1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/balloon_compaction.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/page_idle.h> 42 #include <linux/page_owner.h> 43 44 #include <asm/tlbflush.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/migrate.h> 48 49 #include "internal.h" 50 51 /* 52 * migrate_prep() needs to be called before we start compiling a list of pages 53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 54 * undesirable, use migrate_prep_local() 55 */ 56 int migrate_prep(void) 57 { 58 /* 59 * Clear the LRU lists so pages can be isolated. 60 * Note that pages may be moved off the LRU after we have 61 * drained them. Those pages will fail to migrate like other 62 * pages that may be busy. 63 */ 64 lru_add_drain_all(); 65 66 return 0; 67 } 68 69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 70 int migrate_prep_local(void) 71 { 72 lru_add_drain(); 73 74 return 0; 75 } 76 77 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 78 { 79 struct address_space *mapping; 80 81 /* 82 * Avoid burning cycles with pages that are yet under __free_pages(), 83 * or just got freed under us. 84 * 85 * In case we 'win' a race for a movable page being freed under us and 86 * raise its refcount preventing __free_pages() from doing its job 87 * the put_page() at the end of this block will take care of 88 * release this page, thus avoiding a nasty leakage. 89 */ 90 if (unlikely(!get_page_unless_zero(page))) 91 goto out; 92 93 /* 94 * Check PageMovable before holding a PG_lock because page's owner 95 * assumes anybody doesn't touch PG_lock of newly allocated page 96 * so unconditionally grapping the lock ruins page's owner side. 97 */ 98 if (unlikely(!__PageMovable(page))) 99 goto out_putpage; 100 /* 101 * As movable pages are not isolated from LRU lists, concurrent 102 * compaction threads can race against page migration functions 103 * as well as race against the releasing a page. 104 * 105 * In order to avoid having an already isolated movable page 106 * being (wrongly) re-isolated while it is under migration, 107 * or to avoid attempting to isolate pages being released, 108 * lets be sure we have the page lock 109 * before proceeding with the movable page isolation steps. 110 */ 111 if (unlikely(!trylock_page(page))) 112 goto out_putpage; 113 114 if (!PageMovable(page) || PageIsolated(page)) 115 goto out_no_isolated; 116 117 mapping = page_mapping(page); 118 VM_BUG_ON_PAGE(!mapping, page); 119 120 if (!mapping->a_ops->isolate_page(page, mode)) 121 goto out_no_isolated; 122 123 /* Driver shouldn't use PG_isolated bit of page->flags */ 124 WARN_ON_ONCE(PageIsolated(page)); 125 __SetPageIsolated(page); 126 unlock_page(page); 127 128 return true; 129 130 out_no_isolated: 131 unlock_page(page); 132 out_putpage: 133 put_page(page); 134 out: 135 return false; 136 } 137 138 /* It should be called on page which is PG_movable */ 139 void putback_movable_page(struct page *page) 140 { 141 struct address_space *mapping; 142 143 VM_BUG_ON_PAGE(!PageLocked(page), page); 144 VM_BUG_ON_PAGE(!PageMovable(page), page); 145 VM_BUG_ON_PAGE(!PageIsolated(page), page); 146 147 mapping = page_mapping(page); 148 mapping->a_ops->putback_page(page); 149 __ClearPageIsolated(page); 150 } 151 152 /* 153 * Put previously isolated pages back onto the appropriate lists 154 * from where they were once taken off for compaction/migration. 155 * 156 * This function shall be used whenever the isolated pageset has been 157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 158 * and isolate_huge_page(). 159 */ 160 void putback_movable_pages(struct list_head *l) 161 { 162 struct page *page; 163 struct page *page2; 164 165 list_for_each_entry_safe(page, page2, l, lru) { 166 if (unlikely(PageHuge(page))) { 167 putback_active_hugepage(page); 168 continue; 169 } 170 list_del(&page->lru); 171 dec_node_page_state(page, NR_ISOLATED_ANON + 172 page_is_file_cache(page)); 173 /* 174 * We isolated non-lru movable page so here we can use 175 * __PageMovable because LRU page's mapping cannot have 176 * PAGE_MAPPING_MOVABLE. 177 */ 178 if (unlikely(__PageMovable(page))) { 179 VM_BUG_ON_PAGE(!PageIsolated(page), page); 180 lock_page(page); 181 if (PageMovable(page)) 182 putback_movable_page(page); 183 else 184 __ClearPageIsolated(page); 185 unlock_page(page); 186 put_page(page); 187 } else { 188 putback_lru_page(page); 189 } 190 } 191 } 192 193 /* 194 * Restore a potential migration pte to a working pte entry 195 */ 196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 197 unsigned long addr, void *old) 198 { 199 struct mm_struct *mm = vma->vm_mm; 200 swp_entry_t entry; 201 pmd_t *pmd; 202 pte_t *ptep, pte; 203 spinlock_t *ptl; 204 205 if (unlikely(PageHuge(new))) { 206 ptep = huge_pte_offset(mm, addr); 207 if (!ptep) 208 goto out; 209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 210 } else { 211 pmd = mm_find_pmd(mm, addr); 212 if (!pmd) 213 goto out; 214 215 ptep = pte_offset_map(pmd, addr); 216 217 /* 218 * Peek to check is_swap_pte() before taking ptlock? No, we 219 * can race mremap's move_ptes(), which skips anon_vma lock. 220 */ 221 222 ptl = pte_lockptr(mm, pmd); 223 } 224 225 spin_lock(ptl); 226 pte = *ptep; 227 if (!is_swap_pte(pte)) 228 goto unlock; 229 230 entry = pte_to_swp_entry(pte); 231 232 if (!is_migration_entry(entry) || 233 migration_entry_to_page(entry) != old) 234 goto unlock; 235 236 get_page(new); 237 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 238 if (pte_swp_soft_dirty(*ptep)) 239 pte = pte_mksoft_dirty(pte); 240 241 /* Recheck VMA as permissions can change since migration started */ 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 #ifdef CONFIG_HUGETLB_PAGE 246 if (PageHuge(new)) { 247 pte = pte_mkhuge(pte); 248 pte = arch_make_huge_pte(pte, vma, new, 0); 249 } 250 #endif 251 flush_dcache_page(new); 252 set_pte_at(mm, addr, ptep, pte); 253 254 if (PageHuge(new)) { 255 if (PageAnon(new)) 256 hugepage_add_anon_rmap(new, vma, addr); 257 else 258 page_dup_rmap(new, true); 259 } else if (PageAnon(new)) 260 page_add_anon_rmap(new, vma, addr, false); 261 else 262 page_add_file_rmap(new, false); 263 264 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 265 mlock_vma_page(new); 266 267 /* No need to invalidate - it was non-present before */ 268 update_mmu_cache(vma, addr, ptep); 269 unlock: 270 pte_unmap_unlock(ptep, ptl); 271 out: 272 return SWAP_AGAIN; 273 } 274 275 /* 276 * Get rid of all migration entries and replace them by 277 * references to the indicated page. 278 */ 279 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 280 { 281 struct rmap_walk_control rwc = { 282 .rmap_one = remove_migration_pte, 283 .arg = old, 284 }; 285 286 if (locked) 287 rmap_walk_locked(new, &rwc); 288 else 289 rmap_walk(new, &rwc); 290 } 291 292 /* 293 * Something used the pte of a page under migration. We need to 294 * get to the page and wait until migration is finished. 295 * When we return from this function the fault will be retried. 