xref: /openbmc/linux/mm/migrate.c (revision 74485cf2)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/page_owner.h>
42 
43 #include <asm/tlbflush.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47 
48 #include "internal.h"
49 
50 /*
51  * migrate_prep() needs to be called before we start compiling a list of pages
52  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53  * undesirable, use migrate_prep_local()
54  */
55 int migrate_prep(void)
56 {
57 	/*
58 	 * Clear the LRU lists so pages can be isolated.
59 	 * Note that pages may be moved off the LRU after we have
60 	 * drained them. Those pages will fail to migrate like other
61 	 * pages that may be busy.
62 	 */
63 	lru_add_drain_all();
64 
65 	return 0;
66 }
67 
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
69 int migrate_prep_local(void)
70 {
71 	lru_add_drain();
72 
73 	return 0;
74 }
75 
76 /*
77  * Put previously isolated pages back onto the appropriate lists
78  * from where they were once taken off for compaction/migration.
79  *
80  * This function shall be used whenever the isolated pageset has been
81  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82  * and isolate_huge_page().
83  */
84 void putback_movable_pages(struct list_head *l)
85 {
86 	struct page *page;
87 	struct page *page2;
88 
89 	list_for_each_entry_safe(page, page2, l, lru) {
90 		if (unlikely(PageHuge(page))) {
91 			putback_active_hugepage(page);
92 			continue;
93 		}
94 		list_del(&page->lru);
95 		dec_zone_page_state(page, NR_ISOLATED_ANON +
96 				page_is_file_cache(page));
97 		if (unlikely(isolated_balloon_page(page)))
98 			balloon_page_putback(page);
99 		else
100 			putback_lru_page(page);
101 	}
102 }
103 
104 /*
105  * Restore a potential migration pte to a working pte entry
106  */
107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 				 unsigned long addr, void *old)
109 {
110 	struct mm_struct *mm = vma->vm_mm;
111 	swp_entry_t entry;
112  	pmd_t *pmd;
113 	pte_t *ptep, pte;
114  	spinlock_t *ptl;
115 
116 	if (unlikely(PageHuge(new))) {
117 		ptep = huge_pte_offset(mm, addr);
118 		if (!ptep)
119 			goto out;
120 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 	} else {
122 		pmd = mm_find_pmd(mm, addr);
123 		if (!pmd)
124 			goto out;
125 
126 		ptep = pte_offset_map(pmd, addr);
127 
128 		/*
129 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
130 		 * can race mremap's move_ptes(), which skips anon_vma lock.
131 		 */
132 
133 		ptl = pte_lockptr(mm, pmd);
134 	}
135 
136  	spin_lock(ptl);
137 	pte = *ptep;
138 	if (!is_swap_pte(pte))
139 		goto unlock;
140 
141 	entry = pte_to_swp_entry(pte);
142 
143 	if (!is_migration_entry(entry) ||
144 	    migration_entry_to_page(entry) != old)
145 		goto unlock;
146 
147 	get_page(new);
148 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 	if (pte_swp_soft_dirty(*ptep))
150 		pte = pte_mksoft_dirty(pte);
151 
152 	/* Recheck VMA as permissions can change since migration started  */
153 	if (is_write_migration_entry(entry))
154 		pte = maybe_mkwrite(pte, vma);
155 
156 #ifdef CONFIG_HUGETLB_PAGE
157 	if (PageHuge(new)) {
158 		pte = pte_mkhuge(pte);
159 		pte = arch_make_huge_pte(pte, vma, new, 0);
160 	}
161 #endif
162 	flush_dcache_page(new);
163 	set_pte_at(mm, addr, ptep, pte);
164 
165 	if (PageHuge(new)) {
166 		if (PageAnon(new))
167 			hugepage_add_anon_rmap(new, vma, addr);
168 		else
169 			page_dup_rmap(new, true);
170 	} else if (PageAnon(new))
171 		page_add_anon_rmap(new, vma, addr, false);
172 	else
173 		page_add_file_rmap(new);
174 
175 	if (vma->vm_flags & VM_LOCKED)
176 		mlock_vma_page(new);
177 
178 	/* No need to invalidate - it was non-present before */
179 	update_mmu_cache(vma, addr, ptep);
180 unlock:
181 	pte_unmap_unlock(ptep, ptl);
182 out:
183 	return SWAP_AGAIN;
184 }
185 
186 /*
187  * Get rid of all migration entries and replace them by
188  * references to the indicated page.
189  */
190 static void remove_migration_ptes(struct page *old, struct page *new)
191 {
192 	struct rmap_walk_control rwc = {
193 		.rmap_one = remove_migration_pte,
194 		.arg = old,
195 	};
196 
197 	rmap_walk(new, &rwc);
198 }
199 
200 /*
201  * Something used the pte of a page under migration. We need to
202  * get to the page and wait until migration is finished.
203  * When we return from this function the fault will be retried.
204  */
205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
206 				spinlock_t *ptl)
207 {
208 	pte_t pte;
209 	swp_entry_t entry;
210 	struct page *page;
211 
212 	spin_lock(ptl);
213 	pte = *ptep;
214 	if (!is_swap_pte(pte))
215 		goto out;
216 
217 	entry = pte_to_swp_entry(pte);
218 	if (!is_migration_entry(entry))
219 		goto out;
220 
221 	page = migration_entry_to_page(entry);
222 
223 	/*
224 	 * Once radix-tree replacement of page migration started, page_count
225 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
226 	 * against a page without get_page().
227 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
228 	 * will occur again.
229 	 */
230 	if (!get_page_unless_zero(page))
231 		goto out;
232 	pte_unmap_unlock(ptep, ptl);
233 	wait_on_page_locked(page);
234 	put_page(page);
235 	return;
236 out:
237 	pte_unmap_unlock(ptep, ptl);
238 }
239 
240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
241 				unsigned long address)
242 {
243 	spinlock_t *ptl = pte_lockptr(mm, pmd);
244 	pte_t *ptep = pte_offset_map(pmd, address);
245 	__migration_entry_wait(mm, ptep, ptl);
246 }
247 
248 void migration_entry_wait_huge(struct vm_area_struct *vma,
249 		struct mm_struct *mm, pte_t *pte)
250 {
251 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
252 	__migration_entry_wait(mm, pte, ptl);
253 }
254 
255 #ifdef CONFIG_BLOCK
256 /* Returns true if all buffers are successfully locked */
257 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
258 							enum migrate_mode mode)
259 {
260 	struct buffer_head *bh = head;
261 
262 	/* Simple case, sync compaction */
263 	if (mode != MIGRATE_ASYNC) {
264 		do {
265 			get_bh(bh);
266 			lock_buffer(bh);
267 			bh = bh->b_this_page;
268 
269 		} while (bh != head);
270 
271 		return true;
272 	}
273 
274 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
275 	do {
276 		get_bh(bh);
277 		if (!trylock_buffer(bh)) {
278 			/*
279 			 * We failed to lock the buffer and cannot stall in
280 			 * async migration. Release the taken locks
281 			 */
282 			struct buffer_head *failed_bh = bh;
283 			put_bh(failed_bh);
284 			bh = head;
285 			while (bh != failed_bh) {
286 				unlock_buffer(bh);
287 				put_bh(bh);
288 				bh = bh->b_this_page;
289 			}
290 			return false;
291 		}
292 
293 		bh = bh->b_this_page;
294 	} while (bh != head);
295 	return true;
296 }
297 #else
298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
299 							enum migrate_mode mode)
300 {
301 	return true;
302 }
303 #endif /* CONFIG_BLOCK */
304 
305 /*
306  * Replace the page in the mapping.
