1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 int migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 75 return 0; 76 } 77 78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 79 int migrate_prep_local(void) 80 { 81 lru_add_drain(); 82 83 return 0; 84 } 85 86 int isolate_movable_page(struct page *page, isolate_mode_t mode) 87 { 88 struct address_space *mapping; 89 90 /* 91 * Avoid burning cycles with pages that are yet under __free_pages(), 92 * or just got freed under us. 93 * 94 * In case we 'win' a race for a movable page being freed under us and 95 * raise its refcount preventing __free_pages() from doing its job 96 * the put_page() at the end of this block will take care of 97 * release this page, thus avoiding a nasty leakage. 98 */ 99 if (unlikely(!get_page_unless_zero(page))) 100 goto out; 101 102 /* 103 * Check PageMovable before holding a PG_lock because page's owner 104 * assumes anybody doesn't touch PG_lock of newly allocated page 105 * so unconditionally grabbing the lock ruins page's owner side. 106 */ 107 if (unlikely(!__PageMovable(page))) 108 goto out_putpage; 109 /* 110 * As movable pages are not isolated from LRU lists, concurrent 111 * compaction threads can race against page migration functions 112 * as well as race against the releasing a page. 113 * 114 * In order to avoid having an already isolated movable page 115 * being (wrongly) re-isolated while it is under migration, 116 * or to avoid attempting to isolate pages being released, 117 * lets be sure we have the page lock 118 * before proceeding with the movable page isolation steps. 119 */ 120 if (unlikely(!trylock_page(page))) 121 goto out_putpage; 122 123 if (!PageMovable(page) || PageIsolated(page)) 124 goto out_no_isolated; 125 126 mapping = page_mapping(page); 127 VM_BUG_ON_PAGE(!mapping, page); 128 129 if (!mapping->a_ops->isolate_page(page, mode)) 130 goto out_no_isolated; 131 132 /* Driver shouldn't use PG_isolated bit of page->flags */ 133 WARN_ON_ONCE(PageIsolated(page)); 134 __SetPageIsolated(page); 135 unlock_page(page); 136 137 return 0; 138 139 out_no_isolated: 140 unlock_page(page); 141 out_putpage: 142 put_page(page); 143 out: 144 return -EBUSY; 145 } 146 147 /* It should be called on page which is PG_movable */ 148 void putback_movable_page(struct page *page) 149 { 150 struct address_space *mapping; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageMovable(page), page); 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 156 mapping = page_mapping(page); 157 mapping->a_ops->putback_page(page); 158 __ClearPageIsolated(page); 159 } 160 161 /* 162 * Put previously isolated pages back onto the appropriate lists 163 * from where they were once taken off for compaction/migration. 164 * 165 * This function shall be used whenever the isolated pageset has been 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 167 * and isolate_huge_page(). 168 */ 169 void putback_movable_pages(struct list_head *l) 170 { 171 struct page *page; 172 struct page *page2; 173 174 list_for_each_entry_safe(page, page2, l, lru) { 175 if (unlikely(PageHuge(page))) { 176 putback_active_hugepage(page); 177 continue; 178 } 179 list_del(&page->lru); 180 /* 181 * We isolated non-lru movable page so here we can use 182 * __PageMovable because LRU page's mapping cannot have 183 * PAGE_MAPPING_MOVABLE. 184 */ 185 if (unlikely(__PageMovable(page))) { 186 VM_BUG_ON_PAGE(!PageIsolated(page), page); 187 lock_page(page); 188 if (PageMovable(page)) 189 putback_movable_page(page); 190 else 191 __ClearPageIsolated(page); 192 unlock_page(page); 193 put_page(page); 194 } else { 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 196 page_is_file_lru(page), -hpage_nr_pages(page)); 197 putback_lru_page(page); 198 } 199 } 200 } 201 202 /* 203 * Restore a potential migration pte to a working pte entry 204 */ 205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 206 unsigned long addr, void *old) 207 { 208 struct page_vma_mapped_walk pvmw = { 209 .page = old, 210 .vma = vma, 211 .address = addr, 212 .flags = PVMW_SYNC | PVMW_MIGRATION, 213 }; 214 struct page *new; 215 pte_t pte; 216 swp_entry_t entry; 217 218 VM_BUG_ON_PAGE(PageTail(page), page); 219 while (page_vma_mapped_walk(&pvmw)) { 220 if (PageKsm(page)) 221 new = page; 222 else 223 new = page - pvmw.page->index + 224 linear_page_index(vma, pvmw.address); 225 226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 227 /* PMD-mapped THP migration entry */ 228 if (!pvmw.pte) { 229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 230 remove_migration_pmd(&pvmw, new); 231 continue; 232 } 233 #endif 234 235 get_page(new); 236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 237 if (pte_swp_soft_dirty(*pvmw.pte)) 238 pte = pte_mksoft_dirty(pte); 239 240 /* 241 * Recheck VMA as permissions can change since migration started 242 */ 243 entry = pte_to_swp_entry(*pvmw.pte); 244 if (is_write_migration_entry(entry)) 245 pte = maybe_mkwrite(pte, vma); 246 else if (pte_swp_uffd_wp(*pvmw.pte)) 247 pte = pte_mkuffd_wp(pte); 248 249 if (unlikely(is_zone_device_page(new))) { 250 if (is_device_private_page(new)) { 251 entry = make_device_private_entry(new, pte_write(pte)); 252 pte = swp_entry_to_pte(entry); 253 if (pte_swp_uffd_wp(*pvmw.pte)) 254 pte = pte_mkuffd_wp(pte); 255 } 256 } 257 258 #ifdef CONFIG_HUGETLB_PAGE 259 if (PageHuge(new)) { 260 pte = pte_mkhuge(pte); 261 pte = arch_make_huge_pte(pte, vma, new, 0); 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 263 if (PageAnon(new)) 264 hugepage_add_anon_rmap(new, vma, pvmw.address); 265 else 266 page_dup_rmap(new, true); 267 } else 268 #endif 269 { 270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 271 272 if (PageAnon(new)) 273 page_add_anon_rmap(new, vma, pvmw.address, false); 274 else 275 page_add_file_rmap(new, false); 276 } 277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 278 mlock_vma_page(new); 279 280 if (PageTransHuge(page) && PageMlocked(page)) 281 clear_page_mlock(page); 282 283 /* No need to invalidate - it was non-present before */ 284 update_mmu_cache(vma, pvmw.address, pvmw.pte); 285 } 286 287 return true; 288 } 289 290 /* 291 * Get rid of all migration entries and replace them by 292 * references to the indicated page. 293 */ 294 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 295 { 296 struct rmap_walk_control rwc = { 297 .rmap_one = remove_migration_pte, 298 .arg = old, 299 }; 300 301 if (locked) 302 rmap_walk_locked(new, &rwc); 303 else 304 rmap_walk(new, &rwc); 305 } 306 307 /* 308 * Something used the pte of a page under migration. We need to 309 * get to the page and wait until migration is finished. 310 * When we return from this function the fault will be retried. 311 */ 312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 313 spinlock_t *ptl) 314 { 315 pte_t pte; 316 swp_entry_t entry; 317 struct page *page; 318 319 spin_lock(ptl); 320 pte = *ptep; 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 page = migration_entry_to_page(entry); 329 330 /* 331 * Once page cache replacement of page migration started, page_count 332 * is zero; but we must not call put_and_wait_on_page_locked() without 333 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 put_and_wait_on_page_locked(page); 339 return; 340 out: 341 pte_unmap_unlock(ptep, ptl); 342 } 343 344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 345 unsigned long address) 346 { 347 spinlock_t *ptl = pte_lockptr(mm, pmd); 348 pte_t *ptep = pte_offset_map(pmd, address); 349 __migration_entry_wait(mm, ptep, ptl); 350 } 351 352 void migration_entry_wait_huge(struct vm_area_struct *vma, 353 struct mm_struct *mm, pte_t *pte) 354 { 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 356 __migration_entry_wait(mm, pte, ptl); 357 } 358 359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 361 { 362 spinlock_t *ptl; 363 struct page *page; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 369 if (!get_page_unless_zero(page)) 370 goto unlock; 371 spin_unlock(ptl); 372 put_and_wait_on_page_locked(page); 373 return; 374 unlock: 375 spin_unlock(ptl); 376 } 377 #endif 378 379 static int expected_page_refs(struct address_space *mapping, struct page *page) 380 { 381 int expected_count = 1; 382 383 /* 384 * Device public or private pages have an extra refcount as they are 385 * ZONE_DEVICE pages. 386 */ 387 expected_count += is_device_private_page(page); 388 if (mapping) 389 expected_count += hpage_nr_pages(page) + page_has_private(page); 390 391 return expected_count; 392 } 393 394 /* 395 * Replace the page in the mapping. 396 * 397 * The number of remaining references must be: 398 * 1 for anonymous pages without a mapping 399 * 2 for pages with a mapping 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 401 */ 402 int migrate_page_move_mapping(struct address_space *mapping, 403 struct page *newpage, struct page *page, int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(mapping, page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 495 if (PageSwapBacked(page) && !PageSwapCache(page)) { 496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 498 } 499 if (dirty && mapping_cap_account_dirty(mapping)) { 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 504 } 505 } 506 local_irq_enable(); 507 508 return MIGRATEPAGE_SUCCESS; 509 } 510 EXPORT_SYMBOL(migrate_page_move_mapping); 511 512 /* 513 * The expected number of remaining references is the same as that 514 * of migrate_page_move_mapping(). 515 */ 516 int migrate_huge_page_move_mapping(struct address_space *mapping, 517 struct page *newpage, struct page *page) 518 { 519 XA_STATE(xas, &mapping->i_pages, page_index(page)); 520 int expected_count; 521 522 xas_lock_irq(&xas); 523 expected_count = 2 + page_has_private(page); 524 if (page_count(page) != expected_count || xas_load(&xas) != page) { 525 xas_unlock_irq(&xas); 526 return -EAGAIN; 527 } 528 529 if (!page_ref_freeze(page, expected_count)) { 530 xas_unlock_irq(&xas); 531 return -EAGAIN; 532 } 533 534 newpage->index = page->index; 535 newpage->mapping = page->mapping; 536 537 get_page(newpage); 538 539 xas_store(&xas, newpage); 540 541 page_ref_unfreeze(page, expected_count - 1); 542 543 xas_unlock_irq(&xas); 544 545 return MIGRATEPAGE_SUCCESS; 546 } 547 548 /* 549 * Gigantic pages are so large that we do not guarantee that page++ pointer 550 * arithmetic will work across the entire page. We need something more 551 * specialized. 