296 */ 297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 298 spinlock_t *ptl) 299 { 300 pte_t pte; 301 swp_entry_t entry; 302 struct page *page; 303 304 spin_lock(ptl); 305 pte = *ptep; 306 if (!is_swap_pte(pte)) 307 goto out; 308 309 entry = pte_to_swp_entry(pte); 310 if (!is_migration_entry(entry)) 311 goto out; 312 313 page = migration_entry_to_page(entry); 314 315 /* 316 * Once radix-tree replacement of page migration started, page_count 317 * *must* be zero. And, we don't want to call wait_on_page_locked() 318 * against a page without get_page(). 319 * So, we use get_page_unless_zero(), here. Even failed, page fault 320 * will occur again. 321 */ 322 if (!get_page_unless_zero(page)) 323 goto out; 324 pte_unmap_unlock(ptep, ptl); 325 wait_on_page_locked(page); 326 put_page(page); 327 return; 328 out: 329 pte_unmap_unlock(ptep, ptl); 330 } 331 332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 333 unsigned long address) 334 { 335 spinlock_t *ptl = pte_lockptr(mm, pmd); 336 pte_t *ptep = pte_offset_map(pmd, address); 337 __migration_entry_wait(mm, ptep, ptl); 338 } 339 340 void migration_entry_wait_huge(struct vm_area_struct *vma, 341 struct mm_struct *mm, pte_t *pte) 342 { 343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 344 __migration_entry_wait(mm, pte, ptl); 345 } 346 347 #ifdef CONFIG_BLOCK 348 /* Returns true if all buffers are successfully locked */ 349 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 350 enum migrate_mode mode) 351 { 352 struct buffer_head *bh = head; 353 354 /* Simple case, sync compaction */ 355 if (mode != MIGRATE_ASYNC) { 356 do { 357 get_bh(bh); 358 lock_buffer(bh); 359 bh = bh->b_this_page; 360 361 } while (bh != head); 362 363 return true; 364 } 365 366 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 367 do { 368 get_bh(bh); 369 if (!trylock_buffer(bh)) { 370 /* 371 * We failed to lock the buffer and cannot stall in 372 * async migration. Release the taken locks 373 */ 374 struct buffer_head *failed_bh = bh; 375 put_bh(failed_bh); 376 bh = head; 377 while (bh != failed_bh) { 378 unlock_buffer(bh); 379 put_bh(bh); 380 bh = bh->b_this_page; 381 } 382 return false; 383 } 384 385 bh = bh->b_this_page; 386 } while (bh != head); 387 return true; 388 } 389 #else 390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 391 enum migrate_mode mode) 392 { 393 return true; 394 } 395 #endif /* CONFIG_BLOCK */ 396 397 /* 398 * Replace the page in the mapping. 399 * 400 * The number of remaining references must be: 401 * 1 for anonymous pages without a mapping 402 * 2 for pages with a mapping 403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 404 */ 405 int migrate_page_move_mapping(struct address_space *mapping, 406 struct page *newpage, struct page *page, 407 struct buffer_head *head, enum migrate_mode mode, 408 int extra_count) 409 { 410 struct zone *oldzone, *newzone; 411 int dirty; 412 int expected_count = 1 + extra_count; 413 void **pslot; 414 415 if (!mapping) { 416 /* Anonymous page without mapping */ 417 if (page_count(page) != expected_count) 418 return -EAGAIN; 419 420 /* No turning back from here */ 421 newpage->index = page->index; 422 newpage->mapping = page->mapping; 423 if (PageSwapBacked(page)) 424 __SetPageSwapBacked(newpage); 425 426 return MIGRATEPAGE_SUCCESS; 427 } 428 429 oldzone = page_zone(page); 430 newzone = page_zone(newpage); 431 432 spin_lock_irq(&mapping->tree_lock); 433 434 pslot = radix_tree_lookup_slot(&mapping->page_tree, 435 page_index(page)); 436 437 expected_count += 1 + page_has_private(page); 438 if (page_count(page) != expected_count || 439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 440 spin_unlock_irq(&mapping->tree_lock); 441 return -EAGAIN; 442 } 443 444 if (!page_ref_freeze(page, expected_count)) { 445 spin_unlock_irq(&mapping->tree_lock); 446 return -EAGAIN; 447 } 448 449 /* 450 * In the async migration case of moving a page with buffers, lock the 451 * buffers using trylock before the mapping is moved. If the mapping 452 * was moved, we later failed to lock the buffers and could not move 453 * the mapping back due to an elevated page count, we would have to 454 * block waiting on other references to be dropped. 455 */ 456 if (mode == MIGRATE_ASYNC && head && 457 !buffer_migrate_lock_buffers(head, mode)) { 458 page_ref_unfreeze(page, expected_count); 459 spin_unlock_irq(&mapping->tree_lock); 460 return -EAGAIN; 461 } 462 463 /* 464 * Now we know that no one else is looking at the page: 465 * no turning back from here. 466 */ 467 newpage->index = page->index; 468 newpage->mapping = page->mapping; 469 if (PageSwapBacked(page)) 470 __SetPageSwapBacked(newpage); 471 472 get_page(newpage); /* add cache reference */ 473 if (PageSwapCache(page)) { 474 SetPageSwapCache(newpage); 475 set_page_private(newpage, page_private(page)); 476 } 477 478 /* Move dirty while page refs frozen and newpage not yet exposed */ 479 dirty = PageDirty(page); 480 if (dirty) { 481 ClearPageDirty(page); 482 SetPageDirty(newpage); 483 } 484 485 radix_tree_replace_slot(pslot, newpage); 486 487 /* 488 * Drop cache reference from old page by unfreezing 489 * to one less reference. 490 * We know this isn't the last reference. 491 */ 492 page_ref_unfreeze(page, expected_count - 1); 493 494 spin_unlock(&mapping->tree_lock); 495 /* Leave irq disabled to prevent preemption while updating stats */ 496 497 /* 498 * If moved to a different zone then also account 499 * the page for that zone. Other VM counters will be 500 * taken care of when we establish references to the 501 * new page and drop references to the old page. 502 * 503 * Note that anonymous pages are accounted for 504 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 505 * are mapped to swap space. 506 */ 507 if (newzone != oldzone) { 508 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 510 if (PageSwapBacked(page) && !PageSwapCache(page)) { 511 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 512 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 513 } 514 if (dirty && mapping_cap_account_dirty(mapping)) { 515 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 516 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 517 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 518 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 519 } 520 } 521 local_irq_enable(); 522 523 return MIGRATEPAGE_SUCCESS; 524 } 525 EXPORT_SYMBOL(migrate_page_move_mapping); 526 527 /* 528 * The expected number of remaining references is the same as that 529 * of migrate_page_move_mapping(). 530 */ 531 int migrate_huge_page_move_mapping(struct address_space *mapping, 532 struct page *newpage, struct page *page) 533 { 534 int expected_count; 535 void **pslot; 536 537 spin_lock_irq(&mapping->tree_lock); 538 539 pslot = radix_tree_lookup_slot(&mapping->page_tree, 540 page_index(page)); 541 542 expected_count = 2 + page_has_private(page); 543 if (page_count(page) != expected_count || 544 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 545 spin_unlock_irq(&mapping->tree_lock); 546 return -EAGAIN; 547 } 548 549 if (!page_ref_freeze(page, expected_count)) { 550 spin_unlock_irq(&mapping->tree_lock); 551 return -EAGAIN; 552 } 553 554 newpage->index = page->index; 555 newpage->mapping = page->mapping; 556 557 get_page(newpage); 558 559 radix_tree_replace_slot(pslot, newpage); 560 561 page_ref_unfreeze(page, expected_count - 1); 562 563 spin_unlock_irq(&mapping->tree_lock); 564 565 return MIGRATEPAGE_SUCCESS; 566 } 567 568 /* 569 * Gigantic pages are so large that we do not guarantee that page++ pointer 570 * arithmetic will work across the entire page. We need something more 571 * specialized. 