage);
1123 		else
1124 			putback_lru_page(newpage);
1125 	}
1126 
1127 	return rc;
1128 }
1129 
1130 /*
1131  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1132  * around it.
1133  */
1134 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1135 #define ICE_noinline noinline
1136 #else
1137 #define ICE_noinline
1138 #endif
1139 
1140 /*
1141  * Obtain the lock on page, remove all ptes and migrate the page
1142  * to the newly allocated page in newpage.
1143  */
1144 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1145 				   free_page_t put_new_page,
1146 				   unsigned long private, struct page *page,
1147 				   int force, enum migrate_mode mode,
1148 				   enum migrate_reason reason)
1149 {
1150 	int rc = MIGRATEPAGE_SUCCESS;
1151 	struct page *newpage;
1152 
1153 	if (!thp_migration_supported() && PageTransHuge(page))
1154 		return -ENOMEM;
1155 
1156 	newpage = get_new_page(page, private);
1157 	if (!newpage)
1158 		return -ENOMEM;
1159 
1160 	if (page_count(page) == 1) {
1161 		/* page was freed from under us. So we are done. */
1162 		ClearPageActive(page);
1163 		ClearPageUnevictable(page);
1164 		if (unlikely(__PageMovable(page))) {
1165 			lock_page(page);
1166 			if (!PageMovable(page))
1167 				__ClearPageIsolated(page);
1168 			unlock_page(page);
1169 		}
1170 		if (put_new_page)
1171 			put_new_page(newpage, private);
1172 		else
1173 			put_page(newpage);
1174 		goto out;
1175 	}
1176 
1177 	rc = __unmap_and_move(page, newpage, force, mode);
1178 	if (rc == MIGRATEPAGE_SUCCESS)
1179 		set_page_owner_migrate_reason(newpage, reason);
1180 
1181 out:
1182 	if (rc != -EAGAIN) {
1183 		/*
1184 		 * A page that has been migrated has all references
1185 		 * removed and will be freed. A page that has not been
1186 		 * migrated will have kepts its references and be
1187 		 * restored.
1188 		 */
1189 		list_del(&page->lru);
1190 
1191 		/*
1192 		 * Compaction can migrate also non-LRU pages which are
1193 		 * not accounted to NR_ISOLATED_*. They can be recognized
1194 		 * as __PageMovable
1195 		 */
1196 		if (likely(!__PageMovable(page)))
1197 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1198 					page_is_file_cache(page), -hpage_nr_pages(page));
1199 	}
1200 
1201 	/*
1202 	 * If migration is successful, releases reference grabbed during
1203 	 * isolation. Otherwise, restore the page to right list unless
1204 	 * we want to retry.
1205 	 */
1206 	if (rc == MIGRATEPAGE_SUCCESS) {
1207 		put_page(page);
1208 		if (reason == MR_MEMORY_FAILURE) {
1209 			/*
1210 			 * Set PG_HWPoison on just freed page
1211 			 * intentionally. Although it's rather weird,
1212 			 * it's how HWPoison flag works at the moment.
1213 			 */
1214 			if (!test_set_page_hwpoison(page))
1215 				num_poisoned_pages_inc();
1216 		}
1217 	} else {
1218 		if (rc != -EAGAIN) {
1219 			if (likely(!__PageMovable(page))) {
1220 				putback_lru_page(page);
1221 				goto put_new;
1222 			}
1223 
1224 			lock_page(page);
1225 			if (PageMovable(page))
1226 				putback_movable_page(page);
1227 			else
1228 				__ClearPageIsolated(page);
1229 			unlock_page(page);
1230 			put_page(page);
1231 		}
1232 put_new:
1233 		if (put_new_page)
1234 			put_new_page(newpage, private);
1235 		else
1236 			put_page(newpage);
1237 	}
1238 
1239 	return rc;
1240 }
1241 
1242 /*
1243  * Counterpart of unmap_and_move_page() for hugepage migration.
1244  *
1245  * This function doesn't wait the completion of hugepage I/O
1246  * because there is no race between I/O and migration for hugepage.
1247  * Note that currently hugepage I/O occurs only in direct I/O
1248  * where no lock is held and PG_writeback is irrelevant,
1249  * and writeback status of all subpages are counted in the reference
1250  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1251  * under direct I/O, the reference of the head page is 512 and a bit more.)
1252  * This means that when we try to migrate hugepage whose subpages are
1253  * doing direct I/O, some references remain after try_to_unmap() and
1254  * hugepage migration fails without data corruption.
1255  *
1256  * There is also no race when direct I/O is issued on the page under migration,
1257  * because then pte is replaced with migration swap entry and direct I/O code
1258  * will wait in the page fault for migration to complete.
1259  */
1260 static int unmap_and_move_huge_page(new_page_t get_new_page,
1261 				free_page_t put_new_page, unsigned long private,
1262 				struct page *hpage, int force,
1263 				enum migrate_mode mode, int reason)
1264 {
1265 	int rc = -EAGAIN;
1266 	int page_was_mapped = 0;
1267 	struct page *new_hpage;
1268 	struct anon_vma *anon_vma = NULL;
1269 
1270 	/*
1271 	 * Movability of hugepages depends on architectures and hugepage size.
1272 	 * This check is necessary because some callers of hugepage migration
1273 	 * like soft offline and memory hotremove don't walk through page
1274 	 * tables or check whether the hugepage is pmd-based or not before
1275 	 * kicking migration.
1276 	 */
1277 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1278 		putback_active_hugepage(hpage);
1279 		return -ENOSYS;
1280 	}
1281 
1282 	new_hpage = get_new_page(hpage, private);
1283 	if (!new_hpage)
1284 		return -ENOMEM;
1285 
1286 	if (!trylock_page(hpage)) {
1287 		if (!force)
1288 			goto out;
1289 		switch (mode) {
1290 		case MIGRATE_SYNC:
1291 		case MIGRATE_SYNC_NO_COPY:
1292 			break;
1293 		default:
1294 			goto out;
1295 		}
1296 		lock_page(hpage);
1297 	}
1298 
1299 	if (PageAnon(hpage))
1300 		anon_vma = page_get_anon_vma(hpage);
1301 
1302 	if (unlikely(!trylock_page(new_hpage)))
1303 		goto put_anon;
1304 
1305 	if (page_mapped(hpage)) {
1306 		try_to_unmap(hpage,
1307 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1308 		page_was_mapped = 1;
1309 	}
1310 
1311 	if (!page_mapped(hpage))
1312 		rc = move_to_new_page(new_hpage, hpage, mode);
1313 
1314 	if (page_was_mapped)
1315 		remove_migration_ptes(hpage,
1316 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1317 
1318 	unlock_page(new_hpage);
1319 
1320 put_anon:
1321 	if (anon_vma)
1322 		put_anon_vma(anon_vma);
1323 
1324 	if (rc == MIGRATEPAGE_SUCCESS) {
1325 		move_hugetlb_state(hpage, new_hpage, reason);
1326 		put_new_page = NULL;
1327 	}
1328 
1329 	unlock_page(hpage);
1330 out:
1331 	if (rc != -EAGAIN)
1332 		putback_active_hugepage(hpage);
1333 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1334 		num_poisoned_pages_inc();
1335 
1336 	/*
1337 	 * If migration was not successful and there's a freeing callback, use
1338 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1339 	 * isolation.