307  *
308  * The number of remaining references must be:
309  * 1 for anonymous pages without a mapping
310  * 2 for pages with a mapping
311  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
312  */
313 int migrate_page_move_mapping(struct address_space *mapping,
314 		struct page *newpage, struct page *page,
315 		struct buffer_head *head, enum migrate_mode mode,
316 		int extra_count)
317 {
318 	struct zone *oldzone, *newzone;
319 	int dirty;
320 	int expected_count = 1 + extra_count;
321 	void **pslot;
322 
323 	if (!mapping) {
324 		/* Anonymous page without mapping */
325 		if (page_count(page) != expected_count)
326 			return -EAGAIN;
327 
328 		/* No turning back from here */
329 		newpage->index = page->index;
330 		newpage->mapping = page->mapping;
331 		if (PageSwapBacked(page))
332 			SetPageSwapBacked(newpage);
333 
334 		return MIGRATEPAGE_SUCCESS;
335 	}
336 
337 	oldzone = page_zone(page);
338 	newzone = page_zone(newpage);
339 
340 	spin_lock_irq(&mapping->tree_lock);
341 
342 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
343  					page_index(page));
344 
345 	expected_count += 1 + page_has_private(page);
346 	if (page_count(page) != expected_count ||
347 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
348 		spin_unlock_irq(&mapping->tree_lock);
349 		return -EAGAIN;
350 	}
351 
352 	if (!page_freeze_refs(page, expected_count)) {
353 		spin_unlock_irq(&mapping->tree_lock);
354 		return -EAGAIN;
355 	}
356 
357 	/*
358 	 * In the async migration case of moving a page with buffers, lock the
359 	 * buffers using trylock before the mapping is moved. If the mapping
360 	 * was moved, we later failed to lock the buffers and could not move
361 	 * the mapping back due to an elevated page count, we would have to
362 	 * block waiting on other references to be dropped.
363 	 */
364 	if (mode == MIGRATE_ASYNC && head &&
365 			!buffer_migrate_lock_buffers(head, mode)) {
366 		page_unfreeze_refs(page, expected_count);
367 		spin_unlock_irq(&mapping->tree_lock);
368 		return -EAGAIN;
369 	}
370 
371 	/*
372 	 * Now we know that no one else is looking at the page:
373 	 * no turning back from here.
374 	 */
375 	newpage->index = page->index;
376 	newpage->mapping = page->mapping;
377 	if (PageSwapBacked(page))
378 		SetPageSwapBacked(newpage);
379 
380 	get_page(newpage);	/* add cache reference */
381 	if (PageSwapCache(page)) {
382 		SetPageSwapCache(newpage);
383 		set_page_private(newpage, page_private(page));
384 	}
385 
386 	/* Move dirty while page refs frozen and newpage not yet exposed */
387 	dirty = PageDirty(page);
388 	if (dirty) {
389 		ClearPageDirty(page);
390 		SetPageDirty(newpage);
391 	}
392 
393 	radix_tree_replace_slot(pslot, newpage);
394 
395 	/*
396 	 * Drop cache reference from old page by unfreezing
397 	 * to one less reference.
398 	 * We know this isn't the last reference.
399 	 */
400 	page_unfreeze_refs(page, expected_count - 1);
401 
402 	spin_unlock(&mapping->tree_lock);
403 	/* Leave irq disabled to prevent preemption while updating stats */
404 
405 	/*
406 	 * If moved to a different zone then also account
407 	 * the page for that zone. Other VM counters will be
408 	 * taken care of when we establish references to the
409 	 * new page and drop references to the old page.
410 	 *
411 	 * Note that anonymous pages are accounted for
412 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
413 	 * are mapped to swap space.
414 	 */
415 	if (newzone != oldzone) {
416 		__dec_zone_state(oldzone, NR_FILE_PAGES);
417 		__inc_zone_state(newzone, NR_FILE_PAGES);
418 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
419 			__dec_zone_state(oldzone, NR_SHMEM);
420 			__inc_zone_state(newzone, NR_SHMEM);
421 		}
422 		if (dirty && mapping_cap_account_dirty(mapping)) {
423 			__dec_zone_state(oldzone, NR_FILE_DIRTY);
424 			__inc_zone_state(newzone, NR_FILE_DIRTY);
425 		}
426 	}
427 	local_irq_enable();
428 
429 	return MIGRATEPAGE_SUCCESS;
430 }
431 
432 /*
433  * The expected number of remaining references is the same as that
434  * of migrate_page_move_mapping().
435  */
436 int migrate_huge_page_move_mapping(struct address_space *mapping,
437 				   struct page *newpage, struct page *page)
438 {
439 	int expected_count;
440 	void **pslot;
441 
442 	spin_lock_irq(&mapping->tree_lock);
443 
444 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
445 					page_index(page));
446 
447 	expected_count = 2 + page_has_private(page);
448 	if (page_count(page) != expected_count ||
449 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
450 		spin_unlock_irq(&mapping->tree_lock);
451 		return -EAGAIN;
452 	}
453 
454 	if (!page_freeze_refs(page, expected_count)) {
455 		spin_unlock_irq(&mapping->tree_lock);
456 		return -EAGAIN;
457 	}
458 
459 	newpage->index = page->index;
460 	newpage->mapping = page->mapping;
461 
462 	get_page(newpage);
463 
464 	radix_tree_replace_slot(pslot, newpage);
465 
466 	page_unfreeze_refs(page, expected_count - 1);
467 
468 	spin_unlock_irq(&mapping->tree_lock);
469 
470 	return MIGRATEPAGE_SUCCESS;
471 }
472 
473 /*
474  * Gigantic pages are so large that we do not guarantee that page++ pointer
475  * arithmetic will work across the entire page.  We need something more
476  * specialized.