572 */ 573 static void __copy_gigantic_page(struct page *dst, struct page *src, 574 int nr_pages) 575 { 576 int i; 577 struct page *dst_base = dst; 578 struct page *src_base = src; 579 580 for (i = 0; i < nr_pages; ) { 581 cond_resched(); 582 copy_highpage(dst, src); 583 584 i++; 585 dst = mem_map_next(dst, dst_base, i); 586 src = mem_map_next(src, src_base, i); 587 } 588 } 589 590 static void copy_huge_page(struct page *dst, struct page *src) 591 { 592 int i; 593 int nr_pages; 594 595 if (PageHuge(src)) { 596 /* hugetlbfs page */ 597 struct hstate *h = page_hstate(src); 598 nr_pages = pages_per_huge_page(h); 599 600 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 601 __copy_gigantic_page(dst, src, nr_pages); 602 return; 603 } 604 } else { 605 /* thp page */ 606 BUG_ON(!PageTransHuge(src)); 607 nr_pages = hpage_nr_pages(src); 608 } 609 610 for (i = 0; i < nr_pages; i++) { 611 cond_resched(); 612 copy_highpage(dst + i, src + i); 613 } 614 } 615 616 /* 617 * Copy the page to its new location 618 */ 619 void migrate_page_copy(struct page *newpage, struct page *page) 620 { 621 int cpupid; 622 623 if (PageHuge(page) || PageTransHuge(page)) 624 copy_huge_page(newpage, page); 625 else 626 copy_highpage(newpage, page); 627 628 if (PageError(page)) 629 SetPageError(newpage); 630 if (PageReferenced(page)) 631 SetPageReferenced(newpage); 632 if (PageUptodate(page)) 633 SetPageUptodate(newpage); 634 if (TestClearPageActive(page)) { 635 VM_BUG_ON_PAGE(PageUnevictable(page), page); 636 SetPageActive(newpage); 637 } else if (TestClearPageUnevictable(page)) 638 SetPageUnevictable(newpage); 639 if (PageChecked(page)) 640 SetPageChecked(newpage); 641 if (PageMappedToDisk(page)) 642 SetPageMappedToDisk(newpage); 643 644 /* Move dirty on pages not done by migrate_page_move_mapping() */ 645 if (PageDirty(page)) 646 SetPageDirty(newpage); 647 648 if (page_is_young(page)) 649 set_page_young(newpage); 650 if (page_is_idle(page)) 651 set_page_idle(newpage); 652 653 /* 654 * Copy NUMA information to the new page, to prevent over-eager 655 * future migrations of this same page. 656 */ 657 cpupid = page_cpupid_xchg_last(page, -1); 658 page_cpupid_xchg_last(newpage, cpupid); 659 660 ksm_migrate_page(newpage, page); 661 /* 662 * Please do not reorder this without considering how mm/ksm.c's 663 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 664 */ 665 if (PageSwapCache(page)) 666 ClearPageSwapCache(page); 667 ClearPagePrivate(page); 668 set_page_private(page, 0); 669 670 /* 671 * If any waiters have accumulated on the new page then 672 * wake them up. 673 */ 674 if (PageWriteback(newpage)) 675 end_page_writeback(newpage); 676 677 copy_page_owner(page, newpage); 678 679 mem_cgroup_migrate(page, newpage); 680 } 681 EXPORT_SYMBOL(migrate_page_copy); 682 683 /************************************************************ 684 * Migration functions 685 ***********************************************************/ 686 687 /* 688 * Common logic to directly migrate a single LRU page suitable for 689 * pages that do not use PagePrivate/PagePrivate2. 690 * 691 * Pages are locked upon entry and exit. 692 */ 693 int migrate_page(struct address_space *mapping, 694 struct page *newpage, struct page *page, 695 enum migrate_mode mode) 696 { 697 int rc; 698 699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 700 701 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 702 703 if (rc != MIGRATEPAGE_SUCCESS) 704 return rc; 705 706 migrate_page_copy(newpage, page); 707 return MIGRATEPAGE_SUCCESS; 708 } 709 EXPORT_SYMBOL(migrate_page); 710 711 #ifdef CONFIG_BLOCK 712 /* 713 * Migration function for pages with buffers. This function can only be used 714 * if the underlying filesystem guarantees that no other references to "page" 715 * exist. 716 */ 717 int buffer_migrate_page(struct address_space *mapping, 718 struct page *newpage, struct page *page, enum migrate_mode mode) 719 { 720 struct buffer_head *bh, *head; 721 int rc; 722 723 if (!page_has_buffers(page)) 724 return migrate_page(mapping, newpage, page, mode); 725 726 head = page_buffers(page); 727 728 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 729 730 if (rc != MIGRATEPAGE_SUCCESS) 731 return rc; 732 733 /* 734 * In the async case, migrate_page_move_mapping locked the buffers 735 * with an IRQ-safe spinlock held. In the sync case, the buffers 736 * need to be locked now 737 */ 738 if (mode != MIGRATE_ASYNC) 739 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 740 741 ClearPagePrivate(page); 742 set_page_private(newpage, page_private(page)); 743 set_page_private(page, 0); 744 put_page(page); 745 get_page(newpage); 746 747 bh = head; 748 do { 749 set_bh_page(bh, newpage, bh_offset(bh)); 750 bh = bh->b_this_page; 751 752 } while (bh != head); 753 754 SetPagePrivate(newpage); 755 756 migrate_page_copy(newpage, page); 757 758 bh = head; 759 do { 760 unlock_buffer(bh); 761 put_bh(bh); 762 bh = bh->b_this_page; 763 764 } while (bh != head); 765 766 return MIGRATEPAGE_SUCCESS; 767 } 768 EXPORT_SYMBOL(buffer_migrate_page); 769 #endif 770 771 /* 772 * Writeback a page to clean the dirty state 773 */ 774 static int writeout(struct address_space *mapping, struct page *page) 775 { 776 struct writeback_control wbc = { 777 .sync_mode = WB_SYNC_NONE, 778 .nr_to_write = 1, 779 .range_start = 0, 780 .range_end = LLONG_MAX, 781 .for_reclaim = 1 782 }; 783 int rc; 784 785 if (!mapping->a_ops->writepage) 786 /* No write method for the address space */ 787 return -EINVAL; 788 789 if (!clear_page_dirty_for_io(page)) 790 /* Someone else already triggered a write */ 791 return -EAGAIN; 792 793 /* 794 * A dirty page may imply that the underlying filesystem has 795 * the page on some queue. So the page must be clean for 796 * migration. Writeout may mean we loose the lock and the 797 * page state is no longer what we checked for earlier. 798 * At this point we know that the migration attempt cannot 799 * be successful. 800 */ 801 remove_migration_ptes(page, page, false); 802 803 rc = mapping->a_ops->writepage(page, &wbc); 804 805 if (rc != AOP_WRITEPAGE_ACTIVATE) 806 /* unlocked. Relock */ 807 lock_page(page); 808 809 return (rc < 0) ? -EIO : -EAGAIN; 810 } 811 812 /* 813 * Default handling if a filesystem does not provide a migration function. 814 */ 815 static int fallback_migrate_page(struct address_space *mapping, 816 struct page *newpage, struct page *page, enum migrate_mode mode) 817 { 818 if (PageDirty(page)) { 819 /* Only writeback pages in full synchronous migration */ 820 if (mode != MIGRATE_SYNC) 821 return -EBUSY; 822 return writeout(mapping, page); 823 } 824 825 /* 826 * Buffers may be managed in a filesystem specific way. 827 * We must have no buffers or drop them. 828 */ 829 if (page_has_private(page) && 830 !try_to_release_page(page, GFP_KERNEL)) 831 return -EAGAIN; 832 833 return migrate_page(mapping, newpage, page, mode); 834 } 835 836 /* 837 * Move a page to a newly allocated page 838 * The page is locked and all ptes have been successfully removed. 