1340 	 */
1341 	if (put_new_page)
1342 		put_new_page(new_hpage, private);
1343 	else
1344 		putback_active_hugepage(new_hpage);
1345 
1346 	return rc;
1347 }
1348 
1349 /*
1350  * migrate_pages - migrate the pages specified in a list, to the free pages
1351  *		   supplied as the target for the page migration
1352  *
1353  * @from:		The list of pages to be migrated.
1354  * @get_new_page:	The function used to allocate free pages to be used
1355  *			as the target of the page migration.
1356  * @put_new_page:	The function used to free target pages if migration
1357  *			fails, or NULL if no special handling is necessary.
1358  * @private:		Private data to be passed on to get_new_page()
1359  * @mode:		The migration mode that specifies the constraints for
1360  *			page migration, if any.
1361  * @reason:		The reason for page migration.
1362  *
1363  * The function returns after 10 attempts or if no pages are movable any more
1364  * because the list has become empty or no retryable pages exist any more.
1365  * The caller should call putback_movable_pages() to return pages to the LRU
1366  * or free list only if ret != 0.
1367  *
1368  * Returns the number of pages that were not migrated, or an error code.
1369  */
1370 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1371 		free_page_t put_new_page, unsigned long private,
1372 		enum migrate_mode mode, int reason)
1373 {
1374 	int retry = 1;
1375 	int nr_failed = 0;
1376 	int nr_succeeded = 0;
1377 	int pass = 0;
1378 	struct page *page;
1379 	struct page *page2;
1380 	int swapwrite = current->flags & PF_SWAPWRITE;
1381 	int rc;
1382 
1383 	if (!swapwrite)
1384 		current->flags |= PF_SWAPWRITE;
1385 
1386 	for(pass = 0; pass < 10 && retry; pass++) {
1387 		retry = 0;
1388 
1389 		list_for_each_entry_safe(page, page2, from, lru) {
1390 retry:
1391 			cond_resched();
1392 
1393 			if (PageHuge(page))
1394 				rc = unmap_and_move_huge_page(get_new_page,
1395 						put_new_page, private, page,
1396 						pass > 2, mode, reason);
1397 			else
1398 				rc = unmap_and_move(get_new_page, put_new_page,
1399 						private, page, pass > 2, mode,
1400 						reason);
1401 
1402 			switch(rc) {
1403 			case -ENOMEM:
1404 				/*
1405 				 * THP migration might be unsupported or the
1406 				 * allocation could've failed so we should
1407 				 * retry on the same page with the THP split
1408 				 * to base pages.
1409 				 *
1410 				 * Head page is retried immediately and tail
1411 				 * pages are added to the tail of the list so
1412 				 * we encounter them after the rest of the list
1413 				 * is processed.
1414 				 */
1415 				if (PageTransHuge(page)) {
1416 					lock_page(page);
1417 					rc = split_huge_page_to_list(page, from);
1418 					unlock_page(page);
1419 					if (!rc) {
1420 						list_safe_reset_next(page, page2, lru);
1421 						goto retry;
1422 					}
1423 				}
1424 				nr_failed++;
1425 				goto out;
1426 			case -EAGAIN:
1427 				retry++;
1428 				break;
1429 			case MIGRATEPAGE_SUCCESS:
1430 				nr_succeeded++;
1431 				break;
1432 			default:
1433 				/*
1434 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1435 				 * unlike -EAGAIN case, the failed page is
1436 				 * removed from migration page list and not
1437 				 * retried in the next outer loop.
1438 				 */
1439 				nr_failed++;
1440 				break;
1441 			}
1442 		}
1443 	}
1444 	nr_failed += retry;
1445 	rc = nr_failed;
1446 out:
1447 	if (nr_succeeded)
1448 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1449 	if (nr_failed)
1450 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1451 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1452 
1453 	if (!swapwrite)
1454 		current->flags &= ~PF_SWAPWRITE;
1455 
1456 	return rc;
1457 }
1458 
1459 #ifdef CONFIG_NUMA
1460 
1461 static int store_status(int __user *status, int start, int value, int nr)
1462 {
1463 	while (nr-- > 0) {
1464 		if (put_user(value, status + start))
1465 			return -EFAULT;
1466 		start++;
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 static int do_move_pages_to_node(struct mm_struct *mm,
1473 		struct list_head *pagelist, int node)
1474 {
1475 	int err;
1476 
1477 	if (list_empty(pagelist))
1478 		return 0;
1479 
1480 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1481 			MIGRATE_SYNC, MR_SYSCALL);
1482 	if (err)
1483 		putback_movable_pages(pagelist);
1484 	return err;
1485 }
1486 
1487 /*
1488  * Resolves the given address to a struct page, isolates it from the LRU and
1489  * puts it to the given pagelist.
1490  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1491  * queued or the page doesn't need to be migrated because it is already on
1492  * the target node
1493  */
1494 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1495 		int node, struct list_head *pagelist, bool migrate_all)
1496 {
1497 	struct vm_area_struct *vma;
1498 	struct page *page;
1499 	unsigned int follflags;
1500 	int err;
1501 
1502 	down_read(&mm->mmap_sem);
1503 	err = -EFAULT;
1504 	vma = find_vma(mm, addr);
1505 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1506 		goto out;
1507 
1508 	/* FOLL_DUMP to ignore special (like zero) pages */
1509 	follflags = FOLL_GET | FOLL_DUMP;
1510 	page = follow_page(vma, addr, follflags);
1511 
1512 	err = PTR_ERR(page);
1513 	if (IS_ERR(page))
1514 		goto out;
1515 
1516 	err = -ENOENT;
1517 	if (!page)
1518 		goto out;
1519 
1520 	err = 0;
1521 	if (page_to_nid(page) == node)
1522 		goto out_putpage;
1523 
1524 	err = -EACCES;
1525 	if (page_mapcount(page) > 1 && !migrate_all)
1526 		goto out_putpage;
1527 
1528 	if (PageHuge(page)) {
1529 		if (PageHead(page)) {
1530 			isolate_huge_page(page, pagelist);
1531 			err = 0;
1532 		}
1533 	} else {
1534 		struct page *head;
1535 
1536 		head = compound_head(page);
1537 		err = isolate_lru_page(head);
1538 		if (err)
1539 			goto out_putpage;
1540 
1541 		err = 0;
1542 		list_add_tail(&head->lru, pagelist);
1543 		mod_node_page_state(page_pgdat(head),
1544 			NR_ISOLATED_ANON + page_is_file_cache(head),
1545 			hpage_nr_pages(head));
1546 	}
1547 out_putpage:
1548 	/*
1549 	 * Either remove the duplicate refcount from
1550 	 * isolate_lru_page() or drop the page ref if it was
1551 	 * not isolated.
1552 	 */
1553 	put_page(page);
1554 out:
1555 	up_read(&mm->mmap_sem);
1556 	return err;
1557 }
1558 
1559 /*
1560  * Migrate an array of page address onto an array of nodes and fill
1561  * the corresponding array of status.
