xref: /openbmc/linux/mm/migrate.c (revision 7490ca1e)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * migrate_prep() needs to be called before we start compiling a list of pages
44  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45  * undesirable, use migrate_prep_local()
46  */
47 int migrate_prep(void)
48 {
49 	/*
50 	 * Clear the LRU lists so pages can be isolated.
51 	 * Note that pages may be moved off the LRU after we have
52 	 * drained them. Those pages will fail to migrate like other
53 	 * pages that may be busy.
54 	 */
55 	lru_add_drain_all();
56 
57 	return 0;
58 }
59 
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
62 {
63 	lru_add_drain();
64 
65 	return 0;
66 }
67 
68 /*
69  * Add isolated pages on the list back to the LRU under page lock
70  * to avoid leaking evictable pages back onto unevictable list.
71  */
72 void putback_lru_pages(struct list_head *l)
73 {
74 	struct page *page;
75 	struct page *page2;
76 
77 	list_for_each_entry_safe(page, page2, l, lru) {
78 		list_del(&page->lru);
79 		dec_zone_page_state(page, NR_ISOLATED_ANON +
80 				page_is_file_cache(page));
81 		putback_lru_page(page);
82 	}
83 }
84 
85 /*
86  * Restore a potential migration pte to a working pte entry
87  */
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 				 unsigned long addr, void *old)
90 {
91 	struct mm_struct *mm = vma->vm_mm;
92 	swp_entry_t entry;
93  	pgd_t *pgd;
94  	pud_t *pud;
95  	pmd_t *pmd;
96 	pte_t *ptep, pte;
97  	spinlock_t *ptl;
98 
99 	if (unlikely(PageHuge(new))) {
100 		ptep = huge_pte_offset(mm, addr);
101 		if (!ptep)
102 			goto out;
103 		ptl = &mm->page_table_lock;
104 	} else {
105 		pgd = pgd_offset(mm, addr);
106 		if (!pgd_present(*pgd))
107 			goto out;
108 
109 		pud = pud_offset(pgd, addr);
110 		if (!pud_present(*pud))
111 			goto out;
112 
113 		pmd = pmd_offset(pud, addr);
114 		if (pmd_trans_huge(*pmd))
115 			goto out;
116 		if (!pmd_present(*pmd))
117 			goto out;
118 
119 		ptep = pte_offset_map(pmd, addr);
120 
121 		/*
122 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
123 		 * can race mremap's move_ptes(), which skips anon_vma lock.
124 		 */
125 
126 		ptl = pte_lockptr(mm, pmd);
127 	}
128 
129  	spin_lock(ptl);
130 	pte = *ptep;
131 	if (!is_swap_pte(pte))
132 		goto unlock;
133 
134 	entry = pte_to_swp_entry(pte);
135 
136 	if (!is_migration_entry(entry) ||
137 	    migration_entry_to_page(entry) != old)
138 		goto unlock;
139 
140 	get_page(new);
141 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 	if (is_write_migration_entry(entry))
143 		pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 	if (PageHuge(new))
146 		pte = pte_mkhuge(pte);
147 #endif
148 	flush_cache_page(vma, addr, pte_pfn(pte));
149 	set_pte_at(mm, addr, ptep, pte);
150 
151 	if (PageHuge(new)) {
152 		if (PageAnon(new))
153 			hugepage_add_anon_rmap(new, vma, addr);
154 		else
155 			page_dup_rmap(new);
156 	} else if (PageAnon(new))
157 		page_add_anon_rmap(new, vma, addr);
158 	else
159 		page_add_file_rmap(new);
160 
161 	/* No need to invalidate - it was non-present before */
162 	update_mmu_cache(vma, addr, ptep);
163 unlock:
164 	pte_unmap_unlock(ptep, ptl);
165 out:
166 	return SWAP_AGAIN;
167 }
168 
169 /*
170  * Get rid of all migration entries and replace them by
171  * references to the indicated page.
172  */
173 static void remove_migration_ptes(struct page *old, struct page *new)
174 {
175 	rmap_walk(new, remove_migration_pte, old);
176 }
177 
178 /*
179  * Something used the pte of a page under migration. We need to
180  * get to the page and wait until migration is finished.
181  * When we return from this function the fault will be retried.
182  */
183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 				unsigned long address)
185 {
186 	pte_t *ptep, pte;
187 	spinlock_t *ptl;
188 	swp_entry_t entry;
189 	struct page *page;
190 
191 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 	pte = *ptep;
193 	if (!is_swap_pte(pte))
194 		goto out;
195 
196 	entry = pte_to_swp_entry(pte);
197 	if (!is_migration_entry(entry))
198 		goto out;
199 
200 	page = migration_entry_to_page(entry);
201 
202 	/*
203 	 * Once radix-tree replacement of page migration started, page_count
204 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 	 * against a page without get_page().
206 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 	 * will occur again.