839 * 840 * The new page will have replaced the old page if this function 841 * is successful. 842 * 843 * Return value: 844 * < 0 - error code 845 * MIGRATEPAGE_SUCCESS - success 846 */ 847 static int move_to_new_page(struct page *newpage, struct page *page, 848 enum migrate_mode mode) 849 { 850 struct address_space *mapping; 851 int rc = -EAGAIN; 852 bool is_lru = !__PageMovable(page); 853 854 VM_BUG_ON_PAGE(!PageLocked(page), page); 855 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 856 857 mapping = page_mapping(page); 858 859 if (likely(is_lru)) { 860 if (!mapping) 861 rc = migrate_page(mapping, newpage, page, mode); 862 else if (mapping->a_ops->migratepage) 863 /* 864 * Most pages have a mapping and most filesystems 865 * provide a migratepage callback. Anonymous pages 866 * are part of swap space which also has its own 867 * migratepage callback. This is the most common path 868 * for page migration. 869 */ 870 rc = mapping->a_ops->migratepage(mapping, newpage, 871 page, mode); 872 else 873 rc = fallback_migrate_page(mapping, newpage, 874 page, mode); 875 } else { 876 /* 877 * In case of non-lru page, it could be released after 878 * isolation step. In that case, we shouldn't try migration. 879 */ 880 VM_BUG_ON_PAGE(!PageIsolated(page), page); 881 if (!PageMovable(page)) { 882 rc = MIGRATEPAGE_SUCCESS; 883 __ClearPageIsolated(page); 884 goto out; 885 } 886 887 rc = mapping->a_ops->migratepage(mapping, newpage, 888 page, mode); 889 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 890 !PageIsolated(page)); 891 } 892 893 /* 894 * When successful, old pagecache page->mapping must be cleared before 895 * page is freed; but stats require that PageAnon be left as PageAnon. 896 */ 897 if (rc == MIGRATEPAGE_SUCCESS) { 898 if (__PageMovable(page)) { 899 VM_BUG_ON_PAGE(!PageIsolated(page), page); 900 901 /* 902 * We clear PG_movable under page_lock so any compactor 903 * cannot try to migrate this page. 904 */ 905 __ClearPageIsolated(page); 906 } 907 908 /* 909 * Anonymous and movable page->mapping will be cleard by 910 * free_pages_prepare so don't reset it here for keeping 911 * the type to work PageAnon, for example. 912 */ 913 if (!PageMappingFlags(page)) 914 page->mapping = NULL; 915 } 916 out: 917 return rc; 918 } 919 920 static int __unmap_and_move(struct page *page, struct page *newpage, 921 int force, enum migrate_mode mode) 922 { 923 int rc = -EAGAIN; 924 int page_was_mapped = 0; 925 struct anon_vma *anon_vma = NULL; 926 bool is_lru = !__PageMovable(page); 927 928 if (!trylock_page(page)) { 929 if (!force || mode == MIGRATE_ASYNC) 930 goto out; 931 932 /* 933 * It's not safe for direct compaction to call lock_page. 934 * For example, during page readahead pages are added locked 935 * to the LRU. Later, when the IO completes the pages are 936 * marked uptodate and unlocked. However, the queueing 937 * could be merging multiple pages for one bio (e.g. 938 * mpage_readpages). If an allocation happens for the 939 * second or third page, the process can end up locking 940 * the same page twice and deadlocking. Rather than 941 * trying to be clever about what pages can be locked, 942 * avoid the use of lock_page for direct compaction 943 * altogether. 944 */ 945 if (current->flags & PF_MEMALLOC) 946 goto out; 947 948 lock_page(page); 949 } 950 951 if (PageWriteback(page)) { 952 /* 953 * Only in the case of a full synchronous migration is it 954 * necessary to wait for PageWriteback. In the async case, 955 * the retry loop is too short and in the sync-light case, 956 * the overhead of stalling is too much 957 */ 958 if (mode != MIGRATE_SYNC) { 959 rc = -EBUSY; 960 goto out_unlock; 961 } 962 if (!force) 963 goto out_unlock; 964 wait_on_page_writeback(page); 965 } 966 967 /* 968 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 969 * we cannot notice that anon_vma is freed while we migrates a page. 970 * This get_anon_vma() delays freeing anon_vma pointer until the end 971 * of migration. File cache pages are no problem because of page_lock() 972 * File Caches may use write_page() or lock_page() in migration, then, 973 * just care Anon page here. 974 * 975 * Only page_get_anon_vma() understands the subtleties of 976 * getting a hold on an anon_vma from outside one of its mms. 977 * But if we cannot get anon_vma, then we won't need it anyway, 978 * because that implies that the anon page is no longer mapped 979 * (and cannot be remapped so long as we hold the page lock). 980 */ 981 if (PageAnon(page) && !PageKsm(page)) 982 anon_vma = page_get_anon_vma(page); 983 984 /* 985 * Block others from accessing the new page when we get around to 986 * establishing additional references. We are usually the only one 987 * holding a reference to newpage at this point. We used to have a BUG 988 * here if trylock_page(newpage) fails, but would like to allow for 989 * cases where there might be a race with the previous use of newpage. 990 * This is much like races on refcount of oldpage: just don't BUG(). 991 */ 992 if (unlikely(!trylock_page(newpage))) 993 goto out_unlock; 994 995 if (unlikely(!is_lru)) { 996 rc = move_to_new_page(newpage, page, mode); 997 goto out_unlock_both; 998 } 999 1000 /* 1001 * Corner case handling: 1002 * 1. When a new swap-cache page is read into, it is added to the LRU 1003 * and treated as swapcache but it has no rmap yet. 1004 * Calling try_to_unmap() against a page->mapping==NULL page will 1005 * trigger a BUG. So handle it here. 1006 * 2. An orphaned page (see truncate_complete_page) might have 1007 * fs-private metadata. The page can be picked up due to memory 1008 * offlining. Everywhere else except page reclaim, the page is 1009 * invisible to the vm, so the page can not be migrated. So try to 1010 * free the metadata, so the page can be freed. 1011 */ 1012 if (!page->mapping) { 1013 VM_BUG_ON_PAGE(PageAnon(page), page); 1014 if (page_has_private(page)) { 1015 try_to_free_buffers(page); 1016 goto out_unlock_both; 1017 } 1018 } else if (page_mapped(page)) { 1019 /* Establish migration ptes */ 1020 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1021 page); 1022 try_to_unmap(page, 1023 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1024 page_was_mapped = 1; 1025 } 1026 1027 if (!page_mapped(page)) 1028 rc = move_to_new_page(newpage, page, mode); 1029 1030 if (page_was_mapped) 1031 remove_migration_ptes(page, 1032 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1033 1034 out_unlock_both: 1035 unlock_page(newpage); 1036 out_unlock: 1037 /* Drop an anon_vma reference if we took one */ 1038 if (anon_vma) 1039 put_anon_vma(anon_vma); 1040 unlock_page(page); 1041 out: 1042 /* 1043 * If migration is successful, decrease refcount of the newpage 1044 * which will not free the page because new page owner increased 1045 * refcounter. As well, if it is LRU page, add the page to LRU 1046 * list in here. 1047 */ 1048 if (rc == MIGRATEPAGE_SUCCESS) { 1049 if (unlikely(__PageMovable(newpage))) 1050 put_page(newpage); 1051 else 1052 putback_lru_page(newpage); 1053 } 1054 1055 return rc; 1056 } 1057 1058 /* 1059 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1060 * around it. 1061 */ 1062 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1063 #define ICE_noinline noinline 1064 #else 1065 #define ICE_noinline 1066 #endif 1067 1068 /* 1069 * Obtain the lock on page, remove all ptes and migrate the page 1070 * to the newly allocated page in newpage. 