1562  */
1563 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1564 			 unsigned long nr_pages,
1565 			 const void __user * __user *pages,
1566 			 const int __user *nodes,
1567 			 int __user *status, int flags)
1568 {
1569 	int current_node = NUMA_NO_NODE;
1570 	LIST_HEAD(pagelist);
1571 	int start, i;
1572 	int err = 0, err1;
1573 
1574 	migrate_prep();
1575 
1576 	for (i = start = 0; i < nr_pages; i++) {
1577 		const void __user *p;
1578 		unsigned long addr;
1579 		int node;
1580 
1581 		err = -EFAULT;
1582 		if (get_user(p, pages + i))
1583 			goto out_flush;
1584 		if (get_user(node, nodes + i))
1585 			goto out_flush;
1586 		addr = (unsigned long)p;
1587 
1588 		err = -ENODEV;
1589 		if (node < 0 || node >= MAX_NUMNODES)
1590 			goto out_flush;
1591 		if (!node_state(node, N_MEMORY))
1592 			goto out_flush;
1593 
1594 		err = -EACCES;
1595 		if (!node_isset(node, task_nodes))
1596 			goto out_flush;
1597 
1598 		if (current_node == NUMA_NO_NODE) {
1599 			current_node = node;
1600 			start = i;
1601 		} else if (node != current_node) {
1602 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1603 			if (err)
1604 				goto out;
1605 			err = store_status(status, start, current_node, i - start);
1606 			if (err)
1607 				goto out;
1608 			start = i;
1609 			current_node = node;
1610 		}
1611 
1612 		/*
1613 		 * Errors in the page lookup or isolation are not fatal and we simply
1614 		 * report them via status
1615 		 */
1616 		err = add_page_for_migration(mm, addr, current_node,
1617 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1618 		if (!err)
1619 			continue;
1620 
1621 		err = store_status(status, i, err, 1);
1622 		if (err)
1623 			goto out_flush;
1624 
1625 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1626 		if (err)
1627 			goto out;
1628 		if (i > start) {
1629 			err = store_status(status, start, current_node, i - start);
1630 			if (err)
1631 				goto out;
1632 		}
1633 		current_node = NUMA_NO_NODE;
1634 	}
1635 out_flush:
1636 	if (list_empty(&pagelist))
1637 		return err;
1638 
1639 	/* Make sure we do not overwrite the existing error */
1640 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1641 	if (!err1)
1642 		err1 = store_status(status, start, current_node, i - start);
1643 	if (!err)
1644 		err = err1;
1645 out:
1646 	return err;
1647 }
1648 
1649 /*
1650  * Determine the nodes of an array of pages and store it in an array of status.
1651  */
1652 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1653 				const void __user **pages, int *status)
1654 {
1655 	unsigned long i;
1656 
1657 	down_read(&mm->mmap_sem);
1658 
1659 	for (i = 0; i < nr_pages; i++) {
1660 		unsigned long addr = (unsigned long)(*pages);
1661 		struct vm_area_struct *vma;
1662 		struct page *page;
1663 		int err = -EFAULT;
1664 
1665 		vma = find_vma(mm, addr);
1666 		if (!vma || addr < vma->vm_start)
1667 			goto set_status;
1668 
1669 		/* FOLL_DUMP to ignore special (like zero) pages */
1670 		page = follow_page(vma, addr, FOLL_DUMP);
1671 
1672 		err = PTR_ERR(page);
1673 		if (IS_ERR(page))
1674 			goto set_status;
1675 
1676 		err = page ? page_to_nid(page) : -ENOENT;
1677 set_status:
1678 		*status = err;
1679 
1680 		pages++;
1681 		status++;
1682 	}
1683 
1684 	up_read(&mm->mmap_sem);
1685 }
1686 
1687 /*
1688  * Determine the nodes of a user array of pages and store it in
1689  * a user array of status.
1690  */
1691 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1692 			 const void __user * __user *pages,
1693 			 int __user *status)
1694 {
1695 #define DO_PAGES_STAT_CHUNK_NR 16
1696 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1697 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1698 
1699 	while (nr_pages) {
1700 		unsigned long chunk_nr;
1701 
1702 		chunk_nr = nr_pages;
1703 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1704 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1705 
1706 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1707 			break;
1708 
1709 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1710 
1711 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1712 			break;
1713 
1714 		pages += chunk_nr;
1715 		status += chunk_nr;
1716 		nr_pages -= chunk_nr;
1717 	}
1718 	return nr_pages ? -EFAULT : 0;
1719 }
1720 
1721 /*
1722  * Move a list of pages in the address space of the currently executing
1723  * process.
1724  */
1725 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1726 			     const void __user * __user *pages,
1727 			     const int __user *nodes,
1728 			     int __user *status, int flags)
1729 {
1730 	struct task_struct *task;
1731 	struct mm_struct *mm;
1732 	int err;
1733 	nodemask_t task_nodes;
1734 
1735 	/* Check flags */
1736 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1737 		return -EINVAL;
1738 
1739 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1740 		return -EPERM;
1741 
1742 	/* Find the mm_struct */
1743 	rcu_read_lock();
1744 	task = pid ? find_task_by_vpid(pid) : current;
1745 	if (!task) {
1746 		rcu_read_unlock();
1747 		return -ESRCH;
1748 	}
1749 	get_task_struct(task);
1750 
1751 	/*
1752 	 * Check if this process has the right to modify the specified
1753 	 * process. Use the regular "ptrace_may_access()" checks.
1754 	 */
1755 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1756 		rcu_read_unlock();
1757 		err = -EPERM;
1758 		goto out;
1759 	}
1760 	rcu_read_unlock();
1761 
1762  	err = security_task_movememory(task);
1763  	if (err)
1764 		goto out;
1765 
1766 	task_nodes = cpuset_mems_allowed(task);
1767 	mm = get_task_mm(task);
1768 	put_task_struct(task);
1769 
1770 	if (!mm)
1771 		return -EINVAL;
1772 
1773 	if (nodes)
1774 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1775 				    nodes, status, flags);
1776 	else
1777 		err = do_pages_stat(mm, nr_pages, pages, status);
1778 
1779 	mmput(mm);
1780 	return err;
1781 
1782 out:
1783 	put_task_struct(task);
1784 	return err;
1785 }
1786 
1787 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1788 		const void __user * __user *, pages,
1789 		const int __user *, nodes,
1790 		int __user *, status, int, flags)
1791 {
1792 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1793 }
1794 
1795 #ifdef CONFIG_COMPAT
1796 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1797 		       compat_uptr_t __user *, pages32,
1798 		       const int __user *, nodes,
1799 		       int __user *, status,
1800 		       int, flags)
1801 {
1802 	const void __user * __user *pages;
1803 	int i;
1804 
1805 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1806 	for (i = 0; i < nr_pages; i++) {
1807 		compat_uptr_t p;
1808 
1809 		if (get_user(p, pages32 + i) ||
1810 			put_user(compat_ptr(p), pages + i))
1811 			return -EFAULT;
1812 	}
1813 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1814 }
1815 #endif /* CONFIG_COMPAT */
1816 
1817 #ifdef CONFIG_NUMA_BALANCING
1818 /*
1819  * Returns true if this is a safe migration target node for misplaced NUMA
1820  * pages. Currently it only checks the watermarks which crude
1821  */
1822 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1823 				   unsigned long nr_migrate_pages)
1824 {
1825 	int z;
1826 
1827 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1828 		struct zone *zone = pgdat->node_zones + z;
1829 
1830 		if (!populated_zone(zone))
1831 			continue;
1832 
1833 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1834 		if (!zone_watermark_ok(zone, 0,
1835 				       high_wmark_pages(zone) +
1836 				       nr_migrate_pages,
1837 				       0, 0))
1838 			continue;
1839 		return true;
1840 	}
1841 	return false;
1842 }
1843 
1844 static struct page *alloc_misplaced_dst_page(struct page *page,
1845 					   unsigned long data)
1846 {
1847 	int nid = (int) data;
1848 	struct page *newpage;
1849 
1850 	newpage = __alloc_pages_node(nid,
1851 					 (GFP_HIGHUSER_MOVABLE |
1852 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1853 					  __GFP_NORETRY | __GFP_NOWARN) &
1854 					 ~__GFP_RECLAIM, 0);
1855 
1856 	return newpage;
1857 }
1858 
1859 /*
1860  * page migration rate limiting control.