552 */ 553 static void __copy_gigantic_page(struct page *dst, struct page *src, 554 int nr_pages) 555 { 556 int i; 557 struct page *dst_base = dst; 558 struct page *src_base = src; 559 560 for (i = 0; i < nr_pages; ) { 561 cond_resched(); 562 copy_highpage(dst, src); 563 564 i++; 565 dst = mem_map_next(dst, dst_base, i); 566 src = mem_map_next(src, src_base, i); 567 } 568 } 569 570 static void copy_huge_page(struct page *dst, struct page *src) 571 { 572 int i; 573 int nr_pages; 574 575 if (PageHuge(src)) { 576 /* hugetlbfs page */ 577 struct hstate *h = page_hstate(src); 578 nr_pages = pages_per_huge_page(h); 579 580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 581 __copy_gigantic_page(dst, src, nr_pages); 582 return; 583 } 584 } else { 585 /* thp page */ 586 BUG_ON(!PageTransHuge(src)); 587 nr_pages = hpage_nr_pages(src); 588 } 589 590 for (i = 0; i < nr_pages; i++) { 591 cond_resched(); 592 copy_highpage(dst + i, src + i); 593 } 594 } 595 596 /* 597 * Copy the page to its new location 598 */ 599 void migrate_page_states(struct page *newpage, struct page *page) 600 { 601 int cpupid; 602 603 if (PageError(page)) 604 SetPageError(newpage); 605 if (PageReferenced(page)) 606 SetPageReferenced(newpage); 607 if (PageUptodate(page)) 608 SetPageUptodate(newpage); 609 if (TestClearPageActive(page)) { 610 VM_BUG_ON_PAGE(PageUnevictable(page), page); 611 SetPageActive(newpage); 612 } else if (TestClearPageUnevictable(page)) 613 SetPageUnevictable(newpage); 614 if (PageWorkingset(page)) 615 SetPageWorkingset(newpage); 616 if (PageChecked(page)) 617 SetPageChecked(newpage); 618 if (PageMappedToDisk(page)) 619 SetPageMappedToDisk(newpage); 620 621 /* Move dirty on pages not done by migrate_page_move_mapping() */ 622 if (PageDirty(page)) 623 SetPageDirty(newpage); 624 625 if (page_is_young(page)) 626 set_page_young(newpage); 627 if (page_is_idle(page)) 628 set_page_idle(newpage); 629 630 /* 631 * Copy NUMA information to the new page, to prevent over-eager 632 * future migrations of this same page. 633 */ 634 cpupid = page_cpupid_xchg_last(page, -1); 635 page_cpupid_xchg_last(newpage, cpupid); 636 637 ksm_migrate_page(newpage, page); 638 /* 639 * Please do not reorder this without considering how mm/ksm.c's 640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 641 */ 642 if (PageSwapCache(page)) 643 ClearPageSwapCache(page); 644 ClearPagePrivate(page); 645 set_page_private(page, 0); 646 647 /* 648 * If any waiters have accumulated on the new page then 649 * wake them up. 650 */ 651 if (PageWriteback(newpage)) 652 end_page_writeback(newpage); 653 654 /* 655 * PG_readahead shares the same bit with PG_reclaim. The above 656 * end_page_writeback() may clear PG_readahead mistakenly, so set the 657 * bit after that. 658 */ 659 if (PageReadahead(page)) 660 SetPageReadahead(newpage); 661 662 copy_page_owner(page, newpage); 663 664 mem_cgroup_migrate(page, newpage); 665 } 666 EXPORT_SYMBOL(migrate_page_states); 667 668 void migrate_page_copy(struct page *newpage, struct page *page) 669 { 670 if (PageHuge(page) || PageTransHuge(page)) 671 copy_huge_page(newpage, page); 672 else 673 copy_highpage(newpage, page); 674 675 migrate_page_states(newpage, page); 676 } 677 EXPORT_SYMBOL(migrate_page_copy); 678 679 /************************************************************ 680 * Migration functions 681 ***********************************************************/ 682 683 /* 684 * Common logic to directly migrate a single LRU page suitable for 685 * pages that do not use PagePrivate/PagePrivate2. 686 * 687 * Pages are locked upon entry and exit. 688 */ 689 int migrate_page(struct address_space *mapping, 690 struct page *newpage, struct page *page, 691 enum migrate_mode mode) 692 { 693 int rc; 694 695 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 696 697 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 698 699 if (rc != MIGRATEPAGE_SUCCESS) 700 return rc; 701 702 if (mode != MIGRATE_SYNC_NO_COPY) 703 migrate_page_copy(newpage, page); 704 else 705 migrate_page_states(newpage, page); 706 return MIGRATEPAGE_SUCCESS; 707 } 708 EXPORT_SYMBOL(migrate_page); 709 710 #ifdef CONFIG_BLOCK 711 /* Returns true if all buffers are successfully locked */ 712 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 713 enum migrate_mode mode) 714 { 715 struct buffer_head *bh = head; 716 717 /* Simple case, sync compaction */ 718 if (mode != MIGRATE_ASYNC) { 719 do { 720 lock_buffer(bh); 721 bh = bh->b_this_page; 722 723 } while (bh != head); 724 725 return true; 726 } 727 728 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 729 do { 730 if (!trylock_buffer(bh)) { 731 /* 732 * We failed to lock the buffer and cannot stall in 733 * async migration. Release the taken locks 734 */ 735 struct buffer_head *failed_bh = bh; 736 bh = head; 737 while (bh != failed_bh) { 738 unlock_buffer(bh); 739 bh = bh->b_this_page; 740 } 741 return false; 742 } 743 744 bh = bh->b_this_page; 745 } while (bh != head); 746 return true; 747 } 748 749 static int __buffer_migrate_page(struct address_space *mapping, 750 struct page *newpage, struct page *page, enum migrate_mode mode, 751 bool check_refs) 752 { 753 struct buffer_head *bh, *head; 754 int rc; 755 int expected_count; 756 757 if (!page_has_buffers(page)) 758 return migrate_page(mapping, newpage, page, mode); 759 760 /* Check whether page does not have extra refs before we do more work */ 761 expected_count = expected_page_refs(mapping, page); 762 if (page_count(page) != expected_count) 763 return -EAGAIN; 764 765 head = page_buffers(page); 766 if (!buffer_migrate_lock_buffers(head, mode)) 767 return -EAGAIN; 768 769 if (check_refs) { 770 bool busy; 771 bool invalidated = false; 772 773 recheck_buffers: 774 busy = false; 775 spin_lock(&mapping->private_lock); 776 bh = head; 777 do { 778 if (atomic_read(&bh->b_count)) { 779 busy = true; 780 break; 781 } 782 bh = bh->b_this_page; 783 } while (bh != head); 784 if (busy) { 785 if (invalidated) { 786 rc = -EAGAIN; 787 goto unlock_buffers; 788 } 789 spin_unlock(&mapping->private_lock); 790 invalidate_bh_lrus(); 791 invalidated = true; 792 goto recheck_buffers; 793 } 794 } 795 796 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 797 if (rc != MIGRATEPAGE_SUCCESS) 798 goto unlock_buffers; 799 800 attach_page_private(newpage, detach_page_private(page)); 801 get_page(newpage); 802 803 bh = head; 804 do { 805 set_bh_page(bh, newpage, bh_offset(bh)); 806 bh = bh->b_this_page; 807 808 } while (bh != head); 809 810 if (mode != MIGRATE_SYNC_NO_COPY) 811 migrate_page_copy(newpage, page); 812 else 813 migrate_page_states(newpage, page); 814 815 rc = MIGRATEPAGE_SUCCESS; 816 unlock_buffers: 817 if (check_refs) 818 spin_unlock(&mapping->private_lock); 819 bh = head; 820 do { 821 unlock_buffer(bh); 822 bh = bh->b_this_page; 823 824 } while (bh != head); 825 826 return rc; 827 } 828 829 /* 830 * Migration function for pages with buffers. This function can only be used 831 * if the underlying filesystem guarantees that no other references to "page" 832 * exist. For example attached buffer heads are accessed only under page lock. 833 */ 834 int buffer_migrate_page(struct address_space *mapping, 835 struct page *newpage, struct page *page, enum migrate_mode mode) 836 { 837 return __buffer_migrate_page(mapping, newpage, page, mode, false); 838 } 839 EXPORT_SYMBOL(buffer_migrate_page); 840 841 /* 842 * Same as above except that this variant is more careful and checks that there 843 * are also no buffer head references. This function is the right one for 844 * mappings where buffer heads are directly looked up and referenced (such as 845 * block device mappings). 846 */ 847 int buffer_migrate_page_norefs(struct address_space *mapping, 848 struct page *newpage, struct page *page, enum migrate_mode mode) 849 { 850 return __buffer_migrate_page(mapping, newpage, page, mode, true); 851 } 852 #endif 853 854 /* 855 * Writeback a page to clean the dirty state 856 */ 857 static int writeout(struct address_space *mapping, struct page *page) 858 { 859 struct writeback_control wbc = { 860 .sync_mode = WB_SYNC_NONE, 861 .nr_to_write = 1, 862 .range_start = 0, 863 .range_end = LLONG_MAX, 864 .for_reclaim = 1 865 }; 866 int rc; 867 868 if (!mapping->a_ops->writepage) 869 /* No write method for the address space */ 870 return -EINVAL; 871 872 if (!clear_page_dirty_for_io(page)) 873 /* Someone else already triggered a write */ 874 return -EAGAIN; 875 876 /* 877 * A dirty page may imply that the underlying filesystem has 878 * the page on some queue. So the page must be clean for 879 * migration. Writeout may mean we loose the lock and the 880 * page state is no longer what we checked for earlier. 881 * At this point we know that the migration attempt cannot 882 * be successful. 883 */ 884 remove_migration_ptes(page, page, false); 885 886 rc = mapping->a_ops->writepage(page, &wbc); 887 888 if (rc != AOP_WRITEPAGE_ACTIVATE) 889 /* unlocked. Relock */ 890 lock_page(page); 891 892 return (rc < 0) ? -EIO : -EAGAIN; 893 } 894 895 /* 896 * Default handling if a filesystem does not provide a migration function. 897 */ 898 static int fallback_migrate_page(struct address_space *mapping, 899 struct page *newpage, struct page *page, enum migrate_mode mode) 900 { 901 if (PageDirty(page)) { 902 /* Only writeback pages in full synchronous migration */ 903 switch (mode) { 904 case MIGRATE_SYNC: 905 case MIGRATE_SYNC_NO_COPY: 906 break; 907 default: 908 return -EBUSY; 909 } 910 return writeout(mapping, page); 911 } 912 913 /* 914 * Buffers may be managed in a filesystem specific way. 915 * We must have no buffers or drop them. 916 */ 917 if (page_has_private(page) && 918 !try_to_release_page(page, GFP_KERNEL)) 919 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 920 921 return migrate_page(mapping, newpage, page, mode); 922 } 923 924 /* 925 * Move a page to a newly allocated page 926 * The page is locked and all ptes have been successfully removed. 927 * 928 * The new page will have replaced the old page if this function 929 * is successful. 