477  */
478 static void __copy_gigantic_page(struct page *dst, struct page *src,
479 				int nr_pages)
480 {
481 	int i;
482 	struct page *dst_base = dst;
483 	struct page *src_base = src;
484 
485 	for (i = 0; i < nr_pages; ) {
486 		cond_resched();
487 		copy_highpage(dst, src);
488 
489 		i++;
490 		dst = mem_map_next(dst, dst_base, i);
491 		src = mem_map_next(src, src_base, i);
492 	}
493 }
494 
495 static void copy_huge_page(struct page *dst, struct page *src)
496 {
497 	int i;
498 	int nr_pages;
499 
500 	if (PageHuge(src)) {
501 		/* hugetlbfs page */
502 		struct hstate *h = page_hstate(src);
503 		nr_pages = pages_per_huge_page(h);
504 
505 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
506 			__copy_gigantic_page(dst, src, nr_pages);
507 			return;
508 		}
509 	} else {
510 		/* thp page */
511 		BUG_ON(!PageTransHuge(src));
512 		nr_pages = hpage_nr_pages(src);
513 	}
514 
515 	for (i = 0; i < nr_pages; i++) {
516 		cond_resched();
517 		copy_highpage(dst + i, src + i);
518 	}
519 }
520 
521 /*
522  * Copy the page to its new location
523  */
524 void migrate_page_copy(struct page *newpage, struct page *page)
525 {
526 	int cpupid;
527 
528 	if (PageHuge(page) || PageTransHuge(page))
529 		copy_huge_page(newpage, page);
530 	else
531 		copy_highpage(newpage, page);
532 
533 	if (PageError(page))
534 		SetPageError(newpage);
535 	if (PageReferenced(page))
536 		SetPageReferenced(newpage);
537 	if (PageUptodate(page))
538 		SetPageUptodate(newpage);
539 	if (TestClearPageActive(page)) {
540 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
541 		SetPageActive(newpage);
542 	} else if (TestClearPageUnevictable(page))
543 		SetPageUnevictable(newpage);
544 	if (PageChecked(page))
545 		SetPageChecked(newpage);
546 	if (PageMappedToDisk(page))
547 		SetPageMappedToDisk(newpage);
548 
549 	/* Move dirty on pages not done by migrate_page_move_mapping() */
550 	if (PageDirty(page))
551 		SetPageDirty(newpage);
552 
553 	if (page_is_young(page))
554 		set_page_young(newpage);
555 	if (page_is_idle(page))
556 		set_page_idle(newpage);
557 
558 	/*
559 	 * Copy NUMA information to the new page, to prevent over-eager
560 	 * future migrations of this same page.
561 	 */
562 	cpupid = page_cpupid_xchg_last(page, -1);
563 	page_cpupid_xchg_last(newpage, cpupid);
564 
565 	ksm_migrate_page(newpage, page);
566 	/*
567 	 * Please do not reorder this without considering how mm/ksm.c's
568 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
569 	 */
570 	if (PageSwapCache(page))
571 		ClearPageSwapCache(page);
572 	ClearPagePrivate(page);
573 	set_page_private(page, 0);
574 
575 	/*
576 	 * If any waiters have accumulated on the new page then
577 	 * wake them up.
578 	 */
579 	if (PageWriteback(newpage))
580 		end_page_writeback(newpage);
581 
582 	copy_page_owner(page, newpage);
583 
584 	mem_cgroup_migrate(page, newpage);
585 }
586 
587 /************************************************************
588  *                    Migration functions
589  ***********************************************************/
590 
591 /*
592  * Common logic to directly migrate a single page suitable for
593  * pages that do not use PagePrivate/PagePrivate2.
594  *
595  * Pages are locked upon entry and exit.
596  */
597 int migrate_page(struct address_space *mapping,
598 		struct page *newpage, struct page *page,
599 		enum migrate_mode mode)
600 {
601 	int rc;
602 
603 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
604 
605 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
606 
607 	if (rc != MIGRATEPAGE_SUCCESS)
608 		return rc;
609 
610 	migrate_page_copy(newpage, page);
611 	return MIGRATEPAGE_SUCCESS;
612 }
613 EXPORT_SYMBOL(migrate_page);
614 
615 #ifdef CONFIG_BLOCK
616 /*
617  * Migration function for pages with buffers. This function can only be used
618  * if the underlying filesystem guarantees that no other references to "page"
619  * exist.
620  */
621 int buffer_migrate_page(struct address_space *mapping,
622 		struct page *newpage, struct page *page, enum migrate_mode mode)
623 {
624 	struct buffer_head *bh, *head;
625 	int rc;
626 
627 	if (!page_has_buffers(page))
628 		return migrate_page(mapping, newpage, page, mode);
629 
630 	head = page_buffers(page);
631 
632 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
633 
634 	if (rc != MIGRATEPAGE_SUCCESS)
635 		return rc;
636 
637 	/*
638 	 * In the async case, migrate_page_move_mapping locked the buffers
639 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
640 	 * need to be locked now
641 	 */
642 	if (mode != MIGRATE_ASYNC)
643 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
644 
645 	ClearPagePrivate(page);
646 	set_page_private(newpage, page_private(page));
647 	set_page_private(page, 0);
648 	put_page(page);
649 	get_page(newpage);
650 
651 	bh = head;
652 	do {
653 		set_bh_page(bh, newpage, bh_offset(bh));
654 		bh = bh->b_this_page;
655 
656 	} while (bh != head);
657 
658 	SetPagePrivate(newpage);
659 
660 	migrate_page_copy(newpage, page);
661 
662 	bh = head;
663 	do {
664 		unlock_buffer(bh);
665  		put_bh(bh);
666 		bh = bh->b_this_page;
667 
668 	} while (bh != head);
669 
670 	return MIGRATEPAGE_SUCCESS;
671 }
672 EXPORT_SYMBOL(buffer_migrate_page);
673 #endif
674 
675 /*
676  * Writeback a page to clean the dirty state
677  */
678 static int writeout(struct address_space *mapping, struct page *page)
679 {
680 	struct writeback_control wbc = {
681 		.sync_mode = WB_SYNC_NONE,
682 		.nr_to_write = 1,
683 		.range_start = 0,
684 		.range_end = LLONG_MAX,
685 		.for_reclaim = 1
686 	};
687 	int rc;
688 
689 	if (!mapping->a_ops->writepage)
690 		/* No write method for the address space */
691 		return -EINVAL;
692 
693 	if (!clear_page_dirty_for_io(page))
694 		/* Someone else already triggered a write */
695 		return -EAGAIN;
696 
697 	/*
698 	 * A dirty page may imply that the underlying filesystem has
699 	 * the page on some queue. So the page must be clean for
700 	 * migration. Writeout may mean we loose the lock and the
701 	 * page state is no longer what we checked for earlier.
702 	 * At this point we know that the migration attempt cannot
703 	 * be successful.
704 	 */
705 	remove_migration_ptes(page, page);
706 
707 	rc = mapping->a_ops->writepage(page, &wbc);
708 
709 	if (rc != AOP_WRITEPAGE_ACTIVATE)
710 		/* unlocked. Relock */
711 		lock_page(page);
712 
713 	return (rc < 0) ? -EIO : -EAGAIN;
714 }
715 
716 /*
717  * Default handling if a filesystem does not provide a migration function.
718  */
719 static int fallback_migrate_page(struct address_space *mapping,
720 	struct page *newpage, struct page *page, enum migrate_mode mode)
721 {
722 	if (PageDirty(page)) {
723 		/* Only writeback pages in full synchronous migration */
724 		if (mode != MIGRATE_SYNC)
725 			return -EBUSY;
726 		return writeout(mapping, page);
727 	}
728 
729 	/*
730 	 * Buffers may be managed in a filesystem specific way.
731 	 * We must have no buffers or drop them.
732 	 */
733 	if (page_has_private(page) &&
734 	    !try_to_release_page(page, GFP_KERNEL))
735 		return -EAGAIN;
736 
737 	return migrate_page(mapping, newpage, page, mode);
738 }
739 
740 /*
741  * Move a page to a newly allocated page
742  * The page is locked and all ptes have been successfully removed.
743  *
744  * The new page will have replaced the old page if this function
745  * is successful.