208 	 */
209 	if (!get_page_unless_zero(page))
210 		goto out;
211 	pte_unmap_unlock(ptep, ptl);
212 	wait_on_page_locked(page);
213 	put_page(page);
214 	return;
215 out:
216 	pte_unmap_unlock(ptep, ptl);
217 }
218 
219 #ifdef CONFIG_BLOCK
220 /* Returns true if all buffers are successfully locked */
221 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
222 							enum migrate_mode mode)
223 {
224 	struct buffer_head *bh = head;
225 
226 	/* Simple case, sync compaction */
227 	if (mode != MIGRATE_ASYNC) {
228 		do {
229 			get_bh(bh);
230 			lock_buffer(bh);
231 			bh = bh->b_this_page;
232 
233 		} while (bh != head);
234 
235 		return true;
236 	}
237 
238 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
239 	do {
240 		get_bh(bh);
241 		if (!trylock_buffer(bh)) {
242 			/*
243 			 * We failed to lock the buffer and cannot stall in
244 			 * async migration. Release the taken locks
245 			 */
246 			struct buffer_head *failed_bh = bh;
247 			put_bh(failed_bh);
248 			bh = head;
249 			while (bh != failed_bh) {
250 				unlock_buffer(bh);
251 				put_bh(bh);
252 				bh = bh->b_this_page;
253 			}
254 			return false;
255 		}
256 
257 		bh = bh->b_this_page;
258 	} while (bh != head);
259 	return true;
260 }
261 #else
262 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
263 							enum migrate_mode mode)
264 {
265 	return true;
266 }
267 #endif /* CONFIG_BLOCK */
268 
269 /*
270  * Replace the page in the mapping.
271  *
272  * The number of remaining references must be:
273  * 1 for anonymous pages without a mapping
274  * 2 for pages with a mapping
275  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
276  */
277 static int migrate_page_move_mapping(struct address_space *mapping,
278 		struct page *newpage, struct page *page,
279 		struct buffer_head *head, enum migrate_mode mode)
280 {
281 	int expected_count;
282 	void **pslot;
283 
284 	if (!mapping) {
285 		/* Anonymous page without mapping */
286 		if (page_count(page) != 1)
287 			return -EAGAIN;
288 		return 0;
289 	}
290 
291 	spin_lock_irq(&mapping->tree_lock);
292 
293 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
294  					page_index(page));
295 
296 	expected_count = 2 + page_has_private(page);
297 	if (page_count(page) != expected_count ||
298 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
299 		spin_unlock_irq(&mapping->tree_lock);
300 		return -EAGAIN;
301 	}
302 
303 	if (!page_freeze_refs(page, expected_count)) {
304 		spin_unlock_irq(&mapping->tree_lock);
305 		return -EAGAIN;
306 	}
307 
308 	/*
309 	 * In the async migration case of moving a page with buffers, lock the
310 	 * buffers using trylock before the mapping is moved. If the mapping
311 	 * was moved, we later failed to lock the buffers and could not move
312 	 * the mapping back due to an elevated page count, we would have to
313 	 * block waiting on other references to be dropped.
314 	 */
315 	if (mode == MIGRATE_ASYNC && head &&
316 			!buffer_migrate_lock_buffers(head, mode)) {
317 		page_unfreeze_refs(page, expected_count);
318 		spin_unlock_irq(&mapping->tree_lock);
319 		return -EAGAIN;
320 	}
321 
322 	/*
323 	 * Now we know that no one else is looking at the page.
324 	 */
325 	get_page(newpage);	/* add cache reference */
326 	if (PageSwapCache(page)) {
327 		SetPageSwapCache(newpage);
328 		set_page_private(newpage, page_private(page));
329 	}
330 
331 	radix_tree_replace_slot(pslot, newpage);
332 
333 	/*
334 	 * Drop cache reference from old page by unfreezing
335 	 * to one less reference.
336 	 * We know this isn't the last reference.
337 	 */
338 	page_unfreeze_refs(page, expected_count - 1);
339 
340 	/*
341 	 * If moved to a different zone then also account
342 	 * the page for that zone. Other VM counters will be
343 	 * taken care of when we establish references to the
344 	 * new page and drop references to the old page.
345 	 *
346 	 * Note that anonymous pages are accounted for
347 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
348 	 * are mapped to swap space.
349 	 */
350 	__dec_zone_page_state(page, NR_FILE_PAGES);
351 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
352 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
353 		__dec_zone_page_state(page, NR_SHMEM);
354 		__inc_zone_page_state(newpage, NR_SHMEM);
355 	}
356 	spin_unlock_irq(&mapping->tree_lock);
357 
358 	return 0;
359 }
360 
361 /*
362  * The expected number of remaining references is the same as that
363  * of migrate_page_move_mapping().