930 * 931 * Return value: 932 * < 0 - error code 933 * MIGRATEPAGE_SUCCESS - success 934 */ 935 static int move_to_new_page(struct page *newpage, struct page *page, 936 enum migrate_mode mode) 937 { 938 struct address_space *mapping; 939 int rc = -EAGAIN; 940 bool is_lru = !__PageMovable(page); 941 942 VM_BUG_ON_PAGE(!PageLocked(page), page); 943 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 944 945 mapping = page_mapping(page); 946 947 if (likely(is_lru)) { 948 if (!mapping) 949 rc = migrate_page(mapping, newpage, page, mode); 950 else if (mapping->a_ops->migratepage) 951 /* 952 * Most pages have a mapping and most filesystems 953 * provide a migratepage callback. Anonymous pages 954 * are part of swap space which also has its own 955 * migratepage callback. This is the most common path 956 * for page migration. 957 */ 958 rc = mapping->a_ops->migratepage(mapping, newpage, 959 page, mode); 960 else 961 rc = fallback_migrate_page(mapping, newpage, 962 page, mode); 963 } else { 964 /* 965 * In case of non-lru page, it could be released after 966 * isolation step. In that case, we shouldn't try migration. 967 */ 968 VM_BUG_ON_PAGE(!PageIsolated(page), page); 969 if (!PageMovable(page)) { 970 rc = MIGRATEPAGE_SUCCESS; 971 __ClearPageIsolated(page); 972 goto out; 973 } 974 975 rc = mapping->a_ops->migratepage(mapping, newpage, 976 page, mode); 977 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 978 !PageIsolated(page)); 979 } 980 981 /* 982 * When successful, old pagecache page->mapping must be cleared before 983 * page is freed; but stats require that PageAnon be left as PageAnon. 984 */ 985 if (rc == MIGRATEPAGE_SUCCESS) { 986 if (__PageMovable(page)) { 987 VM_BUG_ON_PAGE(!PageIsolated(page), page); 988 989 /* 990 * We clear PG_movable under page_lock so any compactor 991 * cannot try to migrate this page. 992 */ 993 __ClearPageIsolated(page); 994 } 995 996 /* 997 * Anonymous and movable page->mapping will be cleared by 998 * free_pages_prepare so don't reset it here for keeping 999 * the type to work PageAnon, for example. 1000 */ 1001 if (!PageMappingFlags(page)) 1002 page->mapping = NULL; 1003 1004 if (likely(!is_zone_device_page(newpage))) 1005 flush_dcache_page(newpage); 1006 1007 } 1008 out: 1009 return rc; 1010 } 1011 1012 static int __unmap_and_move(struct page *page, struct page *newpage, 1013 int force, enum migrate_mode mode) 1014 { 1015 int rc = -EAGAIN; 1016 int page_was_mapped = 0; 1017 struct anon_vma *anon_vma = NULL; 1018 bool is_lru = !__PageMovable(page); 1019 1020 if (!trylock_page(page)) { 1021 if (!force || mode == MIGRATE_ASYNC) 1022 goto out; 1023 1024 /* 1025 * It's not safe for direct compaction to call lock_page. 1026 * For example, during page readahead pages are added locked 1027 * to the LRU. Later, when the IO completes the pages are 1028 * marked uptodate and unlocked. However, the queueing 1029 * could be merging multiple pages for one bio (e.g. 1030 * mpage_readahead). If an allocation happens for the 1031 * second or third page, the process can end up locking 1032 * the same page twice and deadlocking. Rather than 1033 * trying to be clever about what pages can be locked, 1034 * avoid the use of lock_page for direct compaction 1035 * altogether. 1036 */ 1037 if (current->flags & PF_MEMALLOC) 1038 goto out; 1039 1040 lock_page(page); 1041 } 1042 1043 if (PageWriteback(page)) { 1044 /* 1045 * Only in the case of a full synchronous migration is it 1046 * necessary to wait for PageWriteback. In the async case, 1047 * the retry loop is too short and in the sync-light case, 1048 * the overhead of stalling is too much 1049 */ 1050 switch (mode) { 1051 case MIGRATE_SYNC: 1052 case MIGRATE_SYNC_NO_COPY: 1053 break; 1054 default: 1055 rc = -EBUSY; 1056 goto out_unlock; 1057 } 1058 if (!force) 1059 goto out_unlock; 1060 wait_on_page_writeback(page); 1061 } 1062 1063 /* 1064 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1065 * we cannot notice that anon_vma is freed while we migrates a page. 1066 * This get_anon_vma() delays freeing anon_vma pointer until the end 1067 * of migration. File cache pages are no problem because of page_lock() 1068 * File Caches may use write_page() or lock_page() in migration, then, 1069 * just care Anon page here. 1070 * 1071 * Only page_get_anon_vma() understands the subtleties of 1072 * getting a hold on an anon_vma from outside one of its mms. 1073 * But if we cannot get anon_vma, then we won't need it anyway, 1074 * because that implies that the anon page is no longer mapped 1075 * (and cannot be remapped so long as we hold the page lock). 1076 */ 1077 if (PageAnon(page) && !PageKsm(page)) 1078 anon_vma = page_get_anon_vma(page); 1079 1080 /* 1081 * Block others from accessing the new page when we get around to 1082 * establishing additional references. We are usually the only one 1083 * holding a reference to newpage at this point. We used to have a BUG 1084 * here if trylock_page(newpage) fails, but would like to allow for 1085 * cases where there might be a race with the previous use of newpage. 1086 * This is much like races on refcount of oldpage: just don't BUG(). 1087 */ 1088 if (unlikely(!trylock_page(newpage))) 1089 goto out_unlock; 1090 1091 if (unlikely(!is_lru)) { 1092 rc = move_to_new_page(newpage, page, mode); 1093 goto out_unlock_both; 1094 } 1095 1096 /* 1097 * Corner case handling: 1098 * 1. When a new swap-cache page is read into, it is added to the LRU 1099 * and treated as swapcache but it has no rmap yet. 1100 * Calling try_to_unmap() against a page->mapping==NULL page will 1101 * trigger a BUG. So handle it here. 1102 * 2. An orphaned page (see truncate_complete_page) might have 1103 * fs-private metadata. The page can be picked up due to memory 1104 * offlining. Everywhere else except page reclaim, the page is 1105 * invisible to the vm, so the page can not be migrated. So try to 1106 * free the metadata, so the page can be freed. 1107 */ 1108 if (!page->mapping) { 1109 VM_BUG_ON_PAGE(PageAnon(page), page); 1110 if (page_has_private(page)) { 1111 try_to_free_buffers(page); 1112 goto out_unlock_both; 1113 } 1114 } else if (page_mapped(page)) { 1115 /* Establish migration ptes */ 1116 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1117 page); 1118 try_to_unmap(page, 1119 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1120 page_was_mapped = 1; 1121 } 1122 1123 if (!page_mapped(page)) 1124 rc = move_to_new_page(newpage, page, mode); 1125 1126 if (page_was_mapped) 1127 remove_migration_ptes(page, 1128 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1129 1130 out_unlock_both: 1131 unlock_page(newpage); 1132 out_unlock: 1133 /* Drop an anon_vma reference if we took one */ 1134 if (anon_vma) 1135 put_anon_vma(anon_vma); 1136 unlock_page(page); 1137 out: 1138 /* 1139 * If migration is successful, decrease refcount of the newpage 1140 * which will not free the page because new page owner increased 1141 * refcounter. As well, if it is LRU page, add the page to LRU 1142 * list in here. Use the old state of the isolated source page to 1143 * determine if we migrated a LRU page. newpage was already unlocked 1144 * and possibly modified by its owner - don't rely on the page 1145 * state. 1146 */ 1147 if (rc == MIGRATEPAGE_SUCCESS) { 1148 if (unlikely(!is_lru)) 1149 put_page(newpage); 1150 else 1151 putback_lru_page(newpage); 1152 } 1153 1154 return rc; 1155 } 1156 1157 /* 1158 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1159 * around it. 1160 */ 1161 #if defined(CONFIG_ARM) && \ 1162 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1163 #define ICE_noinline noinline 1164 #else 1165 #define ICE_noinline 1166 #endif 1167 1168 /* 1169 * Obtain the lock on page, remove all ptes and migrate the page 1170 * to the newly allocated page in newpage. 1171 */ 1172 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1173 free_page_t put_new_page, 1174 unsigned long private, struct page *page, 1175 int force, enum migrate_mode mode, 1176 enum migrate_reason reason) 1177 { 1178 int rc = MIGRATEPAGE_SUCCESS; 1179 struct page *newpage = NULL; 1180 1181 if (!thp_migration_supported() && PageTransHuge(page)) 1182 return -ENOMEM; 1183 1184 if (page_count(page) == 1) { 1185 /* page was freed from under us. So we are done. */ 1186 ClearPageActive(page); 1187 ClearPageUnevictable(page); 1188 if (unlikely(__PageMovable(page))) { 1189 lock_page(page); 1190 if (!PageMovable(page)) 1191 __ClearPageIsolated(page); 1192 unlock_page(page); 1193 } 1194 goto out; 1195 } 1196 1197 newpage = get_new_page(page, private); 1198 if (!newpage) 1199 return -ENOMEM; 1200 1201 rc = __unmap_and_move(page, newpage, force, mode); 1202 if (rc == MIGRATEPAGE_SUCCESS) 1203 set_page_owner_migrate_reason(newpage, reason); 1204 1205 out: 1206 if (rc != -EAGAIN) { 1207 /* 1208 * A page that has been migrated has all references 1209 * removed and will be freed. A page that has not been 1210 * migrated will have kept its references and be restored. 1211 */ 1212 list_del(&page->lru); 1213 1214 /* 1215 * Compaction can migrate also non-LRU pages which are 1216 * not accounted to NR_ISOLATED_*. They can be recognized 1217 * as __PageMovable 1218 */ 1219 if (likely(!__PageMovable(page))) 1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1221 page_is_file_lru(page), -hpage_nr_pages(page)); 1222 } 1223 1224 /* 1225 * If migration is successful, releases reference grabbed during 1226 * isolation. Otherwise, restore the page to right list unless 1227 * we want to retry. 1228 */ 1229 if (rc == MIGRATEPAGE_SUCCESS) { 1230 put_page(page); 1231 if (reason == MR_MEMORY_FAILURE) { 1232 /* 1233 * Set PG_HWPoison on just freed page 1234 * intentionally. Although it's rather weird, 1235 * it's how HWPoison flag works at the moment. 1236 */ 1237 if (set_hwpoison_free_buddy_page(page)) 1238 num_poisoned_pages_inc(); 1239 } 1240 } else { 1241 if (rc != -EAGAIN) { 1242 if (likely(!__PageMovable(page))) { 1243 putback_lru_page(page); 1244 goto put_new; 1245 } 1246 1247 lock_page(page); 1248 if (PageMovable(page)) 1249 putback_movable_page(page); 1250 else 1251 __ClearPageIsolated(page); 1252 unlock_page(page); 1253 put_page(page); 1254 } 1255 put_new: 1256 if (put_new_page) 1257 put_new_page(newpage, private); 1258 else 1259 put_page(newpage); 1260 } 1261 1262 return rc; 1263 } 1264 1265 /* 1266 * Counterpart of unmap_and_move_page() for hugepage migration. 