746  *
747  * Return value:
748  *   < 0 - error code
749  *  MIGRATEPAGE_SUCCESS - success
750  */
751 static int move_to_new_page(struct page *newpage, struct page *page,
752 				enum migrate_mode mode)
753 {
754 	struct address_space *mapping;
755 	int rc;
756 
757 	VM_BUG_ON_PAGE(!PageLocked(page), page);
758 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
759 
760 	mapping = page_mapping(page);
761 	if (!mapping)
762 		rc = migrate_page(mapping, newpage, page, mode);
763 	else if (mapping->a_ops->migratepage)
764 		/*
765 		 * Most pages have a mapping and most filesystems provide a
766 		 * migratepage callback. Anonymous pages are part of swap
767 		 * space which also has its own migratepage callback. This
768 		 * is the most common path for page migration.
769 		 */
770 		rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
771 	else
772 		rc = fallback_migrate_page(mapping, newpage, page, mode);
773 
774 	/*
775 	 * When successful, old pagecache page->mapping must be cleared before
776 	 * page is freed; but stats require that PageAnon be left as PageAnon.
777 	 */
778 	if (rc == MIGRATEPAGE_SUCCESS) {
779 		if (!PageAnon(page))
780 			page->mapping = NULL;
781 	}
782 	return rc;
783 }
784 
785 static int __unmap_and_move(struct page *page, struct page *newpage,
786 				int force, enum migrate_mode mode)
787 {
788 	int rc = -EAGAIN;
789 	int page_was_mapped = 0;
790 	struct anon_vma *anon_vma = NULL;
791 
792 	if (!trylock_page(page)) {
793 		if (!force || mode == MIGRATE_ASYNC)
794 			goto out;
795 
796 		/*
797 		 * It's not safe for direct compaction to call lock_page.
798 		 * For example, during page readahead pages are added locked
799 		 * to the LRU. Later, when the IO completes the pages are
800 		 * marked uptodate and unlocked. However, the queueing
801 		 * could be merging multiple pages for one bio (e.g.
802 		 * mpage_readpages). If an allocation happens for the
803 		 * second or third page, the process can end up locking
804 		 * the same page twice and deadlocking. Rather than
805 		 * trying to be clever about what pages can be locked,
806 		 * avoid the use of lock_page for direct compaction
807 		 * altogether.
808 		 */
809 		if (current->flags & PF_MEMALLOC)
810 			goto out;
811 
812 		lock_page(page);
813 	}
814 
815 	if (PageWriteback(page)) {
816 		/*
817 		 * Only in the case of a full synchronous migration is it
818 		 * necessary to wait for PageWriteback. In the async case,
819 		 * the retry loop is too short and in the sync-light case,
820 		 * the overhead of stalling is too much
821 		 */
822 		if (mode != MIGRATE_SYNC) {
823 			rc = -EBUSY;
824 			goto out_unlock;
825 		}
826 		if (!force)
827 			goto out_unlock;
828 		wait_on_page_writeback(page);
829 	}
830 
831 	/*
832 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 	 * we cannot notice that anon_vma is freed while we migrates a page.
834 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 	 * of migration. File cache pages are no problem because of page_lock()
836 	 * File Caches may use write_page() or lock_page() in migration, then,
837 	 * just care Anon page here.
838 	 *
839 	 * Only page_get_anon_vma() understands the subtleties of
840 	 * getting a hold on an anon_vma from outside one of its mms.
841 	 * But if we cannot get anon_vma, then we won't need it anyway,
842 	 * because that implies that the anon page is no longer mapped
843 	 * (and cannot be remapped so long as we hold the page lock).
844 	 */
845 	if (PageAnon(page) && !PageKsm(page))
846 		anon_vma = page_get_anon_vma(page);
847 
848 	/*
849 	 * Block others from accessing the new page when we get around to
850 	 * establishing additional references. We are usually the only one
851 	 * holding a reference to newpage at this point. We used to have a BUG
852 	 * here if trylock_page(newpage) fails, but would like to allow for
853 	 * cases where there might be a race with the previous use of newpage.
854 	 * This is much like races on refcount of oldpage: just don't BUG().
855 	 */
856 	if (unlikely(!trylock_page(newpage)))
857 		goto out_unlock;
858 
859 	if (unlikely(isolated_balloon_page(page))) {
860 		/*
861 		 * A ballooned page does not need any special attention from
862 		 * physical to virtual reverse mapping procedures.
863 		 * Skip any attempt to unmap PTEs or to remap swap cache,
864 		 * in order to avoid burning cycles at rmap level, and perform
865 		 * the page migration right away (proteced by page lock).
866 		 */
867 		rc = balloon_page_migrate(newpage, page, mode);
868 		goto out_unlock_both;
869 	}
870 
871 	/*
872 	 * Corner case handling:
873 	 * 1. When a new swap-cache page is read into, it is added to the LRU
874 	 * and treated as swapcache but it has no rmap yet.
875 	 * Calling try_to_unmap() against a page->mapping==NULL page will
876 	 * trigger a BUG.  So handle it here.
877 	 * 2. An orphaned page (see truncate_complete_page) might have
878 	 * fs-private metadata. The page can be picked up due to memory
879 	 * offlining.  Everywhere else except page reclaim, the page is
880 	 * invisible to the vm, so the page can not be migrated.  So try to
881 	 * free the metadata, so the page can be freed.
882 	 */
883 	if (!page->mapping) {
884 		VM_BUG_ON_PAGE(PageAnon(page), page);
885 		if (page_has_private(page)) {
886 			try_to_free_buffers(page);
887 			goto out_unlock_both;
888 		}
889 	} else if (page_mapped(page)) {
890 		/* Establish migration ptes */
891 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
892 				page);
893 		try_to_unmap(page,
894 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
895 		page_was_mapped = 1;
896 	}
897 
898 	if (!page_mapped(page))
899 		rc = move_to_new_page(newpage, page, mode);
900 
901 	if (page_was_mapped)
902 		remove_migration_ptes(page,
903 			rc == MIGRATEPAGE_SUCCESS ? newpage : page);
904 
905 out_unlock_both:
906 	unlock_page(newpage);
907 out_unlock:
908 	/* Drop an anon_vma reference if we took one */
909 	if (anon_vma)
910 		put_anon_vma(anon_vma);
911 	unlock_page(page);
912 out:
913 	return rc;
914 }
915 
916 /*
917  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
918  * around it.
919  */
920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
921 #define ICE_noinline noinline
922 #else
923 #define ICE_noinline
924 #endif
925 
926 /*
927  * Obtain the lock on page, remove all ptes and migrate the page
928  * to the newly allocated page in newpage.
929  */
930 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
931 				   free_page_t put_new_page,
932 				   unsigned long private, struct page *page,
933 				   int force, enum migrate_mode mode,
934 				   enum migrate_reason reason)
935 {
936 	int rc = MIGRATEPAGE_SUCCESS;
937 	int *result = NULL;
938 	struct page *newpage;
939 
940 	newpage = get_new_page(page, private, &result);
941 	if (!newpage)
942 		return -ENOMEM;
943 
944 	if (page_count(page) == 1) {
945 		/* page was freed from under us. So we are done. */
946 		goto out;
947 	}
948 
949 	if (unlikely(PageTransHuge(page))) {
950 		lock_page(page);
951 		rc = split_huge_page(page);
952 		unlock_page(page);
953 		if (rc)
954 			goto out;
955 	}
956 
957 	rc = __unmap_and_move(page, newpage, force, mode);
958 	if (rc == MIGRATEPAGE_SUCCESS) {
959 		put_new_page = NULL;
960 		set_page_owner_migrate_reason(newpage, reason);
961 	}
962 
963 out:
964 	if (rc != -EAGAIN) {
965 		/*
966 		 * A page that has been migrated has all references
967 		 * removed and will be freed. A page that has not been
968 		 * migrated will have kepts its references and be
969 		 * restored.