364  */
365 int migrate_huge_page_move_mapping(struct address_space *mapping,
366 				   struct page *newpage, struct page *page)
367 {
368 	int expected_count;
369 	void **pslot;
370 
371 	if (!mapping) {
372 		if (page_count(page) != 1)
373 			return -EAGAIN;
374 		return 0;
375 	}
376 
377 	spin_lock_irq(&mapping->tree_lock);
378 
379 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
380 					page_index(page));
381 
382 	expected_count = 2 + page_has_private(page);
383 	if (page_count(page) != expected_count ||
384 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
385 		spin_unlock_irq(&mapping->tree_lock);
386 		return -EAGAIN;
387 	}
388 
389 	if (!page_freeze_refs(page, expected_count)) {
390 		spin_unlock_irq(&mapping->tree_lock);
391 		return -EAGAIN;
392 	}
393 
394 	get_page(newpage);
395 
396 	radix_tree_replace_slot(pslot, newpage);
397 
398 	page_unfreeze_refs(page, expected_count - 1);
399 
400 	spin_unlock_irq(&mapping->tree_lock);
401 	return 0;
402 }
403 
404 /*
405  * Copy the page to its new location
406  */
407 void migrate_page_copy(struct page *newpage, struct page *page)
408 {
409 	if (PageHuge(page))
410 		copy_huge_page(newpage, page);
411 	else
412 		copy_highpage(newpage, page);
413 
414 	if (PageError(page))
415 		SetPageError(newpage);
416 	if (PageReferenced(page))
417 		SetPageReferenced(newpage);
418 	if (PageUptodate(page))
419 		SetPageUptodate(newpage);
420 	if (TestClearPageActive(page)) {
421 		VM_BUG_ON(PageUnevictable(page));
422 		SetPageActive(newpage);
423 	} else if (TestClearPageUnevictable(page))
424 		SetPageUnevictable(newpage);
425 	if (PageChecked(page))
426 		SetPageChecked(newpage);
427 	if (PageMappedToDisk(page))
428 		SetPageMappedToDisk(newpage);
429 
430 	if (PageDirty(page)) {
431 		clear_page_dirty_for_io(page);
432 		/*
433 		 * Want to mark the page and the radix tree as dirty, and
434 		 * redo the accounting that clear_page_dirty_for_io undid,
435 		 * but we can't use set_page_dirty because that function
436 		 * is actually a signal that all of the page has become dirty.
437 		 * Whereas only part of our page may be dirty.
438 		 */
439 		__set_page_dirty_nobuffers(newpage);
440  	}
441 
442 	mlock_migrate_page(newpage, page);
443 	ksm_migrate_page(newpage, page);
444 
445 	ClearPageSwapCache(page);
446 	ClearPagePrivate(page);
447 	set_page_private(page, 0);
448 
449 	/*
450 	 * If any waiters have accumulated on the new page then
451 	 * wake them up.
452 	 */
453 	if (PageWriteback(newpage))
454 		end_page_writeback(newpage);
455 }
456 
457 /************************************************************
458  *                    Migration functions
459  ***********************************************************/
460 
461 /* Always fail migration. Used for mappings that are not movable */
462 int fail_migrate_page(struct address_space *mapping,
463 			struct page *newpage, struct page *page)
464 {
465 	return -EIO;
466 }
467 EXPORT_SYMBOL(fail_migrate_page);
468 
469 /*
470  * Common logic to directly migrate a single page suitable for
471  * pages that do not use PagePrivate/PagePrivate2.
472  *
473  * Pages are locked upon entry and exit.
474  */
475 int migrate_page(struct address_space *mapping,
476 		struct page *newpage, struct page *page,
477 		enum migrate_mode mode)
478 {
479 	int rc;
480 
481 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
482 
483 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
484 
485 	if (rc)
486 		return rc;
487 
488 	migrate_page_copy(newpage, page);
489 	return 0;
490 }
491 EXPORT_SYMBOL(migrate_page);
492 
493 #ifdef CONFIG_BLOCK
494 /*
495  * Migration function for pages with buffers. This function can only be used
496  * if the underlying filesystem guarantees that no other references to "page"
497  * exist.
498  */
499 int buffer_migrate_page(struct address_space *mapping,
500 		struct page *newpage, struct page *page, enum migrate_mode mode)
501 {
502 	struct buffer_head *bh, *head;
503 	int rc;
504 
505 	if (!page_has_buffers(page))
506 		return migrate_page(mapping, newpage, page, mode);
507 
508 	head = page_buffers(page);
509 
510 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
511 
512 	if (rc)
513 		return rc;
514 
515 	/*
516 	 * In the async case, migrate_page_move_mapping locked the buffers
517 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
518 	 * need to be locked now
519 	 */
520 	if (mode != MIGRATE_ASYNC)
521 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
522 
523 	ClearPagePrivate(page);
524 	set_page_private(newpage, page_private(page));
525 	set_page_private(page, 0);
526 	put_page(page);
527 	get_page(newpage);
528 
529 	bh = head;
530 	do {
531 		set_bh_page(bh, newpage, bh_offset(bh));
532 		bh = bh->b_this_page;
533 
534 	} while (bh != head);
535 
536 	SetPagePrivate(newpage);
537 
538 	migrate_page_copy(newpage, page);
539 
540 	bh = head;
541 	do {
542 		unlock_buffer(bh);
543  		put_bh(bh);
544 		bh = bh->b_this_page;
545 
546 	} while (bh != head);
547 
548 	return 0;
549 }
550 EXPORT_SYMBOL(buffer_migrate_page);
551 #endif
552 
553 /*
554  * Writeback a page to clean the dirty state
555  */
556 static int writeout(struct address_space *mapping, struct page *page)
557 {
558 	struct writeback_control wbc = {
559 		.sync_mode = WB_SYNC_NONE,
560 		.nr_to_write = 1,
561 		.range_start = 0,
562 		.range_end = LLONG_MAX,
563 		.for_reclaim = 1
564 	};
565 	int rc;
566 
567 	if (!mapping->a_ops->writepage)
568 		/* No write method for the address space */
569 		return -EINVAL;
570 
571 	if (!clear_page_dirty_for_io(page))
572 		/* Someone else already triggered a write */
573 		return -EAGAIN;
574 
575 	/*
576 	 * A dirty page may imply that the underlying filesystem has
577 	 * the page on some queue. So the page must be clean for
578 	 * migration. Writeout may mean we loose the lock and the
579 	 * page state is no longer what we checked for earlier.
