1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 #include <linux/page_idle.h> 41 #include <linux/page_owner.h> 42 43 #include <asm/tlbflush.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/migrate.h> 47 48 #include "internal.h" 49 50 /* 51 * migrate_prep() needs to be called before we start compiling a list of pages 52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 53 * undesirable, use migrate_prep_local() 54 */ 55 int migrate_prep(void) 56 { 57 /* 58 * Clear the LRU lists so pages can be isolated. 59 * Note that pages may be moved off the LRU after we have 60 * drained them. Those pages will fail to migrate like other 61 * pages that may be busy. 62 */ 63 lru_add_drain_all(); 64 65 return 0; 66 } 67 68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 69 int migrate_prep_local(void) 70 { 71 lru_add_drain(); 72 73 return 0; 74 } 75 76 /* 77 * Put previously isolated pages back onto the appropriate lists 78 * from where they were once taken off for compaction/migration. 79 * 80 * This function shall be used whenever the isolated pageset has been 81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 82 * and isolate_huge_page(). 83 */ 84 void putback_movable_pages(struct list_head *l) 85 { 86 struct page *page; 87 struct page *page2; 88 89 list_for_each_entry_safe(page, page2, l, lru) { 90 if (unlikely(PageHuge(page))) { 91 putback_active_hugepage(page); 92 continue; 93 } 94 list_del(&page->lru); 95 dec_zone_page_state(page, NR_ISOLATED_ANON + 96 page_is_file_cache(page)); 97 if (unlikely(isolated_balloon_page(page))) 98 balloon_page_putback(page); 99 else 100 putback_lru_page(page); 101 } 102 } 103 104 /* 105 * Restore a potential migration pte to a working pte entry 106 */ 107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 108 unsigned long addr, void *old) 109 { 110 struct mm_struct *mm = vma->vm_mm; 111 swp_entry_t entry; 112 pmd_t *pmd; 113 pte_t *ptep, pte; 114 spinlock_t *ptl; 115 116 if (unlikely(PageHuge(new))) { 117 ptep = huge_pte_offset(mm, addr); 118 if (!ptep) 119 goto out; 120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 121 } else { 122 pmd = mm_find_pmd(mm, addr); 123 if (!pmd) 124 goto out; 125 126 ptep = pte_offset_map(pmd, addr); 127 128 /* 129 * Peek to check is_swap_pte() before taking ptlock? No, we 130 * can race mremap's move_ptes(), which skips anon_vma lock. 131 */ 132 133 ptl = pte_lockptr(mm, pmd); 134 } 135 136 spin_lock(ptl); 137 pte = *ptep; 138 if (!is_swap_pte(pte)) 139 goto unlock; 140 141 entry = pte_to_swp_entry(pte); 142 143 if (!is_migration_entry(entry) || 144 migration_entry_to_page(entry) != old) 145 goto unlock; 146 147 get_page(new); 148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 149 if (pte_swp_soft_dirty(*ptep)) 150 pte = pte_mksoft_dirty(pte); 151 152 /* Recheck VMA as permissions can change since migration started */ 153 if (is_write_migration_entry(entry)) 154 pte = maybe_mkwrite(pte, vma); 155 156 #ifdef CONFIG_HUGETLB_PAGE 157 if (PageHuge(new)) { 158 pte = pte_mkhuge(pte); 159 pte = arch_make_huge_pte(pte, vma, new, 0); 160 } 161 #endif 162 flush_dcache_page(new); 163 set_pte_at(mm, addr, ptep, pte); 164 165 if (PageHuge(new)) { 166 if (PageAnon(new)) 167 hugepage_add_anon_rmap(new, vma, addr); 168 else 169 page_dup_rmap(new, true); 170 } else if (PageAnon(new)) 171 page_add_anon_rmap(new, vma, addr, false); 172 else 173 page_add_file_rmap(new); 174 175 if (vma->vm_flags & VM_LOCKED) 176 mlock_vma_page(new); 177 178 /* No need to invalidate - it was non-present before */ 179 update_mmu_cache(vma, addr, ptep); 180 unlock: 181 pte_unmap_unlock(ptep, ptl); 182 out: 183 return SWAP_AGAIN; 184 } 185 186 /* 187 * Get rid of all migration entries and replace them by 188 * references to the indicated page. 189 */ 190 static void remove_migration_ptes(struct page *old, struct page *new) 191 { 192 struct rmap_walk_control rwc = { 193 .rmap_one = remove_migration_pte, 194 .arg = old, 195 }; 196 197 rmap_walk(new, &rwc); 198 } 199 200 /* 201 * Something used the pte of a page under migration. We need to 202 * get to the page and wait until migration is finished. 203 * When we return from this function the fault will be retried. 204 */ 205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 206 spinlock_t *ptl) 207 { 208 pte_t pte; 209 swp_entry_t entry; 210 struct page *page; 211 212 spin_lock(ptl); 213 pte = *ptep; 214 if (!is_swap_pte(pte)) 215 goto out; 216 217 entry = pte_to_swp_entry(pte); 218 if (!is_migration_entry(entry)) 219 goto out; 220 221 page = migration_entry_to_page(entry); 222 223 /* 224 * Once radix-tree replacement of page migration started, page_count 225 * *must* be zero. And, we don't want to call wait_on_page_locked() 226 * against a page without get_page(). 227 * So, we use get_page_unless_zero(), here. Even failed, page fault 228 * will occur again. 229 */ 230 if (!get_page_unless_zero(page)) 231 goto out; 232 pte_unmap_unlock(ptep, ptl); 233 wait_on_page_locked(page); 234 put_page(page); 235 return; 236 out: 237 pte_unmap_unlock(ptep, ptl); 238 } 239 240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 241 unsigned long address) 242 { 243 spinlock_t *ptl = pte_lockptr(mm, pmd); 244 pte_t *ptep = pte_offset_map(pmd, address); 245 __migration_entry_wait(mm, ptep, ptl); 246 } 247 248 void migration_entry_wait_huge(struct vm_area_struct *vma, 249 struct mm_struct *mm, pte_t *pte) 250 { 251 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 252 __migration_entry_wait(mm, pte, ptl); 253 } 254 255 #ifdef CONFIG_BLOCK 256 /* Returns true if all buffers are successfully locked */ 257 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 258 enum migrate_mode mode) 259 { 260 struct buffer_head *bh = head; 261 262 /* Simple case, sync compaction */ 263 if (mode != MIGRATE_ASYNC) { 264 do { 265 get_bh(bh); 266 lock_buffer(bh); 267 bh = bh->b_this_page; 268 269 } while (bh != head); 270 271 return true; 272 } 273 274 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 275 do { 276 get_bh(bh); 277 if (!trylock_buffer(bh)) { 278 /* 279 * We failed to lock the buffer and cannot stall in 280 * async migration. Release the taken locks 281 */ 282 struct buffer_head *failed_bh = bh; 283 put_bh(failed_bh); 284 bh = head; 285 while (bh != failed_bh) { 286 unlock_buffer(bh); 287 put_bh(bh); 288 bh = bh->b_this_page; 289 } 290 return false; 291 } 292 293 bh = bh->b_this_page; 294 } while (bh != head); 295 return true; 296 } 297 #else 298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 299 enum migrate_mode mode) 300 { 301 return true; 302 } 303 #endif /* CONFIG_BLOCK */ 304 305 /* 306 * Replace the page in the mapping. 