970 		 */
971 		list_del(&page->lru);
972 		dec_zone_page_state(page, NR_ISOLATED_ANON +
973 				page_is_file_cache(page));
974 		/* Soft-offlined page shouldn't go through lru cache list */
975 		if (reason == MR_MEMORY_FAILURE) {
976 			put_page(page);
977 			if (!test_set_page_hwpoison(page))
978 				num_poisoned_pages_inc();
979 		} else
980 			putback_lru_page(page);
981 	}
982 
983 	/*
984 	 * If migration was not successful and there's a freeing callback, use
985 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
986 	 * during isolation.
987 	 */
988 	if (put_new_page)
989 		put_new_page(newpage, private);
990 	else if (unlikely(__is_movable_balloon_page(newpage))) {
991 		/* drop our reference, page already in the balloon */
992 		put_page(newpage);
993 	} else
994 		putback_lru_page(newpage);
995 
996 	if (result) {
997 		if (rc)
998 			*result = rc;
999 		else
1000 			*result = page_to_nid(newpage);
1001 	}
1002 	return rc;
1003 }
1004 
1005 /*
1006  * Counterpart of unmap_and_move_page() for hugepage migration.
1007  *
1008  * This function doesn't wait the completion of hugepage I/O
1009  * because there is no race between I/O and migration for hugepage.
1010  * Note that currently hugepage I/O occurs only in direct I/O
1011  * where no lock is held and PG_writeback is irrelevant,
1012  * and writeback status of all subpages are counted in the reference
1013  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1014  * under direct I/O, the reference of the head page is 512 and a bit more.)
1015  * This means that when we try to migrate hugepage whose subpages are
1016  * doing direct I/O, some references remain after try_to_unmap() and
1017  * hugepage migration fails without data corruption.
1018  *
1019  * There is also no race when direct I/O is issued on the page under migration,
1020  * because then pte is replaced with migration swap entry and direct I/O code
1021  * will wait in the page fault for migration to complete.
1022  */
1023 static int unmap_and_move_huge_page(new_page_t get_new_page,
1024 				free_page_t put_new_page, unsigned long private,
1025 				struct page *hpage, int force,
1026 				enum migrate_mode mode, int reason)
1027 {
1028 	int rc = -EAGAIN;
1029 	int *result = NULL;
1030 	int page_was_mapped = 0;
1031 	struct page *new_hpage;
1032 	struct anon_vma *anon_vma = NULL;
1033 
1034 	/*
1035 	 * Movability of hugepages depends on architectures and hugepage size.
1036 	 * This check is necessary because some callers of hugepage migration
1037 	 * like soft offline and memory hotremove don't walk through page
1038 	 * tables or check whether the hugepage is pmd-based or not before
1039 	 * kicking migration.
1040 	 */
1041 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1042 		putback_active_hugepage(hpage);
1043 		return -ENOSYS;
1044 	}
1045 
1046 	new_hpage = get_new_page(hpage, private, &result);
1047 	if (!new_hpage)
1048 		return -ENOMEM;
1049 
1050 	if (!trylock_page(hpage)) {
1051 		if (!force || mode != MIGRATE_SYNC)
1052 			goto out;
1053 		lock_page(hpage);
1054 	}
1055 
1056 	if (PageAnon(hpage))
1057 		anon_vma = page_get_anon_vma(hpage);
1058 
1059 	if (unlikely(!trylock_page(new_hpage)))
1060 		goto put_anon;
1061 
1062 	if (page_mapped(hpage)) {
1063 		try_to_unmap(hpage,
1064 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1065 		page_was_mapped = 1;
1066 	}
1067 
1068 	if (!page_mapped(hpage))
1069 		rc = move_to_new_page(new_hpage, hpage, mode);
1070 
1071 	if (page_was_mapped)
1072 		remove_migration_ptes(hpage,
1073 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1074 
1075 	unlock_page(new_hpage);
1076 
1077 put_anon:
1078 	if (anon_vma)
1079 		put_anon_vma(anon_vma);
1080 
1081 	if (rc == MIGRATEPAGE_SUCCESS) {
1082 		hugetlb_cgroup_migrate(hpage, new_hpage);
1083 		put_new_page = NULL;
1084 		set_page_owner_migrate_reason(new_hpage, reason);
1085 	}
1086 
1087 	unlock_page(hpage);
1088 out:
1089 	if (rc != -EAGAIN)
1090 		putback_active_hugepage(hpage);
1091 
1092 	/*
1093 	 * If migration was not successful and there's a freeing callback, use
1094 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1095 	 * isolation.
1096 	 */
1097 	if (put_new_page)
1098 		put_new_page(new_hpage, private);
1099 	else
1100 		putback_active_hugepage(new_hpage);
1101 
1102 	if (result) {
1103 		if (rc)
1104 			*result = rc;
1105 		else
1106 			*result = page_to_nid(new_hpage);
1107 	}
1108 	return rc;
1109 }
1110 
1111 /*
1112  * migrate_pages - migrate the pages specified in a list, to the free pages
1113  *		   supplied as the target for the page migration
1114  *
1115  * @from:		The list of pages to be migrated.
1116  * @get_new_page:	The function used to allocate free pages to be used
1117  *			as the target of the page migration.
1118  * @put_new_page:	The function used to free target pages if migration
1119  *			fails, or NULL if no special handling is necessary.
1120  * @private:		Private data to be passed on to get_new_page()
1121  * @mode:		The migration mode that specifies the constraints for
1122  *			page migration, if any.
1123  * @reason:		The reason for page migration.
1124  *
1125  * The function returns after 10 attempts or if no pages are movable any more
1126  * because the list has become empty or no retryable pages exist any more.
1127  * The caller should call putback_movable_pages() to return pages to the LRU
1128  * or free list only if ret != 0.
1129  *
1130  * Returns the number of pages that were not migrated, or an error code.
1131  */
1132 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1133 		free_page_t put_new_page, unsigned long private,
1134 		enum migrate_mode mode, int reason)
1135 {
1136 	int retry = 1;
1137 	int nr_failed = 0;
1138 	int nr_succeeded = 0;
1139 	int pass = 0;
1140 	struct page *page;
1141 	struct page *page2;
1142 	int swapwrite = current->flags & PF_SWAPWRITE;
1143 	int rc;
1144 
1145 	if (!swapwrite)
1146 		current->flags |= PF_SWAPWRITE;
1147 
1148 	for(pass = 0; pass < 10 && retry; pass++) {
1149 		retry = 0;
1150 
1151 		list_for_each_entry_safe(page, page2, from, lru) {
1152 			cond_resched();
1153 
1154 			if (PageHuge(page))
1155 				rc = unmap_and_move_huge_page(get_new_page,
1156 						put_new_page, private, page,
1157 						pass > 2, mode, reason);
1158 			else
1159 				rc = unmap_and_move(get_new_page, put_new_page,
1160 						private, page, pass > 2, mode,
1161 						reason);
1162 
1163 			switch(rc) {
1164 			case -ENOMEM:
1165 				goto out;
1166 			case -EAGAIN:
1167 				retry++;
1168 				break;
1169 			case MIGRATEPAGE_SUCCESS:
1170 				nr_succeeded++;
1171 				break;
1172 			default:
1173 				/*
1174 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1175 				 * unlike -EAGAIN case, the failed page is
1176 				 * removed from migration page list and not
1177 				 * retried in the next outer loop.