1861  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1862  * window of time. Default here says do not migrate more than 1280M per second.
1863  */
1864 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1865 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1866 
1867 /* Returns true if the node is migrate rate-limited after the update */
1868 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1869 					unsigned long nr_pages)
1870 {
1871 	/*
1872 	 * Rate-limit the amount of data that is being migrated to a node.
1873 	 * Optimal placement is no good if the memory bus is saturated and
1874 	 * all the time is being spent migrating!
1875 	 */
1876 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1877 		spin_lock(&pgdat->numabalancing_migrate_lock);
1878 		pgdat->numabalancing_migrate_nr_pages = 0;
1879 		pgdat->numabalancing_migrate_next_window = jiffies +
1880 			msecs_to_jiffies(migrate_interval_millisecs);
1881 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1882 	}
1883 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1884 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1885 								nr_pages);
1886 		return true;
1887 	}
1888 
1889 	/*
1890 	 * This is an unlocked non-atomic update so errors are possible.
1891 	 * The consequences are failing to migrate when we potentiall should
1892 	 * have which is not severe enough to warrant locking. If it is ever
1893 	 * a problem, it can be converted to a per-cpu counter.
1894 	 */
1895 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1896 	return false;
1897 }
1898 
1899 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1900 {
1901 	int page_lru;
1902 
1903 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1904 
1905 	/* Avoid migrating to a node that is nearly full */
1906 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1907 		return 0;
1908 
1909 	if (isolate_lru_page(page))
1910 		return 0;
1911 
1912 	/*
1913 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1914 	 * check on page_count(), so we must do it here, now that the page
1915 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1916 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1917 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1918 	 */
1919 	if (PageTransHuge(page) && page_count(page) != 3) {
1920 		putback_lru_page(page);
1921 		return 0;
1922 	}
1923 
1924 	page_lru = page_is_file_cache(page);
1925 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1926 				hpage_nr_pages(page));
1927 
1928 	/*
1929 	 * Isolating the page has taken another reference, so the
1930 	 * caller's reference can be safely dropped without the page
1931 	 * disappearing underneath us during migration.
1932 	 */
1933 	put_page(page);
1934 	return 1;
1935 }
1936 
1937 bool pmd_trans_migrating(pmd_t pmd)
1938 {
1939 	struct page *page = pmd_page(pmd);
1940 	return PageLocked(page);
1941 }
1942 
1943 /*
1944  * Attempt to migrate a misplaced page to the specified destination
1945  * node. Caller is expected to have an elevated reference count on
1946  * the page that will be dropped by this function before returning.
1947  */
1948 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1949 			   int node)
1950 {
1951 	pg_data_t *pgdat = NODE_DATA(node);
1952 	int isolated;
1953 	int nr_remaining;
1954 	LIST_HEAD(migratepages);
1955 
1956 	/*
1957 	 * Don't migrate file pages that are mapped in multiple processes
1958 	 * with execute permissions as they are probably shared libraries.
1959 	 */
1960 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1961 	    (vma->vm_flags & VM_EXEC))
1962 		goto out;
1963 
1964 	/*
1965 	 * Also do not migrate dirty pages as not all filesystems can move
1966 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1967 	 */
1968 	if (page_is_file_cache(page) && PageDirty(page))
1969 		goto out;
1970 
1971 	/*
1972 	 * Rate-limit the amount of data that is being migrated to a node.
1973 	 * Optimal placement is no good if the memory bus is saturated and
1974 	 * all the time is being spent migrating!
1975 	 */
1976 	if (numamigrate_update_ratelimit(pgdat, 1))
1977 		goto out;
1978 
1979 	isolated = numamigrate_isolate_page(pgdat, page);
1980 	if (!isolated)
1981 		goto out;
1982 
1983 	list_add(&page->lru, &migratepages);
1984 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1985 				     NULL, node, MIGRATE_ASYNC,
1986 				     MR_NUMA_MISPLACED);
1987 	if (nr_remaining) {
1988 		if (!list_empty(&migratepages)) {
1989 			list_del(&page->lru);
1990 			dec_node_page_state(page, NR_ISOLATED_ANON +
1991 					page_is_file_cache(page));
1992 			putback_lru_page(page);
1993 		}
1994 		isolated = 0;
1995 	} else
1996 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1997 	BUG_ON(!list_empty(&migratepages));
1998 	return isolated;
1999 
2000 out:
2001 	put_page(page);
2002 	return 0;
2003 }
2004 #endif /* CONFIG_NUMA_BALANCING */
2005 
2006 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2007 /*
2008  * Migrates a THP to a given target node. page must be locked and is unlocked
2009  * before returning.
2010  */
2011 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2012 				struct vm_area_struct *vma,
2013 				pmd_t *pmd, pmd_t entry,
2014 				unsigned long address,
2015 				struct page *page, int node)
2016 {
2017 	spinlock_t *ptl;
2018 	pg_data_t *pgdat = NODE_DATA(node);
2019 	int isolated = 0;
2020 	struct page *new_page = NULL;
2021 	int page_lru = page_is_file_cache(page);
2022 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2023 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2024 
2025 	/*
2026 	 * Rate-limit the amount of data that is being migrated to a node.
2027 	 * Optimal placement is no good if the memory bus is saturated and
2028 	 * all the time is being spent migrating!
2029 	 */
2030 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2031 		goto out_dropref;
2032 
2033 	new_page = alloc_pages_node(node,
2034 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2035 		HPAGE_PMD_ORDER);
2036 	if (!new_page)
2037 		goto out_fail;
2038 	prep_transhuge_page(new_page);
2039 
2040 	isolated = numamigrate_isolate_page(pgdat, page);
2041 	if (!isolated) {
2042 		put_page(new_page);
2043 		goto out_fail;
2044 	}
2045 
2046 	/* Prepare a page as a migration target */
2047 	__SetPageLocked(new_page);
2048 	if (PageSwapBacked(page))
2049 		__SetPageSwapBacked(new_page);
2050 
2051 	/* anon mapping, we can simply copy page->mapping to the new page: */
2052 	new_page->mapping = page->mapping;
2053 	new_page->index = page->index;
2054 	migrate_page_copy(new_page, page);
2055 	WARN_ON(PageLRU(new_page));
2056 
2057 	/* Recheck the target PMD */
2058 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2059 	ptl = pmd_lock(mm, pmd);
2060 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2061 		spin_unlock(ptl);
2062 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2063 
2064 		/* Reverse changes made by migrate_page_copy() */
2065 		if (TestClearPageActive(new_page))
2066 			SetPageActive(page);
2067 		if (TestClearPageUnevictable(new_page))
2068 			SetPageUnevictable(page);
2069 
2070 		unlock_page(new_page);
2071 		put_page(new_page);		/* Free it */
2072 
2073 		/* Retake the callers reference and putback on LRU */
2074 		get_page(page);
2075 		putback_lru_page(page);
2076 		mod_node_page_state(page_pgdat(page),
2077 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2078 
2079 		goto out_unlock;
2080 	}
2081 
2082 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2083 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2084 
2085 	/*
2086 	 * Clear the old entry under pagetable lock and establish the new PTE.
2087 	 * Any parallel GUP will either observe the old page blocking on the
2088 	 * page lock, block on the page table lock or observe the new page.
2089 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2090 	 * guarantee the copy is visible before the pagetable update.