580 	 * At this point we know that the migration attempt cannot
581 	 * be successful.
582 	 */
583 	remove_migration_ptes(page, page);
584 
585 	rc = mapping->a_ops->writepage(page, &wbc);
586 
587 	if (rc != AOP_WRITEPAGE_ACTIVATE)
588 		/* unlocked. Relock */
589 		lock_page(page);
590 
591 	return (rc < 0) ? -EIO : -EAGAIN;
592 }
593 
594 /*
595  * Default handling if a filesystem does not provide a migration function.
596  */
597 static int fallback_migrate_page(struct address_space *mapping,
598 	struct page *newpage, struct page *page, enum migrate_mode mode)
599 {
600 	if (PageDirty(page)) {
601 		/* Only writeback pages in full synchronous migration */
602 		if (mode != MIGRATE_SYNC)
603 			return -EBUSY;
604 		return writeout(mapping, page);
605 	}
606 
607 	/*
608 	 * Buffers may be managed in a filesystem specific way.
609 	 * We must have no buffers or drop them.
610 	 */
611 	if (page_has_private(page) &&
612 	    !try_to_release_page(page, GFP_KERNEL))
613 		return -EAGAIN;
614 
615 	return migrate_page(mapping, newpage, page, mode);
616 }
617 
618 /*
619  * Move a page to a newly allocated page
620  * The page is locked and all ptes have been successfully removed.
621  *
622  * The new page will have replaced the old page if this function
623  * is successful.
624  *
625  * Return value:
626  *   < 0 - error code
627  *  == 0 - success
628  */
629 static int move_to_new_page(struct page *newpage, struct page *page,
630 				int remap_swapcache, enum migrate_mode mode)
631 {
632 	struct address_space *mapping;
633 	int rc;
634 
635 	/*
636 	 * Block others from accessing the page when we get around to
637 	 * establishing additional references. We are the only one
638 	 * holding a reference to the new page at this point.
639 	 */
640 	if (!trylock_page(newpage))
641 		BUG();
642 
643 	/* Prepare mapping for the new page.*/
644 	newpage->index = page->index;
645 	newpage->mapping = page->mapping;
646 	if (PageSwapBacked(page))
647 		SetPageSwapBacked(newpage);
648 
649 	mapping = page_mapping(page);
650 	if (!mapping)
651 		rc = migrate_page(mapping, newpage, page, mode);
652 	else if (mapping->a_ops->migratepage)
653 		/*
654 		 * Most pages have a mapping and most filesystems provide a
655 		 * migratepage callback. Anonymous pages are part of swap
656 		 * space which also has its own migratepage callback. This
657 		 * is the most common path for page migration.
658 		 */
659 		rc = mapping->a_ops->migratepage(mapping,
660 						newpage, page, mode);
661 	else
662 		rc = fallback_migrate_page(mapping, newpage, page, mode);
663 
664 	if (rc) {
665 		newpage->mapping = NULL;
666 	} else {
667 		if (remap_swapcache)
668 			remove_migration_ptes(page, newpage);
669 		page->mapping = NULL;
670 	}
671 
672 	unlock_page(newpage);
673 
674 	return rc;
675 }
676 
677 static int __unmap_and_move(struct page *page, struct page *newpage,
678 			int force, bool offlining, enum migrate_mode mode)
679 {
680 	int rc = -EAGAIN;
681 	int remap_swapcache = 1;
682 	int charge = 0;
683 	struct mem_cgroup *mem;
684 	struct anon_vma *anon_vma = NULL;
685 
686 	if (!trylock_page(page)) {
687 		if (!force || mode == MIGRATE_ASYNC)
688 			goto out;
689 
690 		/*
691 		 * It's not safe for direct compaction to call lock_page.
692 		 * For example, during page readahead pages are added locked
693 		 * to the LRU. Later, when the IO completes the pages are
694 		 * marked uptodate and unlocked. However, the queueing
695 		 * could be merging multiple pages for one bio (e.g.
696 		 * mpage_readpages). If an allocation happens for the
697 		 * second or third page, the process can end up locking
698 		 * the same page twice and deadlocking. Rather than
699 		 * trying to be clever about what pages can be locked,
700 		 * avoid the use of lock_page for direct compaction
701 		 * altogether.
702 		 */
703 		if (current->flags & PF_MEMALLOC)
704 			goto out;
705 
706 		lock_page(page);
707 	}
708 
709 	/*
710 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
711 	 * and can safely migrate a KSM page.  The other cases have skipped
712 	 * PageKsm along with PageReserved - but it is only now when we have
713 	 * the page lock that we can be certain it will not go KSM beneath us
714 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
715 	 * its pagecount raised, but only here do we take the page lock which
716 	 * serializes that).