1178 				 */
1179 				nr_failed++;
1180 				break;
1181 			}
1182 		}
1183 	}
1184 	nr_failed += retry;
1185 	rc = nr_failed;
1186 out:
1187 	if (nr_succeeded)
1188 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1189 	if (nr_failed)
1190 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1191 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1192 
1193 	if (!swapwrite)
1194 		current->flags &= ~PF_SWAPWRITE;
1195 
1196 	return rc;
1197 }
1198 
1199 #ifdef CONFIG_NUMA
1200 /*
1201  * Move a list of individual pages
1202  */
1203 struct page_to_node {
1204 	unsigned long addr;
1205 	struct page *page;
1206 	int node;
1207 	int status;
1208 };
1209 
1210 static struct page *new_page_node(struct page *p, unsigned long private,
1211 		int **result)
1212 {
1213 	struct page_to_node *pm = (struct page_to_node *)private;
1214 
1215 	while (pm->node != MAX_NUMNODES && pm->page != p)
1216 		pm++;
1217 
1218 	if (pm->node == MAX_NUMNODES)
1219 		return NULL;
1220 
1221 	*result = &pm->status;
1222 
1223 	if (PageHuge(p))
1224 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1225 					pm->node);
1226 	else
1227 		return __alloc_pages_node(pm->node,
1228 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1229 }
1230 
1231 /*
1232  * Move a set of pages as indicated in the pm array. The addr
1233  * field must be set to the virtual address of the page to be moved
1234  * and the node number must contain a valid target node.
1235  * The pm array ends with node = MAX_NUMNODES.
1236  */
1237 static int do_move_page_to_node_array(struct mm_struct *mm,
1238 				      struct page_to_node *pm,
1239 				      int migrate_all)
1240 {
1241 	int err;
1242 	struct page_to_node *pp;
1243 	LIST_HEAD(pagelist);
1244 
1245 	down_read(&mm->mmap_sem);
1246 
1247 	/*
1248 	 * Build a list of pages to migrate
1249 	 */
1250 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1251 		struct vm_area_struct *vma;
1252 		struct page *page;
1253 
1254 		err = -EFAULT;
1255 		vma = find_vma(mm, pp->addr);
1256 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1257 			goto set_status;
1258 
1259 		/* FOLL_DUMP to ignore special (like zero) pages */
1260 		page = follow_page(vma, pp->addr,
1261 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1262 
1263 		err = PTR_ERR(page);
1264 		if (IS_ERR(page))
1265 			goto set_status;
1266 
1267 		err = -ENOENT;
1268 		if (!page)
1269 			goto set_status;
1270 
1271 		pp->page = page;
1272 		err = page_to_nid(page);
1273 
1274 		if (err == pp->node)
1275 			/*
1276 			 * Node already in the right place
1277 			 */
1278 			goto put_and_set;
1279 
1280 		err = -EACCES;
1281 		if (page_mapcount(page) > 1 &&
1282 				!migrate_all)
1283 			goto put_and_set;
1284 
1285 		if (PageHuge(page)) {
1286 			if (PageHead(page))
1287 				isolate_huge_page(page, &pagelist);
1288 			goto put_and_set;
1289 		}
1290 
1291 		err = isolate_lru_page(page);
1292 		if (!err) {
1293 			list_add_tail(&page->lru, &pagelist);
1294 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1295 					    page_is_file_cache(page));
1296 		}
1297 put_and_set:
1298 		/*
1299 		 * Either remove the duplicate refcount from
1300 		 * isolate_lru_page() or drop the page ref if it was
1301 		 * not isolated.
1302 		 */
1303 		put_page(page);
1304 set_status:
1305 		pp->status = err;
1306 	}
1307 
1308 	err = 0;
1309 	if (!list_empty(&pagelist)) {
1310 		err = migrate_pages(&pagelist, new_page_node, NULL,
1311 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1312 		if (err)
1313 			putback_movable_pages(&pagelist);
1314 	}
1315 
1316 	up_read(&mm->mmap_sem);
1317 	return err;
1318 }
1319 
1320 /*
1321  * Migrate an array of page address onto an array of nodes and fill
1322  * the corresponding array of status.
1323  */
1324 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1325 			 unsigned long nr_pages,
1326 			 const void __user * __user *pages,
1327 			 const int __user *nodes,
1328 			 int __user *status, int flags)
1329 {
1330 	struct page_to_node *pm;
1331 	unsigned long chunk_nr_pages;
1332 	unsigned long chunk_start;
1333 	int err;
1334 
1335 	err = -ENOMEM;
1336 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1337 	if (!pm)
1338 		goto out;
1339 
1340 	migrate_prep();
1341 
1342 	/*
1343 	 * Store a chunk of page_to_node array in a page,
1344 	 * but keep the last one as a marker
1345 	 */
1346 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1347 
1348 	for (chunk_start = 0;
1349 	     chunk_start < nr_pages;
1350 	     chunk_start += chunk_nr_pages) {
1351 		int j;
1352 
1353 		if (chunk_start + chunk_nr_pages > nr_pages)
1354 			chunk_nr_pages = nr_pages - chunk_start;
1355 
1356 		/* fill the chunk pm with addrs and nodes from user-space */
1357 		for (j = 0; j < chunk_nr_pages; j++) {
1358 			const void __user *p;
1359 			int node;
1360 
1361 			err = -EFAULT;
1362 			if (get_user(p, pages + j + chunk_start))
1363 				goto out_pm;
1364 			pm[j].addr = (unsigned long) p;
1365 
1366 			if (get_user(node, nodes + j + chunk_start))
1367 				goto out_pm;
1368 
1369 			err = -ENODEV;
1370 			if (node < 0 || node >= MAX_NUMNODES)
1371 				goto out_pm;
1372 
1373 			if (!node_state(node, N_MEMORY))
1374 				goto out_pm;
1375 
1376 			err = -EACCES;
1377 			if (!node_isset(node, task_nodes))
1378 				goto out_pm;
1379 
1380 			pm[j].node = node;
1381 		}
1382 
1383 		/* End marker for this chunk */
1384 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1385 
1386 		/* Migrate this chunk */
1387 		err = do_move_page_to_node_array(mm, pm,
1388 						 flags & MPOL_MF_MOVE_ALL);
1389 		if (err < 0)
1390 			goto out_pm;
1391 
1392 		/* Return status information */
1393 		for (j = 0; j < chunk_nr_pages; j++)
1394 			if (put_user(pm[j].status, status + j + chunk_start)) {
1395 				err = -EFAULT;
1396 				goto out_pm;
1397 			}
1398 	}
1399 	err = 0;
1400 
1401 out_pm:
1402 	free_page((unsigned long)pm);
1403 out:
1404 	return err;
1405 }
1406 
1407 /*
1408  * Determine the nodes of an array of pages and store it in an array of status.