1071 */ 1072 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1073 free_page_t put_new_page, 1074 unsigned long private, struct page *page, 1075 int force, enum migrate_mode mode, 1076 enum migrate_reason reason) 1077 { 1078 int rc = MIGRATEPAGE_SUCCESS; 1079 int *result = NULL; 1080 struct page *newpage; 1081 1082 newpage = get_new_page(page, private, &result); 1083 if (!newpage) 1084 return -ENOMEM; 1085 1086 if (page_count(page) == 1) { 1087 /* page was freed from under us. So we are done. */ 1088 ClearPageActive(page); 1089 ClearPageUnevictable(page); 1090 if (unlikely(__PageMovable(page))) { 1091 lock_page(page); 1092 if (!PageMovable(page)) 1093 __ClearPageIsolated(page); 1094 unlock_page(page); 1095 } 1096 if (put_new_page) 1097 put_new_page(newpage, private); 1098 else 1099 put_page(newpage); 1100 goto out; 1101 } 1102 1103 if (unlikely(PageTransHuge(page))) { 1104 lock_page(page); 1105 rc = split_huge_page(page); 1106 unlock_page(page); 1107 if (rc) 1108 goto out; 1109 } 1110 1111 rc = __unmap_and_move(page, newpage, force, mode); 1112 if (rc == MIGRATEPAGE_SUCCESS) 1113 set_page_owner_migrate_reason(newpage, reason); 1114 1115 out: 1116 if (rc != -EAGAIN) { 1117 /* 1118 * A page that has been migrated has all references 1119 * removed and will be freed. A page that has not been 1120 * migrated will have kepts its references and be 1121 * restored. 1122 */ 1123 list_del(&page->lru); 1124 dec_node_page_state(page, NR_ISOLATED_ANON + 1125 page_is_file_cache(page)); 1126 } 1127 1128 /* 1129 * If migration is successful, releases reference grabbed during 1130 * isolation. Otherwise, restore the page to right list unless 1131 * we want to retry. 1132 */ 1133 if (rc == MIGRATEPAGE_SUCCESS) { 1134 put_page(page); 1135 if (reason == MR_MEMORY_FAILURE) { 1136 /* 1137 * Set PG_HWPoison on just freed page 1138 * intentionally. Although it's rather weird, 1139 * it's how HWPoison flag works at the moment. 1140 */ 1141 if (!test_set_page_hwpoison(page)) 1142 num_poisoned_pages_inc(); 1143 } 1144 } else { 1145 if (rc != -EAGAIN) { 1146 if (likely(!__PageMovable(page))) { 1147 putback_lru_page(page); 1148 goto put_new; 1149 } 1150 1151 lock_page(page); 1152 if (PageMovable(page)) 1153 putback_movable_page(page); 1154 else 1155 __ClearPageIsolated(page); 1156 unlock_page(page); 1157 put_page(page); 1158 } 1159 put_new: 1160 if (put_new_page) 1161 put_new_page(newpage, private); 1162 else 1163 put_page(newpage); 1164 } 1165 1166 if (result) { 1167 if (rc) 1168 *result = rc; 1169 else 1170 *result = page_to_nid(newpage); 1171 } 1172 return rc; 1173 } 1174 1175 /* 1176 * Counterpart of unmap_and_move_page() for hugepage migration. 1177 * 1178 * This function doesn't wait the completion of hugepage I/O 1179 * because there is no race between I/O and migration for hugepage. 1180 * Note that currently hugepage I/O occurs only in direct I/O 1181 * where no lock is held and PG_writeback is irrelevant, 1182 * and writeback status of all subpages are counted in the reference 1183 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1184 * under direct I/O, the reference of the head page is 512 and a bit more.) 1185 * This means that when we try to migrate hugepage whose subpages are 1186 * doing direct I/O, some references remain after try_to_unmap() and 1187 * hugepage migration fails without data corruption. 1188 * 1189 * There is also no race when direct I/O is issued on the page under migration, 1190 * because then pte is replaced with migration swap entry and direct I/O code 1191 * will wait in the page fault for migration to complete. 1192 */ 1193 static int unmap_and_move_huge_page(new_page_t get_new_page, 1194 free_page_t put_new_page, unsigned long private, 1195 struct page *hpage, int force, 1196 enum migrate_mode mode, int reason) 1197 { 1198 int rc = -EAGAIN; 1199 int *result = NULL; 1200 int page_was_mapped = 0; 1201 struct page *new_hpage; 1202 struct anon_vma *anon_vma = NULL; 1203 1204 /* 1205 * Movability of hugepages depends on architectures and hugepage size. 1206 * This check is necessary because some callers of hugepage migration 1207 * like soft offline and memory hotremove don't walk through page 1208 * tables or check whether the hugepage is pmd-based or not before 1209 * kicking migration. 1210 */ 1211 if (!hugepage_migration_supported(page_hstate(hpage))) { 1212 putback_active_hugepage(hpage); 1213 return -ENOSYS; 1214 } 1215 1216 new_hpage = get_new_page(hpage, private, &result); 1217 if (!new_hpage) 1218 return -ENOMEM; 1219 1220 if (!trylock_page(hpage)) { 1221 if (!force || mode != MIGRATE_SYNC) 1222 goto out; 1223 lock_page(hpage); 1224 } 1225 1226 if (PageAnon(hpage)) 1227 anon_vma = page_get_anon_vma(hpage); 1228 1229 if (unlikely(!trylock_page(new_hpage))) 1230 goto put_anon; 1231 1232 if (page_mapped(hpage)) { 1233 try_to_unmap(hpage, 1234 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1235 page_was_mapped = 1; 1236 } 1237 1238 if (!page_mapped(hpage)) 1239 rc = move_to_new_page(new_hpage, hpage, mode); 1240 1241 if (page_was_mapped) 1242 remove_migration_ptes(hpage, 1243 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1244 1245 unlock_page(new_hpage); 1246 1247 put_anon: 1248 if (anon_vma) 1249 put_anon_vma(anon_vma); 1250 1251 if (rc == MIGRATEPAGE_SUCCESS) { 1252 hugetlb_cgroup_migrate(hpage, new_hpage); 1253 put_new_page = NULL; 1254 set_page_owner_migrate_reason(new_hpage, reason); 1255 } 1256 1257 unlock_page(hpage); 1258 out: 1259 if (rc != -EAGAIN) 1260 putback_active_hugepage(hpage); 1261 1262 /* 1263 * If migration was not successful and there's a freeing callback, use 1264 * it. Otherwise, put_page() will drop the reference grabbed during 1265 * isolation. 1266 */ 1267 if (put_new_page) 1268 put_new_page(new_hpage, private); 1269 else 1270 putback_active_hugepage(new_hpage); 1271 1272 if (result) { 1273 if (rc) 1274 *result = rc; 1275 else 1276 *result = page_to_nid(new_hpage); 1277 } 1278 return rc; 1279 } 1280 1281 /* 1282 * migrate_pages - migrate the pages specified in a list, to the free pages 1283 * supplied as the target for the page migration 1284 * 1285 * @from: The list of pages to be migrated. 1286 * @get_new_page: The function used to allocate free pages to be used 1287 * as the target of the page migration. 1288 * @put_new_page: The function used to free target pages if migration 1289 * fails, or NULL if no special handling is necessary. 1290 * @private: Private data to be passed on to get_new_page() 1291 * @mode: The migration mode that specifies the constraints for 1292 * page migration, if any. 1293 * @reason: The reason for page migration. 