1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 #include <linux/memory-tiers.h> 54 55 #include <asm/tlbflush.h> 56 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 struct folio *folio = folio_get_nontail_page(page); 64 const struct movable_operations *mops; 65 66 /* 67 * Avoid burning cycles with pages that are yet under __free_pages(), 68 * or just got freed under us. 69 * 70 * In case we 'win' a race for a movable page being freed under us and 71 * raise its refcount preventing __free_pages() from doing its job 72 * the put_page() at the end of this block will take care of 73 * release this page, thus avoiding a nasty leakage. 74 */ 75 if (!folio) 76 goto out; 77 78 if (unlikely(folio_test_slab(folio))) 79 goto out_putfolio; 80 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 81 smp_rmb(); 82 /* 83 * Check movable flag before taking the page lock because 84 * we use non-atomic bitops on newly allocated page flags so 85 * unconditionally grabbing the lock ruins page's owner side. 86 */ 87 if (unlikely(!__folio_test_movable(folio))) 88 goto out_putfolio; 89 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 90 smp_rmb(); 91 if (unlikely(folio_test_slab(folio))) 92 goto out_putfolio; 93 94 /* 95 * As movable pages are not isolated from LRU lists, concurrent 96 * compaction threads can race against page migration functions 97 * as well as race against the releasing a page. 98 * 99 * In order to avoid having an already isolated movable page 100 * being (wrongly) re-isolated while it is under migration, 101 * or to avoid attempting to isolate pages being released, 102 * lets be sure we have the page lock 103 * before proceeding with the movable page isolation steps. 104 */ 105 if (unlikely(!folio_trylock(folio))) 106 goto out_putfolio; 107 108 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 109 goto out_no_isolated; 110 111 mops = folio_movable_ops(folio); 112 VM_BUG_ON_FOLIO(!mops, folio); 113 114 if (!mops->isolate_page(&folio->page, mode)) 115 goto out_no_isolated; 116 117 /* Driver shouldn't use PG_isolated bit of page->flags */ 118 WARN_ON_ONCE(folio_test_isolated(folio)); 119 folio_set_isolated(folio); 120 folio_unlock(folio); 121 122 return true; 123 124 out_no_isolated: 125 folio_unlock(folio); 126 out_putfolio: 127 folio_put(folio); 128 out: 129 return false; 130 } 131 132 static void putback_movable_folio(struct folio *folio) 133 { 134 const struct movable_operations *mops = folio_movable_ops(folio); 135 136 mops->putback_page(&folio->page); 137 folio_clear_isolated(folio); 138 } 139 140 /* 141 * Put previously isolated pages back onto the appropriate lists 142 * from where they were once taken off for compaction/migration. 143 * 144 * This function shall be used whenever the isolated pageset has been 145 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 146 * and isolate_hugetlb(). 147 */ 148 void putback_movable_pages(struct list_head *l) 149 { 150 struct folio *folio; 151 struct folio *folio2; 152 153 list_for_each_entry_safe(folio, folio2, l, lru) { 154 if (unlikely(folio_test_hugetlb(folio))) { 155 folio_putback_active_hugetlb(folio); 156 continue; 157 } 158 list_del(&folio->lru); 159 /* 160 * We isolated non-lru movable folio so here we can use 161 * __PageMovable because LRU folio's mapping cannot have 162 * PAGE_MAPPING_MOVABLE. 163 */ 164 if (unlikely(__folio_test_movable(folio))) { 165 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 166 folio_lock(folio); 167 if (folio_test_movable(folio)) 168 putback_movable_folio(folio); 169 else 170 folio_clear_isolated(folio); 171 folio_unlock(folio); 172 folio_put(folio); 173 } else { 174 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 175 folio_is_file_lru(folio), -folio_nr_pages(folio)); 176 folio_putback_lru(folio); 177 } 178 } 179 } 180 181 /* 182 * Restore a potential migration pte to a working pte entry 183 */ 184 static bool remove_migration_pte(struct folio *folio, 185 struct vm_area_struct *vma, unsigned long addr, void *old) 186 { 187 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 188 189 while (page_vma_mapped_walk(&pvmw)) { 190 rmap_t rmap_flags = RMAP_NONE; 191 pte_t old_pte; 192 pte_t pte; 193 swp_entry_t entry; 194 struct page *new; 195 unsigned long idx = 0; 196 197 /* pgoff is invalid for ksm pages, but they are never large */ 198 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 199 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 200 new = folio_page(folio, idx); 201 202 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 203 /* PMD-mapped THP migration entry */ 204 if (!pvmw.pte) { 205 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 206 !folio_test_pmd_mappable(folio), folio); 207 remove_migration_pmd(&pvmw, new); 208 continue; 209 } 210 #endif 211 212 folio_get(folio); 213 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 214 old_pte = ptep_get(pvmw.pte); 215 if (pte_swp_soft_dirty(old_pte)) 216 pte = pte_mksoft_dirty(pte); 217 218 entry = pte_to_swp_entry(old_pte); 219 if (!is_migration_entry_young(entry)) 220 pte = pte_mkold(pte); 221 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 222 pte = pte_mkdirty(pte); 223 if (is_writable_migration_entry(entry)) 224 pte = pte_mkwrite(pte); 225 else if (pte_swp_uffd_wp(old_pte)) 226 pte = pte_mkuffd_wp(pte); 227 228 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 229 rmap_flags |= RMAP_EXCLUSIVE; 230 231 if (unlikely(is_device_private_page(new))) { 232 if (pte_write(pte)) 233 entry = make_writable_device_private_entry( 234 page_to_pfn(new)); 235 else 236 entry = make_readable_device_private_entry( 237 page_to_pfn(new)); 238 pte = swp_entry_to_pte(entry); 239 if (pte_swp_soft_dirty(old_pte)) 240 pte = pte_swp_mksoft_dirty(pte); 241 if (pte_swp_uffd_wp(old_pte)) 242 pte = pte_swp_mkuffd_wp(pte); 243 } 244 245 #ifdef CONFIG_HUGETLB_PAGE 246 if (folio_test_hugetlb(folio)) { 247 unsigned int shift = huge_page_shift(hstate_vma(vma)); 248 249 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 250 if (folio_test_anon(folio)) 251 hugepage_add_anon_rmap(new, vma, pvmw.address, 252 rmap_flags); 253 else 254 page_dup_file_rmap(new, true); 255 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 256 } else 257 #endif 258 { 259 if (folio_test_anon(folio)) 260 page_add_anon_rmap(new, vma, pvmw.address, 261 rmap_flags); 262 else 263 page_add_file_rmap(new, vma, false); 264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 265 } 266 if (vma->vm_flags & VM_LOCKED) 267 mlock_drain_local(); 268 269 trace_remove_migration_pte(pvmw.address, pte_val(pte), 270 compound_order(new)); 271 272 /* No need to invalidate - it was non-present before */ 273 update_mmu_cache(vma, pvmw.address, pvmw.pte); 274 } 275 276 return true; 277 } 278 279 /* 280 * Get rid of all migration entries and replace them by 281 * references to the indicated page. 282 */ 283 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 284 { 285 struct rmap_walk_control rwc = { 286 .rmap_one = remove_migration_pte, 287 .arg = src, 288 }; 289 290 if (locked) 291 rmap_walk_locked(dst, &rwc); 292 else 293 rmap_walk(dst, &rwc); 294 } 295 296 /* 297 * Something used the pte of a page under migration. We need to 298 * get to the page and wait until migration is finished. 299 * When we return from this function the fault will be retried. 300 */ 301 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 302 unsigned long address) 303 { 304 spinlock_t *ptl; 305 pte_t *ptep; 306 pte_t pte; 307 swp_entry_t entry; 308 309 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 310 if (!ptep) 311 return; 312 313 pte = ptep_get(ptep); 314 pte_unmap(ptep); 315 316 if (!is_swap_pte(pte)) 317 goto out; 318 319 entry = pte_to_swp_entry(pte); 320 if (!is_migration_entry(entry)) 321 goto out; 322 323 migration_entry_wait_on_locked(entry, ptl); 324 return; 325 out: 326 spin_unlock(ptl); 327 } 328 329 #ifdef CONFIG_HUGETLB_PAGE 330 /* 331 * The vma read lock must be held upon entry. Holding that lock prevents either 332 * the pte or the ptl from being freed. 333 * 334 * This function will release the vma lock before returning. 335 */ 336 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 337 { 338 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 339 pte_t pte; 340 341 hugetlb_vma_assert_locked(vma); 342 spin_lock(ptl); 343 pte = huge_ptep_get(ptep); 344 345 if (unlikely(!is_hugetlb_entry_migration(pte))) { 346 spin_unlock(ptl); 347 hugetlb_vma_unlock_read(vma); 348 } else { 349 /* 350 * If migration entry existed, safe to release vma lock 351 * here because the pgtable page won't be freed without the 352 * pgtable lock released. See comment right above pgtable 353 * lock release in migration_entry_wait_on_locked(). 354 */ 355 hugetlb_vma_unlock_read(vma); 356 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 357 } 358 } 359 #endif 360 361 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 362 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 363 { 364 spinlock_t *ptl; 365 366 ptl = pmd_lock(mm, pmd); 367 if (!is_pmd_migration_entry(*pmd)) 368 goto unlock; 369 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 370 return; 371 unlock: 372 spin_unlock(ptl); 373 } 374 #endif 375 376 static int folio_expected_refs(struct address_space *mapping, 377 struct folio *folio) 378 { 379 int refs = 1; 380 if (!mapping) 381 return refs; 382 383 refs += folio_nr_pages(folio); 384 if (folio_test_private(folio)) 385 refs++; 386 387 return refs; 388 } 389 390 /* 391 * Replace the page in the mapping. 392 * 393 * The number of remaining references must be: 394 * 1 for anonymous pages without a mapping 395 * 2 for pages with a mapping 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 397 */ 398 int folio_migrate_mapping(struct address_space *mapping, 399 struct folio *newfolio, struct folio *folio, int extra_count) 400 { 401 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 402 struct zone *oldzone, *newzone; 403 int dirty; 404 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 405 long nr = folio_nr_pages(folio); 406 407 if (!mapping) { 408 /* Anonymous page without mapping */ 409 if (folio_ref_count(folio) != expected_count) 410 return -EAGAIN; 411 412 /* No turning back from here */ 413 newfolio->index = folio->index; 414 newfolio->mapping = folio->mapping; 415 if (folio_test_swapbacked(folio)) 416 __folio_set_swapbacked(newfolio); 417 418 return MIGRATEPAGE_SUCCESS; 419 } 420 421 oldzone = folio_zone(folio); 422 newzone = folio_zone(newfolio); 423 424 xas_lock_irq(&xas); 425 if (!folio_ref_freeze(folio, expected_count)) { 426 xas_unlock_irq(&xas); 427 return -EAGAIN; 428 } 429 430 /* 431 * Now we know that no one else is looking at the folio: 432 * no turning back from here. 433 */ 434 newfolio->index = folio->index; 435 newfolio->mapping = folio->mapping; 436 folio_ref_add(newfolio, nr); /* add cache reference */ 437 if (folio_test_swapbacked(folio)) { 438 __folio_set_swapbacked(newfolio); 439 if (folio_test_swapcache(folio)) { 440 folio_set_swapcache(newfolio); 441 newfolio->private = folio_get_private(folio); 442 } 443 } else { 444 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 445 } 446 447 /* Move dirty while page refs frozen and newpage not yet exposed */ 448 dirty = folio_test_dirty(folio); 449 if (dirty) { 450 folio_clear_dirty(folio); 451 folio_set_dirty(newfolio); 452 } 453 454 xas_store(&xas, newfolio); 455 456 /* 457 * Drop cache reference from old page by unfreezing 458 * to one less reference. 459 * We know this isn't the last reference. 460 */ 461 folio_ref_unfreeze(folio, expected_count - nr); 462 463 xas_unlock(&xas); 464 /* Leave irq disabled to prevent preemption while updating stats */ 465 466 /* 467 * If moved to a different zone then also account 468 * the page for that zone. Other VM counters will be 469 * taken care of when we establish references to the 470 * new page and drop references to the old page. 471 * 472 * Note that anonymous pages are accounted for 473 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 474 * are mapped to swap space. 475 */ 476 if (newzone != oldzone) { 477 struct lruvec *old_lruvec, *new_lruvec; 478 struct mem_cgroup *memcg; 479 480 memcg = folio_memcg(folio); 481 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 482 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 483 484 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 485 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 486 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 487 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 488 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 489 } 490 #ifdef CONFIG_SWAP 491 if (folio_test_swapcache(folio)) { 492 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 493 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 494 } 495 #endif 496 if (dirty && mapping_can_writeback(mapping)) { 497 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 498 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 499 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 500 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 501 } 502 } 503 local_irq_enable(); 504 505 return MIGRATEPAGE_SUCCESS; 506 } 507 EXPORT_SYMBOL(folio_migrate_mapping); 508 509 /* 510 * The expected number of remaining references is the same as that 511 * of folio_migrate_mapping(). 512 */ 513 int migrate_huge_page_move_mapping(struct address_space *mapping, 514 struct folio *dst, struct folio *src) 515 { 516 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 517 int expected_count; 518 519 xas_lock_irq(&xas); 520 expected_count = 2 + folio_has_private(src); 521 if (!folio_ref_freeze(src, expected_count)) { 522 xas_unlock_irq(&xas); 523 return -EAGAIN; 524 } 525 526 dst->index = src->index; 527 dst->mapping = src->mapping; 528 529 folio_get(dst); 530 531 xas_store(&xas, dst); 532 533 folio_ref_unfreeze(src, expected_count - 1); 534 535 xas_unlock_irq(&xas); 536 537 return MIGRATEPAGE_SUCCESS; 538 } 539 540 /* 541 * Copy the flags and some other ancillary information 542 */ 543 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 544 { 545 int cpupid; 546 547 if (folio_test_error(folio)) 548 folio_set_error(newfolio); 549 if (folio_test_referenced(folio)) 550 folio_set_referenced(newfolio); 551 if (folio_test_uptodate(folio)) 552 folio_mark_uptodate(newfolio); 553 if (folio_test_clear_active(folio)) { 554 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 555 folio_set_active(newfolio); 556 } else if (folio_test_clear_unevictable(folio)) 557 folio_set_unevictable(newfolio); 558 if (folio_test_workingset(folio)) 559 folio_set_workingset(newfolio); 560 if (folio_test_checked(folio)) 561 folio_set_checked(newfolio); 562 /* 563 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 564 * migration entries. We can still have PG_anon_exclusive set on an 565 * effectively unmapped and unreferenced first sub-pages of an 566 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 567 */ 568 if (folio_test_mappedtodisk(folio)) 569 folio_set_mappedtodisk(newfolio); 570 571 /* Move dirty on pages not done by folio_migrate_mapping() */ 572 if (folio_test_dirty(folio)) 573 folio_set_dirty(newfolio); 574 575 if (folio_test_young(folio)) 576 folio_set_young(newfolio); 577 if (folio_test_idle(folio)) 578 folio_set_idle(newfolio); 579 580 /* 581 * Copy NUMA information to the new page, to prevent over-eager 582 * future migrations of this same page. 583 */ 584 cpupid = page_cpupid_xchg_last(&folio->page, -1); 585 /* 586 * For memory