307 * 308 * The number of remaining references must be: 309 * 1 for anonymous pages without a mapping 310 * 2 for pages with a mapping 311 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 312 */ 313 int migrate_page_move_mapping(struct address_space *mapping, 314 struct page *newpage, struct page *page, 315 struct buffer_head *head, enum migrate_mode mode, 316 int extra_count) 317 { 318 struct zone *oldzone, *newzone; 319 int dirty; 320 int expected_count = 1 + extra_count; 321 void **pslot; 322 323 if (!mapping) { 324 /* Anonymous page without mapping */ 325 if (page_count(page) != expected_count) 326 return -EAGAIN; 327 328 /* No turning back from here */ 329 newpage->index = page->index; 330 newpage->mapping = page->mapping; 331 if (PageSwapBacked(page)) 332 SetPageSwapBacked(newpage); 333 334 return MIGRATEPAGE_SUCCESS; 335 } 336 337 oldzone = page_zone(page); 338 newzone = page_zone(newpage); 339 340 spin_lock_irq(&mapping->tree_lock); 341 342 pslot = radix_tree_lookup_slot(&mapping->page_tree, 343 page_index(page)); 344 345 expected_count += 1 + page_has_private(page); 346 if (page_count(page) != expected_count || 347 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 348 spin_unlock_irq(&mapping->tree_lock); 349 return -EAGAIN; 350 } 351 352 if (!page_freeze_refs(page, expected_count)) { 353 spin_unlock_irq(&mapping->tree_lock); 354 return -EAGAIN; 355 } 356 357 /* 358 * In the async migration case of moving a page with buffers, lock the 359 * buffers using trylock before the mapping is moved. If the mapping 360 * was moved, we later failed to lock the buffers and could not move 361 * the mapping back due to an elevated page count, we would have to 362 * block waiting on other references to be dropped. 363 */ 364 if (mode == MIGRATE_ASYNC && head && 365 !buffer_migrate_lock_buffers(head, mode)) { 366 page_unfreeze_refs(page, expected_count); 367 spin_unlock_irq(&mapping->tree_lock); 368 return -EAGAIN; 369 } 370 371 /* 372 * Now we know that no one else is looking at the page: 373 * no turning back from here. 374 */ 375 newpage->index = page->index; 376 newpage->mapping = page->mapping; 377 if (PageSwapBacked(page)) 378 SetPageSwapBacked(newpage); 379 380 get_page(newpage); /* add cache reference */ 381 if (PageSwapCache(page)) { 382 SetPageSwapCache(newpage); 383 set_page_private(newpage, page_private(page)); 384 } 385 386 /* Move dirty while page refs frozen and newpage not yet exposed */ 387 dirty = PageDirty(page); 388 if (dirty) { 389 ClearPageDirty(page); 390 SetPageDirty(newpage); 391 } 392 393 radix_tree_replace_slot(pslot, newpage); 394 395 /* 396 * Drop cache reference from old page by unfreezing 397 * to one less reference. 398 * We know this isn't the last reference. 399 */ 400 page_unfreeze_refs(page, expected_count - 1); 401 402 spin_unlock(&mapping->tree_lock); 403 /* Leave irq disabled to prevent preemption while updating stats */ 404 405 /* 406 * If moved to a different zone then also account 407 * the page for that zone. Other VM counters will be 408 * taken care of when we establish references to the 409 * new page and drop references to the old page. 410 * 411 * Note that anonymous pages are accounted for 412 * via NR_FILE_PAGES and NR_ANON_PAGES if they 413 * are mapped to swap space. 414 */ 415 if (newzone != oldzone) { 416 __dec_zone_state(oldzone, NR_FILE_PAGES); 417 __inc_zone_state(newzone, NR_FILE_PAGES); 418 if (PageSwapBacked(page) && !PageSwapCache(page)) { 419 __dec_zone_state(oldzone, NR_SHMEM); 420 __inc_zone_state(newzone, NR_SHMEM); 421 } 422 if (dirty && mapping_cap_account_dirty(mapping)) { 423 __dec_zone_state(oldzone, NR_FILE_DIRTY); 424 __inc_zone_state(newzone, NR_FILE_DIRTY); 425 } 426 } 427 local_irq_enable(); 428 429 return MIGRATEPAGE_SUCCESS; 430 } 431 432 /* 433 * The expected number of remaining references is the same as that 434 * of migrate_page_move_mapping(). 435 */ 436 int migrate_huge_page_move_mapping(struct address_space *mapping, 437 struct page *newpage, struct page *page) 438 { 439 int expected_count; 440 void **pslot; 441 442 spin_lock_irq(&mapping->tree_lock); 443 444 pslot = radix_tree_lookup_slot(&mapping->page_tree, 445 page_index(page)); 446 447 expected_count = 2 + page_has_private(page); 448 if (page_count(page) != expected_count || 449 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 450 spin_unlock_irq(&mapping->tree_lock); 451 return -EAGAIN; 452 } 453 454 if (!page_freeze_refs(page, expected_count)) { 455 spin_unlock_irq(&mapping->tree_lock); 456 return -EAGAIN; 457 } 458 459 newpage->index = page->index; 460 newpage->mapping = page->mapping; 461 462 get_page(newpage); 463 464 radix_tree_replace_slot(pslot, newpage); 465 466 page_unfreeze_refs(page, expected_count - 1); 467 468 spin_unlock_irq(&mapping->tree_lock); 469 470 return MIGRATEPAGE_SUCCESS; 471 } 472 473 /* 474 * Gigantic pages are so large that we do not guarantee that page++ pointer 475 * arithmetic will work across the entire page. We need something more 476 * specialized. 477 */ 478 static void __copy_gigantic_page(struct page *dst, struct page *src, 479 int nr_pages) 480 { 481 int i; 482 struct page *dst_base = dst; 483 struct page *src_base = src; 484 485 for (i = 0; i < nr_pages; ) { 486 cond_resched(); 487 copy_highpage(dst, src); 488 489 i++; 490 dst = mem_map_next(dst, dst_base, i); 491 src = mem_map_next(src, src_base, i); 492 } 493 } 494 495 static void copy_huge_page(struct page *dst, struct page *src) 496 { 497 int i; 498 int nr_pages; 499 500 if (PageHuge(src)) { 501 /* hugetlbfs page */ 502 struct hstate *h = page_hstate(src); 503 nr_pages = pages_per_huge_page(h); 504 505 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 506 __copy_gigantic_page(dst, src, nr_pages); 507 return; 508 } 509 } else { 510 /* thp page */ 511 BUG_ON(!PageTransHuge(src)); 512 nr_pages = hpage_nr_pages(src); 513 } 514 515 for (i = 0; i < nr_pages; i++) { 516 cond_resched(); 517 copy_highpage(dst + i, src + i); 518 } 519 } 520 521 /* 522 * Copy the page to its new location 523 */ 524 void migrate_page_copy(struct page *newpage, struct page *page) 525 { 526 int cpupid; 527 528 if (PageHuge(page) || PageTransHuge(page)) 529 copy_huge_page(newpage, page); 530 else 531 copy_highpage(newpage, page); 532 533 if (PageError(page)) 534 SetPageError(newpage); 535 if (PageReferenced(page)) 536 SetPageReferenced(newpage); 537 if (PageUptodate(page)) 538 SetPageUptodate(newpage); 539 if (TestClearPageActive(page)) { 