1294 * 1295 * The function returns after 10 attempts or if no pages are movable any more 1296 * because the list has become empty or no retryable pages exist any more. 1297 * The caller should call putback_movable_pages() to return pages to the LRU 1298 * or free list only if ret != 0. 1299 * 1300 * Returns the number of pages that were not migrated, or an error code. 1301 */ 1302 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1303 free_page_t put_new_page, unsigned long private, 1304 enum migrate_mode mode, int reason) 1305 { 1306 int retry = 1; 1307 int nr_failed = 0; 1308 int nr_succeeded = 0; 1309 int pass = 0; 1310 struct page *page; 1311 struct page *page2; 1312 int swapwrite = current->flags & PF_SWAPWRITE; 1313 int rc; 1314 1315 if (!swapwrite) 1316 current->flags |= PF_SWAPWRITE; 1317 1318 for(pass = 0; pass < 10 && retry; pass++) { 1319 retry = 0; 1320 1321 list_for_each_entry_safe(page, page2, from, lru) { 1322 cond_resched(); 1323 1324 if (PageHuge(page)) 1325 rc = unmap_and_move_huge_page(get_new_page, 1326 put_new_page, private, page, 1327 pass > 2, mode, reason); 1328 else 1329 rc = unmap_and_move(get_new_page, put_new_page, 1330 private, page, pass > 2, mode, 1331 reason); 1332 1333 switch(rc) { 1334 case -ENOMEM: 1335 nr_failed++; 1336 goto out; 1337 case -EAGAIN: 1338 retry++; 1339 break; 1340 case MIGRATEPAGE_SUCCESS: 1341 nr_succeeded++; 1342 break; 1343 default: 1344 /* 1345 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1346 * unlike -EAGAIN case, the failed page is 1347 * removed from migration page list and not 1348 * retried in the next outer loop. 1349 */ 1350 nr_failed++; 1351 break; 1352 } 1353 } 1354 } 1355 nr_failed += retry; 1356 rc = nr_failed; 1357 out: 1358 if (nr_succeeded) 1359 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1360 if (nr_failed) 1361 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1362 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1363 1364 if (!swapwrite) 1365 current->flags &= ~PF_SWAPWRITE; 1366 1367 return rc; 1368 } 1369 1370 #ifdef CONFIG_NUMA 1371 /* 1372 * Move a list of individual pages 1373 */ 1374 struct page_to_node { 1375 unsigned long addr; 1376 struct page *page; 1377 int node; 1378 int status; 1379 }; 1380 1381 static struct page *new_page_node(struct page *p, unsigned long private, 1382 int **result) 1383 { 1384 struct page_to_node *pm = (struct page_to_node *)private; 1385 1386 while (pm->node != MAX_NUMNODES && pm->page != p) 1387 pm++; 1388 1389 if (pm->node == MAX_NUMNODES) 1390 return NULL; 1391 1392 *result = &pm->status; 1393 1394 if (PageHuge(p)) 1395 return alloc_huge_page_node(page_hstate(compound_head(p)), 1396 pm->node); 1397 else 1398 return __alloc_pages_node(pm->node, 1399 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1400 } 1401 1402 /* 1403 * Move a set of pages as indicated in the pm array. The addr 1404 * field must be set to the virtual address of the page to be moved 1405 * and the node number must contain a valid target node. 1406 * The pm array ends with node = MAX_NUMNODES. 1407 */ 1408 static int do_move_page_to_node_array(struct mm_struct *mm, 1409 struct page_to_node *pm, 1410 int migrate_all) 1411 { 1412 int err; 1413 struct page_to_node *pp; 1414 LIST_HEAD(pagelist); 1415 1416 down_read(&mm->mmap_sem); 1417 1418 /* 1419 * Build a list of pages to migrate 1420 */ 1421 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1422 struct vm_area_struct *vma; 1423 struct page *page; 1424 1425 err = -EFAULT; 1426 vma = find_vma(mm, pp->addr); 1427 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1428 goto set_status; 1429 1430 /* FOLL_DUMP to ignore special (like zero) pages */ 1431 page = follow_page(vma, pp->addr, 1432 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1433 1434 err = PTR_ERR(page); 1435 if (IS_ERR(page)) 1436 goto set_status; 1437 1438 err = -ENOENT; 1439 if (!page) 1440 goto set_status; 1441 1442 pp->page = page; 1443 err = page_to_nid(page); 1444 1445 if (err == pp->node) 1446 /* 1447 * Node already in the right place 1448 */ 1449 goto put_and_set; 1450 1451 err = -EACCES; 1452 if (page_mapcount(page) > 1 && 1453 !migrate_all) 1454 goto put_and_set; 1455 1456 if (PageHuge(page)) { 1457 if (PageHead(page)) 1458 isolate_huge_page(page, &pagelist); 1459 goto put_and_set; 1460 } 1461 1462 err = isolate_lru_page(page); 1463 if (!err) { 1464 list_add_tail(&page->lru, &pagelist); 1465 inc_node_page_state(page, NR_ISOLATED_ANON + 1466 page_is_file_cache(page)); 1467 } 1468 put_and_set: 1469 /* 1470 * Either remove the duplicate refcount from 1471 * isolate_lru_page() or drop the page ref if it was 1472 * not isolated. 1473 */ 1474 put_page(page); 1475 set_status: 1476 pp->status = err; 1477 } 1478 1479 err = 0; 1480 if (!list_empty(&pagelist)) { 1481 err = migrate_pages(&pagelist, new_page_node, NULL, 1482 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1483 if (err) 1484 putback_movable_pages(&pagelist); 1485 } 1486 1487 up_read(&mm->mmap_sem); 1488 return err; 1489 } 1490 1491 /* 1492 * Migrate an array of page address onto an array of nodes and fill 1493 * the corresponding array of status. 1494 */ 1495 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1496 unsigned long nr_pages, 1497 const void __user * __user *pages, 1498 const int __user *nodes, 1499 int __user *status, int flags) 1500 { 1501 struct page_to_node *pm; 1502 unsigned long chunk_nr_pages; 1503 unsigned long chunk_start; 1504 int err; 1505 1506 err = -ENOMEM; 1507 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1508 if (!pm) 1509 goto out; 1510 1511 migrate_prep(); 1512 1513 /* 1514 * Store a chunk of page_to_node array in a page, 1515 * but keep the last one as a marker 1516 */ 1517 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1518 1519 for (chunk_start = 0; 1520 chunk_start < nr_pages; 1521 chunk_start += chunk_nr_pages) { 1522 int j; 1523 1524 if (chunk_start + chunk_nr_pages > nr_pages) 1525 chunk_nr_pages = nr_pages - chunk_start; 1526 1527 /* fill the chunk pm with addrs and nodes from user-space */ 1528 for (j = 0; j < chunk_nr_pages; j++) { 1529 const void __user *p; 1530 int node; 1531 1532 err = -EFAULT; 1533 if (get_user(p, pages + j + chunk_start)) 1534 goto out_pm; 1535 pm[j].addr = (unsigned long) p; 1536 1537 if (get_user(node, nodes + j + chunk_start)) 1538 goto out_pm; 1539 1540 err = -ENODEV; 1541 if (node < 0 || node >= MAX_NUMNODES) 1542 goto out_pm; 1543 1544 if (!node_state(node, N_MEMORY)) 1545 goto out_pm; 1546 1547 err = -EACCES; 1548 if (!node_isset(node, task_nodes)) 1549 goto out_pm; 1550 1551 pm[j].node = node; 1552 } 1553 1554 /* End marker for this chunk */ 1555 pm[chunk_nr_pages].node = MAX_NUMNODES; 1556 1557 /* Migrate this chunk */ 1558 err = do_move_page_to_node_array(mm, pm, 1559 flags & MPOL_MF_MOVE_ALL); 1560 if (err < 0) 1561 goto out_pm; 1562 1563 /* Return status information */ 1564 for (j = 0; j < chunk_nr_pages; j++) 1565 if (put_user(pm[j].status, status + j + chunk_start)) { 1566 err = -EFAULT; 1567 goto out_pm; 1568 } 1569 } 1570 err = 0; 1571 1572 out_pm: 1573 free_page((unsigned long)pm); 1574 out: 1575 return err; 1576 } 1577 1578 /* 1579 * Determine the nodes of an array of pages and store it in an array of status. 