1267 * 1268 * This function doesn't wait the completion of hugepage I/O 1269 * because there is no race between I/O and migration for hugepage. 1270 * Note that currently hugepage I/O occurs only in direct I/O 1271 * where no lock is held and PG_writeback is irrelevant, 1272 * and writeback status of all subpages are counted in the reference 1273 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1274 * under direct I/O, the reference of the head page is 512 and a bit more.) 1275 * This means that when we try to migrate hugepage whose subpages are 1276 * doing direct I/O, some references remain after try_to_unmap() and 1277 * hugepage migration fails without data corruption. 1278 * 1279 * There is also no race when direct I/O is issued on the page under migration, 1280 * because then pte is replaced with migration swap entry and direct I/O code 1281 * will wait in the page fault for migration to complete. 1282 */ 1283 static int unmap_and_move_huge_page(new_page_t get_new_page, 1284 free_page_t put_new_page, unsigned long private, 1285 struct page *hpage, int force, 1286 enum migrate_mode mode, int reason) 1287 { 1288 int rc = -EAGAIN; 1289 int page_was_mapped = 0; 1290 struct page *new_hpage; 1291 struct anon_vma *anon_vma = NULL; 1292 struct address_space *mapping = NULL; 1293 1294 /* 1295 * Migratability of hugepages depends on architectures and their size. 1296 * This check is necessary because some callers of hugepage migration 1297 * like soft offline and memory hotremove don't walk through page 1298 * tables or check whether the hugepage is pmd-based or not before 1299 * kicking migration. 1300 */ 1301 if (!hugepage_migration_supported(page_hstate(hpage))) { 1302 putback_active_hugepage(hpage); 1303 return -ENOSYS; 1304 } 1305 1306 new_hpage = get_new_page(hpage, private); 1307 if (!new_hpage) 1308 return -ENOMEM; 1309 1310 if (!trylock_page(hpage)) { 1311 if (!force) 1312 goto out; 1313 switch (mode) { 1314 case MIGRATE_SYNC: 1315 case MIGRATE_SYNC_NO_COPY: 1316 break; 1317 default: 1318 goto out; 1319 } 1320 lock_page(hpage); 1321 } 1322 1323 /* 1324 * Check for pages which are in the process of being freed. Without 1325 * page_mapping() set, hugetlbfs specific move page routine will not 1326 * be called and we could leak usage counts for subpools. 1327 */ 1328 if (page_private(hpage) && !page_mapping(hpage)) { 1329 rc = -EBUSY; 1330 goto out_unlock; 1331 } 1332 1333 if (PageAnon(hpage)) 1334 anon_vma = page_get_anon_vma(hpage); 1335 1336 if (unlikely(!trylock_page(new_hpage))) 1337 goto put_anon; 1338 1339 if (page_mapped(hpage)) { 1340 /* 1341 * try_to_unmap could potentially call huge_pmd_unshare. 1342 * Because of this, take semaphore in write mode here and 1343 * set TTU_RMAP_LOCKED to let lower levels know we have 1344 * taken the lock. 1345 */ 1346 mapping = hugetlb_page_mapping_lock_write(hpage); 1347 if (unlikely(!mapping)) 1348 goto unlock_put_anon; 1349 1350 try_to_unmap(hpage, 1351 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| 1352 TTU_RMAP_LOCKED); 1353 page_was_mapped = 1; 1354 /* 1355 * Leave mapping locked until after subsequent call to 1356 * remove_migration_ptes() 1357 */ 1358 } 1359 1360 if (!page_mapped(hpage)) 1361 rc = move_to_new_page(new_hpage, hpage, mode); 1362 1363 if (page_was_mapped) { 1364 remove_migration_ptes(hpage, 1365 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); 1366 i_mmap_unlock_write(mapping); 1367 } 1368 1369 unlock_put_anon: 1370 unlock_page(new_hpage); 1371 1372 put_anon: 1373 if (anon_vma) 1374 put_anon_vma(anon_vma); 1375 1376 if (rc == MIGRATEPAGE_SUCCESS) { 1377 move_hugetlb_state(hpage, new_hpage, reason); 1378 put_new_page = NULL; 1379 } 1380 1381 out_unlock: 1382 unlock_page(hpage); 1383 out: 1384 if (rc != -EAGAIN) 1385 putback_active_hugepage(hpage); 1386 1387 /* 1388 * If migration was not successful and there's a freeing callback, use 1389 * it. Otherwise, put_page() will drop the reference grabbed during 1390 * isolation. 1391 */ 1392 if (put_new_page) 1393 put_new_page(new_hpage, private); 1394 else 1395 putback_active_hugepage(new_hpage); 1396 1397 return rc; 1398 } 1399 1400 /* 1401 * migrate_pages - migrate the pages specified in a list, to the free pages 1402 * supplied as the target for the page migration 1403 * 1404 * @from: The list of pages to be migrated. 1405 * @get_new_page: The function used to allocate free pages to be used 1406 * as the target of the page migration. 1407 * @put_new_page: The function used to free target pages if migration 1408 * fails, or NULL if no special handling is necessary. 1409 * @private: Private data to be passed on to get_new_page() 1410 * @mode: The migration mode that specifies the constraints for 1411 * page migration, if any. 1412 * @reason: The reason for page migration. 1413 * 1414 * The function returns after 10 attempts or if no pages are movable any more 1415 * because the list has become empty or no retryable pages exist any more. 1416 * The caller should call putback_movable_pages() to return pages to the LRU 1417 * or free list only if ret != 0. 1418 * 1419 * Returns the number of pages that were not migrated, or an error code. 1420 */ 1421 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1422 free_page_t put_new_page, unsigned long private, 1423 enum migrate_mode mode, int reason) 1424 { 1425 int retry = 1; 1426 int nr_failed = 0; 1427 int nr_succeeded = 0; 1428 int pass = 0; 1429 struct page *page; 1430 struct page *page2; 1431 int swapwrite = current->flags & PF_SWAPWRITE; 1432 int rc; 1433 1434 if (!swapwrite) 1435 current->flags |= PF_SWAPWRITE; 1436 1437 for(pass = 0; pass < 10 && retry; pass++) { 1438 retry = 0; 1439 1440 list_for_each_entry_safe(page, page2, from, lru) { 1441 retry: 1442 cond_resched(); 1443 1444 if (PageHuge(page)) 1445 rc = unmap_and_move_huge_page(get_new_page, 1446 put_new_page, private, page, 1447 pass > 2, mode, reason); 1448 else 1449 rc = unmap_and_move(get_new_page, put_new_page, 1450 private, page, pass > 2, mode, 1451 reason); 1452 1453 switch(rc) { 1454 case -ENOMEM: 1455 /* 1456 * THP migration might be unsupported or the 1457 * allocation could've failed so we should 1458 * retry on the same page with the THP split 1459 * to base pages. 1460 * 1461 * Head page is retried immediately and tail 1462 * pages are added to the tail of the list so 1463 * we encounter them after the rest of the list 1464 * is processed. 1465 */ 1466 if (PageTransHuge(page) && !PageHuge(page)) { 1467 lock_page(page); 1468 rc = split_huge_page_to_list(page, from); 1469 unlock_page(page); 1470 if (!rc) { 1471 list_safe_reset_next(page, page2, lru); 1472 goto retry; 1473 } 1474 } 1475 nr_failed++; 1476 goto out; 1477 case -EAGAIN: 1478 retry++; 1479 break; 1480 case MIGRATEPAGE_SUCCESS: 1481 nr_succeeded++; 1482 break; 1483 default: 1484 /* 1485 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1486 * unlike -EAGAIN case, the failed page is 1487 * removed from migration page list and not 1488 * retried in the next outer loop. 1489 */ 1490 nr_failed++; 1491 break; 1492 } 1493 } 1494 } 1495 nr_failed += retry; 1496 rc = nr_failed; 1497 out: 1498 if (nr_succeeded) 1499 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1500 if (nr_failed) 1501 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1502 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1503 1504 if (!swapwrite) 1505 current->flags &= ~PF_SWAPWRITE; 1506 1507 return rc; 1508 } 1509 1510 #ifdef CONFIG_NUMA 1511 1512 static int store_status(int __user *status, int start, int value, int nr) 1513 { 1514 while (nr-- > 0) { 1515 if (put_user(value, status + start)) 1516 return -EFAULT; 1517 start++; 1518 } 1519 1520 return 0; 1521 } 1522 1523 static int do_move_pages_to_node(struct mm_struct *mm, 1524 struct list_head *pagelist, int node) 1525 { 1526 int err; 1527 1528 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1529 MIGRATE_SYNC, MR_SYSCALL); 1530 if (err) 1531 putback_movable_pages(pagelist); 1532 return err; 1533 } 1534 1535 /* 1536 * Resolves the given address to a struct page, isolates it from the LRU and 1537 * puts it to the given pagelist. 1538 * Returns: 1539 * errno - if the page cannot be found/isolated 1540 * 0 - when it doesn't have to be migrated because it is already on the 1541 * target node 1542 * 1 - when it has been queued 1543 */ 1544 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1545 int node, struct list_head *pagelist, bool migrate_all) 1546 { 1547 struct vm_area_struct *vma; 1548 struct page *page; 1549 unsigned int follflags; 1550 int err; 1551 1552 down_read(&mm->mmap_sem); 1553 err = -EFAULT; 1554 vma = find_vma(mm, addr); 1555 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1556 goto out; 1557 1558 /* FOLL_DUMP to ignore special (like zero) pages */ 1559 follflags = FOLL_GET | FOLL_DUMP; 1560 page = follow_page(vma, addr, follflags); 1561 1562 err = PTR_ERR(page); 1563 if (IS_ERR(page)) 1564 goto out; 1565 1566 err = -ENOENT; 1567 if (!page) 1568 goto out; 1569 1570 err = 0; 1571 if (page_to_nid(page) == node) 1572 goto out_putpage; 1573 1574 err = -EACCES; 1575 if (page_mapcount(page) > 1 && !migrate_all) 1576 goto out_putpage; 1577 1578 if (PageHuge(page)) { 1579 if (PageHead(page)) { 1580 isolate_huge_page(page, pagelist); 1581 err = 1; 1582 } 1583 } else { 1584 struct page *head; 1585 1586 head = compound_head(page); 1587 err = isolate_lru_page(head); 1588 if (err) 1589 goto out_putpage; 1590 1591 err = 1; 1592 list_add_tail(&head->lru, pagelist); 1593 mod_node_page_state(page_pgdat(head), 1594 NR_ISOLATED_ANON + page_is_file_lru(head), 1595 hpage_nr_pages(head)); 1596 } 1597 out_putpage: 1598 /* 1599 * Either remove the duplicate refcount from 1600 * isolate_lru_page() or drop the page ref if it was 1601 * not isolated. 