1409  */
1410 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1411 				const void __user **pages, int *status)
1412 {
1413 	unsigned long i;
1414 
1415 	down_read(&mm->mmap_sem);
1416 
1417 	for (i = 0; i < nr_pages; i++) {
1418 		unsigned long addr = (unsigned long)(*pages);
1419 		struct vm_area_struct *vma;
1420 		struct page *page;
1421 		int err = -EFAULT;
1422 
1423 		vma = find_vma(mm, addr);
1424 		if (!vma || addr < vma->vm_start)
1425 			goto set_status;
1426 
1427 		/* FOLL_DUMP to ignore special (like zero) pages */
1428 		page = follow_page(vma, addr, FOLL_DUMP);
1429 
1430 		err = PTR_ERR(page);
1431 		if (IS_ERR(page))
1432 			goto set_status;
1433 
1434 		err = page ? page_to_nid(page) : -ENOENT;
1435 set_status:
1436 		*status = err;
1437 
1438 		pages++;
1439 		status++;
1440 	}
1441 
1442 	up_read(&mm->mmap_sem);
1443 }
1444 
1445 /*
1446  * Determine the nodes of a user array of pages and store it in
1447  * a user array of status.
1448  */
1449 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1450 			 const void __user * __user *pages,
1451 			 int __user *status)
1452 {
1453 #define DO_PAGES_STAT_CHUNK_NR 16
1454 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1455 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1456 
1457 	while (nr_pages) {
1458 		unsigned long chunk_nr;
1459 
1460 		chunk_nr = nr_pages;
1461 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1462 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1463 
1464 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1465 			break;
1466 
1467 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1468 
1469 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1470 			break;
1471 
1472 		pages += chunk_nr;
1473 		status += chunk_nr;
1474 		nr_pages -= chunk_nr;
1475 	}
1476 	return nr_pages ? -EFAULT : 0;
1477 }
1478 
1479 /*
1480  * Move a list of pages in the address space of the currently executing
1481  * process.
1482  */
1483 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1484 		const void __user * __user *, pages,
1485 		const int __user *, nodes,
1486 		int __user *, status, int, flags)
1487 {
1488 	const struct cred *cred = current_cred(), *tcred;
1489 	struct task_struct *task;
1490 	struct mm_struct *mm;
1491 	int err;
1492 	nodemask_t task_nodes;
1493 
1494 	/* Check flags */
1495 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1496 		return -EINVAL;
1497 
1498 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1499 		return -EPERM;
1500 
1501 	/* Find the mm_struct */
1502 	rcu_read_lock();
1503 	task = pid ? find_task_by_vpid(pid) : current;
1504 	if (!task) {
1505 		rcu_read_unlock();
1506 		return -ESRCH;
1507 	}
1508 	get_task_struct(task);
1509 
1510 	/*
1511 	 * Check if this process has the right to modify the specified
1512 	 * process. The right exists if the process has administrative
1513 	 * capabilities, superuser privileges or the same
1514 	 * userid as the target process.
1515 	 */
1516 	tcred = __task_cred(task);
1517 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1518 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1519 	    !capable(CAP_SYS_NICE)) {
1520 		rcu_read_unlock();
1521 		err = -EPERM;
1522 		goto out;
1523 	}
1524 	rcu_read_unlock();
1525 
1526  	err = security_task_movememory(task);
1527  	if (err)
1528 		goto out;
1529 
1530 	task_nodes = cpuset_mems_allowed(task);
1531 	mm = get_task_mm(task);
1532 	put_task_struct(task);
1533 
1534 	if (!mm)
1535 		return -EINVAL;
1536 
1537 	if (nodes)
1538 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1539 				    nodes, status, flags);
1540 	else
1541 		err = do_pages_stat(mm, nr_pages, pages, status);
1542 
1543 	mmput(mm);
1544 	return err;
1545 
1546 out:
1547 	put_task_struct(task);
1548 	return err;
1549 }
1550 
1551 #ifdef CONFIG_NUMA_BALANCING
1552 /*
1553  * Returns true if this is a safe migration target node for misplaced NUMA
1554  * pages. Currently it only checks the watermarks which crude
1555  */
1556 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1557 				   unsigned long nr_migrate_pages)
1558 {
1559 	int z;
1560 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1561 		struct zone *zone = pgdat->node_zones + z;
1562 
1563 		if (!populated_zone(zone))
1564 			continue;
1565 
1566 		if (!zone_reclaimable(zone))
1567 			continue;
1568 
1569 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1570 		if (!zone_watermark_ok(zone, 0,
1571 				       high_wmark_pages(zone) +
1572 				       nr_migrate_pages,
1573 				       0, 0))
1574 			continue;
1575 		return true;
1576 	}
1577 	return false;
1578 }
1579 
1580 static struct page *alloc_misplaced_dst_page(struct page *page,
1581 					   unsigned long data,
1582 					   int **result)
1583 {
1584 	int nid = (int) data;
1585 	struct page *newpage;
1586 
1587 	newpage = __alloc_pages_node(nid,
1588 					 (GFP_HIGHUSER_MOVABLE |
1589 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1590 					  __GFP_NORETRY | __GFP_NOWARN) &
1591 					 ~__GFP_RECLAIM, 0);
1592 
1593 	return newpage;
1594 }
1595 
1596 /*
1597  * page migration rate limiting control.
1598  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1599  * window of time. Default here says do not migrate more than 1280M per second.
1600  */
1601 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1602 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1603 
1604 /* Returns true if the node is migrate rate-limited after the update */
1605 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1606 					unsigned long nr_pages)
1607 {
1608 	/*
1609 	 * Rate-limit the amount of data that is being migrated to a node.
1610 	 * Optimal placement is no good if the memory bus is saturated and
1611 	 * all the time is being spent migrating!
1612 	 */
1613 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1614 		spin_lock(&pgdat->numabalancing_migrate_lock);
1615 		pgdat->numabalancing_migrate_nr_pages = 0;
1616 		pgdat->numabalancing_migrate_next_window = jiffies +
1617 			msecs_to_jiffies(migrate_interval_millisecs);
1618 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1619 	}
1620 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1621 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1622 								nr_pages);
1623 		return true;
1624 	}
1625 
1626 	/*
1627 	 * This is an unlocked non-atomic update so errors are possible.
1628 	 * The consequences are failing to migrate when we potentiall should
1629 	 * have which is not severe enough to warrant locking. If it is ever
1630 	 * a problem, it can be converted to a per-cpu counter.
1631 	 */
1632 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1633 	return false;
1634 }
1635 
1636 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1637 {
1638 	int page_lru;
1639 
1640 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1641 
1642 	/* Avoid migrating to a node that is nearly full */
1643 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1644 		return 0;
1645 
1646 	if (isolate_lru_page(page))
1647 		return 0;
1648 
1649 	/*
1650 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1651 	 * check on page_count(), so we must do it here, now that the page
1652 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1653 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1654 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1655 	 */
1656 	if (PageTransHuge(page) && page_count(page) != 3) {
1657 		putback_lru_page(page);
1658 		return 0;
1659 	}
1660 
1661 	page_lru = page_is_file_cache(page);
1662 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1663 				hpage_nr_pages(page));
1664 
1665 	/*
1666 	 * Isolating the page has taken another reference, so the
1667 	 * caller's reference can be safely dropped without the page
1668 	 * disappearing underneath us during migration.