717 	 */
718 	if (PageKsm(page) && !offlining) {
719 		rc = -EBUSY;
720 		goto unlock;
721 	}
722 
723 	/* charge against new page */
724 	charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
725 	if (charge == -ENOMEM) {
726 		rc = -ENOMEM;
727 		goto unlock;
728 	}
729 	BUG_ON(charge);
730 
731 	if (PageWriteback(page)) {
732 		/*
733 		 * Only in the case of a full syncronous migration is it
734 		 * necessary to wait for PageWriteback. In the async case,
735 		 * the retry loop is too short and in the sync-light case,
736 		 * the overhead of stalling is too much
737 		 */
738 		if (mode != MIGRATE_SYNC) {
739 			rc = -EBUSY;
740 			goto uncharge;
741 		}
742 		if (!force)
743 			goto uncharge;
744 		wait_on_page_writeback(page);
745 	}
746 	/*
747 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
748 	 * we cannot notice that anon_vma is freed while we migrates a page.
749 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
750 	 * of migration. File cache pages are no problem because of page_lock()
751 	 * File Caches may use write_page() or lock_page() in migration, then,
752 	 * just care Anon page here.
753 	 */
754 	if (PageAnon(page)) {
755 		/*
756 		 * Only page_lock_anon_vma() understands the subtleties of
757 		 * getting a hold on an anon_vma from outside one of its mms.
758 		 */
759 		anon_vma = page_get_anon_vma(page);
760 		if (anon_vma) {
761 			/*
762 			 * Anon page
763 			 */
764 		} else if (PageSwapCache(page)) {
765 			/*
766 			 * We cannot be sure that the anon_vma of an unmapped
767 			 * swapcache page is safe to use because we don't
768 			 * know in advance if the VMA that this page belonged
769 			 * to still exists. If the VMA and others sharing the
770 			 * data have been freed, then the anon_vma could
771 			 * already be invalid.
772 			 *
773 			 * To avoid this possibility, swapcache pages get
774 			 * migrated but are not remapped when migration
775 			 * completes
776 			 */
777 			remap_swapcache = 0;
778 		} else {
779 			goto uncharge;
780 		}
781 	}
782 
783 	/*
784 	 * Corner case handling:
785 	 * 1. When a new swap-cache page is read into, it is added to the LRU
786 	 * and treated as swapcache but it has no rmap yet.
787 	 * Calling try_to_unmap() against a page->mapping==NULL page will
788 	 * trigger a BUG.  So handle it here.
789 	 * 2. An orphaned page (see truncate_complete_page) might have
790 	 * fs-private metadata. The page can be picked up due to memory
791 	 * offlining.  Everywhere else except page reclaim, the page is
792 	 * invisible to the vm, so the page can not be migrated.  So try to
793 	 * free the metadata, so the page can be freed.
794 	 */
795 	if (!page->mapping) {
796 		VM_BUG_ON(PageAnon(page));
797 		if (page_has_private(page)) {
798 			try_to_free_buffers(page);
799 			goto uncharge;
800 		}
801 		goto skip_unmap;
802 	}
803 
804 	/* Establish migration ptes or remove ptes */
805 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
806 
807 skip_unmap:
808 	if (!page_mapped(page))
809 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
810 
811 	if (rc && remap_swapcache)
812 		remove_migration_ptes(page, page);
813 
814 	/* Drop an anon_vma reference if we took one */
815 	if (anon_vma)
816 		put_anon_vma(anon_vma);
817 
818 uncharge:
819 	if (!charge)
820 		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
821 unlock:
822 	unlock_page(page);
823 out:
824 	return rc;
825 }
826 
827 /*
828  * Obtain the lock on page, remove all ptes and migrate the page
829  * to the newly allocated page in newpage.
830  */
831 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
832 			struct page *page, int force, bool offlining,
833 			enum migrate_mode mode)
834 {
835 	int rc = 0;
836 	int *result = NULL;
837 	struct page *newpage = get_new_page(page, private, &result);
838 
839 	if (!newpage)
840 		return -ENOMEM;
841 
842 	mem_cgroup_reset_owner(newpage);
843 
844 	if (page_count(page) == 1) {
845 		/* page was freed from under us. So we are done. */
846 		goto out;
847 	}
848 
849 	if (unlikely(PageTransHuge(page)))
850 		if (unlikely(split_huge_page(page)))
851 			goto out;
852 
853 	rc = __unmap_and_move(page, newpage, force, offlining, mode);
854 out:
855 	if (rc != -EAGAIN) {
856 		/*
857 		 * A page that has been migrated has all references
858 		 * removed and will be freed. A page that has not been
859 		 * migrated will have kepts its references and be
860 		 * restored.
861 		 */
862 		list_del(&page->lru);
863 		dec_zone_page_state(page, NR_ISOLATED_ANON +
864 				page_is_file_cache(page));
865 		putback_lru_page(page);
866 	}
867 	/*
868 	 * Move the new page to the LRU. If migration was not successful
869 	 * then this will free the page.
870 	 */
871 	putback_lru_page(newpage);
872 	if (result) {
873 		if (rc)
874 			*result = rc;
875 		else
876 			*result = page_to_nid(newpage);
877 	}
878 	return rc;
879 }
880 
881 /*
882  * Counterpart of unmap_and_move_page() for hugepage migration.
883  *
884  * This function doesn't wait the completion of hugepage I/O
885  * because there is no race between I/O and migration for hugepage.
886  * Note that currently hugepage I/O occurs only in direct I/O
887  * where no lock is held and PG_writeback is irrelevant,
888  * and writeback status of all subpages are counted in the reference
889  * count of the head page (i.e. if all subpages of a 2MB hugepage are
890  * under direct I/O, the reference of the head page is 512 and a bit more.)