540 VM_BUG_ON_PAGE(PageUnevictable(page), page); 541 SetPageActive(newpage); 542 } else if (TestClearPageUnevictable(page)) 543 SetPageUnevictable(newpage); 544 if (PageChecked(page)) 545 SetPageChecked(newpage); 546 if (PageMappedToDisk(page)) 547 SetPageMappedToDisk(newpage); 548 549 /* Move dirty on pages not done by migrate_page_move_mapping() */ 550 if (PageDirty(page)) 551 SetPageDirty(newpage); 552 553 if (page_is_young(page)) 554 set_page_young(newpage); 555 if (page_is_idle(page)) 556 set_page_idle(newpage); 557 558 /* 559 * Copy NUMA information to the new page, to prevent over-eager 560 * future migrations of this same page. 561 */ 562 cpupid = page_cpupid_xchg_last(page, -1); 563 page_cpupid_xchg_last(newpage, cpupid); 564 565 ksm_migrate_page(newpage, page); 566 /* 567 * Please do not reorder this without considering how mm/ksm.c's 568 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 569 */ 570 if (PageSwapCache(page)) 571 ClearPageSwapCache(page); 572 ClearPagePrivate(page); 573 set_page_private(page, 0); 574 575 /* 576 * If any waiters have accumulated on the new page then 577 * wake them up. 578 */ 579 if (PageWriteback(newpage)) 580 end_page_writeback(newpage); 581 582 copy_page_owner(page, newpage); 583 584 mem_cgroup_migrate(page, newpage); 585 } 586 587 /************************************************************ 588 * Migration functions 589 ***********************************************************/ 590 591 /* 592 * Common logic to directly migrate a single page suitable for 593 * pages that do not use PagePrivate/PagePrivate2. 594 * 595 * Pages are locked upon entry and exit. 596 */ 597 int migrate_page(struct address_space *mapping, 598 struct page *newpage, struct page *page, 599 enum migrate_mode mode) 600 { 601 int rc; 602 603 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 604 605 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 606 607 if (rc != MIGRATEPAGE_SUCCESS) 608 return rc; 609 610 migrate_page_copy(newpage, page); 611 return MIGRATEPAGE_SUCCESS; 612 } 613 EXPORT_SYMBOL(migrate_page); 614 615 #ifdef CONFIG_BLOCK 616 /* 617 * Migration function for pages with buffers. This function can only be used 618 * if the underlying filesystem guarantees that no other references to "page" 619 * exist. 620 */ 621 int buffer_migrate_page(struct address_space *mapping, 622 struct page *newpage, struct page *page, enum migrate_mode mode) 623 { 624 struct buffer_head *bh, *head; 625 int rc; 626 627 if (!page_has_buffers(page)) 628 return migrate_page(mapping, newpage, page, mode); 629 630 head = page_buffers(page); 631 632 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 633 634 if (rc != MIGRATEPAGE_SUCCESS) 635 return rc; 636 637 /* 638 * In the async case, migrate_page_move_mapping locked the buffers 639 * with an IRQ-safe spinlock held. In the sync case, the buffers 640 * need to be locked now 641 */ 642 if (mode != MIGRATE_ASYNC) 643 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 644 645 ClearPagePrivate(page); 646 set_page_private(newpage, page_private(page)); 647 set_page_private(page, 0); 648 put_page(page); 649 get_page(newpage); 650 651 bh = head; 652 do { 653 set_bh_page(bh, newpage, bh_offset(bh)); 654 bh = bh->b_this_page; 655 656 } while (bh != head); 657 658 SetPagePrivate(newpage); 659 660 migrate_page_copy(newpage, page); 661 662 bh = head; 663 do { 664 unlock_buffer(bh); 665 put_bh(bh); 666 bh = bh->b_this_page; 667 668 } while (bh != head); 669 670 return MIGRATEPAGE_SUCCESS; 671 } 672 EXPORT_SYMBOL(buffer_migrate_page); 673 #endif 674 675 /* 676 * Writeback a page to clean the dirty state 677 */ 678 static int writeout(struct address_space *mapping, struct page *page) 679 { 680 struct writeback_control wbc = { 681 .sync_mode = WB_SYNC_NONE, 682 .nr_to_write = 1, 683 .range_start = 0, 684 .range_end = LLONG_MAX, 685 .for_reclaim = 1 686 }; 687 int rc; 688 689 if (!mapping->a_ops->writepage) 690 /* No write method for the address space */ 691 return -EINVAL; 692 693 if (!clear_page_dirty_for_io(page)) 694 /* Someone else already triggered a write */ 695 return -EAGAIN; 696 697 /* 698 * A dirty page may imply that the underlying filesystem has 699 * the page on some queue. So the page must be clean for 700 * migration. Writeout may mean we loose the lock and the 701 * page state is no longer what we checked for earlier. 702 * At this point we know that the migration attempt cannot 703 * be successful. 704 */ 705 remove_migration_ptes(page, page); 706 707 rc = mapping->a_ops->writepage(page, &wbc); 708 709 if (rc != AOP_WRITEPAGE_ACTIVATE) 710 /* unlocked. Relock */ 711 lock_page(page); 712 713 return (rc < 0) ? -EIO : -EAGAIN; 714 } 715 716 /* 717 * Default handling if a filesystem does not provide a migration function. 718 */ 719 static int fallback_migrate_page(struct address_space *mapping, 720 struct page *newpage, struct page *page, enum migrate_mode mode) 721 { 722 if (PageDirty(page)) { 723 /* Only writeback pages in full synchronous migration */ 724 if (mode != MIGRATE_SYNC) 725 return -EBUSY; 726 return writeout(mapping, page); 727 } 728 729 /* 730 * Buffers may be managed in a filesystem specific way. 731 * We must have no buffers or drop them. 732 */ 733 if (page_has_private(page) && 734 !try_to_release_page(page, GFP_KERNEL)) 735 return -EAGAIN; 736 737 return migrate_page(mapping, newpage, page, mode); 738 } 739 740 /* 741 * Move a page to a newly allocated page 742 * The page is locked and all ptes have been successfully removed. 743 * 744 * The new page will have replaced the old page if this function 745 * is successful. 746 * 747 * Return value: 748 * < 0 - error code 749 * MIGRATEPAGE_SUCCESS - success 750 */ 751 static int move_to_new_page(struct page *newpage, struct page *page, 752 enum migrate_mode mode) 753 { 754 struct address_space *mapping; 755 int rc; 756 757 VM_BUG_ON_PAGE(!PageLocked(page), page); 758 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 759 760 mapping = page_mapping(page); 761 if (!mapping) 762 rc = migrate_page(mapping, newpage, page, mode); 763 else if (mapping->a_ops->migratepage) 764 /* 765 * Most pages have a mapping and most filesystems provide a 766 * migratepage callback. Anonymous pages are part of swap 767 * space which also has its own migratepage callback. This 768 * is the most common path for page migration. 769 */ 770 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode); 771 else 772 rc = fallback_migrate_page(mapping, newpage, page, mode); 773 774 /* 775 * When successful, old pagecache page->mapping must be cleared before 776 * page is freed; but stats require that PageAnon be left as PageAnon. 