tiering mode, when migrate between slow and fast 587 * memory node, reset cpupid, because that is used to record 588 * page access time in slow memory node. 589 */ 590 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 591 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 592 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 593 594 if (f_toptier != t_toptier) 595 cpupid = -1; 596 } 597 page_cpupid_xchg_last(&newfolio->page, cpupid); 598 599 folio_migrate_ksm(newfolio, folio); 600 /* 601 * Please do not reorder this without considering how mm/ksm.c's 602 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 603 */ 604 if (folio_test_swapcache(folio)) 605 folio_clear_swapcache(folio); 606 folio_clear_private(folio); 607 608 /* page->private contains hugetlb specific flags */ 609 if (!folio_test_hugetlb(folio)) 610 folio->private = NULL; 611 612 /* 613 * If any waiters have accumulated on the new page then 614 * wake them up. 615 */ 616 if (folio_test_writeback(newfolio)) 617 folio_end_writeback(newfolio); 618 619 /* 620 * PG_readahead shares the same bit with PG_reclaim. The above 621 * end_page_writeback() may clear PG_readahead mistakenly, so set the 622 * bit after that. 623 */ 624 if (folio_test_readahead(folio)) 625 folio_set_readahead(newfolio); 626 627 folio_copy_owner(newfolio, folio); 628 629 if (!folio_test_hugetlb(folio)) 630 mem_cgroup_migrate(folio, newfolio); 631 } 632 EXPORT_SYMBOL(folio_migrate_flags); 633 634 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 635 { 636 folio_copy(newfolio, folio); 637 folio_migrate_flags(newfolio, folio); 638 } 639 EXPORT_SYMBOL(folio_migrate_copy); 640 641 /************************************************************ 642 * Migration functions 643 ***********************************************************/ 644 645 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 646 struct folio *src, enum migrate_mode mode, int extra_count) 647 { 648 int rc; 649 650 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 651 652 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 653 654 if (rc != MIGRATEPAGE_SUCCESS) 655 return rc; 656 657 if (mode != MIGRATE_SYNC_NO_COPY) 658 folio_migrate_copy(dst, src); 659 else 660 folio_migrate_flags(dst, src); 661 return MIGRATEPAGE_SUCCESS; 662 } 663 664 /** 665 * migrate_folio() - Simple folio migration. 666 * @mapping: The address_space containing the folio. 667 * @dst: The folio to migrate the data to. 668 * @src: The folio containing the current data. 669 * @mode: How to migrate the page. 670 * 671 * Common logic to directly migrate a single LRU folio suitable for 672 * folios that do not use PagePrivate/PagePrivate2. 673 * 674 * Folios are locked upon entry and exit. 675 */ 676 int migrate_folio(struct address_space *mapping, struct folio *dst, 677 struct folio *src, enum migrate_mode mode) 678 { 679 return migrate_folio_extra(mapping, dst, src, mode, 0); 680 } 681 EXPORT_SYMBOL(migrate_folio); 682 683 #ifdef CONFIG_BLOCK 684 /* Returns true if all buffers are successfully locked */ 685 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 686 enum migrate_mode mode) 687 { 688 struct buffer_head *bh = head; 689 struct buffer_head *failed_bh; 690 691 do { 692 if (!trylock_buffer(bh)) { 693 if (mode == MIGRATE_ASYNC) 694 goto unlock; 695 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 696 goto unlock; 697 lock_buffer(bh); 698 } 699 700 bh = bh->b_this_page; 701 } while (bh != head); 702 703 return true; 704 705 unlock: 706 /* We failed to lock the buffer and cannot stall. */ 707 failed_bh = bh; 708 bh = head; 709 while (bh != failed_bh) { 710 unlock_buffer(bh); 711 bh = bh->b_this_page; 712 } 713 714 return false; 715 } 716 717 static int __buffer_migrate_folio(struct address_space *mapping, 718 struct folio *dst, struct folio *src, enum migrate_mode mode, 719 bool check_refs) 720 { 721 struct buffer_head *bh, *head; 722 int rc; 723 int expected_count; 724 725 head = folio_buffers(src); 726 if (!head) 727 return migrate_folio(mapping, dst, src, mode); 728 729 /* Check whether page does not have extra refs before we do more work */ 730 expected_count = folio_expected_refs(mapping, src); 731 if (folio_ref_count(src) != expected_count) 732 return -EAGAIN; 733 734 if (!buffer_migrate_lock_buffers(head, mode)) 735 return -EAGAIN; 736 737 if (check_refs) { 738 bool busy; 739 bool invalidated = false; 740 741 recheck_buffers: 742 busy = false; 743 spin_lock(&mapping->private_lock); 744 bh = head; 745 do { 746 if (atomic_read(&bh->b_count)) { 747 busy = true; 748 break; 749 } 750 bh = bh->b_this_page; 751 } while (bh != head); 752 if (busy) { 753 if (invalidated) { 754 rc = -EAGAIN; 755 goto unlock_buffers; 756 } 757 spin_unlock(&mapping->private_lock); 758 invalidate_bh_lrus(); 759 invalidated = true; 760 goto recheck_buffers; 761 } 762 } 763 764 rc = folio_migrate_mapping(mapping, dst, src, 0); 765 if (rc != MIGRATEPAGE_SUCCESS) 766 goto unlock_buffers; 767 768 folio_attach_private(dst, folio_detach_private(src)); 769 770 bh = head; 771 do { 772 set_bh_page(bh, &dst->page, bh_offset(bh)); 773 bh = bh->b_this_page; 774 } while (bh != head); 775 776 if (mode != MIGRATE_SYNC_NO_COPY) 777 folio_migrate_copy(dst, src); 778 else 779 folio_migrate_flags(dst, src); 780 781 rc = MIGRATEPAGE_SUCCESS; 782 unlock_buffers: 783 if (check_refs) 784 spin_unlock(&mapping->private_lock); 785 bh = head; 786 do { 787 unlock_buffer(bh); 788 bh = bh->b_this_page; 789 } while (bh != head); 790 791 return rc; 792 } 793 794 /** 795 * buffer_migrate_folio() - Migration function for folios with buffers. 