891  * This means that when we try to migrate hugepage whose subpages are
892  * doing direct I/O, some references remain after try_to_unmap() and
893  * hugepage migration fails without data corruption.
894  *
895  * There is also no race when direct I/O is issued on the page under migration,
896  * because then pte is replaced with migration swap entry and direct I/O code
897  * will wait in the page fault for migration to complete.
898  */
899 static int unmap_and_move_huge_page(new_page_t get_new_page,
900 				unsigned long private, struct page *hpage,
901 				int force, bool offlining,
902 				enum migrate_mode mode)
903 {
904 	int rc = 0;
905 	int *result = NULL;
906 	struct page *new_hpage = get_new_page(hpage, private, &result);
907 	struct anon_vma *anon_vma = NULL;
908 
909 	if (!new_hpage)
910 		return -ENOMEM;
911 
912 	rc = -EAGAIN;
913 
914 	if (!trylock_page(hpage)) {
915 		if (!force || mode != MIGRATE_SYNC)
916 			goto out;
917 		lock_page(hpage);
918 	}
919 
920 	if (PageAnon(hpage))
921 		anon_vma = page_get_anon_vma(hpage);
922 
923 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
924 
925 	if (!page_mapped(hpage))
926 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
927 
928 	if (rc)
929 		remove_migration_ptes(hpage, hpage);
930 
931 	if (anon_vma)
932 		put_anon_vma(anon_vma);
933 	unlock_page(hpage);
934 
935 out:
936 	if (rc != -EAGAIN) {
937 		list_del(&hpage->lru);
938 		put_page(hpage);
939 	}
940 
941 	put_page(new_hpage);
942 
943 	if (result) {
944 		if (rc)
945 			*result = rc;
946 		else
947 			*result = page_to_nid(new_hpage);
948 	}
949 	return rc;
950 }
951 
952 /*
953  * migrate_pages
954  *
955  * The function takes one list of pages to migrate and a function
956  * that determines from the page to be migrated and the private data
957  * the target of the move and allocates the page.
958  *
959  * The function returns after 10 attempts or if no pages
960  * are movable anymore because to has become empty
961  * or no retryable pages exist anymore.
962  * Caller should call putback_lru_pages to return pages to the LRU
963  * or free list only if ret != 0.
964  *
965  * Return: Number of pages not migrated or error code.
966  */
967 int migrate_pages(struct list_head *from,
968 		new_page_t get_new_page, unsigned long private, bool offlining,
969 		enum migrate_mode mode)
970 {
971 	int retry = 1;
972 	int nr_failed = 0;
973 	int pass = 0;
974 	struct page *page;
975 	struct page *page2;
976 	int swapwrite = current->flags & PF_SWAPWRITE;
977 	int rc;
978 
979 	if (!swapwrite)
980 		current->flags |= PF_SWAPWRITE;
981 
982 	for(pass = 0; pass < 10 && retry; pass++) {
983 		retry = 0;
984 
985 		list_for_each_entry_safe(page, page2, from, lru) {
986 			cond_resched();
987 
988 			rc = unmap_and_move(get_new_page, private,
989 						page, pass > 2, offlining,
990 						mode);
991 
992 			switch(rc) {
993 			case -ENOMEM:
994 				goto out;
995 			case -EAGAIN:
996 				retry++;
997 				break;
998 			case 0:
999 				break;
1000 			default:
1001 				/* Permanent failure */
1002 				nr_failed++;
1003 				break;
1004 			}
1005 		}
1006 	}
1007 	rc = 0;
1008 out:
1009 	if (!swapwrite)
1010 		current->flags &= ~PF_SWAPWRITE;
1011 
1012 	if (rc)
1013 		return rc;
1014 
1015 	return nr_failed + retry;
1016 }
1017 
1018 int migrate_huge_pages(struct list_head *from,
1019 		new_page_t get_new_page, unsigned long private, bool offlining,
1020 		enum migrate_mode mode)
1021 {
1022 	int retry = 1;
1023 	int nr_failed = 0;
1024 	int pass = 0;
1025 	struct page *page;
1026 	struct page *page2;
1027 	int rc;
1028 
1029 	for (pass = 0; pass < 10 && retry; pass++) {
1030 		retry = 0;
1031 
1032 		list_for_each_entry_safe(page, page2, from, lru) {
1033 			cond_resched();
1034 
1035 			rc = unmap_and_move_huge_page(get_new_page,
1036 					private, page, pass > 2, offlining,
1037 					mode);
1038 
1039 			switch(rc) {
1040 			case -ENOMEM:
1041 				goto out;
1042 			case -EAGAIN:
1043 				retry++;
1044 				break;
1045 			case 0:
1046 				break;
1047 			default:
1048 				/* Permanent failure */
1049 				nr_failed++;
1050 				break;
1051 			}
1052 		}
1053 	}
1054 	rc = 0;
1055 out:
1056 	if (rc)
1057 		return rc;
1058 
1059 	return nr_failed + retry;
1060 }
1061 
1062 #ifdef CONFIG_NUMA
1063 /*
1064  * Move a list of individual pages
1065  */
1066 struct page_to_node {
1067 	unsigned long addr;
1068 	struct page *page;
1069 	int node;
1070 	int status;
1071 };
1072 
1073 static struct page *new_page_node(struct page *p, unsigned long private,
1074 		int **result)
1075 {
1076 	struct page_to_node *pm = (struct page_to_node *)private;
1077 
1078 	while (pm->node != MAX_NUMNODES && pm->page != p)
1079 		pm++;
1080 
1081 	if (pm->node == MAX_NUMNODES)
1082 		return NULL;
1083 
1084 	*result = &pm->status;
1085 
1086 	return alloc_pages_exact_node(pm->node,
1087 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1088 }
1089 
1090 /*
1091  * Move a set of pages as indicated in the pm array. The addr
1092  * field must be set to the virtual address of the page to be moved
1093  * and the node number must contain a valid target node.