777 */ 778 if (rc == MIGRATEPAGE_SUCCESS) { 779 if (!PageAnon(page)) 780 page->mapping = NULL; 781 } 782 return rc; 783 } 784 785 static int __unmap_and_move(struct page *page, struct page *newpage, 786 int force, enum migrate_mode mode) 787 { 788 int rc = -EAGAIN; 789 int page_was_mapped = 0; 790 struct anon_vma *anon_vma = NULL; 791 792 if (!trylock_page(page)) { 793 if (!force || mode == MIGRATE_ASYNC) 794 goto out; 795 796 /* 797 * It's not safe for direct compaction to call lock_page. 798 * For example, during page readahead pages are added locked 799 * to the LRU. Later, when the IO completes the pages are 800 * marked uptodate and unlocked. However, the queueing 801 * could be merging multiple pages for one bio (e.g. 802 * mpage_readpages). If an allocation happens for the 803 * second or third page, the process can end up locking 804 * the same page twice and deadlocking. Rather than 805 * trying to be clever about what pages can be locked, 806 * avoid the use of lock_page for direct compaction 807 * altogether. 808 */ 809 if (current->flags & PF_MEMALLOC) 810 goto out; 811 812 lock_page(page); 813 } 814 815 if (PageWriteback(page)) { 816 /* 817 * Only in the case of a full synchronous migration is it 818 * necessary to wait for PageWriteback. In the async case, 819 * the retry loop is too short and in the sync-light case, 820 * the overhead of stalling is too much 821 */ 822 if (mode != MIGRATE_SYNC) { 823 rc = -EBUSY; 824 goto out_unlock; 825 } 826 if (!force) 827 goto out_unlock; 828 wait_on_page_writeback(page); 829 } 830 831 /* 832 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 833 * we cannot notice that anon_vma is freed while we migrates a page. 834 * This get_anon_vma() delays freeing anon_vma pointer until the end 835 * of migration. File cache pages are no problem because of page_lock() 836 * File Caches may use write_page() or lock_page() in migration, then, 837 * just care Anon page here. 838 * 839 * Only page_get_anon_vma() understands the subtleties of 840 * getting a hold on an anon_vma from outside one of its mms. 841 * But if we cannot get anon_vma, then we won't need it anyway, 842 * because that implies that the anon page is no longer mapped 843 * (and cannot be remapped so long as we hold the page lock). 844 */ 845 if (PageAnon(page) && !PageKsm(page)) 846 anon_vma = page_get_anon_vma(page); 847 848 /* 849 * Block others from accessing the new page when we get around to 850 * establishing additional references. We are usually the only one 851 * holding a reference to newpage at this point. We used to have a BUG 852 * here if trylock_page(newpage) fails, but would like to allow for 853 * cases where there might be a race with the previous use of newpage. 854 * This is much like races on refcount of oldpage: just don't BUG(). 855 */ 856 if (unlikely(!trylock_page(newpage))) 857 goto out_unlock; 858 859 if (unlikely(isolated_balloon_page(page))) { 860 /* 861 * A ballooned page does not need any special attention from 862 * physical to virtual reverse mapping procedures. 863 * Skip any attempt to unmap PTEs or to remap swap cache, 864 * in order to avoid burning cycles at rmap level, and perform 865 * the page migration right away (proteced by page lock). 866 */ 867 rc = balloon_page_migrate(newpage, page, mode); 868 goto out_unlock_both; 869 } 870 871 /* 872 * Corner case handling: 873 * 1. When a new swap-cache page is read into, it is added to the LRU 874 * and treated as swapcache but it has no rmap yet. 875 * Calling try_to_unmap() against a page->mapping==NULL page will 876 * trigger a BUG. So handle it here. 877 * 2. An orphaned page (see truncate_complete_page) might have 878 * fs-private metadata. The page can be picked up due to memory 879 * offlining. Everywhere else except page reclaim, the page is 880 * invisible to the vm, so the page can not be migrated. So try to 881 * free the metadata, so the page can be freed. 882 */ 883 if (!page->mapping) { 884 VM_BUG_ON_PAGE(PageAnon(page), page); 885 if (page_has_private(page)) { 886 try_to_free_buffers(page); 887 goto out_unlock_both; 888 } 889 } else if (page_mapped(page)) { 890 /* Establish migration ptes */ 891 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 892 page); 893 try_to_unmap(page, 894 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 895 page_was_mapped = 1; 896 } 897 898 if (!page_mapped(page)) 899 rc = move_to_new_page(newpage, page, mode); 900 901 if (page_was_mapped) 902 remove_migration_ptes(page, 903 rc == MIGRATEPAGE_SUCCESS ? newpage : page); 904 905 out_unlock_both: 906 unlock_page(newpage); 907 out_unlock: 908 /* Drop an anon_vma reference if we took one */ 909 if (anon_vma) 910 put_anon_vma(anon_vma); 911 unlock_page(page); 912 out: 913 return rc; 914 } 915 916 /* 917 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 918 * around it. 919 */ 920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 921 #define ICE_noinline noinline 922 #else 923 #define ICE_noinline 924 #endif 925 926 /* 927 * Obtain the lock on page, remove all ptes and migrate the page 928 * to the newly allocated page in newpage. 929 */ 930 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 931 free_page_t put_new_page, 932 unsigned long private, struct page *page, 933 int force, enum migrate_mode mode, 934 enum migrate_reason reason) 935 { 936 int rc = MIGRATEPAGE_SUCCESS; 937 int *result = NULL; 938 struct page *newpage; 939 940 newpage = get_new_page(page, private, &result); 941 if (!newpage) 942 return -ENOMEM; 943 944 if (page_count(page) == 1) { 945 /* page was freed from under us. So we are done. */ 946 goto out; 947 } 948 949 if (unlikely(PageTransHuge(page))) { 950 lock_page(page); 951 rc = split_huge_page(page); 952 unlock_page(page); 953 if (rc) 954 goto out; 955 } 956 957 rc = __unmap_and_move(page, newpage, force, mode); 958 if (rc == MIGRATEPAGE_SUCCESS) { 959 put_new_page = NULL; 960 set_page_owner_migrate_reason(newpage, reason); 961 } 962 963 out: 964 if (rc != -EAGAIN) { 965 /* 966 * A page that has been migrated has all references 967 * removed and will be freed. A page that has not been 968 * migrated will have kepts its references and be 969 * restored. 970 */ 971 list_del(&page->lru); 972 dec_zone_page_state(page, NR_ISOLATED_ANON + 973 page_is_file_cache(page)); 974 /* Soft-offlined page shouldn't go through lru cache list */ 975 if (reason == MR_MEMORY_FAILURE) { 976 put_page(page); 977 if (!test_set_page_hwpoison(page)) 978 num_poisoned_pages_inc(); 979 } else 980 putback_lru_page(page); 981 } 982 983 /* 984 * If migration was not successful and there's a freeing callback, use 985 * it. Otherwise, putback_lru_page() will drop the reference grabbed 986 * during isolation. 