1602 */ 1603 put_page(page); 1604 out: 1605 up_read(&mm->mmap_sem); 1606 return err; 1607 } 1608 1609 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1610 struct list_head *pagelist, int __user *status, 1611 int start, int i, unsigned long nr_pages) 1612 { 1613 int err; 1614 1615 if (list_empty(pagelist)) 1616 return 0; 1617 1618 err = do_move_pages_to_node(mm, pagelist, node); 1619 if (err) { 1620 /* 1621 * Positive err means the number of failed 1622 * pages to migrate. Since we are going to 1623 * abort and return the number of non-migrated 1624 * pages, so need to incude the rest of the 1625 * nr_pages that have not been attempted as 1626 * well. 1627 */ 1628 if (err > 0) 1629 err += nr_pages - i - 1; 1630 return err; 1631 } 1632 return store_status(status, start, node, i - start); 1633 } 1634 1635 /* 1636 * Migrate an array of page address onto an array of nodes and fill 1637 * the corresponding array of status. 1638 */ 1639 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1640 unsigned long nr_pages, 1641 const void __user * __user *pages, 1642 const int __user *nodes, 1643 int __user *status, int flags) 1644 { 1645 int current_node = NUMA_NO_NODE; 1646 LIST_HEAD(pagelist); 1647 int start, i; 1648 int err = 0, err1; 1649 1650 migrate_prep(); 1651 1652 for (i = start = 0; i < nr_pages; i++) { 1653 const void __user *p; 1654 unsigned long addr; 1655 int node; 1656 1657 err = -EFAULT; 1658 if (get_user(p, pages + i)) 1659 goto out_flush; 1660 if (get_user(node, nodes + i)) 1661 goto out_flush; 1662 addr = (unsigned long)untagged_addr(p); 1663 1664 err = -ENODEV; 1665 if (node < 0 || node >= MAX_NUMNODES) 1666 goto out_flush; 1667 if (!node_state(node, N_MEMORY)) 1668 goto out_flush; 1669 1670 err = -EACCES; 1671 if (!node_isset(node, task_nodes)) 1672 goto out_flush; 1673 1674 if (current_node == NUMA_NO_NODE) { 1675 current_node = node; 1676 start = i; 1677 } else if (node != current_node) { 1678 err = move_pages_and_store_status(mm, current_node, 1679 &pagelist, status, start, i, nr_pages); 1680 if (err) 1681 goto out; 1682 start = i; 1683 current_node = node; 1684 } 1685 1686 /* 1687 * Errors in the page lookup or isolation are not fatal and we simply 1688 * report them via status 1689 */ 1690 err = add_page_for_migration(mm, addr, current_node, 1691 &pagelist, flags & MPOL_MF_MOVE_ALL); 1692 1693 if (err > 0) { 1694 /* The page is successfully queued for migration */ 1695 continue; 1696 } 1697 1698 /* 1699 * If the page is already on the target node (!err), store the 1700 * node, otherwise, store the err. 1701 */ 1702 err = store_status(status, i, err ? : current_node, 1); 1703 if (err) 1704 goto out_flush; 1705 1706 err = move_pages_and_store_status(mm, current_node, &pagelist, 1707 status, start, i, nr_pages); 1708 if (err) 1709 goto out; 1710 current_node = NUMA_NO_NODE; 1711 } 1712 out_flush: 1713 /* Make sure we do not overwrite the existing error */ 1714 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1715 status, start, i, nr_pages); 1716 if (err >= 0) 1717 err = err1; 1718 out: 1719 return err; 1720 } 1721 1722 /* 1723 * Determine the nodes of an array of pages and store it in an array of status. 1724 */ 1725 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1726 const void __user **pages, int *status) 1727 { 1728 unsigned long i; 1729 1730 down_read(&mm->mmap_sem); 1731 1732 for (i = 0; i < nr_pages; i++) { 1733 unsigned long addr = (unsigned long)(*pages); 1734 struct vm_area_struct *vma; 1735 struct page *page; 1736 int err = -EFAULT; 1737 1738 vma = find_vma(mm, addr); 1739 if (!vma || addr < vma->vm_start) 1740 goto set_status; 1741 1742 /* FOLL_DUMP to ignore special (like zero) pages */ 1743 page = follow_page(vma, addr, FOLL_DUMP); 1744 1745 err = PTR_ERR(page); 1746 if (IS_ERR(page)) 1747 goto set_status; 1748 1749 err = page ? page_to_nid(page) : -ENOENT; 1750 set_status: 1751 *status = err; 1752 1753 pages++; 1754 status++; 1755 } 1756 1757 up_read(&mm->mmap_sem); 1758 } 1759 1760 /* 1761 * Determine the nodes of a user array of pages and store it in 1762 * a user array of status. 1763 */ 1764 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1765 const void __user * __user *pages, 1766 int __user *status) 1767 { 1768 #define DO_PAGES_STAT_CHUNK_NR 16 1769 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1770 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1771 1772 while (nr_pages) { 1773 unsigned long chunk_nr; 1774 1775 chunk_nr = nr_pages; 1776 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1777 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1778 1779 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1780 break; 1781 1782 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1783 1784 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1785 break; 1786 1787 pages += chunk_nr; 1788 status += chunk_nr; 1789 nr_pages -= chunk_nr; 1790 } 1791 return nr_pages ? -EFAULT : 0; 1792 } 1793 1794 /* 1795 * Move a list of pages in the address space of the currently executing 1796 * process. 1797 */ 1798 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1799 const void __user * __user *pages, 1800 const int __user *nodes, 1801 int __user *status, int flags) 1802 { 1803 struct task_struct *task; 1804 struct mm_struct *mm; 1805 int err; 1806 nodemask_t task_nodes; 1807 1808 /* Check flags */ 1809 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1810 return -EINVAL; 1811 1812 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1813 return -EPERM; 1814 1815 /* Find the mm_struct */ 1816 rcu_read_lock(); 1817 task = pid ? find_task_by_vpid(pid) : current; 1818 if (!task) { 1819 rcu_read_unlock(); 1820 return -ESRCH; 1821 } 1822 get_task_struct(task); 1823 1824 /* 1825 * Check if this process has the right to modify the specified 1826 * process. Use the regular "ptrace_may_access()" checks. 1827 */ 1828 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1829 rcu_read_unlock(); 1830 err = -EPERM; 1831 goto out; 1832 } 1833 rcu_read_unlock(); 1834 1835 err = security_task_movememory(task); 1836 if (err) 1837 goto out; 1838 1839 task_nodes = cpuset_mems_allowed(task); 1840 mm = get_task_mm(task); 1841 put_task_struct(task); 1842 1843 if (!mm) 1844 return -EINVAL; 1845 1846 if (nodes) 1847 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1848 nodes, status, flags); 1849 else 1850 err = do_pages_stat(mm, nr_pages, pages, status); 1851 1852 mmput(mm); 1853 return err; 1854 1855 out: 1856 put_task_struct(task); 1857 return err; 1858 } 1859 1860 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1861 const void __user * __user *, pages, 1862 const int __user *, nodes, 1863 int __user *, status, int, flags) 1864 { 1865 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1866 } 1867 1868 #ifdef CONFIG_COMPAT 1869 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1870 compat_uptr_t __user *, pages32, 1871 const int __user *, nodes, 1872 int __user *, status, 1873 int, flags) 1874 { 1875 const void __user * __user *pages; 1876 int i; 1877 1878 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1879 for (i = 0; i < nr_pages; i++) { 1880 compat_uptr_t p; 1881 1882 if (get_user(p, pages32 + i) || 1883 put_user(compat_ptr(p), pages + i)) 1884 return -EFAULT; 1885 } 1886 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1887 } 1888 #endif /* CONFIG_COMPAT */ 1889 1890 #ifdef CONFIG_NUMA_BALANCING 1891 /* 1892 * Returns true if this is a safe migration target node for misplaced NUMA 1893 * pages. Currently it only checks the watermarks which crude 1894 */ 1895 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1896 unsigned long nr_migrate_pages) 1897 { 1898 int z; 1899 1900 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1901 struct zone *zone = pgdat->node_zones + z; 1902 1903 if (!populated_zone(zone)) 1904 continue; 1905 1906 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1907 if (!zone_watermark_ok(zone, 0, 1908 high_wmark_pages(zone) + 1909 nr_migrate_pages, 1910 ZONE_MOVABLE, 0)) 1911 continue; 1912 return true; 1913 } 1914 return false; 1915 } 1916 1917 static struct page *alloc_misplaced_dst_page(struct page *page, 1918 unsigned long data) 1919 { 1920 int nid = (int) data; 1921 struct page *newpage; 1922 1923 newpage = __alloc_pages_node(nid, 1924 (GFP_HIGHUSER_MOVABLE | 1925 __GFP_THISNODE | __GFP_NOMEMALLOC | 1926 __GFP_NORETRY | __GFP_NOWARN) & 1927 ~__GFP_RECLAIM, 0); 1928 1929 return newpage; 1930 } 1931 1932 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1933 { 1934 int page_lru; 1935 1936 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1937 1938 /* Avoid migrating to a node that is nearly full */ 1939 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 1940 return 0; 1941 1942 if (isolate_lru_page(page)) 1943 return 0; 1944 1945 /* 1946 * migrate_misplaced_transhuge_page() skips page migration's usual 1947 * check on page_count(), so we must do it here, now that the page 1948 * has been isolated: a GUP pin, or any other pin, prevents migration. 1949 * The expected page count is 3: 1 for page's mapcount and 1 for the 1950 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1951 */ 1952 if (PageTransHuge(page) && page_count(page) != 3) { 1953 putback_lru_page(page); 1954 return 0; 1955 } 1956 1957 page_lru = page_is_file_lru(page); 1958 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1959 hpage_nr_pages(page)); 1960 1961 /* 1962 * Isolating the page has taken another reference, so the 1963 * caller's reference can be safely dropped without the page 1964 * disappearing underneath us during migration. 1965 */ 1966 put_page(page); 1967 return 1; 1968 } 1969 1970 bool pmd_trans_migrating(pmd_t pmd) 1971 { 1972 struct page *page = pmd_page(pmd); 1973 return PageLocked(page); 1974 } 1975 1976 /* 1977 * Attempt to migrate a misplaced page to the specified destination 1978 * node. Caller is expected to have an elevated reference count on 1979 * the page that will be dropped by this function before returning. 1980 */ 1981 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1982 int node) 1983 { 1984 pg_data_t *pgdat = NODE_DATA(node); 1985 int isolated; 1986 int nr_remaining; 1987 LIST_HEAD(migratepages); 1988 1989 /* 1990 * Don't migrate file pages that are mapped in multiple processes 1991 * with execute permissions as they are probably shared libraries. 