2091 	 */
2092 	flush_cache_range(vma, mmun_start, mmun_end);
2093 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2094 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2095 	set_pmd_at(mm, mmun_start, pmd, entry);
2096 	update_mmu_cache_pmd(vma, address, &entry);
2097 
2098 	page_ref_unfreeze(page, 2);
2099 	mlock_migrate_page(new_page, page);
2100 	page_remove_rmap(page, true);
2101 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2102 
2103 	spin_unlock(ptl);
2104 	/*
2105 	 * No need to double call mmu_notifier->invalidate_range() callback as
2106 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2107 	 */
2108 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2109 
2110 	/* Take an "isolate" reference and put new page on the LRU. */
2111 	get_page(new_page);
2112 	putback_lru_page(new_page);
2113 
2114 	unlock_page(new_page);
2115 	unlock_page(page);
2116 	put_page(page);			/* Drop the rmap reference */
2117 	put_page(page);			/* Drop the LRU isolation reference */
2118 
2119 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2120 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2121 
2122 	mod_node_page_state(page_pgdat(page),
2123 			NR_ISOLATED_ANON + page_lru,
2124 			-HPAGE_PMD_NR);
2125 	return isolated;
2126 
2127 out_fail:
2128 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2129 out_dropref:
2130 	ptl = pmd_lock(mm, pmd);
2131 	if (pmd_same(*pmd, entry)) {
2132 		entry = pmd_modify(entry, vma->vm_page_prot);
2133 		set_pmd_at(mm, mmun_start, pmd, entry);
2134 		update_mmu_cache_pmd(vma, address, &entry);
2135 	}
2136 	spin_unlock(ptl);
2137 
2138 out_unlock:
2139 	unlock_page(page);
2140 	put_page(page);
2141 	return 0;
2142 }
2143 #endif /* CONFIG_NUMA_BALANCING */
2144 
2145 #endif /* CONFIG_NUMA */
2146 
2147 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2148 struct migrate_vma {
2149 	struct vm_area_struct	*vma;
2150 	unsigned long		*dst;
2151 	unsigned long		*src;
2152 	unsigned long		cpages;
2153 	unsigned long		npages;
2154 	unsigned long		start;
2155 	unsigned long		end;
2156 };
2157 
2158 static int migrate_vma_collect_hole(unsigned long start,
2159 				    unsigned long end,
2160 				    struct mm_walk *walk)
2161 {
2162 	struct migrate_vma *migrate = walk->private;
2163 	unsigned long addr;
2164 
2165 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2166 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2167 		migrate->dst[migrate->npages] = 0;
2168 		migrate->npages++;
2169 		migrate->cpages++;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 static int migrate_vma_collect_skip(unsigned long start,
2176 				    unsigned long end,
2177 				    struct mm_walk *walk)
2178 {
2179 	struct migrate_vma *migrate = walk->private;
2180 	unsigned long addr;
2181 
2182 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2183 		migrate->dst[migrate->npages] = 0;
2184 		migrate->src[migrate->npages++] = 0;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2191 				   unsigned long start,
2192 				   unsigned long end,
2193 				   struct mm_walk *walk)
2194 {
2195 	struct migrate_vma *migrate = walk->private;
2196 	struct vm_area_struct *vma = walk->vma;
2197 	struct mm_struct *mm = vma->vm_mm;
2198 	unsigned long addr = start, unmapped = 0;
2199 	spinlock_t *ptl;
2200 	pte_t *ptep;
2201 
2202 again:
2203 	if (pmd_none(*pmdp))
2204 		return migrate_vma_collect_hole(start, end, walk);
2205 
2206 	if (pmd_trans_huge(*pmdp)) {
2207 		struct page *page;
2208 
2209 		ptl = pmd_lock(mm, pmdp);
2210 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2211 			spin_unlock(ptl);
2212 			goto again;
2213 		}
2214 
2215 		page = pmd_page(*pmdp);
2216 		if (is_huge_zero_page(page)) {
2217 			spin_unlock(ptl);
2218 			split_huge_pmd(vma, pmdp, addr);
2219 			if (pmd_trans_unstable(pmdp))
2220 				return migrate_vma_collect_skip(start, end,
2221 								walk);
2222 		} else {
2223 			int ret;
2224 
2225 			get_page(page);
2226 			spin_unlock(ptl);
2227 			if (unlikely(!trylock_page(page)))
2228 				return migrate_vma_collect_skip(start, end,
2229 								walk);
2230 			ret = split_huge_page(page);
2231 			unlock_page(page);
2232 			put_page(page);
2233 			if (ret)
2234 				return migrate_vma_collect_skip(start, end,
2235 								walk);
2236 			if (pmd_none(*pmdp))
2237 				return migrate_vma_collect_hole(start, end,
2238 								walk);
2239 		}
2240 	}
2241 
2242 	if (unlikely(pmd_bad(*pmdp)))
2243 		return migrate_vma_collect_skip(start, end, walk);
2244 
2245 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2246 	arch_enter_lazy_mmu_mode();
2247 
2248 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2249 		unsigned long mpfn, pfn;
2250 		struct page *page;
2251 		swp_entry_t entry;
2252 		pte_t pte;
2253 
2254 		pte = *ptep;
2255 		pfn = pte_pfn(pte);
2256 
2257 		if (pte_none(pte)) {
2258 			mpfn = MIGRATE_PFN_MIGRATE;
2259 			migrate->cpages++;
2260 			pfn = 0;
2261 			goto next;
2262 		}
2263 
2264 		if (!pte_present(pte)) {
2265 			mpfn = pfn = 0;
2266 
2267 			/*
2268 			 * Only care about unaddressable device page special
2269 			 * page table entry. Other special swap entries are not
2270 			 * migratable, and we ignore regular swapped page.
2271 			 */
2272 			entry = pte_to_swp_entry(pte);
2273 			if (!is_device_private_entry(entry))
2274 				goto next;
2275 
2276 			page = device_private_entry_to_page(entry);
2277 			mpfn = migrate_pfn(page_to_pfn(page))|
2278 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2279 			if (is_write_device_private_entry(entry))
2280 				mpfn |= MIGRATE_PFN_WRITE;
2281 		} else {
2282 			if (is_zero_pfn(pfn)) {
2283 				mpfn = MIGRATE_PFN_MIGRATE;
2284 				migrate->cpages++;
2285 				pfn = 0;
2286 				goto next;
2287 			}
2288 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2289 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2290 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2291 		}
2292 
2293 		/* FIXME support THP */
2294 		if (!page || !page->mapping || PageTransCompound(page)) {
2295 			mpfn = pfn = 0;
2296 			goto next;
2297 		}
2298 		pfn = page_to_pfn(page);
2299 
2300 		/*
2301 		 * By getting a reference on the page we pin it and that blocks
2302 		 * any kind of migration. Side effect is that it "freezes" the
2303 		 * pte.
2304 		 *
2305 		 * We drop this reference after isolating the page from the lru
2306 		 * for non device page (device page are not on the lru and thus
2307 		 * can't be dropped from it).
2308 		 */
2309 		get_page(page);
2310 		migrate->cpages++;
2311 
2312 		/*
2313 		 * Optimize for the common case where page is only mapped once
2314 		 * in one process. If we can lock the page, then we can safely
2315 		 * set up a special migration page table entry now.