987 */ 988 if (put_new_page) 989 put_new_page(newpage, private); 990 else if (unlikely(__is_movable_balloon_page(newpage))) { 991 /* drop our reference, page already in the balloon */ 992 put_page(newpage); 993 } else 994 putback_lru_page(newpage); 995 996 if (result) { 997 if (rc) 998 *result = rc; 999 else 1000 *result = page_to_nid(newpage); 1001 } 1002 return rc; 1003 } 1004 1005 /* 1006 * Counterpart of unmap_and_move_page() for hugepage migration. 1007 * 1008 * This function doesn't wait the completion of hugepage I/O 1009 * because there is no race between I/O and migration for hugepage. 1010 * Note that currently hugepage I/O occurs only in direct I/O 1011 * where no lock is held and PG_writeback is irrelevant, 1012 * and writeback status of all subpages are counted in the reference 1013 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1014 * under direct I/O, the reference of the head page is 512 and a bit more.) 1015 * This means that when we try to migrate hugepage whose subpages are 1016 * doing direct I/O, some references remain after try_to_unmap() and 1017 * hugepage migration fails without data corruption. 1018 * 1019 * There is also no race when direct I/O is issued on the page under migration, 1020 * because then pte is replaced with migration swap entry and direct I/O code 1021 * will wait in the page fault for migration to complete. 1022 */ 1023 static int unmap_and_move_huge_page(new_page_t get_new_page, 1024 free_page_t put_new_page, unsigned long private, 1025 struct page *hpage, int force, 1026 enum migrate_mode mode, int reason) 1027 { 1028 int rc = -EAGAIN; 1029 int *result = NULL; 1030 int page_was_mapped = 0; 1031 struct page *new_hpage; 1032 struct anon_vma *anon_vma = NULL; 1033 1034 /* 1035 * Movability of hugepages depends on architectures and hugepage size. 1036 * This check is necessary because some callers of hugepage migration 1037 * like soft offline and memory hotremove don't walk through page 1038 * tables or check whether the hugepage is pmd-based or not before 1039 * kicking migration. 1040 */ 1041 if (!hugepage_migration_supported(page_hstate(hpage))) { 1042 putback_active_hugepage(hpage); 1043 return -ENOSYS; 1044 } 1045 1046 new_hpage = get_new_page(hpage, private, &result); 1047 if (!new_hpage) 1048 return -ENOMEM; 1049 1050 if (!trylock_page(hpage)) { 1051 if (!force || mode != MIGRATE_SYNC) 1052 goto out; 1053 lock_page(hpage); 1054 } 1055 1056 if (PageAnon(hpage)) 1057 anon_vma = page_get_anon_vma(hpage); 1058 1059 if (unlikely(!trylock_page(new_hpage))) 1060 goto put_anon; 1061 1062 if (page_mapped(hpage)) { 1063 try_to_unmap(hpage, 1064 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1065 page_was_mapped = 1; 1066 } 1067 1068 if (!page_mapped(hpage)) 1069 rc = move_to_new_page(new_hpage, hpage, mode); 1070 1071 if (page_was_mapped) 1072 remove_migration_ptes(hpage, 1073 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage); 1074 1075 unlock_page(new_hpage); 1076 1077 put_anon: 1078 if (anon_vma) 1079 put_anon_vma(anon_vma); 1080 1081 if (rc == MIGRATEPAGE_SUCCESS) { 1082 hugetlb_cgroup_migrate(hpage, new_hpage); 1083 put_new_page = NULL; 1084 set_page_owner_migrate_reason(new_hpage, reason); 1085 } 1086 1087 unlock_page(hpage); 1088 out: 1089 if (rc != -EAGAIN) 1090 putback_active_hugepage(hpage); 1091 1092 /* 1093 * If migration was not successful and there's a freeing callback, use 1094 * it. Otherwise, put_page() will drop the reference grabbed during 1095 * isolation. 1096 */ 1097 if (put_new_page) 1098 put_new_page(new_hpage, private); 1099 else 1100 putback_active_hugepage(new_hpage); 1101 1102 if (result) { 1103 if (rc) 1104 *result = rc; 1105 else 1106 *result = page_to_nid(new_hpage); 1107 } 1108 return rc; 1109 } 1110 1111 /* 1112 * migrate_pages - migrate the pages specified in a list, to the free pages 1113 * supplied as the target for the page migration 1114 * 1115 * @from: The list of pages to be migrated. 1116 * @get_new_page: The function used to allocate free pages to be used 1117 * as the target of the page migration. 1118 * @put_new_page: The function used to free target pages if migration 1119 * fails, or NULL if no special handling is necessary. 1120 * @private: Private data to be passed on to get_new_page() 1121 * @mode: The migration mode that specifies the constraints for 1122 * page migration, if any. 1123 * @reason: The reason for page migration. 1124 * 1125 * The function returns after 10 attempts or if no pages are movable any more 1126 * because the list has become empty or no retryable pages exist any more. 1127 * The caller should call putback_movable_pages() to return pages to the LRU 1128 * or free list only if ret != 0. 1129 * 1130 * Returns the number of pages that were not migrated, or an error code. 1131 */ 1132 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1133 free_page_t put_new_page, unsigned long private, 1134 enum migrate_mode mode, int reason) 1135 { 1136 int retry = 1; 1137 int nr_failed = 0; 1138 int nr_succeeded = 0; 1139 int pass = 0; 1140 struct page *page; 1141 struct page *page2; 1142 int swapwrite = current->flags & PF_SWAPWRITE; 1143 int rc; 1144 1145 if (!swapwrite) 1146 current->flags |= PF_SWAPWRITE; 1147 1148 for(pass = 0; pass < 10 && retry; pass++) { 1149 retry = 0; 1150 1151 list_for_each_entry_safe(page, page2, from, lru) { 1152 cond_resched(); 1153 1154 if (PageHuge(page)) 1155 rc = unmap_and_move_huge_page(get_new_page, 1156 put_new_page, private, page, 1157 pass > 2, mode, reason); 1158 else 1159 rc = unmap_and_move(get_new_page, put_new_page, 1160 private, page, pass > 2, mode, 1161 reason); 1162 1163 switch(rc) { 1164 case -ENOMEM: 1165 goto out; 1166 case -EAGAIN: 1167 retry++; 1168 break; 1169 case MIGRATEPAGE_SUCCESS: 1170 nr_succeeded++; 1171 break; 1172 default: 1173 /* 1174 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1175 * unlike -EAGAIN case, the failed page is 1176 * removed from migration page list and not 1177 * retried in the next outer loop. 1178 */ 1179 nr_failed++; 1180 break; 1181 } 1182 } 1183 } 1184 nr_failed += retry; 1185 rc = nr_failed; 1186 out: 1187 if (nr_succeeded) 1188 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1189 if (nr_failed) 1190 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1191 