1580 */ 1581 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1582 const void __user **pages, int *status) 1583 { 1584 unsigned long i; 1585 1586 down_read(&mm->mmap_sem); 1587 1588 for (i = 0; i < nr_pages; i++) { 1589 unsigned long addr = (unsigned long)(*pages); 1590 struct vm_area_struct *vma; 1591 struct page *page; 1592 int err = -EFAULT; 1593 1594 vma = find_vma(mm, addr); 1595 if (!vma || addr < vma->vm_start) 1596 goto set_status; 1597 1598 /* FOLL_DUMP to ignore special (like zero) pages */ 1599 page = follow_page(vma, addr, FOLL_DUMP); 1600 1601 err = PTR_ERR(page); 1602 if (IS_ERR(page)) 1603 goto set_status; 1604 1605 err = page ? page_to_nid(page) : -ENOENT; 1606 set_status: 1607 *status = err; 1608 1609 pages++; 1610 status++; 1611 } 1612 1613 up_read(&mm->mmap_sem); 1614 } 1615 1616 /* 1617 * Determine the nodes of a user array of pages and store it in 1618 * a user array of status. 1619 */ 1620 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1621 const void __user * __user *pages, 1622 int __user *status) 1623 { 1624 #define DO_PAGES_STAT_CHUNK_NR 16 1625 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1626 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1627 1628 while (nr_pages) { 1629 unsigned long chunk_nr; 1630 1631 chunk_nr = nr_pages; 1632 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1633 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1634 1635 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1636 break; 1637 1638 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1639 1640 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1641 break; 1642 1643 pages += chunk_nr; 1644 status += chunk_nr; 1645 nr_pages -= chunk_nr; 1646 } 1647 return nr_pages ? -EFAULT : 0; 1648 } 1649 1650 /* 1651 * Move a list of pages in the address space of the currently executing 1652 * process. 1653 */ 1654 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1655 const void __user * __user *, pages, 1656 const int __user *, nodes, 1657 int __user *, status, int, flags) 1658 { 1659 const struct cred *cred = current_cred(), *tcred; 1660 struct task_struct *task; 1661 struct mm_struct *mm; 1662 int err; 1663 nodemask_t task_nodes; 1664 1665 /* Check flags */ 1666 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1667 return -EINVAL; 1668 1669 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1670 return -EPERM; 1671 1672 /* Find the mm_struct */ 1673 rcu_read_lock(); 1674 task = pid ? find_task_by_vpid(pid) : current; 1675 if (!task) { 1676 rcu_read_unlock(); 1677 return -ESRCH; 1678 } 1679 get_task_struct(task); 1680 1681 /* 1682 * Check if this process has the right to modify the specified 1683 * process. The right exists if the process has administrative 1684 * capabilities, superuser privileges or the same 1685 * userid as the target process. 1686 */ 1687 tcred = __task_cred(task); 1688 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1689 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1690 !capable(CAP_SYS_NICE)) { 1691 rcu_read_unlock(); 1692 err = -EPERM; 1693 goto out; 1694 } 1695 rcu_read_unlock(); 1696 1697 err = security_task_movememory(task); 1698 if (err) 1699 goto out; 1700 1701 task_nodes = cpuset_mems_allowed(task); 1702 mm = get_task_mm(task); 1703 put_task_struct(task); 1704 1705 if (!mm) 1706 return -EINVAL; 1707 1708 if (nodes) 1709 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1710 nodes, status, flags); 1711 else 1712 err = do_pages_stat(mm, nr_pages, pages, status); 1713 1714 mmput(mm); 1715 return err; 1716 1717 out: 1718 put_task_struct(task); 1719 return err; 1720 } 1721 1722 #ifdef CONFIG_NUMA_BALANCING 1723 /* 1724 * Returns true if this is a safe migration target node for misplaced NUMA 1725 * pages. Currently it only checks the watermarks which crude 1726 */ 1727 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1728 unsigned long nr_migrate_pages) 1729 { 1730 int z; 1731 1732 if (!pgdat_reclaimable(pgdat)) 1733 return false; 1734 1735 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1736 struct zone *zone = pgdat->node_zones + z; 1737 1738 if (!populated_zone(zone)) 1739 continue; 1740 1741 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1742 if (!zone_watermark_ok(zone, 0, 1743 high_wmark_pages(zone) + 1744 nr_migrate_pages, 1745 0, 0)) 1746 continue; 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 static struct page *alloc_misplaced_dst_page(struct page *page, 1753 unsigned long data, 1754 int **result) 1755 { 1756 int nid = (int) data; 1757 struct page *newpage; 1758 1759 newpage = __alloc_pages_node(nid, 1760 (GFP_HIGHUSER_MOVABLE | 1761 __GFP_THISNODE | __GFP_NOMEMALLOC | 1762 __GFP_NORETRY | __GFP_NOWARN) & 1763 ~__GFP_RECLAIM, 0); 1764 1765 return newpage; 1766 } 1767 1768 /* 1769 * page migration rate limiting control. 1770 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1771 * window of time. Default here says do not migrate more than 1280M per second. 1772 */ 1773 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1774 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1775 1776 /* Returns true if the node is migrate rate-limited after the update */ 1777 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1778 unsigned long nr_pages) 1779 { 1780 /* 1781 * Rate-limit the amount of data that is being migrated to a node. 1782 * Optimal placement is no good if the memory bus is saturated and 1783 * all the time is being spent migrating! 1784 */ 1785 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1786 spin_lock(&pgdat->numabalancing_migrate_lock); 1787 pgdat->numabalancing_migrate_nr_pages = 0; 1788 pgdat->numabalancing_migrate_next_window = jiffies + 1789 msecs_to_jiffies(migrate_interval_millisecs); 1790 spin_unlock(&pgdat->numabalancing_migrate_lock); 1791 } 1792 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1793 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1794 nr_pages); 1795 return true; 1796 } 1797 1798 /* 1799 * This is an unlocked non-atomic update so errors are possible. 1800 * The consequences are failing to migrate when we potentiall should 1801 * have which is not severe enough to warrant locking. If it is ever 1802 * a problem, it can be converted to a per-cpu counter. 1803 */ 1804 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1805 return false; 1806 } 1807 1808 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1809 { 1810 int page_lru; 1811 1812 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1813 1814 /* Avoid migrating to a node that is nearly full */ 1815 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1816 return 0; 1817 1818 if (isolate_lru_page(page)) 1819 return 0; 1820 1821 /* 1822 * migrate_misplaced_transhuge_page() skips page migration's usual 1823 * check on page_count(), so we must do it here, now that the page 1824 * has been isolated: a GUP pin, or any other pin, prevents migration. 1825 * The expected page count is 3: 1 for page's mapcount and 1 for the 1826 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1827 */ 1828 if (PageTransHuge(page) && page_count(page) != 3) { 1829 putback_lru_page(page); 1830 return 0; 1831 } 1832 1833 page_lru = page_is_file_cache(page); 1834 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1835 hpage_nr_pages(page)); 1836 1837 /* 1838 * Isolating the page has taken another reference, so the 1839 * caller's reference can be safely dropped without the page 1840 * disappearing underneath us during migration. 