2316 		 */
2317 		if (trylock_page(page)) {
2318 			pte_t swp_pte;
2319 
2320 			mpfn |= MIGRATE_PFN_LOCKED;
2321 			ptep_get_and_clear(mm, addr, ptep);
2322 
2323 			/* Setup special migration page table entry */
2324 			entry = make_migration_entry(page, mpfn &
2325 						     MIGRATE_PFN_WRITE);
2326 			swp_pte = swp_entry_to_pte(entry);
2327 			if (pte_soft_dirty(pte))
2328 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2329 			set_pte_at(mm, addr, ptep, swp_pte);
2330 
2331 			/*
2332 			 * This is like regular unmap: we remove the rmap and
2333 			 * drop page refcount. Page won't be freed, as we took
2334 			 * a reference just above.
2335 			 */
2336 			page_remove_rmap(page, false);
2337 			put_page(page);
2338 
2339 			if (pte_present(pte))
2340 				unmapped++;
2341 		}
2342 
2343 next:
2344 		migrate->dst[migrate->npages] = 0;
2345 		migrate->src[migrate->npages++] = mpfn;
2346 	}
2347 	arch_leave_lazy_mmu_mode();
2348 	pte_unmap_unlock(ptep - 1, ptl);
2349 
2350 	/* Only flush the TLB if we actually modified any entries */
2351 	if (unmapped)
2352 		flush_tlb_range(walk->vma, start, end);
2353 
2354 	return 0;
2355 }
2356 
2357 /*
2358  * migrate_vma_collect() - collect pages over a range of virtual addresses
2359  * @migrate: migrate struct containing all migration information
2360  *
2361  * This will walk the CPU page table. For each virtual address backed by a
2362  * valid page, it updates the src array and takes a reference on the page, in
2363  * order to pin the page until we lock it and unmap it.
2364  */
2365 static void migrate_vma_collect(struct migrate_vma *migrate)
2366 {
2367 	struct mm_walk mm_walk;
2368 
2369 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2370 	mm_walk.pte_entry = NULL;
2371 	mm_walk.pte_hole = migrate_vma_collect_hole;
2372 	mm_walk.hugetlb_entry = NULL;
2373 	mm_walk.test_walk = NULL;
2374 	mm_walk.vma = migrate->vma;
2375 	mm_walk.mm = migrate->vma->vm_mm;
2376 	mm_walk.private = migrate;
2377 
2378 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2379 					    migrate->start,
2380 					    migrate->end);
2381 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2382 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2383 					  migrate->start,
2384 					  migrate->end);
2385 
2386 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2387 }
2388 
2389 /*
2390  * migrate_vma_check_page() - check if page is pinned or not
2391  * @page: struct page to check
2392  *
2393  * Pinned pages cannot be migrated. This is the same test as in
2394  * migrate_page_move_mapping(), except that here we allow migration of a
2395  * ZONE_DEVICE page.
2396  */
2397 static bool migrate_vma_check_page(struct page *page)
2398 {
2399 	/*
2400 	 * One extra ref because caller holds an extra reference, either from
2401 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2402 	 * a device page.
2403 	 */
2404 	int extra = 1;
2405 
2406 	/*
2407 	 * FIXME support THP (transparent huge page), it is bit more complex to
2408 	 * check them than regular pages, because they can be mapped with a pmd
2409 	 * or with a pte (split pte mapping).
2410 	 */
2411 	if (PageCompound(page))
2412 		return false;
2413 
2414 	/* Page from ZONE_DEVICE have one extra reference */
2415 	if (is_zone_device_page(page)) {
2416 		/*
2417 		 * Private page can never be pin as they have no valid pte and
2418 		 * GUP will fail for those. Yet if there is a pending migration
2419 		 * a thread might try to wait on the pte migration entry and
2420 		 * will bump the page reference count. Sadly there is no way to
2421 		 * differentiate a regular pin from migration wait. Hence to
2422 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2423 		 * infinite loop (one stoping migration because the other is
2424 		 * waiting on pte migration entry). We always return true here.
2425 		 *
2426 		 * FIXME proper solution is to rework migration_entry_wait() so
2427 		 * it does not need to take a reference on page.
2428 		 */
2429 		if (is_device_private_page(page))
2430 			return true;
2431 
2432 		/*
2433 		 * Only allow device public page to be migrated and account for
2434 		 * the extra reference count imply by ZONE_DEVICE pages.
2435 		 */
2436 		if (!is_device_public_page(page))
2437 			return false;
2438 		extra++;
2439 	}
2440 
2441 	/* For file back page */
2442 	if (page_mapping(page))
2443 		extra += 1 + page_has_private(page);
2444 
2445 	if ((page_count(page) - extra) > page_mapcount(page))
2446 		return false;
2447 
2448 	return true;
2449 }
2450 
2451 /*
2452  * migrate_vma_prepare() - lock pages and isolate them from the lru
2453  * @migrate: migrate struct containing all migration information
2454  *
2455  * This locks pages that have been collected by migrate_vma_collect(). Once each
2456  * page is locked it is isolated from the lru (for non-device pages). Finally,
2457  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2458  * migrated by concurrent kernel threads.
2459  */
2460 static void migrate_vma_prepare(struct migrate_vma *migrate)
2461 {
2462 	const unsigned long npages = migrate->npages;
2463 	const unsigned long start = migrate->start;
2464 	unsigned long addr, i, restore = 0;
2465 	bool allow_drain = true;
2466 
2467 	lru_add_drain();
2468 
2469 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2470 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2471 		bool remap = true;
2472 
2473 		if (!page)
2474 			continue;
2475 
2476 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2477 			/*
2478 			 * Because we are migrating several pages there can be
2479 			 * a deadlock between 2 concurrent migration where each
2480 			 * are waiting on each other page lock.
2481 			 *
2482 			 * Make migrate_vma() a best effort thing and backoff
2483 			 * for any page we can not lock right away.
2484 			 */
2485 			if (!trylock_page(page)) {
2486 				migrate->src[i] = 0;
2487 				migrate->cpages--;
2488 				put_page(page);
2489 				continue;
2490 			}
2491 			remap = false;
2492 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2493 		}
2494 
2495 		/* ZONE_DEVICE pages are not on LRU */
2496 		if (!is_zone_device_page(page)) {
2497 			if (!PageLRU(page) && allow_drain) {
2498 				/* Drain CPU's pagevec */
2499 				lru_add_drain_all();
2500 				allow_drain = false;
2501 			}
2502 
2503 			if (isolate_lru_page(page)) {
2504 				if (remap) {
2505 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2506 					migrate->cpages--;
2507 					restore++;
2508 				} else {
2509 					migrate->src[i] = 0;
2510 					unlock_page(page);
2511 					migrate->cpages--;
2512 					put_page(page);
2513 				}
2514 				continue;
2515 			}
2516 
2517 			/* Drop the reference we took in collect */
2518 			put_page(page);
2519 		}
2520 
2521 		if (!migrate_vma_check_page(page)) {
2522 			if (remap) {
2523 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2524 				migrate->cpages--;
2525 				restore++;
2526 
2527 				if (!is_zone_device_page(page)) {
2528 					get_page(page);
2529 					putback_lru_page(page);
2530 				}
2531 			} else {
2532 				migrate->src[i] = 0;
2533 				unlock_page(page);
2534 				migrate->cpages--;
2535 
2536 				if (!is_zone_device_page(page))
2537 					putback_lru_page(page);
2538 				else
2539 					put_page(page);
2540 			}
2541 		}
2542 	}
2543 
2544 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2545 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2546 
2547 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2548 			continue;
2549 
2550 		remove_migration_pte(page, migrate->vma, addr, page);
2551 
2552 		migrate->src[i] = 0;
2553 		unlock_page(page);
2554 		put_page(page);
2555 		restore--;
2556 	}
2557 }
2558 
2559 /*
2560  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2561  * @migrate: migrate struct containing all migration information
2562  *
2563  * Replace page mapping (CPU page table pte) with a special migration pte entry
2564  * and check again if it has been pinned. Pinned pages are restored because we
2565  * cannot migrate them.