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1192 1193 if (!swapwrite) 1194 current->flags &= ~PF_SWAPWRITE; 1195 1196 return rc; 1197 } 1198 1199 #ifdef CONFIG_NUMA 1200 /* 1201 * Move a list of individual pages 1202 */ 1203 struct page_to_node { 1204 unsigned long addr; 1205 struct page *page; 1206 int node; 1207 int status; 1208 }; 1209 1210 static struct page *new_page_node(struct page *p, unsigned long private, 1211 int **result) 1212 { 1213 struct page_to_node *pm = (struct page_to_node *)private; 1214 1215 while (pm->node != MAX_NUMNODES && pm->page != p) 1216 pm++; 1217 1218 if (pm->node == MAX_NUMNODES) 1219 return NULL; 1220 1221 *result = &pm->status; 1222 1223 if (PageHuge(p)) 1224 return alloc_huge_page_node(page_hstate(compound_head(p)), 1225 pm->node); 1226 else 1227 return __alloc_pages_node(pm->node, 1228 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1229 } 1230 1231 /* 1232 * Move a set of pages as indicated in the pm array. The addr 1233 * field must be set to the virtual address of the page to be moved 1234 * and the node number must contain a valid target node. 1235 * The pm array ends with node = MAX_NUMNODES. 1236 */ 1237 static int do_move_page_to_node_array(struct mm_struct *mm, 1238 struct page_to_node *pm, 1239 int migrate_all) 1240 { 1241 int err; 1242 struct page_to_node *pp; 1243 LIST_HEAD(pagelist); 1244 1245 down_read(&mm->mmap_sem); 1246 1247 /* 1248 * Build a list of pages to migrate 1249 */ 1250 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1251 struct vm_area_struct *vma; 1252 struct page *page; 1253 1254 err = -EFAULT; 1255 vma = find_vma(mm, pp->addr); 1256 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1257 goto set_status; 1258 1259 /* FOLL_DUMP to ignore special (like zero) pages */ 1260 page = follow_page(vma, pp->addr, 1261 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1262 1263 err = PTR_ERR(page); 1264 if (IS_ERR(page)) 1265 goto set_status; 1266 1267 err = -ENOENT; 1268 if (!page) 1269 goto set_status; 1270 1271 pp->page = page; 1272 err = page_to_nid(page); 1273 1274 if (err == pp->node) 1275 /* 1276 * Node already in the right place 1277 */ 1278 goto put_and_set; 1279 1280 err = -EACCES; 1281 if (page_mapcount(page) > 1 && 1282 !migrate_all) 1283 goto put_and_set; 1284 1285 if (PageHuge(page)) { 1286 if (PageHead(page)) 1287 isolate_huge_page(page, &pagelist); 1288 goto put_and_set; 1289 } 1290 1291 err = isolate_lru_page(page); 1292 if (!err) { 1293 list_add_tail(&page->lru, &pagelist); 1294 inc_zone_page_state(page, NR_ISOLATED_ANON + 1295 page_is_file_cache(page)); 1296 } 1297 put_and_set: 1298 /* 1299 * Either remove the duplicate refcount from 1300 * isolate_lru_page() or drop the page ref if it was 1301 * not isolated. 1302 */ 1303 put_page(page); 1304 set_status: 1305 pp->status = err; 1306 } 1307 1308 err = 0; 1309 if (!list_empty(&pagelist)) { 1310 err = migrate_pages(&pagelist, new_page_node, NULL, 1311 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1312 if (err) 1313 putback_movable_pages(&pagelist); 1314 } 1315 1316 up_read(&mm->mmap_sem); 1317 return err; 1318 } 1319 1320 /* 1321 * Migrate an array of page address onto an array of nodes and fill 1322 * the corresponding array of status. 1323 */ 1324 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1325 unsigned long nr_pages, 1326 const void __user * __user *pages, 1327 const int __user *nodes, 1328 int __user *status, int flags) 1329 { 1330 struct page_to_node *pm; 1331 unsigned long chunk_nr_pages; 1332 unsigned long chunk_start; 1333 int err; 1334 1335 err = -ENOMEM; 1336 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1337 if (!pm) 1338 goto out; 1339 1340 migrate_prep(); 1341 1342 /* 1343 * Store a chunk of page_to_node array in a page, 1344 * but keep the last one as a marker 1345 */ 1346 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1347 1348 for (chunk_start = 0; 1349 chunk_start < nr_pages; 1350 chunk_start += chunk_nr_pages) { 1351 int j; 1352 1353 if (chunk_start + chunk_nr_pages > nr_pages) 1354 chunk_nr_pages = nr_pages - chunk_start; 1355 1356 /* fill the chunk pm with addrs and nodes from user-space */ 1357 for (j = 0; j < chunk_nr_pages; j++) { 1358 const void __user *p; 1359 int node; 1360 1361 err = -EFAULT; 1362 if (get_user(p, pages + j + chunk_start)) 1363 goto out_pm; 1364 pm[j].addr = (unsigned long) p; 1365 1366 if (get_user(node, nodes + j + chunk_start)) 1367 goto out_pm; 1368 1369 err = -ENODEV; 1370 if (node < 0 || node >= MAX_NUMNODES) 1371 goto out_pm; 1372 1373 if (!node_state(node, N_MEMORY)) 1374 goto out_pm; 1375 1376 err = -EACCES; 1377 if (!node_isset(node, task_nodes)) 1378 goto out_pm; 1379 1380 pm[j].node = node; 1381 } 1382 1383 /* End marker for this chunk */ 1384 pm[chunk_nr_pages].node = MAX_NUMNODES; 1385 1386 /* Migrate this chunk */ 1387 err = do_move_page_to_node_array(mm, pm, 1388 flags & MPOL_MF_MOVE_ALL); 1389 if (err < 0) 1390 goto out_pm; 1391 1392 /* Return status information */ 1393 for (j = 0; j < chunk_nr_pages; j++) 1394 if (put_user(pm[j].status, status + j + chunk_start)) { 1395 err = -EFAULT; 1396 goto out_pm; 1397 } 1398 } 1399 err = 0; 1400 1401 out_pm: 1402 free_page((unsigned long)pm); 1403 out: 1404 return err; 1405 } 1406 1407 /* 1408 * Determine the nodes of an array of pages and store it in an array of status. 1409 */ 1410 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1411 const void __user **pages, int *status) 1412 { 1413 unsigned long i; 1414 1415 down_read(&mm->mmap_sem); 1416 1417 for (i = 0; i < nr_pages; i++) { 1418 unsigned long addr = (unsigned long)(*pages); 1419 struct vm_area_struct *vma; 1420 struct page *page; 1421 int err = -EFAULT; 1422 1423 vma = find_vma(mm, addr); 1424 if (!vma || addr < vma->vm_start) 1425 goto set_status; 1426 1427 /* FOLL_DUMP to ignore special (like zero) pages */ 1428 page = follow_page(vma, addr, FOLL_DUMP); 1429 1430 err = PTR_ERR(page); 1431 if (IS_ERR(page)) 1432 goto set_status; 1433 1434 err = page ? page_to_nid(page) : -ENOENT; 1435 set_status: 1436 *status = err; 1437 1438 pages++; 1439 status++; 1440 } 1441 1442 up_read(&mm->mmap_sem); 1443 } 1444 1445 /* 1446 * Determine the nodes of a user array of pages and store it in 1447 * a user array of status. 