1094  * The pm array ends with node = MAX_NUMNODES.
1095  */
1096 static int do_move_page_to_node_array(struct mm_struct *mm,
1097 				      struct page_to_node *pm,
1098 				      int migrate_all)
1099 {
1100 	int err;
1101 	struct page_to_node *pp;
1102 	LIST_HEAD(pagelist);
1103 
1104 	down_read(&mm->mmap_sem);
1105 
1106 	/*
1107 	 * Build a list of pages to migrate
1108 	 */
1109 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1110 		struct vm_area_struct *vma;
1111 		struct page *page;
1112 
1113 		err = -EFAULT;
1114 		vma = find_vma(mm, pp->addr);
1115 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1116 			goto set_status;
1117 
1118 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1119 
1120 		err = PTR_ERR(page);
1121 		if (IS_ERR(page))
1122 			goto set_status;
1123 
1124 		err = -ENOENT;
1125 		if (!page)
1126 			goto set_status;
1127 
1128 		/* Use PageReserved to check for zero page */
1129 		if (PageReserved(page) || PageKsm(page))
1130 			goto put_and_set;
1131 
1132 		pp->page = page;
1133 		err = page_to_nid(page);
1134 
1135 		if (err == pp->node)
1136 			/*
1137 			 * Node already in the right place
1138 			 */
1139 			goto put_and_set;
1140 
1141 		err = -EACCES;
1142 		if (page_mapcount(page) > 1 &&
1143 				!migrate_all)
1144 			goto put_and_set;
1145 
1146 		err = isolate_lru_page(page);
1147 		if (!err) {
1148 			list_add_tail(&page->lru, &pagelist);
1149 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1150 					    page_is_file_cache(page));
1151 		}
1152 put_and_set:
1153 		/*
1154 		 * Either remove the duplicate refcount from
1155 		 * isolate_lru_page() or drop the page ref if it was
1156 		 * not isolated.
1157 		 */
1158 		put_page(page);
1159 set_status:
1160 		pp->status = err;
1161 	}
1162 
1163 	err = 0;
1164 	if (!list_empty(&pagelist)) {
1165 		err = migrate_pages(&pagelist, new_page_node,
1166 				(unsigned long)pm, 0, MIGRATE_SYNC);
1167 		if (err)
1168 			putback_lru_pages(&pagelist);
1169 	}
1170 
1171 	up_read(&mm->mmap_sem);
1172 	return err;
1173 }
1174 
1175 /*
1176  * Migrate an array of page address onto an array of nodes and fill
1177  * the corresponding array of status.
1178  */
1179 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1180 			 unsigned long nr_pages,
1181 			 const void __user * __user *pages,
1182 			 const int __user *nodes,
1183 			 int __user *status, int flags)
1184 {
1185 	struct page_to_node *pm;
1186 	nodemask_t task_nodes;
1187 	unsigned long chunk_nr_pages;
1188 	unsigned long chunk_start;
1189 	int err;
1190 
1191 	task_nodes = cpuset_mems_allowed(task);
1192 
1193 	err = -ENOMEM;
1194 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1195 	if (!pm)
1196 		goto out;
1197 
1198 	migrate_prep();
1199 
1200 	/*
1201 	 * Store a chunk of page_to_node array in a page,
1202 	 * but keep the last one as a marker
1203 	 */
1204 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1205 
1206 	for (chunk_start = 0;
1207 	     chunk_start < nr_pages;
1208 	     chunk_start += chunk_nr_pages) {
1209 		int j;
1210 
1211 		if (chunk_start + chunk_nr_pages > nr_pages)
1212 			chunk_nr_pages = nr_pages - chunk_start;
1213 
1214 		/* fill the chunk pm with addrs and nodes from user-space */
1215 		for (j = 0; j < chunk_nr_pages; j++) {
1216 			const void __user *p;
1217 			int node;
1218 
1219 			err = -EFAULT;
1220 			if (get_user(p, pages + j + chunk_start))
1221 				goto out_pm;
1222 			pm[j].addr = (unsigned long) p;
1223 
1224 			if (get_user(node, nodes + j + chunk_start))
1225 				goto out_pm;
1226 
1227 			err = -ENODEV;
1228 			if (node < 0 || node >= MAX_NUMNODES)
1229 				goto out_pm;
1230 
1231 			if (!node_state(node, N_HIGH_MEMORY))
1232 				goto out_pm;
1233 
1234 			err = -EACCES;
1235 			if (!node_isset(node, task_nodes))
1236 				goto out_pm;
1237 
1238 			pm[j].node = node;
1239 		}
1240 
1241 		/* End marker for this chunk */
1242 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1243 
1244 		/* Migrate this chunk */
1245 		err = do_move_page_to_node_array(mm, pm,
1246 						 flags & MPOL_MF_MOVE_ALL);
1247 		if (err < 0)
1248 			goto out_pm;
1249 
1250 		/* Return status information */
1251 		for (j = 0; j < chunk_nr_pages; j++)
1252 			if (put_user(pm[j].status, status + j + chunk_start)) {
1253 				err = -EFAULT;
1254 				goto out_pm;
1255 			}
1256 	}
1257 	err = 0;
1258 
1259 out_pm:
1260 	free_page((unsigned long)pm);
1261 out:
1262 	return err;
1263 }
1264 
1265 /*
1266  * Determine the nodes of an array of pages and store it in an array of status.