796 * @mapping: The address space containing @src. 797 * @dst: The folio to migrate to. 798 * @src: The folio to migrate from. 799 * @mode: How to migrate the folio. 800 * 801 * This function can only be used if the underlying filesystem guarantees 802 * that no other references to @src exist. For example attached buffer 803 * heads are accessed only under the folio lock. If your filesystem cannot 804 * provide this guarantee, buffer_migrate_folio_norefs() may be more 805 * appropriate. 806 * 807 * Return: 0 on success or a negative errno on failure. 808 */ 809 int buffer_migrate_folio(struct address_space *mapping, 810 struct folio *dst, struct folio *src, enum migrate_mode mode) 811 { 812 return __buffer_migrate_folio(mapping, dst, src, mode, false); 813 } 814 EXPORT_SYMBOL(buffer_migrate_folio); 815 816 /** 817 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 818 * @mapping: The address space containing @src. 819 * @dst: The folio to migrate to. 820 * @src: The folio to migrate from. 821 * @mode: How to migrate the folio. 822 * 823 * Like buffer_migrate_folio() except that this variant is more careful 824 * and checks that there are also no buffer head references. This function 825 * is the right one for mappings where buffer heads are directly looked 826 * up and referenced (such as block device mappings). 827 * 828 * Return: 0 on success or a negative errno on failure. 829 */ 830 int buffer_migrate_folio_norefs(struct address_space *mapping, 831 struct folio *dst, struct folio *src, enum migrate_mode mode) 832 { 833 return __buffer_migrate_folio(mapping, dst, src, mode, true); 834 } 835 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 836 #endif 837 838 int filemap_migrate_folio(struct address_space *mapping, 839 struct folio *dst, struct folio *src, enum migrate_mode mode) 840 { 841 int ret; 842 843 ret = folio_migrate_mapping(mapping, dst, src, 0); 844 if (ret != MIGRATEPAGE_SUCCESS) 845 return ret; 846 847 if (folio_get_private(src)) 848 folio_attach_private(dst, folio_detach_private(src)); 849 850 if (mode != MIGRATE_SYNC_NO_COPY) 851 folio_migrate_copy(dst, src); 852 else 853 folio_migrate_flags(dst, src); 854 return MIGRATEPAGE_SUCCESS; 855 } 856 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 857 858 /* 859 * Writeback a folio to clean the dirty state 860 */ 861 static int writeout(struct address_space *mapping, struct folio *folio) 862 { 863 struct writeback_control wbc = { 864 .sync_mode = WB_SYNC_NONE, 865 .nr_to_write = 1, 866 .range_start = 0, 867 .range_end = LLONG_MAX, 868 .for_reclaim = 1 869 }; 870 int rc; 871 872 if (!mapping->a_ops->writepage) 873 /* No write method for the address space */ 874 return -EINVAL; 875 876 if (!folio_clear_dirty_for_io(folio)) 877 /* Someone else already triggered a write */ 878 return -EAGAIN; 879 880 /* 881 * A dirty folio may imply that the underlying filesystem has 882 * the folio on some queue. So the folio must be clean for 883 * migration. Writeout may mean we lose the lock and the 884 * folio state is no longer what we checked for earlier. 885 * At this point we know that the migration attempt cannot 886 * be successful. 887 */ 888 remove_migration_ptes(folio, folio, false); 889 890 rc = mapping->a_ops->writepage(&folio->page, &wbc); 891 892 if (rc != AOP_WRITEPAGE_ACTIVATE) 893 /* unlocked. Relock */ 894 folio_lock(folio); 895 896 return (rc < 0) ? -EIO : -EAGAIN; 897 } 898 899 /* 900 * Default handling if a filesystem does not provide a migration function. 901 */ 902 static int fallback_migrate_folio(struct address_space *mapping, 903 struct folio *dst, struct folio *src, enum migrate_mode mode) 904 { 905 if (folio_test_dirty(src)) { 906 /* Only writeback folios in full synchronous migration */ 907 switch (mode) { 908 case MIGRATE_SYNC: 909 case MIGRATE_SYNC_NO_COPY: 910 break; 911 default: 912 return -EBUSY; 913 } 914 return writeout(mapping, src); 915 } 916 917 /* 918 * Buffers may be managed in a filesystem specific way. 919 * We must have no buffers or drop them. 920 */ 921 if (folio_test_private(src) && 922 !filemap_release_folio(src, GFP_KERNEL)) 923 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 924 925 return migrate_folio(mapping, dst, src, mode); 926 } 927 928 /* 929 * Move a page to a newly allocated page 930 * The page is locked and all ptes have been successfully removed. 931 * 932 * The new page will have replaced the old page if this function 933 * is successful. 934 * 935 * Return value: 936 * < 0 - error code 937 * MIGRATEPAGE_SUCCESS - success 938 */ 939 static int move_to_new_folio(struct folio *dst, struct folio *src, 940 enum migrate_mode mode) 941 { 942 int rc = -EAGAIN; 943 bool is_lru = !