2566  *
2567  * This is the last step before we call the device driver callback to allocate
2568  * destination memory and copy contents of original page over to new page.
2569  */
2570 static void migrate_vma_unmap(struct migrate_vma *migrate)
2571 {
2572 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2573 	const unsigned long npages = migrate->npages;
2574 	const unsigned long start = migrate->start;
2575 	unsigned long addr, i, restore = 0;
2576 
2577 	for (i = 0; i < npages; i++) {
2578 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579 
2580 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581 			continue;
2582 
2583 		if (page_mapped(page)) {
2584 			try_to_unmap(page, flags);
2585 			if (page_mapped(page))
2586 				goto restore;
2587 		}
2588 
2589 		if (migrate_vma_check_page(page))
2590 			continue;
2591 
2592 restore:
2593 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2594 		migrate->cpages--;
2595 		restore++;
2596 	}
2597 
2598 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2599 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2600 
2601 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2602 			continue;
2603 
2604 		remove_migration_ptes(page, page, false);
2605 
2606 		migrate->src[i] = 0;
2607 		unlock_page(page);
2608 		restore--;
2609 
2610 		if (is_zone_device_page(page))
2611 			put_page(page);
2612 		else
2613 			putback_lru_page(page);
2614 	}
2615 }
2616 
2617 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2618 				    unsigned long addr,
2619 				    struct page *page,
2620 				    unsigned long *src,
2621 				    unsigned long *dst)
2622 {
2623 	struct vm_area_struct *vma = migrate->vma;
2624 	struct mm_struct *mm = vma->vm_mm;
2625 	struct mem_cgroup *memcg;
2626 	bool flush = false;
2627 	spinlock_t *ptl;
2628 	pte_t entry;
2629 	pgd_t *pgdp;
2630 	p4d_t *p4dp;
2631 	pud_t *pudp;
2632 	pmd_t *pmdp;
2633 	pte_t *ptep;
2634 
2635 	/* Only allow populating anonymous memory */
2636 	if (!vma_is_anonymous(vma))
2637 		goto abort;
2638 
2639 	pgdp = pgd_offset(mm, addr);
2640 	p4dp = p4d_alloc(mm, pgdp, addr);
2641 	if (!p4dp)
2642 		goto abort;
2643 	pudp = pud_alloc(mm, p4dp, addr);
2644 	if (!pudp)
2645 		goto abort;
2646 	pmdp = pmd_alloc(mm, pudp, addr);
2647 	if (!pmdp)
2648 		goto abort;
2649 
2650 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2651 		goto abort;
2652 
2653 	/*
2654 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2655 	 * pte_offset_map() on pmds where a huge pmd might be created
2656 	 * from a different thread.
2657 	 *
2658 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2659 	 * parallel threads are excluded by other means.
2660 	 *
2661 	 * Here we only have down_read(mmap_sem).
2662 	 */
2663 	if (pte_alloc(mm, pmdp, addr))
2664 		goto abort;
2665 
2666 	/* See the comment in pte_alloc_one_map() */
2667 	if (unlikely(pmd_trans_unstable(pmdp)))
2668 		goto abort;
2669 
2670 	if (unlikely(anon_vma_prepare(vma)))
2671 		goto abort;
2672 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2673 		goto abort;
2674 
2675 	/*
2676 	 * The memory barrier inside __SetPageUptodate makes sure that
2677 	 * preceding stores to the page contents become visible before
2678 	 * the set_pte_at() write.
2679 	 */
2680 	__SetPageUptodate(page);
2681 
2682 	if (is_zone_device_page(page)) {
2683 		if (is_device_private_page(page)) {
2684 			swp_entry_t swp_entry;
2685 
2686 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2687 			entry = swp_entry_to_pte(swp_entry);
2688 		} else if (is_device_public_page(page)) {
2689 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2690 			if (vma->vm_flags & VM_WRITE)
2691 				entry = pte_mkwrite(pte_mkdirty(entry));
2692 			entry = pte_mkdevmap(entry);
2693 		}
2694 	} else {
2695 		entry = mk_pte(page, vma->vm_page_prot);
2696 		if (vma->vm_flags & VM_WRITE)
2697 			entry = pte_mkwrite(pte_mkdirty(entry));
2698 	}
2699 
2700 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2701 
2702 	if (pte_present(*ptep)) {
2703 		unsigned long pfn = pte_pfn(*ptep);
2704 
2705 		if (!is_zero_pfn(pfn)) {
2706 			pte_unmap_unlock(ptep, ptl);
2707 			mem_cgroup_cancel_charge(page, memcg, false);
2708 			goto abort;
2709 		}
2710 		flush = true;
2711 	} else if (!pte_none(*ptep)) {
2712 		pte_unmap_unlock(ptep, ptl);
2713 		mem_cgroup_cancel_charge(page, memcg, false);
2714 		goto abort;
2715 	}
2716 
2717 	/*
2718 	 * Check for usefaultfd but do not deliver the fault. Instead,
2719 	 * just back off.
2720 	 */
2721 	if (userfaultfd_missing(vma)) {
2722 		pte_unmap_unlock(ptep, ptl);
2723 		mem_cgroup_cancel_charge(page, memcg, false);
2724 		goto abort;
2725 	}
2726 
2727 	inc_mm_counter(mm, MM_ANONPAGES);
2728 	page_add_new_anon_rmap(page, vma, addr, false);
2729 	mem_cgroup_commit_charge(page, memcg, false, false);
2730 	if (!is_zone_device_page(page))
2731 		lru_cache_add_active_or_unevictable(page, vma);
2732 	get_page(page);
2733 
2734 	if (flush) {
2735 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2736 		ptep_clear_flush_notify(vma, addr, ptep);
2737 		set_pte_at_notify(mm, addr, ptep, entry);
2738 		update_mmu_cache(vma, addr, ptep);
2739 	} else {
2740 		/* No need to invalidate - it was non-present before */
2741 		set_pte_at(mm, addr, ptep, entry);
2742 		update_mmu_cache(vma, addr, ptep);
2743 	}
2744 
2745 	pte_unmap_unlock(ptep, ptl);
2746 	*src = MIGRATE_PFN_MIGRATE;
2747 	return;
2748 
2749 abort:
2750 	*src &= ~MIGRATE_PFN_MIGRATE;
2751 }
2752 
2753 /*
2754  * migrate_vma_pages() - migrate meta-data from src page to dst page
2755  * @migrate: migrate struct containing all migration information
2756  *
2757  * This migrates struct page meta-data from source struct page to destination
2758  * struct page. This effectively finishes the migration from source page to the
2759  * destination page.