1992 */ 1993 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 1994 (vma->vm_flags & VM_EXEC)) 1995 goto out; 1996 1997 /* 1998 * Also do not migrate dirty pages as not all filesystems can move 1999 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2000 */ 2001 if (page_is_file_lru(page) && PageDirty(page)) 2002 goto out; 2003 2004 isolated = numamigrate_isolate_page(pgdat, page); 2005 if (!isolated) 2006 goto out; 2007 2008 list_add(&page->lru, &migratepages); 2009 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2010 NULL, node, MIGRATE_ASYNC, 2011 MR_NUMA_MISPLACED); 2012 if (nr_remaining) { 2013 if (!list_empty(&migratepages)) { 2014 list_del(&page->lru); 2015 dec_node_page_state(page, NR_ISOLATED_ANON + 2016 page_is_file_lru(page)); 2017 putback_lru_page(page); 2018 } 2019 isolated = 0; 2020 } else 2021 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2022 BUG_ON(!list_empty(&migratepages)); 2023 return isolated; 2024 2025 out: 2026 put_page(page); 2027 return 0; 2028 } 2029 #endif /* CONFIG_NUMA_BALANCING */ 2030 2031 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2032 /* 2033 * Migrates a THP to a given target node. page must be locked and is unlocked 2034 * before returning. 2035 */ 2036 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2037 struct vm_area_struct *vma, 2038 pmd_t *pmd, pmd_t entry, 2039 unsigned long address, 2040 struct page *page, int node) 2041 { 2042 spinlock_t *ptl; 2043 pg_data_t *pgdat = NODE_DATA(node); 2044 int isolated = 0; 2045 struct page *new_page = NULL; 2046 int page_lru = page_is_file_lru(page); 2047 unsigned long start = address & HPAGE_PMD_MASK; 2048 2049 new_page = alloc_pages_node(node, 2050 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2051 HPAGE_PMD_ORDER); 2052 if (!new_page) 2053 goto out_fail; 2054 prep_transhuge_page(new_page); 2055 2056 isolated = numamigrate_isolate_page(pgdat, page); 2057 if (!isolated) { 2058 put_page(new_page); 2059 goto out_fail; 2060 } 2061 2062 /* Prepare a page as a migration target */ 2063 __SetPageLocked(new_page); 2064 if (PageSwapBacked(page)) 2065 __SetPageSwapBacked(new_page); 2066 2067 /* anon mapping, we can simply copy page->mapping to the new page: */ 2068 new_page->mapping = page->mapping; 2069 new_page->index = page->index; 2070 /* flush the cache before copying using the kernel virtual address */ 2071 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2072 migrate_page_copy(new_page, page); 2073 WARN_ON(PageLRU(new_page)); 2074 2075 /* Recheck the target PMD */ 2076 ptl = pmd_lock(mm, pmd); 2077 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2078 spin_unlock(ptl); 2079 2080 /* Reverse changes made by migrate_page_copy() */ 2081 if (TestClearPageActive(new_page)) 2082 SetPageActive(page); 2083 if (TestClearPageUnevictable(new_page)) 2084 SetPageUnevictable(page); 2085 2086 unlock_page(new_page); 2087 put_page(new_page); /* Free it */ 2088 2089 /* Retake the callers reference and putback on LRU */ 2090 get_page(page); 2091 putback_lru_page(page); 2092 mod_node_page_state(page_pgdat(page), 2093 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2094 2095 goto out_unlock; 2096 } 2097 2098 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2099 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2100 2101 /* 2102 * Overwrite the old entry under pagetable lock and establish 2103 * the new PTE. Any parallel GUP will either observe the old 2104 * page blocking on the page lock, block on the page table 2105 * lock or observe the new page. The SetPageUptodate on the 2106 * new page and page_add_new_anon_rmap guarantee the copy is 2107 * visible before the pagetable update. 2108 */ 2109 page_add_anon_rmap(new_page, vma, start, true); 2110 /* 2111 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2112 * has already been flushed globally. So no TLB can be currently 2113 * caching this non present pmd mapping. There's no need to clear the 2114 * pmd before doing set_pmd_at(), nor to flush the TLB after 2115 * set_pmd_at(). Clearing the pmd here would introduce a race 2116 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2117 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2118 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2119 * pmd. 2120 */ 2121 set_pmd_at(mm, start, pmd, entry); 2122 update_mmu_cache_pmd(vma, address, &entry); 2123 2124 page_ref_unfreeze(page, 2); 2125 mlock_migrate_page(new_page, page); 2126 page_remove_rmap(page, true); 2127 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2128 2129 spin_unlock(ptl); 2130 2131 /* Take an "isolate" reference and put new page on the LRU. */ 2132 get_page(new_page); 2133 putback_lru_page(new_page); 2134 2135 unlock_page(new_page); 2136 unlock_page(page); 2137 put_page(page); /* Drop the rmap reference */ 2138 put_page(page); /* Drop the LRU isolation reference */ 2139 2140 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2141 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2142 2143 mod_node_page_state(page_pgdat(page), 2144 NR_ISOLATED_ANON + page_lru, 2145 -HPAGE_PMD_NR); 2146 return isolated; 2147 2148 out_fail: 2149 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2150 ptl = pmd_lock(mm, pmd); 2151 if (pmd_same(*pmd, entry)) { 2152 entry = pmd_modify(entry, vma->vm_page_prot); 2153 set_pmd_at(mm, start, pmd, entry); 2154 update_mmu_cache_pmd(vma, address, &entry); 2155 } 2156 spin_unlock(ptl); 2157 2158 out_unlock: 2159 unlock_page(page); 2160 put_page(page); 2161 return 0; 2162 } 2163 #endif /* CONFIG_NUMA_BALANCING */ 2164 2165 #endif /* CONFIG_NUMA */ 2166 2167 #ifdef CONFIG_DEVICE_PRIVATE 2168 static int migrate_vma_collect_hole(unsigned long start, 2169 unsigned long end, 2170 __always_unused int depth, 2171 struct mm_walk *walk) 2172 { 2173 struct migrate_vma *migrate = walk->private; 2174 unsigned long addr; 2175 2176 for (addr = start; addr < end; addr += PAGE_SIZE) { 2177 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2178 migrate->dst[migrate->npages] = 0; 2179 migrate->npages++; 2180 migrate->cpages++; 2181 } 2182 2183 return 0; 2184 } 2185 2186 static int migrate_vma_collect_skip(unsigned long start, 2187 unsigned long end, 2188 struct mm_walk *walk) 2189 { 2190 struct migrate_vma *migrate = walk->private; 2191 unsigned long addr; 2192 2193 for (addr = start; addr < end; addr += PAGE_SIZE) { 2194 migrate->dst[migrate->npages] = 0; 2195 migrate->src[migrate->npages++] = 0; 2196 } 2197 2198 return 0; 2199 } 2200 2201 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2202 unsigned long start, 2203 unsigned long end, 2204 struct mm_walk *walk) 2205 { 2206 struct migrate_vma *migrate = walk->private; 2207 struct vm_area_struct *vma = walk->vma; 2208 struct mm_struct *mm = vma->vm_mm; 2209 unsigned long addr = start, unmapped = 0; 2210 spinlock_t *ptl; 2211 pte_t *ptep; 2212 2213 again: 2214 if (pmd_none(*pmdp)) 2215 return migrate_vma_collect_hole(start, end, -1, walk); 2216 2217 if (pmd_trans_huge(*pmdp)) { 2218 struct page *page; 2219 2220 ptl = pmd_lock(mm, pmdp); 2221 if (unlikely(!pmd_trans_huge(*pmdp))) { 2222 spin_unlock(ptl); 2223 goto again; 2224 } 2225 2226 page = pmd_page(*pmdp); 2227 if (is_huge_zero_page(page)) { 2228 spin_unlock(ptl); 2229 split_huge_pmd(vma, pmdp, addr); 2230 if (pmd_trans_unstable(pmdp)) 2231 return migrate_vma_collect_skip(start, end, 2232 walk); 2233 } else { 2234 int ret; 2235 2236 get_page(page); 2237 spin_unlock(ptl); 2238 if (unlikely(!trylock_page(page))) 2239 return migrate_vma_collect_skip(start, end, 2240 walk); 2241 ret = split_huge_page(page); 2242 unlock_page(page); 2243 put_page(page); 2244 if (ret) 2245 return migrate_vma_collect_skip(start, end, 2246 walk); 2247 if (pmd_none(*pmdp)) 2248 return migrate_vma_collect_hole(start, end, -1, 2249 walk); 2250 } 2251 } 2252 2253 if (unlikely(pmd_bad(*pmdp))) 2254 return migrate_vma_collect_skip(start, end, walk); 2255 2256 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2257 arch_enter_lazy_mmu_mode(); 2258 2259 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2260 unsigned long mpfn = 0, pfn; 2261 struct page *page; 2262 swp_entry_t entry; 2263 pte_t pte; 2264 2265 pte = *ptep; 2266 2267 if (pte_none(pte)) { 2268 mpfn = MIGRATE_PFN_MIGRATE; 2269 migrate->cpages++; 2270 goto next; 2271 } 2272 2273 if (!pte_present(pte)) { 2274 /* 2275 * Only care about unaddressable device page special 2276 * page table entry. Other special swap entries are not 2277 * migratable, and we ignore regular swapped page. 2278 */ 2279 entry = pte_to_swp_entry(pte); 2280 if (!is_device_private_entry(entry)) 2281 goto next; 2282 2283 page = device_private_entry_to_page(entry); 2284 if (page->pgmap->owner != migrate->src_owner) 2285 goto next; 2286 2287 mpfn = migrate_pfn(page_to_pfn(page)) | 2288 MIGRATE_PFN_MIGRATE; 2289 if (is_write_device_private_entry(entry)) 2290 mpfn |= MIGRATE_PFN_WRITE; 2291 } else { 2292 if (migrate->src_owner) 2293 goto next; 2294 pfn = pte_pfn(pte); 2295 if (is_zero_pfn(pfn)) { 2296 mpfn = MIGRATE_PFN_MIGRATE; 2297 migrate->cpages++; 2298 goto next; 2299 } 2300 page = vm_normal_page(migrate->vma, addr, pte); 2301 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2302 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2303 } 2304 2305 /* FIXME support THP */ 2306 if (!page || !page->mapping || PageTransCompound(page)) { 2307 mpfn = 0; 2308 goto next; 2309 } 2310 2311 /* 2312 * By getting a reference on the page we pin it and that blocks 2313 * any kind of migration. Side effect is that it "freezes" the 2314 * pte. 2315 * 2316 * We drop this reference after isolating the page from the lru 2317 * for non device page (device page are not on the lru and thus 2318 * can't be dropped from it). 2319 */ 2320 get_page(page); 2321 migrate->cpages++; 2322 2323 /* 2324 * Optimize for the common case where page is only mapped once 2325 * in one process. If we can lock the page, then we can safely 2326 * set up a special migration page table entry now. 2327 */ 2328 if (trylock_page(page)) { 2329 pte_t swp_pte; 2330 2331 mpfn |= MIGRATE_PFN_LOCKED; 2332 ptep_get_and_clear(mm, addr, ptep); 2333 2334 /* Setup special migration page table entry */ 2335 entry = make_migration_entry(page, mpfn & 2336 MIGRATE_PFN_WRITE); 2337 swp_pte = swp_entry_to_pte(entry); 2338 if (pte_soft_dirty(pte)) 2339 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2340 if (pte_uffd_wp(pte)) 2341 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2342 set_pte_at(mm, addr, ptep, swp_pte); 2343 2344 /* 2345 * This is like regular unmap: we remove the rmap and 2346 * drop page refcount. Page won't be freed, as we took 2347 * a reference just above. 