__PageMovable(&src->page); 944 945 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 946 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 947 948 if (likely(is_lru)) { 949 struct address_space *mapping = folio_mapping(src); 950 951 if (!mapping) 952 rc = migrate_folio(mapping, dst, src, mode); 953 else if (mapping->a_ops->migrate_folio) 954 /* 955 * Most folios have a mapping and most filesystems 956 * provide a migrate_folio callback. Anonymous folios 957 * are part of swap space which also has its own 958 * migrate_folio callback. This is the most common path 959 * for page migration. 960 */ 961 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 962 mode); 963 else 964 rc = fallback_migrate_folio(mapping, dst, src, mode); 965 } else { 966 const struct movable_operations *mops; 967 968 /* 969 * In case of non-lru page, it could be released after 970 * isolation step. In that case, we shouldn't try migration. 971 */ 972 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 973 if (!folio_test_movable(src)) { 974 rc = MIGRATEPAGE_SUCCESS; 975 folio_clear_isolated(src); 976 goto out; 977 } 978 979 mops = folio_movable_ops(src); 980 rc = mops->migrate_page(&dst->page, &src->page, mode); 981 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 982 !folio_test_isolated(src)); 983 } 984 985 /* 986 * When successful, old pagecache src->mapping must be cleared before 987 * src is freed; but stats require that PageAnon be left as PageAnon. 988 */ 989 if (rc == MIGRATEPAGE_SUCCESS) { 990 if (__PageMovable(&src->page)) { 991 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 992 993 /* 994 * We clear PG_movable under page_lock so any compactor 995 * cannot try to migrate this page. 996 */ 997 folio_clear_isolated(src); 998 } 999 1000 /* 1001 * Anonymous and movable src->mapping will be cleared by 1002 * free_pages_prepare so don't reset it here for keeping 1003 * the type to work PageAnon, for example. 1004 */ 1005 if (!folio_mapping_flags(src)) 1006 src->mapping = NULL; 1007 1008 if (likely(!folio_is_zone_device(dst))) 1009 flush_dcache_folio(dst); 1010 } 1011 out: 1012 return rc; 1013 } 1014 1015 /* 1016 * To record some information during migration, we use some unused 1017 * fields (mapping and private) of struct folio of the newly allocated 1018 * destination folio. This is safe because nobody is using them 1019 * except us. 1020 */ 1021 union migration_ptr { 1022 struct anon_vma *anon_vma; 1023 struct address_space *mapping; 1024 }; 1025 static void __migrate_folio_record(struct folio *dst, 1026 unsigned long page_was_mapped, 1027 struct anon_vma *anon_vma) 1028 { 1029 union migration_ptr ptr = { .anon_vma = anon_vma }; 1030 dst->mapping = ptr.mapping; 1031 dst->private = (void *)page_was_mapped; 1032 } 1033 1034 static void __migrate_folio_extract(struct folio *dst, 1035 int *page_was_mappedp, 1036 struct anon_vma **anon_vmap) 1037 { 1038 union migration_ptr ptr = { .mapping = dst->mapping }; 1039 *anon_vmap = ptr.anon_vma; 1040 *page_was_mappedp = (unsigned long)dst->private; 1041 dst->mapping = NULL; 1042 dst->private = NULL; 1043 } 1044 1045 /* Restore the source folio to the original state upon failure */ 1046 static void migrate_folio_undo_src(struct folio *src, 1047 int page_was_mapped, 1048 struct anon_vma *anon_vma, 1049 bool locked, 1050 struct list_head *ret) 1051 { 1052 if (page_was_mapped) 1053 remove_migration_ptes(src, src, false); 1054 /* Drop an anon_vma reference if we took one */ 1055 if (anon_vma) 1056 put_anon_vma(anon_vma); 1057 if (locked) 1058 folio_unlock(src); 1059 if (ret) 1060 list_move_tail(&src->lru, ret); 1061 } 1062 1063 /* Restore the destination folio to the original state upon failure */ 1064 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1065 free_folio_t put_new_folio, unsigned long private) 1066 { 1067 if (locked) 1068 folio_unlock(dst); 1069 if (put_new_folio) 1070 put_new_folio(dst, private); 1071 else 1072 folio_put(dst); 1073 } 1074 1075 /* Cleanup src folio upon migration success */ 1076 static void migrate_folio_done(struct folio *src, 1077 enum migrate_reason reason) 1078 { 1079 /* 1080 * Compaction can migrate also non-LRU pages which are 1081 * not accounted to NR_ISOLATED_*. They can be recognized 1082 * as __PageMovable 1083 */ 1084 if (likely(!__folio_test_movable(src))) 1085 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1086 folio_is_file_lru(src), -folio_nr_pages(src)); 1087 1088 if (reason != MR_MEMORY_FAILURE) 1089 /* We release the page in page_handle_poison. */ 1090 folio_put(src); 1091 } 1092 1093 /* Obtain the lock on page, remove all ptes. */ 1094 static int migrate_folio_unmap(new_folio_t get_new_folio, 1095 free_folio_t put_new_folio, unsigned long private, 1096 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1097 enum migrate_reason reason, struct list_head *ret) 1098 { 1099 struct folio *dst; 1100 int rc = -EAGAIN; 1101 int page_was_mapped = 0; 1102 struct anon_vma *anon_vma = NULL; 1103 bool is_lru = !