1267  */
1268 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1269 				const void __user **pages, int *status)
1270 {
1271 	unsigned long i;
1272 
1273 	down_read(&mm->mmap_sem);
1274 
1275 	for (i = 0; i < nr_pages; i++) {
1276 		unsigned long addr = (unsigned long)(*pages);
1277 		struct vm_area_struct *vma;
1278 		struct page *page;
1279 		int err = -EFAULT;
1280 
1281 		vma = find_vma(mm, addr);
1282 		if (!vma || addr < vma->vm_start)
1283 			goto set_status;
1284 
1285 		page = follow_page(vma, addr, 0);
1286 
1287 		err = PTR_ERR(page);
1288 		if (IS_ERR(page))
1289 			goto set_status;
1290 
1291 		err = -ENOENT;
1292 		/* Use PageReserved to check for zero page */
1293 		if (!page || PageReserved(page) || PageKsm(page))
1294 			goto set_status;
1295 
1296 		err = page_to_nid(page);
1297 set_status:
1298 		*status = err;
1299 
1300 		pages++;
1301 		status++;
1302 	}
1303 
1304 	up_read(&mm->mmap_sem);
1305 }
1306 
1307 /*
1308  * Determine the nodes of a user array of pages and store it in
1309  * a user array of status.
1310  */
1311 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1312 			 const void __user * __user *pages,
1313 			 int __user *status)
1314 {
1315 #define DO_PAGES_STAT_CHUNK_NR 16
1316 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1317 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1318 
1319 	while (nr_pages) {
1320 		unsigned long chunk_nr;
1321 
1322 		chunk_nr = nr_pages;
1323 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1324 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1325 
1326 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1327 			break;
1328 
1329 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1330 
1331 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1332 			break;
1333 
1334 		pages += chunk_nr;
1335 		status += chunk_nr;
1336 		nr_pages -= chunk_nr;
1337 	}
1338 	return nr_pages ? -EFAULT : 0;
1339 }
1340 
1341 /*
1342  * Move a list of pages in the address space of the currently executing
1343  * process.
1344  */
1345 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1346 		const void __user * __user *, pages,
1347 		const int __user *, nodes,
1348 		int __user *, status, int, flags)
1349 {
1350 	const struct cred *cred = current_cred(), *tcred;
1351 	struct task_struct *task;
1352 	struct mm_struct *mm;
1353 	int err;
1354 
1355 	/* Check flags */
1356 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1357 		return -EINVAL;
1358 
1359 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1360 		return -EPERM;
1361 
1362 	/* Find the mm_struct */
1363 	rcu_read_lock();
1364 	task = pid ? find_task_by_vpid(pid) : current;
1365 	if (!task) {
1366 		rcu_read_unlock();
1367 		return -ESRCH;
1368 	}
1369 	mm = get_task_mm(task);
1370 	rcu_read_unlock();
1371 
1372 	if (!mm)
1373 		return -EINVAL;
1374 
1375 	/*
1376 	 * Check if this process has the right to modify the specified
1377 	 * process. The right exists if the process has administrative
1378 	 * capabilities, superuser privileges or the same
1379 	 * userid as the target process.
1380 	 */
1381 	rcu_read_lock();
1382 	tcred = __task_cred(task);
1383 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1384 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1385 	    !capable(CAP_SYS_NICE)) {
1386 		rcu_read_unlock();
1387 		err = -EPERM;
1388 		goto out;
1389 	}
1390 	rcu_read_unlock();
1391 
1392  	err = security_task_movememory(task);
1393  	if (err)
1394 		goto out;
1395 
1396 	if (nodes) {
1397 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1398 				    flags);
1399 	} else {
1400 		err = do_pages_stat(mm, nr_pages, pages, status);
1401 	}
1402 
1403 out:
1404 	mmput(mm);
1405 	return err;
1406 }
1407 
1408 /*
1409  * Call migration functions in the vma_ops that may prepare
1410  * memory in a vm for migration. migration functions may perform
1411  * the migration for vmas that do not have an underlying page struct.
1412  */
1413 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1414 	const nodemask_t *from, unsigned long flags)
1415 {
1416  	struct vm_area_struct *vma;
1417  	int err = 0;
1418 
1419 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1420  		if (vma->vm_ops && vma->vm_ops->migrate) {
1421  			err = vma->vm_ops->migrate(vma, to, from, flags);
1422  			if (err)
1423  				break;
1424  		}
1425  	}
1426  	return err;
1427 }
1428 #endif
1429