1669 	 */
1670 	put_page(page);
1671 	return 1;
1672 }
1673 
1674 bool pmd_trans_migrating(pmd_t pmd)
1675 {
1676 	struct page *page = pmd_page(pmd);
1677 	return PageLocked(page);
1678 }
1679 
1680 /*
1681  * Attempt to migrate a misplaced page to the specified destination
1682  * node. Caller is expected to have an elevated reference count on
1683  * the page that will be dropped by this function before returning.
1684  */
1685 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1686 			   int node)
1687 {
1688 	pg_data_t *pgdat = NODE_DATA(node);
1689 	int isolated;
1690 	int nr_remaining;
1691 	LIST_HEAD(migratepages);
1692 
1693 	/*
1694 	 * Don't migrate file pages that are mapped in multiple processes
1695 	 * with execute permissions as they are probably shared libraries.
1696 	 */
1697 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1698 	    (vma->vm_flags & VM_EXEC))
1699 		goto out;
1700 
1701 	/*
1702 	 * Rate-limit the amount of data that is being migrated to a node.
1703 	 * Optimal placement is no good if the memory bus is saturated and
1704 	 * all the time is being spent migrating!
1705 	 */
1706 	if (numamigrate_update_ratelimit(pgdat, 1))
1707 		goto out;
1708 
1709 	isolated = numamigrate_isolate_page(pgdat, page);
1710 	if (!isolated)
1711 		goto out;
1712 
1713 	list_add(&page->lru, &migratepages);
1714 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1715 				     NULL, node, MIGRATE_ASYNC,
1716 				     MR_NUMA_MISPLACED);
1717 	if (nr_remaining) {
1718 		if (!list_empty(&migratepages)) {
1719 			list_del(&page->lru);
1720 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1721 					page_is_file_cache(page));
1722 			putback_lru_page(page);
1723 		}
1724 		isolated = 0;
1725 	} else
1726 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1727 	BUG_ON(!list_empty(&migratepages));
1728 	return isolated;
1729 
1730 out:
1731 	put_page(page);
1732 	return 0;
1733 }
1734 #endif /* CONFIG_NUMA_BALANCING */
1735 
1736 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1737 /*
1738  * Migrates a THP to a given target node. page must be locked and is unlocked
1739  * before returning.
1740  */
1741 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1742 				struct vm_area_struct *vma,
1743 				pmd_t *pmd, pmd_t entry,
1744 				unsigned long address,
1745 				struct page *page, int node)
1746 {
1747 	spinlock_t *ptl;
1748 	pg_data_t *pgdat = NODE_DATA(node);
1749 	int isolated = 0;
1750 	struct page *new_page = NULL;
1751 	int page_lru = page_is_file_cache(page);
1752 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1753 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1754 	pmd_t orig_entry;
1755 
1756 	/*
1757 	 * Rate-limit the amount of data that is being migrated to a node.
1758 	 * Optimal placement is no good if the memory bus is saturated and
1759 	 * all the time is being spent migrating!
1760 	 */
1761 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1762 		goto out_dropref;
1763 
1764 	new_page = alloc_pages_node(node,
1765 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1766 		HPAGE_PMD_ORDER);
1767 	if (!new_page)
1768 		goto out_fail;
1769 	prep_transhuge_page(new_page);
1770 
1771 	isolated = numamigrate_isolate_page(pgdat, page);
1772 	if (!isolated) {
1773 		put_page(new_page);
1774 		goto out_fail;
1775 	}
1776 
1777 	if (mm_tlb_flush_pending(mm))
1778 		flush_tlb_range(vma, mmun_start, mmun_end);
1779 
1780 	/* Prepare a page as a migration target */
1781 	__SetPageLocked(new_page);
1782 	SetPageSwapBacked(new_page);
1783 
1784 	/* anon mapping, we can simply copy page->mapping to the new page: */
1785 	new_page->mapping = page->mapping;
1786 	new_page->index = page->index;
1787 	migrate_page_copy(new_page, page);
1788 	WARN_ON(PageLRU(new_page));
1789 
1790 	/* Recheck the target PMD */
1791 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1792 	ptl = pmd_lock(mm, pmd);
1793 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1794 fail_putback:
1795 		spin_unlock(ptl);
1796 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1797 
1798 		/* Reverse changes made by migrate_page_copy() */
1799 		if (TestClearPageActive(new_page))
1800 			SetPageActive(page);
1801 		if (TestClearPageUnevictable(new_page))
1802 			SetPageUnevictable(page);
1803 
1804 		unlock_page(new_page);
1805 		put_page(new_page);		/* Free it */
1806 
1807 		/* Retake the callers reference and putback on LRU */
1808 		get_page(page);
1809 		putback_lru_page(page);
1810 		mod_zone_page_state(page_zone(page),
1811 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1812 
1813 		goto out_unlock;
1814 	}
1815 
1816 	orig_entry = *pmd;
1817 	entry = mk_pmd(new_page, vma->vm_page_prot);
1818 	entry = pmd_mkhuge(entry);
1819 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1820 
1821 	/*
1822 	 * Clear the old entry under pagetable lock and establish the new PTE.
1823 	 * Any parallel GUP will either observe the old page blocking on the
1824 	 * page lock, block on the page table lock or observe the new page.
1825 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1826 	 * guarantee the copy is visible before the pagetable update.
1827 	 */
1828 	flush_cache_range(vma, mmun_start, mmun_end);
1829 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1830 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1831 	set_pmd_at(mm, mmun_start, pmd, entry);
1832 	flush_tlb_range(vma, mmun_start, mmun_end);
1833 	update_mmu_cache_pmd(vma, address, &entry);
1834 
1835 	if (page_count(page) != 2) {
1836 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1837 		flush_tlb_range(vma, mmun_start, mmun_end);
1838 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1839 		update_mmu_cache_pmd(vma, address, &entry);
1840 		page_remove_rmap(new_page, true);
1841 		goto fail_putback;
1842 	}
1843 
1844 	mlock_migrate_page(new_page, page);
1845 	page_remove_rmap(page, true);
1846 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1847 
1848 	spin_unlock(ptl);
1849 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1850 
1851 	/* Take an "isolate" reference and put new page on the LRU. */
1852 	get_page(new_page);
1853 	putback_lru_page(new_page);
1854 
1855 	unlock_page(new_page);
1856 	unlock_page(page);
1857 	put_page(page);			/* Drop the rmap reference */
1858 	put_page(page);			/* Drop the LRU isolation reference */
1859 
1860 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1861 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1862 
1863 	mod_zone_page_state(page_zone(page),
1864 			NR_ISOLATED_ANON + page_lru,
1865 			-HPAGE_PMD_NR);
1866 	return isolated;
1867 
1868 out_fail:
1869 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1870 out_dropref:
1871 	ptl = pmd_lock(mm, pmd);
1872 	if (pmd_same(*pmd, entry)) {
1873 		entry = pmd_modify(entry, vma->vm_page_prot);
1874 		set_pmd_at(mm, mmun_start, pmd, entry);
1875 		update_mmu_cache_pmd(vma, address, &entry);
1876 	}
1877 	spin_unlock(ptl);
1878 
1879 out_unlock:
1880 	unlock_page(page);
1881 	put_page(page);
1882 	return 0;
1883 }
1884 #endif /* CONFIG_NUMA_BALANCING */
1885 
1886 #endif /* CONFIG_NUMA */
1887