1448 */ 1449 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1450 const void __user * __user *pages, 1451 int __user *status) 1452 { 1453 #define DO_PAGES_STAT_CHUNK_NR 16 1454 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1455 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1456 1457 while (nr_pages) { 1458 unsigned long chunk_nr; 1459 1460 chunk_nr = nr_pages; 1461 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1462 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1463 1464 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1465 break; 1466 1467 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1468 1469 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1470 break; 1471 1472 pages += chunk_nr; 1473 status += chunk_nr; 1474 nr_pages -= chunk_nr; 1475 } 1476 return nr_pages ? -EFAULT : 0; 1477 } 1478 1479 /* 1480 * Move a list of pages in the address space of the currently executing 1481 * process. 1482 */ 1483 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1484 const void __user * __user *, pages, 1485 const int __user *, nodes, 1486 int __user *, status, int, flags) 1487 { 1488 const struct cred *cred = current_cred(), *tcred; 1489 struct task_struct *task; 1490 struct mm_struct *mm; 1491 int err; 1492 nodemask_t task_nodes; 1493 1494 /* Check flags */ 1495 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1496 return -EINVAL; 1497 1498 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1499 return -EPERM; 1500 1501 /* Find the mm_struct */ 1502 rcu_read_lock(); 1503 task = pid ? find_task_by_vpid(pid) : current; 1504 if (!task) { 1505 rcu_read_unlock(); 1506 return -ESRCH; 1507 } 1508 get_task_struct(task); 1509 1510 /* 1511 * Check if this process has the right to modify the specified 1512 * process. The right exists if the process has administrative 1513 * capabilities, superuser privileges or the same 1514 * userid as the target process. 1515 */ 1516 tcred = __task_cred(task); 1517 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1518 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1519 !capable(CAP_SYS_NICE)) { 1520 rcu_read_unlock(); 1521 err = -EPERM; 1522 goto out; 1523 } 1524 rcu_read_unlock(); 1525 1526 err = security_task_movememory(task); 1527 if (err) 1528 goto out; 1529 1530 task_nodes = cpuset_mems_allowed(task); 1531 mm = get_task_mm(task); 1532 put_task_struct(task); 1533 1534 if (!mm) 1535 return -EINVAL; 1536 1537 if (nodes) 1538 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1539 nodes, status, flags); 1540 else 1541 err = do_pages_stat(mm, nr_pages, pages, status); 1542 1543 mmput(mm); 1544 return err; 1545 1546 out: 1547 put_task_struct(task); 1548 return err; 1549 } 1550 1551 #ifdef CONFIG_NUMA_BALANCING 1552 /* 1553 * Returns true if this is a safe migration target node for misplaced NUMA 1554 * pages. Currently it only checks the watermarks which crude 1555 */ 1556 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1557 unsigned long nr_migrate_pages) 1558 { 1559 int z; 1560 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1561 struct zone *zone = pgdat->node_zones + z; 1562 1563 if (!populated_zone(zone)) 1564 continue; 1565 1566 if (!zone_reclaimable(zone)) 1567 continue; 1568 1569 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1570 if (!zone_watermark_ok(zone, 0, 1571 high_wmark_pages(zone) + 1572 nr_migrate_pages, 1573 0, 0)) 1574 continue; 1575 return true; 1576 } 1577 return false; 1578 } 1579 1580 static struct page *alloc_misplaced_dst_page(struct page *page, 1581 unsigned long data, 1582 int **result) 1583 { 1584 int nid = (int) data; 1585 struct page *newpage; 1586 1587 newpage = __alloc_pages_node(nid, 1588 (GFP_HIGHUSER_MOVABLE | 1589 __GFP_THISNODE | __GFP_NOMEMALLOC | 1590 __GFP_NORETRY | __GFP_NOWARN) & 1591 ~__GFP_RECLAIM, 0); 1592 1593 return newpage; 1594 } 1595 1596 /* 1597 * page migration rate limiting control. 1598 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1599 * window of time. Default here says do not migrate more than 1280M per second. 1600 */ 1601 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1602 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1603 1604 /* Returns true if the node is migrate rate-limited after the update */ 1605 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1606 unsigned long nr_pages) 1607 { 1608 /* 1609 * Rate-limit the amount of data that is being migrated to a node. 1610 * Optimal placement is no good if the memory bus is saturated and 1611 * all the time is being spent migrating! 1612 */ 1613 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1614 spin_lock(&pgdat->numabalancing_migrate_lock); 1615 pgdat->numabalancing_migrate_nr_pages = 0; 1616 pgdat->numabalancing_migrate_next_window = jiffies + 1617 msecs_to_jiffies(migrate_interval_millisecs); 1618 spin_unlock(&pgdat->numabalancing_migrate_lock); 1619 } 1620 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1621 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1622 nr_pages); 1623 return true; 1624 } 1625 1626 /* 1627 * This is an unlocked non-atomic update so errors are possible. 1628 * The consequences are failing to migrate when we potentiall should 1629 * have which is not severe enough to warrant locking. If it is ever 1630 * a problem, it can be converted to a per-cpu counter. 1631 */ 1632 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1633 return false; 1634 } 1635 1636 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1637 { 1638 int page_lru; 1639 1640 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1641 1642 /* Avoid migrating to a node that is nearly full */ 1643 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1644 return 0; 1645 1646 if (isolate_lru_page(page)) 1647 return 0; 1648 1649 /* 1650 * migrate_misplaced_transhuge_page() skips page migration's usual 1651 * check on page_count(), so we must do it here, now that the page 1652 * has been isolated: a GUP pin, or any other pin, prevents migration. 1653 * The expected page count is 3: 1 for page's mapcount and 1 for the 1654 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1655 */ 1656 if (PageTransHuge(page) && page_count(page) != 3) { 1657 putback_lru_page(page); 1658 return 0; 1659 } 1660 1661 page_lru = page_is_file_cache(page); 1662 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1663 hpage_nr_pages(page)); 1664 1665 /* 1666 * Isolating the page has taken another reference, so the 1667 * caller's reference can be safely dropped without the page 1668 * disappearing underneath us during migration. 1669 */ 1670 put_page(page); 1671 return 1; 1672 } 1673 1674 bool pmd_trans_migrating(pmd_t pmd) 1675 { 1676 struct page *page = pmd_page(pmd); 1677 return PageLocked(page); 1678 } 1679 1680 /* 1681 * Attempt to migrate a misplaced page to the specified destination 1682 * node. Caller is expected to have an elevated reference count on 1683 * the page that will be dropped by this function before returning. 