2760  */
2761 static void migrate_vma_pages(struct migrate_vma *migrate)
2762 {
2763 	const unsigned long npages = migrate->npages;
2764 	const unsigned long start = migrate->start;
2765 	struct vm_area_struct *vma = migrate->vma;
2766 	struct mm_struct *mm = vma->vm_mm;
2767 	unsigned long addr, i, mmu_start;
2768 	bool notified = false;
2769 
2770 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2771 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2772 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2773 		struct address_space *mapping;
2774 		int r;
2775 
2776 		if (!newpage) {
2777 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2778 			continue;
2779 		}
2780 
2781 		if (!page) {
2782 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2783 				continue;
2784 			}
2785 			if (!notified) {
2786 				mmu_start = addr;
2787 				notified = true;
2788 				mmu_notifier_invalidate_range_start(mm,
2789 								mmu_start,
2790 								migrate->end);
2791 			}
2792 			migrate_vma_insert_page(migrate, addr, newpage,
2793 						&migrate->src[i],
2794 						&migrate->dst[i]);
2795 			continue;
2796 		}
2797 
2798 		mapping = page_mapping(page);
2799 
2800 		if (is_zone_device_page(newpage)) {
2801 			if (is_device_private_page(newpage)) {
2802 				/*
2803 				 * For now only support private anonymous when
2804 				 * migrating to un-addressable device memory.
2805 				 */
2806 				if (mapping) {
2807 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2808 					continue;
2809 				}
2810 			} else if (!is_device_public_page(newpage)) {
2811 				/*
2812 				 * Other types of ZONE_DEVICE page are not
2813 				 * supported.
2814 				 */
2815 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2816 				continue;
2817 			}
2818 		}
2819 
2820 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2821 		if (r != MIGRATEPAGE_SUCCESS)
2822 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2823 	}
2824 
2825 	/*
2826 	 * No need to double call mmu_notifier->invalidate_range() callback as
2827 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2828 	 * did already call it.
2829 	 */
2830 	if (notified)
2831 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2832 						       migrate->end);
2833 }
2834 
2835 /*
2836  * migrate_vma_finalize() - restore CPU page table entry
2837  * @migrate: migrate struct containing all migration information
2838  *
2839  * This replaces the special migration pte entry with either a mapping to the
2840  * new page if migration was successful for that page, or to the original page
2841  * otherwise.
2842  *
2843  * This also unlocks the pages and puts them back on the lru, or drops the extra
2844  * refcount, for device pages.
2845  */
2846 static void migrate_vma_finalize(struct migrate_vma *migrate)
2847 {
2848 	const unsigned long npages = migrate->npages;
2849 	unsigned long i;
2850 
2851 	for (i = 0; i < npages; i++) {
2852 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2853 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2854 
2855 		if (!page) {
2856 			if (newpage) {
2857 				unlock_page(newpage);
2858 				put_page(newpage);
2859 			}
2860 			continue;
2861 		}
2862 
2863 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2864 			if (newpage) {
2865 				unlock_page(newpage);
2866 				put_page(newpage);
2867 			}
2868 			newpage = page;
2869 		}
2870 
2871 		remove_migration_ptes(page, newpage, false);
2872 		unlock_page(page);
2873 		migrate->cpages--;
2874 
2875 		if (is_zone_device_page(page))
2876 			put_page(page);
2877 		else
2878 			putback_lru_page(page);
2879 
2880 		if (newpage != page) {
2881 			unlock_page(newpage);
2882 			if (is_zone_device_page(newpage))
2883 				put_page(newpage);
2884 			else
2885 				putback_lru_page(newpage);
2886 		}
2887 	}
2888 }
2889 
2890 /*
2891  * migrate_vma() - migrate a range of memory inside vma
2892  *
2893  * @ops: migration callback for allocating destination memory and copying
2894  * @vma: virtual memory area containing the range to be migrated
2895  * @start: start address of the range to migrate (inclusive)
2896  * @end: end address of the range to migrate (exclusive)
2897  * @src: array of hmm_pfn_t containing source pfns
2898  * @dst: array of hmm_pfn_t containing destination pfns
2899  * @private: pointer passed back to each of the callback
2900  * Returns: 0 on success, error code otherwise
2901  *
2902  * This function tries to migrate a range of memory virtual address range, using
2903  * callbacks to allocate and copy memory from source to destination. First it
2904  * collects all the pages backing each virtual address in the range, saving this
2905  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2906  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2907  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2908  * in the corresponding src array entry. It then restores any pages that are
2909  * pinned, by remapping and unlocking those pages.
2910  *
2911  * At this point it calls the alloc_and_copy() callback. For documentation on
2912  * what is expected from that callback, see struct migrate_vma_ops comments in
2913  * include/linux/migrate.h
2914  *
2915  * After the alloc_and_copy() callback, this function goes over each entry in
2916  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2917  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2918  * then the function tries to migrate struct page information from the source
2919  * struct page to the destination struct page. If it fails to migrate the struct
2920  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2921  * array.
2922  *
2923  * At this point all successfully migrated pages have an entry in the src
2924  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2925  * array entry with MIGRATE_PFN_VALID flag set.
2926  *
2927  * It then calls the finalize_and_map() callback. See comments for "struct
2928  * migrate_vma_ops", in include/linux/migrate.h for details about
2929  * finalize_and_map() behavior.
2930  *
2931  * After the finalize_and_map() callback, for successfully migrated pages, this
2932  * function updates the CPU page table to point to new pages, otherwise it
2933  * restores the CPU page table to point to the original source pages.
2934  *
2935  * Function returns 0 after the above steps, even if no pages were migrated
2936  * (The function only returns an error if any of the arguments are invalid.)
2937  *
2938  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2939  * unsigned long entries.
2940  */
2941 int migrate_vma(const struct migrate_vma_ops *ops,
2942 		struct vm_area_struct *vma,
2943 		unsigned long start,
2944 		unsigned long end,
2945 		unsigned long *src,
2946 		unsigned long *dst,
2947 		void *private)
2948 {
2949 	struct migrate_vma migrate;
2950 
2951 	/* Sanity check the arguments */
2952 	start &= PAGE_MASK;
2953 	end &= PAGE_MASK;
2954 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2955 		return -EINVAL;
2956 	if (start < vma->vm_start || start >= vma->vm_end)
2957 		return -EINVAL;
2958 	if (end <= vma->vm_start || end > vma->vm_end)
2959 		return -EINVAL;
2960 	if (!ops || !src || !dst || start >= end)
2961 		return -EINVAL;
2962 
2963 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2964 	migrate.src = src;
2965 	migrate.dst = dst;
2966 	migrate.start = start;
2967 	migrate.npages = 0;
2968 	migrate.cpages = 0;
2969 	migrate.end = end;
2970 	migrate.vma = vma;
2971 
2972 	/* Collect, and try to unmap source pages */
2973 	migrate_vma_collect(&migrate);
2974 	if (!migrate.cpages)
2975 		return 0;
2976 
2977 	/* Lock and isolate page */
2978 	migrate_vma_prepare(&migrate);
2979 	if (!migrate.cpages)
2980 		return 0;
2981 
2982 	/* Unmap pages */
2983 	migrate_vma_unmap(&migrate);
2984 	if (!migrate.cpages)
2985 		return 0;
2986 
2987 	/*
2988 	 * At this point pages are locked and unmapped, and thus they have
2989 	 * stable content and can safely be copied to destination memory that
2990 	 * is allocated by the callback.
2991 	 *
2992 	 * Note that migration can fail in migrate_vma_struct_page() for each
2993 	 * individual page.
2994 	 */
2995 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2996 
2997 	/* This does the real migration of struct page */
2998 	migrate_vma_pages(&migrate);
2999 
3000 	ops->finalize_and_map(vma, src, dst, start, end, private);
3001 
3002 	/* Unlock and remap pages */
3003 	migrate_vma_finalize(&migrate);
3004 
3005 	return 0;
3006 }
3007 EXPORT_SYMBOL(migrate_vma);
3008 #endif /* defined(MIGRATE_VMA_HELPER) */
3009