__PageMovable(&src->page); 1104 bool locked = false; 1105 bool dst_locked = false; 1106 1107 if (folio_ref_count(src) == 1) { 1108 /* Folio was freed from under us. So we are done. */ 1109 folio_clear_active(src); 1110 folio_clear_unevictable(src); 1111 /* free_pages_prepare() will clear PG_isolated. */ 1112 list_del(&src->lru); 1113 migrate_folio_done(src, reason); 1114 return MIGRATEPAGE_SUCCESS; 1115 } 1116 1117 dst = get_new_folio(src, private); 1118 if (!dst) 1119 return -ENOMEM; 1120 *dstp = dst; 1121 1122 dst->private = NULL; 1123 1124 if (!folio_trylock(src)) { 1125 if (mode == MIGRATE_ASYNC) 1126 goto out; 1127 1128 /* 1129 * It's not safe for direct compaction to call lock_page. 1130 * For example, during page readahead pages are added locked 1131 * to the LRU. Later, when the IO completes the pages are 1132 * marked uptodate and unlocked. However, the queueing 1133 * could be merging multiple pages for one bio (e.g. 1134 * mpage_readahead). If an allocation happens for the 1135 * second or third page, the process can end up locking 1136 * the same page twice and deadlocking. Rather than 1137 * trying to be clever about what pages can be locked, 1138 * avoid the use of lock_page for direct compaction 1139 * altogether. 1140 */ 1141 if (current->flags & PF_MEMALLOC) 1142 goto out; 1143 1144 /* 1145 * In "light" mode, we can wait for transient locks (eg 1146 * inserting a page into the page table), but it's not 1147 * worth waiting for I/O. 1148 */ 1149 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1150 goto out; 1151 1152 folio_lock(src); 1153 } 1154 locked = true; 1155 1156 if (folio_test_writeback(src)) { 1157 /* 1158 * Only in the case of a full synchronous migration is it 1159 * necessary to wait for PageWriteback. In the async case, 1160 * the retry loop is too short and in the sync-light case, 1161 * the overhead of stalling is too much 1162 */ 1163 switch (mode) { 1164 case MIGRATE_SYNC: 1165 case MIGRATE_SYNC_NO_COPY: 1166 break; 1167 default: 1168 rc = -EBUSY; 1169 goto out; 1170 } 1171 folio_wait_writeback(src); 1172 } 1173 1174 /* 1175 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1176 * we cannot notice that anon_vma is freed while we migrate a page. 1177 * This get_anon_vma() delays freeing anon_vma pointer until the end 1178 * of migration. File cache pages are no problem because of page_lock() 1179 * File Caches may use write_page() or lock_page() in migration, then, 1180 * just care Anon page here. 1181 * 1182 * Only folio_get_anon_vma() understands the subtleties of 1183 * getting a hold on an anon_vma from outside one of its mms. 1184 * But if we cannot get anon_vma, then we won't need it anyway, 1185 * because that implies that the anon page is no longer mapped 1186 * (and cannot be remapped so long as we hold the page lock). 1187 */ 1188 if (folio_test_anon(src) && !folio_test_ksm(src)) 1189 anon_vma = folio_get_anon_vma(src); 1190 1191 /* 1192 * Block others from accessing the new page when we get around to 1193 * establishing additional references. We are usually the only one 1194 * holding a reference to dst at this point. We used to have a BUG 1195 * here if folio_trylock(dst) fails, but would like to allow for 1196 * cases where there might be a race with the previous use of dst. 1197 * This is much like races on refcount of oldpage: just don't BUG(). 1198 */ 1199 if (unlikely(!folio_trylock(dst))) 1200 goto out; 1201 dst_locked = true; 1202 1203 if (unlikely(!is_lru)) { 1204 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1205 return MIGRATEPAGE_UNMAP; 1206 } 1207 1208 /* 1209 * Corner case handling: 1210 * 1. When a new swap-cache page is read into, it is added to the LRU 1211 * and treated as swapcache but it has no rmap yet. 1212 * Calling try_to_unmap() against a src->mapping==NULL page will 1213 * trigger a BUG. So handle it here. 1214 * 2. An orphaned page (see truncate_cleanup_page) might have 1215 * fs-private metadata. The page can be picked up due to memory 1216 * offlining. Everywhere else except page reclaim, the page is 1217 * invisible to the vm, so the page can not be migrated. So try to 1218 * free the metadata, so the page can be freed. 1219 */ 1220 if (!src->mapping) { 1221 if (folio_test_private(src)) { 1222 try_to_free_buffers(src); 1223 goto out; 1224 } 1225 } else if (folio_mapped(src)) { 1226 /* Establish migration ptes */ 1227 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1228 !folio_test_ksm(src) && !anon_vma, src); 1229 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1230 page_was_mapped = 1; 1231 } 1232 1233 if (!folio_mapped(src)) { 1234 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1235 return MIGRATEPAGE_UNMAP; 1236 } 1237 1238 out: 1239 /* 1240 * A folio that has not been unmapped will be restored to 1241 * right list unless we want to retry. 1242 */ 1243 if (rc == -EAGAIN) 1244 ret = NULL; 1245 1246 migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret); 1247 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1248 1249 return rc; 1250 } 1251 1252 /* Migrate the folio to the newly allocated folio in dst. */ 1253 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1254 struct folio *src, struct folio *dst, 1255 enum migrate_mode mode, enum migrate_reason reason, 1256 struct list_head *ret) 1257 { 1258 int rc; 1259 int page_was_mapped = 0; 1260 struct anon_vma *anon_vma = NULL; 1261 bool is_lru = !