2348 */ 2349 page_remove_rmap(page, false); 2350 put_page(page); 2351 2352 if (pte_present(pte)) 2353 unmapped++; 2354 } 2355 2356 next: 2357 migrate->dst[migrate->npages] = 0; 2358 migrate->src[migrate->npages++] = mpfn; 2359 } 2360 arch_leave_lazy_mmu_mode(); 2361 pte_unmap_unlock(ptep - 1, ptl); 2362 2363 /* Only flush the TLB if we actually modified any entries */ 2364 if (unmapped) 2365 flush_tlb_range(walk->vma, start, end); 2366 2367 return 0; 2368 } 2369 2370 static const struct mm_walk_ops migrate_vma_walk_ops = { 2371 .pmd_entry = migrate_vma_collect_pmd, 2372 .pte_hole = migrate_vma_collect_hole, 2373 }; 2374 2375 /* 2376 * migrate_vma_collect() - collect pages over a range of virtual addresses 2377 * @migrate: migrate struct containing all migration information 2378 * 2379 * This will walk the CPU page table. For each virtual address backed by a 2380 * valid page, it updates the src array and takes a reference on the page, in 2381 * order to pin the page until we lock it and unmap it. 2382 */ 2383 static void migrate_vma_collect(struct migrate_vma *migrate) 2384 { 2385 struct mmu_notifier_range range; 2386 2387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, 2388 migrate->vma->vm_mm, migrate->start, migrate->end); 2389 mmu_notifier_invalidate_range_start(&range); 2390 2391 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2392 &migrate_vma_walk_ops, migrate); 2393 2394 mmu_notifier_invalidate_range_end(&range); 2395 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2396 } 2397 2398 /* 2399 * migrate_vma_check_page() - check if page is pinned or not 2400 * @page: struct page to check 2401 * 2402 * Pinned pages cannot be migrated. This is the same test as in 2403 * migrate_page_move_mapping(), except that here we allow migration of a 2404 * ZONE_DEVICE page. 2405 */ 2406 static bool migrate_vma_check_page(struct page *page) 2407 { 2408 /* 2409 * One extra ref because caller holds an extra reference, either from 2410 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2411 * a device page. 2412 */ 2413 int extra = 1; 2414 2415 /* 2416 * FIXME support THP (transparent huge page), it is bit more complex to 2417 * check them than regular pages, because they can be mapped with a pmd 2418 * or with a pte (split pte mapping). 2419 */ 2420 if (PageCompound(page)) 2421 return false; 2422 2423 /* Page from ZONE_DEVICE have one extra reference */ 2424 if (is_zone_device_page(page)) { 2425 /* 2426 * Private page can never be pin as they have no valid pte and 2427 * GUP will fail for those. Yet if there is a pending migration 2428 * a thread might try to wait on the pte migration entry and 2429 * will bump the page reference count. Sadly there is no way to 2430 * differentiate a regular pin from migration wait. Hence to 2431 * avoid 2 racing thread trying to migrate back to CPU to enter 2432 * infinite loop (one stoping migration because the other is 2433 * waiting on pte migration entry). We always return true here. 2434 * 2435 * FIXME proper solution is to rework migration_entry_wait() so 2436 * it does not need to take a reference on page. 2437 */ 2438 return is_device_private_page(page); 2439 } 2440 2441 /* For file back page */ 2442 if (page_mapping(page)) 2443 extra += 1 + page_has_private(page); 2444 2445 if ((page_count(page) - extra) > page_mapcount(page)) 2446 return false; 2447 2448 return true; 2449 } 2450 2451 /* 2452 * migrate_vma_prepare() - lock pages and isolate them from the lru 2453 * @migrate: migrate struct containing all migration information 2454 * 2455 * This locks pages that have been collected by migrate_vma_collect(). Once each 2456 * page is locked it is isolated from the lru (for non-device pages). Finally, 2457 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2458 * migrated by concurrent kernel threads. 2459 */ 2460 static void migrate_vma_prepare(struct migrate_vma *migrate) 2461 { 2462 const unsigned long npages = migrate->npages; 2463 const unsigned long start = migrate->start; 2464 unsigned long addr, i, restore = 0; 2465 bool allow_drain = true; 2466 2467 lru_add_drain(); 2468 2469 for (i = 0; (i < npages) && migrate->cpages; i++) { 2470 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2471 bool remap = true; 2472 2473 if (!page) 2474 continue; 2475 2476 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2477 /* 2478 * Because we are migrating several pages there can be 2479 * a deadlock between 2 concurrent migration where each 2480 * are waiting on each other page lock. 2481 * 2482 * Make migrate_vma() a best effort thing and backoff 2483 * for any page we can not lock right away. 2484 */ 2485 if (!trylock_page(page)) { 2486 migrate->src[i] = 0; 2487 migrate->cpages--; 2488 put_page(page); 2489 continue; 2490 } 2491 remap = false; 2492 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2493 } 2494 2495 /* ZONE_DEVICE pages are not on LRU */ 2496 if (!is_zone_device_page(page)) { 2497 if (!PageLRU(page) && allow_drain) { 2498 /* Drain CPU's pagevec */ 2499 lru_add_drain_all(); 2500 allow_drain = false; 2501 } 2502 2503 if (isolate_lru_page(page)) { 2504 if (remap) { 2505 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2506 migrate->cpages--; 2507 restore++; 2508 } else { 2509 migrate->src[i] = 0; 2510 unlock_page(page); 2511 migrate->cpages--; 2512 put_page(page); 2513 } 2514 continue; 2515 } 2516 2517 /* Drop the reference we took in collect */ 2518 put_page(page); 2519 } 2520 2521 if (!migrate_vma_check_page(page)) { 2522 if (remap) { 2523 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2524 migrate->cpages--; 2525 restore++; 2526 2527 if (!is_zone_device_page(page)) { 2528 get_page(page); 2529 putback_lru_page(page); 2530 } 2531 } else { 2532 migrate->src[i] = 0; 2533 unlock_page(page); 2534 migrate->cpages--; 2535 2536 if (!is_zone_device_page(page)) 2537 putback_lru_page(page); 2538 else 2539 put_page(page); 2540 } 2541 } 2542 } 2543 2544 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2545 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2546 2547 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2548 continue; 2549 2550 remove_migration_pte(page, migrate->vma, addr, page); 2551 2552 migrate->src[i] = 0; 2553 unlock_page(page); 2554 put_page(page); 2555 restore--; 2556 } 2557 } 2558 2559 /* 2560 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2561 * @migrate: migrate struct containing all migration information 2562 * 2563 * Replace page mapping (CPU page table pte) with a special migration pte entry 2564 * and check again if it has been pinned. Pinned pages are restored because we 2565 * cannot migrate them. 2566 * 2567 * This is the last step before we call the device driver callback to allocate 2568 * destination memory and copy contents of original page over to new page. 2569 */ 2570 static void migrate_vma_unmap(struct migrate_vma *migrate) 2571 { 2572 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2573 const unsigned long npages = migrate->npages; 2574 const unsigned long start = migrate->start; 2575 unsigned long addr, i, restore = 0; 2576 2577 for (i = 0; i < npages; i++) { 2578 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2579 2580 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2581 continue; 2582 2583 if (page_mapped(page)) { 2584 try_to_unmap(page, flags); 2585 if (page_mapped(page)) 2586 goto restore; 2587 } 2588 2589 if (migrate_vma_check_page(page)) 2590 continue; 2591 2592 restore: 2593 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2594 migrate->cpages--; 2595 restore++; 2596 } 2597 2598 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2599 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2600 2601 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2602 continue; 2603 2604 remove_migration_ptes(page, page, false); 2605 2606 migrate->src[i] = 0; 2607 unlock_page(page); 2608 restore--; 2609 2610 if (is_zone_device_page(page)) 2611 put_page(page); 2612 else 2613 putback_lru_page(page); 2614 } 2615 } 2616 2617 /** 2618 * migrate_vma_setup() - prepare to migrate a range of memory 2619 * @args: contains the vma, start, and and pfns arrays for the migration 2620 * 2621 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2622 * without an error. 2623 * 2624 * Prepare to migrate a range of memory virtual address range by collecting all 2625 * the pages backing each virtual address in the range, saving them inside the 2626 * src array. Then lock those pages and unmap them. Once the pages are locked 2627 * and unmapped, check whether each page is pinned or not. Pages that aren't 2628 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2629 * corresponding src array entry. Then restores any pages that are pinned, by 2630 * remapping and unlocking those pages. 2631 * 2632 * The caller should then allocate destination memory and copy source memory to 2633 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2634 * flag set). Once these are allocated and copied, the caller must update each 2635 * corresponding entry in the dst array with the pfn value of the destination 2636 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2637 * (destination pages must have their struct pages locked, via lock_page()). 2638 * 2639 * Note that the caller does not have to migrate all the pages that are marked 2640 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2641 * device memory to system memory. If the caller cannot migrate a device page 2642 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2643 * consequences for the userspace process, so it must be avoided if at all 2644 * possible. 2645 * 2646 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2647 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2648 * allowing the caller to allocate device memory for those unback virtual 2649 * address. For this the caller simply has to allocate device memory and 2650 * properly set the destination entry like for regular migration. Note that 2651 * this can still fails and thus inside the device driver must check if the 2652 * migration was successful for those entries after calling migrate_vma_pages() 2653 * just like for regular migration. 