1684 */ 1685 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1686 int node) 1687 { 1688 pg_data_t *pgdat = NODE_DATA(node); 1689 int isolated; 1690 int nr_remaining; 1691 LIST_HEAD(migratepages); 1692 1693 /* 1694 * Don't migrate file pages that are mapped in multiple processes 1695 * with execute permissions as they are probably shared libraries. 1696 */ 1697 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1698 (vma->vm_flags & VM_EXEC)) 1699 goto out; 1700 1701 /* 1702 * Rate-limit the amount of data that is being migrated to a node. 1703 * Optimal placement is no good if the memory bus is saturated and 1704 * all the time is being spent migrating! 1705 */ 1706 if (numamigrate_update_ratelimit(pgdat, 1)) 1707 goto out; 1708 1709 isolated = numamigrate_isolate_page(pgdat, page); 1710 if (!isolated) 1711 goto out; 1712 1713 list_add(&page->lru, &migratepages); 1714 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1715 NULL, node, MIGRATE_ASYNC, 1716 MR_NUMA_MISPLACED); 1717 if (nr_remaining) { 1718 if (!list_empty(&migratepages)) { 1719 list_del(&page->lru); 1720 dec_zone_page_state(page, NR_ISOLATED_ANON + 1721 page_is_file_cache(page)); 1722 putback_lru_page(page); 1723 } 1724 isolated = 0; 1725 } else 1726 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1727 BUG_ON(!list_empty(&migratepages)); 1728 return isolated; 1729 1730 out: 1731 put_page(page); 1732 return 0; 1733 } 1734 #endif /* CONFIG_NUMA_BALANCING */ 1735 1736 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1737 /* 1738 * Migrates a THP to a given target node. page must be locked and is unlocked 1739 * before returning. 1740 */ 1741 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1742 struct vm_area_struct *vma, 1743 pmd_t *pmd, pmd_t entry, 1744 unsigned long address, 1745 struct page *page, int node) 1746 { 1747 spinlock_t *ptl; 1748 pg_data_t *pgdat = NODE_DATA(node); 1749 int isolated = 0; 1750 struct page *new_page = NULL; 1751 int page_lru = page_is_file_cache(page); 1752 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1753 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1754 pmd_t orig_entry; 1755 1756 /* 1757 * Rate-limit the amount of data that is being migrated to a node. 1758 * Optimal placement is no good if the memory bus is saturated and 1759 * all the time is being spent migrating! 1760 */ 1761 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1762 goto out_dropref; 1763 1764 new_page = alloc_pages_node(node, 1765 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1766 HPAGE_PMD_ORDER); 1767 if (!new_page) 1768 goto out_fail; 1769 prep_transhuge_page(new_page); 1770 1771 isolated = numamigrate_isolate_page(pgdat, page); 1772 if (!isolated) { 1773 put_page(new_page); 1774 goto out_fail; 1775 } 1776 1777 if (mm_tlb_flush_pending(mm)) 1778 flush_tlb_range(vma, mmun_start, mmun_end); 1779 1780 /* Prepare a page as a migration target */ 1781 __SetPageLocked(new_page); 1782 SetPageSwapBacked(new_page); 1783 1784 /* anon mapping, we can simply copy page->mapping to the new page: */ 1785 new_page->mapping = page->mapping; 1786 new_page->index = page->index; 1787 migrate_page_copy(new_page, page); 1788 WARN_ON(PageLRU(new_page)); 1789 1790 /* Recheck the target PMD */ 1791 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1792 ptl = pmd_lock(mm, pmd); 1793 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1794 fail_putback: 1795 spin_unlock(ptl); 1796 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1797 1798 /* Reverse changes made by migrate_page_copy() */ 1799 if (TestClearPageActive(new_page)) 1800 SetPageActive(page); 1801 if (TestClearPageUnevictable(new_page)) 1802 SetPageUnevictable(page); 1803 1804 unlock_page(new_page); 1805 put_page(new_page); /* Free it */ 1806 1807 /* Retake the callers reference and putback on LRU */ 1808 get_page(page); 1809 putback_lru_page(page); 1810 mod_zone_page_state(page_zone(page), 1811 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1812 1813 goto out_unlock; 1814 } 1815 1816 orig_entry = *pmd; 1817 entry = mk_pmd(new_page, vma->vm_page_prot); 1818 entry = pmd_mkhuge(entry); 1819 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1820 1821 /* 1822 * Clear the old entry under pagetable lock and establish the new PTE. 1823 * Any parallel GUP will either observe the old page blocking on the 1824 * page lock, block on the page table lock or observe the new page. 1825 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1826 * guarantee the copy is visible before the pagetable update. 1827 */ 1828 flush_cache_range(vma, mmun_start, mmun_end); 1829 page_add_anon_rmap(new_page, vma, mmun_start, true); 1830 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1831 set_pmd_at(mm, mmun_start, pmd, entry); 1832 flush_tlb_range(vma, mmun_start, mmun_end); 1833 update_mmu_cache_pmd(vma, address, &entry); 1834 1835 if (page_count(page) != 2) { 1836 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1837 flush_tlb_range(vma, mmun_start, mmun_end); 1838 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1839 update_mmu_cache_pmd(vma, address, &entry); 1840 page_remove_rmap(new_page, true); 1841 goto fail_putback; 1842 } 1843 1844 mlock_migrate_page(new_page, page); 1845 page_remove_rmap(page, true); 1846 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 1847 1848 spin_unlock(ptl); 1849 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1850 1851 /* Take an "isolate" reference and put new page on the LRU. */ 1852 get_page(new_page); 1853 putback_lru_page(new_page); 1854 1855 unlock_page(new_page); 1856 unlock_page(page); 1857 put_page(page); /* Drop the rmap reference */ 1858 put_page(page); /* Drop the LRU isolation reference */ 1859 1860 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1861 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1862 1863 mod_zone_page_state(page_zone(page), 1864 NR_ISOLATED_ANON + page_lru, 1865 -HPAGE_PMD_NR); 1866 return isolated; 1867 1868 out_fail: 1869 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1870 out_dropref: 1871 ptl = pmd_lock(mm, pmd); 1872 if (pmd_same(*pmd, entry)) { 1873 entry = pmd_modify(entry, vma->vm_page_prot); 1874 set_pmd_at(mm, mmun_start, pmd, entry); 1875 update_mmu_cache_pmd(vma, address, &entry); 1876 } 1877 spin_unlock(ptl); 1878 1879 out_unlock: 1880 unlock_page(page); 1881 put_page(page); 1882 return 0; 1883 } 1884 #endif /* CONFIG_NUMA_BALANCING */ 1885 1886 #endif /* CONFIG_NUMA */ 1887