1841 */ 1842 put_page(page); 1843 return 1; 1844 } 1845 1846 bool pmd_trans_migrating(pmd_t pmd) 1847 { 1848 struct page *page = pmd_page(pmd); 1849 return PageLocked(page); 1850 } 1851 1852 /* 1853 * Attempt to migrate a misplaced page to the specified destination 1854 * node. Caller is expected to have an elevated reference count on 1855 * the page that will be dropped by this function before returning. 1856 */ 1857 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1858 int node) 1859 { 1860 pg_data_t *pgdat = NODE_DATA(node); 1861 int isolated; 1862 int nr_remaining; 1863 LIST_HEAD(migratepages); 1864 1865 /* 1866 * Don't migrate file pages that are mapped in multiple processes 1867 * with execute permissions as they are probably shared libraries. 1868 */ 1869 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1870 (vma->vm_flags & VM_EXEC)) 1871 goto out; 1872 1873 /* 1874 * Rate-limit the amount of data that is being migrated to a node. 1875 * Optimal placement is no good if the memory bus is saturated and 1876 * all the time is being spent migrating! 1877 */ 1878 if (numamigrate_update_ratelimit(pgdat, 1)) 1879 goto out; 1880 1881 isolated = numamigrate_isolate_page(pgdat, page); 1882 if (!isolated) 1883 goto out; 1884 1885 list_add(&page->lru, &migratepages); 1886 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1887 NULL, node, MIGRATE_ASYNC, 1888 MR_NUMA_MISPLACED); 1889 if (nr_remaining) { 1890 if (!list_empty(&migratepages)) { 1891 list_del(&page->lru); 1892 dec_node_page_state(page, NR_ISOLATED_ANON + 1893 page_is_file_cache(page)); 1894 putback_lru_page(page); 1895 } 1896 isolated = 0; 1897 } else 1898 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1899 BUG_ON(!list_empty(&migratepages)); 1900 return isolated; 1901 1902 out: 1903 put_page(page); 1904 return 0; 1905 } 1906 #endif /* CONFIG_NUMA_BALANCING */ 1907 1908 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1909 /* 1910 * Migrates a THP to a given target node. page must be locked and is unlocked 1911 * before returning. 1912 */ 1913 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1914 struct vm_area_struct *vma, 1915 pmd_t *pmd, pmd_t entry, 1916 unsigned long address, 1917 struct page *page, int node) 1918 { 1919 spinlock_t *ptl; 1920 pg_data_t *pgdat = NODE_DATA(node); 1921 int isolated = 0; 1922 struct page *new_page = NULL; 1923 int page_lru = page_is_file_cache(page); 1924 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1925 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1926 pmd_t orig_entry; 1927 1928 /* 1929 * Rate-limit the amount of data that is being migrated to a node. 1930 * Optimal placement is no good if the memory bus is saturated and 1931 * all the time is being spent migrating! 1932 */ 1933 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1934 goto out_dropref; 1935 1936 new_page = alloc_pages_node(node, 1937 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1938 HPAGE_PMD_ORDER); 1939 if (!new_page) 1940 goto out_fail; 1941 prep_transhuge_page(new_page); 1942 1943 isolated = numamigrate_isolate_page(pgdat, page); 1944 if (!isolated) { 1945 put_page(new_page); 1946 goto out_fail; 1947 } 1948 /* 1949 * We are not sure a pending tlb flush here is for a huge page 1950 * mapping or not. Hence use the tlb range variant 1951 */ 1952 if (mm_tlb_flush_pending(mm)) 1953 flush_tlb_range(vma, mmun_start, mmun_end); 1954 1955 /* Prepare a page as a migration target */ 1956 __SetPageLocked(new_page); 1957 __SetPageSwapBacked(new_page); 1958 1959 /* anon mapping, we can simply copy page->mapping to the new page: */ 1960 new_page->mapping = page->mapping; 1961 new_page->index = page->index; 1962 migrate_page_copy(new_page, page); 1963 WARN_ON(PageLRU(new_page)); 1964 1965 /* Recheck the target PMD */ 1966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1967 ptl = pmd_lock(mm, pmd); 1968 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1969 fail_putback: 1970 spin_unlock(ptl); 1971 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1972 1973 /* Reverse changes made by migrate_page_copy() */ 1974 if (TestClearPageActive(new_page)) 1975 SetPageActive(page); 1976 if (TestClearPageUnevictable(new_page)) 1977 SetPageUnevictable(page); 1978 1979 unlock_page(new_page); 1980 put_page(new_page); /* Free it */ 1981 1982 /* Retake the callers reference and putback on LRU */ 1983 get_page(page); 1984 putback_lru_page(page); 1985 mod_node_page_state(page_pgdat(page), 1986 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1987 1988 goto out_unlock; 1989 } 1990 1991 orig_entry = *pmd; 1992 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1993 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1994 1995 /* 1996 * Clear the old entry under pagetable lock and establish the new PTE. 1997 * Any parallel GUP will either observe the old page blocking on the 1998 * page lock, block on the page table lock or observe the new page. 1999 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2000 * guarantee the copy is visible before the pagetable update. 2001 */ 2002 flush_cache_range(vma, mmun_start, mmun_end); 2003 page_add_anon_rmap(new_page, vma, mmun_start, true); 2004 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2005 set_pmd_at(mm, mmun_start, pmd, entry); 2006 update_mmu_cache_pmd(vma, address, &entry); 2007 2008 if (page_count(page) != 2) { 2009 set_pmd_at(mm, mmun_start, pmd, orig_entry); 2010 flush_pmd_tlb_range(vma, mmun_start, mmun_end); 2011 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 2012 update_mmu_cache_pmd(vma, address, &entry); 2013 page_remove_rmap(new_page, true); 2014 goto fail_putback; 2015 } 2016 2017 mlock_migrate_page(new_page, page); 2018 page_remove_rmap(page, true); 2019 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2020 2021 spin_unlock(ptl); 2022 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2023 2024 /* Take an "isolate" reference and put new page on the LRU. */ 2025 get_page(new_page); 2026 putback_lru_page(new_page); 2027 2028 unlock_page(new_page); 2029 unlock_page(page); 2030 put_page(page); /* Drop the rmap reference */ 2031 put_page(page); /* Drop the LRU isolation reference */ 2032 2033 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2034 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2035 2036 mod_node_page_state(page_pgdat(page), 2037 NR_ISOLATED_ANON + page_lru, 2038 -HPAGE_PMD_NR); 2039 return isolated; 2040 2041 out_fail: 2042 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2043 out_dropref: 2044 ptl = pmd_lock(mm, pmd); 2045 if (pmd_same(*pmd, entry)) { 2046 entry = pmd_modify(entry, vma->vm_page_prot); 2047 set_pmd_at(mm, mmun_start, pmd, entry); 2048 update_mmu_cache_pmd(vma, address, &entry); 2049 } 2050 spin_unlock(ptl); 2051 2052 out_unlock: 2053 unlock_page(page); 2054 put_page(page); 2055 return 0; 2056 } 2057 #endif /* CONFIG_NUMA_BALANCING */ 2058 2059 #endif /* CONFIG_NUMA */ 2060