2654 * 2655 * After that, the callers must call migrate_vma_pages() to go over each entry 2656 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2657 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2658 * then migrate_vma_pages() to migrate struct page information from the source 2659 * struct page to the destination struct page. If it fails to migrate the 2660 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2661 * src array. 2662 * 2663 * At this point all successfully migrated pages have an entry in the src 2664 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2665 * array entry with MIGRATE_PFN_VALID flag set. 2666 * 2667 * Once migrate_vma_pages() returns the caller may inspect which pages were 2668 * successfully migrated, and which were not. Successfully migrated pages will 2669 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2670 * 2671 * It is safe to update device page table after migrate_vma_pages() because 2672 * both destination and source page are still locked, and the mmap_sem is held 2673 * in read mode (hence no one can unmap the range being migrated). 2674 * 2675 * Once the caller is done cleaning up things and updating its page table (if it 2676 * chose to do so, this is not an obligation) it finally calls 2677 * migrate_vma_finalize() to update the CPU page table to point to new pages 2678 * for successfully migrated pages or otherwise restore the CPU page table to 2679 * point to the original source pages. 2680 */ 2681 int migrate_vma_setup(struct migrate_vma *args) 2682 { 2683 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2684 2685 args->start &= PAGE_MASK; 2686 args->end &= PAGE_MASK; 2687 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2688 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2689 return -EINVAL; 2690 if (nr_pages <= 0) 2691 return -EINVAL; 2692 if (args->start < args->vma->vm_start || 2693 args->start >= args->vma->vm_end) 2694 return -EINVAL; 2695 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2696 return -EINVAL; 2697 if (!args->src || !args->dst) 2698 return -EINVAL; 2699 2700 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2701 args->cpages = 0; 2702 args->npages = 0; 2703 2704 migrate_vma_collect(args); 2705 2706 if (args->cpages) 2707 migrate_vma_prepare(args); 2708 if (args->cpages) 2709 migrate_vma_unmap(args); 2710 2711 /* 2712 * At this point pages are locked and unmapped, and thus they have 2713 * stable content and can safely be copied to destination memory that 2714 * is allocated by the drivers. 2715 */ 2716 return 0; 2717 2718 } 2719 EXPORT_SYMBOL(migrate_vma_setup); 2720 2721 /* 2722 * This code closely matches the code in: 2723 * __handle_mm_fault() 2724 * handle_pte_fault() 2725 * do_anonymous_page() 2726 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2727 * private page. 2728 */ 2729 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2730 unsigned long addr, 2731 struct page *page, 2732 unsigned long *src, 2733 unsigned long *dst) 2734 { 2735 struct vm_area_struct *vma = migrate->vma; 2736 struct mm_struct *mm = vma->vm_mm; 2737 struct mem_cgroup *memcg; 2738 bool flush = false; 2739 spinlock_t *ptl; 2740 pte_t entry; 2741 pgd_t *pgdp; 2742 p4d_t *p4dp; 2743 pud_t *pudp; 2744 pmd_t *pmdp; 2745 pte_t *ptep; 2746 2747 /* Only allow populating anonymous memory */ 2748 if (!vma_is_anonymous(vma)) 2749 goto abort; 2750 2751 pgdp = pgd_offset(mm, addr); 2752 p4dp = p4d_alloc(mm, pgdp, addr); 2753 if (!p4dp) 2754 goto abort; 2755 pudp = pud_alloc(mm, p4dp, addr); 2756 if (!pudp) 2757 goto abort; 2758 pmdp = pmd_alloc(mm, pudp, addr); 2759 if (!pmdp) 2760 goto abort; 2761 2762 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2763 goto abort; 2764 2765 /* 2766 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2767 * pte_offset_map() on pmds where a huge pmd might be created 2768 * from a different thread. 2769 * 2770 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2771 * parallel threads are excluded by other means. 2772 * 2773 * Here we only have down_read(mmap_sem). 2774 */ 2775 if (pte_alloc(mm, pmdp)) 2776 goto abort; 2777 2778 /* See the comment in pte_alloc_one_map() */ 2779 if (unlikely(pmd_trans_unstable(pmdp))) 2780 goto abort; 2781 2782 if (unlikely(anon_vma_prepare(vma))) 2783 goto abort; 2784 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2785 goto abort; 2786 2787 /* 2788 * The memory barrier inside __SetPageUptodate makes sure that 2789 * preceding stores to the page contents become visible before 2790 * the set_pte_at() write. 2791 */ 2792 __SetPageUptodate(page); 2793 2794 if (is_zone_device_page(page)) { 2795 if (is_device_private_page(page)) { 2796 swp_entry_t swp_entry; 2797 2798 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2799 entry = swp_entry_to_pte(swp_entry); 2800 } 2801 } else { 2802 entry = mk_pte(page, vma->vm_page_prot); 2803 if (vma->vm_flags & VM_WRITE) 2804 entry = pte_mkwrite(pte_mkdirty(entry)); 2805 } 2806 2807 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2808 2809 if (check_stable_address_space(mm)) 2810 goto unlock_abort; 2811 2812 if (pte_present(*ptep)) { 2813 unsigned long pfn = pte_pfn(*ptep); 2814 2815 if (!is_zero_pfn(pfn)) 2816 goto unlock_abort; 2817 flush = true; 2818 } else if (!pte_none(*ptep)) 2819 goto unlock_abort; 2820 2821 /* 2822 * Check for userfaultfd but do not deliver the fault. Instead, 2823 * just back off. 2824 */ 2825 if (userfaultfd_missing(vma)) 2826 goto unlock_abort; 2827 2828 inc_mm_counter(mm, MM_ANONPAGES); 2829 page_add_new_anon_rmap(page, vma, addr, false); 2830 mem_cgroup_commit_charge(page, memcg, false, false); 2831 if (!is_zone_device_page(page)) 2832 lru_cache_add_active_or_unevictable(page, vma); 2833 get_page(page); 2834 2835 if (flush) { 2836 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2837 ptep_clear_flush_notify(vma, addr, ptep); 2838 set_pte_at_notify(mm, addr, ptep, entry); 2839 update_mmu_cache(vma, addr, ptep); 2840 } else { 2841 /* No need to invalidate - it was non-present before */ 2842 set_pte_at(mm, addr, ptep, entry); 2843 update_mmu_cache(vma, addr, ptep); 2844 } 2845 2846 pte_unmap_unlock(ptep, ptl); 2847 *src = MIGRATE_PFN_MIGRATE; 2848 return; 2849 2850 unlock_abort: 2851 pte_unmap_unlock(ptep, ptl); 2852 mem_cgroup_cancel_charge(page, memcg, false); 2853 abort: 2854 *src &= ~MIGRATE_PFN_MIGRATE; 2855 } 2856 2857 /** 2858 * migrate_vma_pages() - migrate meta-data from src page to dst page 2859 * @migrate: migrate struct containing all migration information 2860 * 2861 * This migrates struct page meta-data from source struct page to destination 2862 * struct page. This effectively finishes the migration from source page to the 2863 * destination page. 2864 */ 2865 void migrate_vma_pages(struct migrate_vma *migrate) 2866 { 2867 const unsigned long npages = migrate->npages; 2868 const unsigned long start = migrate->start; 2869 struct mmu_notifier_range range; 2870 unsigned long addr, i; 2871 bool notified = false; 2872 2873 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2874 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2875 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2876 struct address_space *mapping; 2877 int r; 2878 2879 if (!newpage) { 2880 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2881 continue; 2882 } 2883 2884 if (!page) { 2885 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2886 continue; 2887 if (!notified) { 2888 notified = true; 2889 2890 mmu_notifier_range_init(&range, 2891 MMU_NOTIFY_CLEAR, 0, 2892 NULL, 2893 migrate->vma->vm_mm, 2894 addr, migrate->end); 2895 mmu_notifier_invalidate_range_start(&range); 2896 } 2897 migrate_vma_insert_page(migrate, addr, newpage, 2898 &migrate->src[i], 2899 &migrate->dst[i]); 2900 continue; 2901 } 2902 2903 mapping = page_mapping(page); 2904 2905 if (is_zone_device_page(newpage)) { 2906 if (is_device_private_page(newpage)) { 2907 /* 2908 * For now only support private anonymous when 2909 * migrating to un-addressable device memory. 2910 */ 2911 if (mapping) { 2912 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2913 continue; 2914 } 2915 } else { 2916 /* 2917 * Other types of ZONE_DEVICE page are not 2918 * supported. 2919 */ 2920 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2921 continue; 2922 } 2923 } 2924 2925 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2926 if (r != MIGRATEPAGE_SUCCESS) 2927 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2928 } 2929 2930 /* 2931 * No need to double call mmu_notifier->invalidate_range() callback as 2932 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2933 * did already call it. 2934 */ 2935 if (notified) 2936 mmu_notifier_invalidate_range_only_end(&range); 2937 } 2938 EXPORT_SYMBOL(migrate_vma_pages); 2939 2940 /** 2941 * migrate_vma_finalize() - restore CPU page table entry 2942 * @migrate: migrate struct containing all migration information 2943 * 2944 * This replaces the special migration pte entry with either a mapping to the 2945 * new page if migration was successful for that page, or to the original page 2946 * otherwise. 2947 * 2948 * This also unlocks the pages and puts them back on the lru, or drops the extra 2949 * refcount, for device pages. 2950 */ 2951 void migrate_vma_finalize(struct migrate_vma *migrate) 2952 { 2953 const unsigned long npages = migrate->npages; 2954 unsigned long i; 2955 2956 for (i = 0; i < npages; i++) { 2957 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2958 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2959 2960 if (!page) { 2961 if (newpage) { 2962 unlock_page(newpage); 2963 put_page(newpage); 2964 } 2965 continue; 2966 } 2967 2968 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2969 if (newpage) { 2970 unlock_page(newpage); 2971 put_page(newpage); 2972 } 2973 newpage = page; 2974 } 2975 2976 remove_migration_ptes(page, newpage, false); 2977 unlock_page(page); 2978 migrate->cpages--; 2979 2980 if (is_zone_device_page(page)) 2981 put_page(page); 2982 else 2983 putback_lru_page(page); 2984 2985 if (newpage != page) { 2986 unlock_page(newpage); 2987 if (is_zone_device_page(newpage)) 2988 put_page(newpage); 2989 else 2990 putback_lru_page(newpage); 2991 } 2992 } 2993 } 2994 EXPORT_SYMBOL(migrate_vma_finalize); 2995 #endif /* CONFIG_DEVICE_PRIVATE */ 2996