__PageMovable(&src->page); 1262 struct list_head *prev; 1263 1264 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1265 prev = dst->lru.prev; 1266 list_del(&dst->lru); 1267 1268 rc = move_to_new_folio(dst, src, mode); 1269 if (rc) 1270 goto out; 1271 1272 if (unlikely(!is_lru)) 1273 goto out_unlock_both; 1274 1275 /* 1276 * When successful, push dst to LRU immediately: so that if it 1277 * turns out to be an mlocked page, remove_migration_ptes() will 1278 * automatically build up the correct dst->mlock_count for it. 1279 * 1280 * We would like to do something similar for the old page, when 1281 * unsuccessful, and other cases when a page has been temporarily 1282 * isolated from the unevictable LRU: but this case is the easiest. 1283 */ 1284 folio_add_lru(dst); 1285 if (page_was_mapped) 1286 lru_add_drain(); 1287 1288 if (page_was_mapped) 1289 remove_migration_ptes(src, dst, false); 1290 1291 out_unlock_both: 1292 folio_unlock(dst); 1293 set_page_owner_migrate_reason(&dst->page, reason); 1294 /* 1295 * If migration is successful, decrease refcount of dst, 1296 * which will not free the page because new page owner increased 1297 * refcounter. 1298 */ 1299 folio_put(dst); 1300 1301 /* 1302 * A folio that has been migrated has all references removed 1303 * and will be freed. 1304 */ 1305 list_del(&src->lru); 1306 /* Drop an anon_vma reference if we took one */ 1307 if (anon_vma) 1308 put_anon_vma(anon_vma); 1309 folio_unlock(src); 1310 migrate_folio_done(src, reason); 1311 1312 return rc; 1313 out: 1314 /* 1315 * A folio that has not been migrated will be restored to 1316 * right list unless we want to retry. 1317 */ 1318 if (rc == -EAGAIN) { 1319 list_add(&dst->lru, prev); 1320 __migrate_folio_record(dst, page_was_mapped, anon_vma); 1321 return rc; 1322 } 1323 1324 migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret); 1325 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1326 1327 return rc; 1328 } 1329 1330 /* 1331 * Counterpart of unmap_and_move_page() for hugepage migration. 1332 * 1333 * This function doesn't wait the completion of hugepage I/O 1334 * because there is no race between I/O and migration for hugepage. 1335 * Note that currently hugepage I/O occurs only in direct I/O 1336 * where no lock is held and PG_writeback is irrelevant, 1337 * and writeback status of all subpages are counted in the reference 1338 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1339 * under direct I/O, the reference of the head page is 512 and a bit more.) 1340 * This means that when we try to migrate hugepage whose subpages are 1341 * doing direct I/O, some references remain after try_to_unmap() and 1342 * hugepage migration fails without data corruption. 1343 * 1344 * There is also no race when direct I/O is issued on the page under migration, 1345 * because then pte is replaced with migration swap entry and direct I/O code 1346 * will wait in the page fault for migration to complete. 1347 */ 1348 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1349 free_folio_t put_new_folio, unsigned long private, 1350 struct folio *src, int force, enum migrate_mode mode, 1351 int reason, struct list_head *ret) 1352 { 1353 struct folio *dst; 1354 int rc = -EAGAIN; 1355 int page_was_mapped = 0; 1356 struct anon_vma *anon_vma = NULL; 1357 struct address_space *mapping = NULL; 1358 1359 if (folio_ref_count(src) == 1) { 1360 /* page was freed from under us. So we are done. */ 1361 folio_putback_active_hugetlb(src); 1362 return MIGRATEPAGE_SUCCESS; 1363 } 1364 1365 dst = get_new_folio(src, private); 1366 if (!dst) 1367 return -ENOMEM; 1368 1369 if (!folio_trylock(src)) { 1370 if (!force) 1371 goto out; 1372 switch (mode) { 1373 case MIGRATE_SYNC: 1374 case MIGRATE_SYNC_NO_COPY: 1375 break; 1376 default: 1377 goto out; 1378 } 1379 folio_lock(src); 1380 } 1381 1382 /* 1383 * Check for pages which are in the process of being freed. Without 1384 * folio_mapping() set, hugetlbfs specific move page routine will not 1385 * be called and we could leak usage counts for subpools. 1386 */ 1387 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1388 rc = -EBUSY; 1389 goto out_unlock; 1390 } 1391 1392 if (folio_test_anon(src)) 1393 anon_vma = folio_get_anon_vma(src); 1394 1395 if (unlikely(!folio_trylock(dst))) 1396 goto put_anon; 1397 1398 if (folio_mapped(src)) { 1399 enum ttu_flags ttu = 0; 1400 1401 if (!folio_test_anon(src)) { 1402 /* 1403 * In shared mappings, try_to_unmap could potentially 1404 * call huge_pmd_unshare. Because of this, take 1405 * semaphore in write mode here and set TTU_RMAP_LOCKED 1406 * to let lower levels know we have taken the lock. 1407 */ 1408 mapping = hugetlb_page_mapping_lock_write(&src->page); 1409 if (unlikely(!mapping)) 1410 goto unlock_put_anon; 1411 1412 ttu = TTU_RMAP_LOCKED; 1413 } 1414 1415 try_to_migrate(src, ttu); 1416 page_was_mapped = 1; 1417 1418 if (ttu & TTU_RMAP_LOCKED) 1419 i_mmap_unlock_write(mapping); 1420 } 1421 1422 if (!folio_mapped(src)) 1423 rc = move_to_new_folio(dst, src, mode); 1424 1425 if (page_was_mapped) 1426 remove_migration_ptes(src, 1427 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1428 1429 unlock_put_anon: 1430 folio_unlock(dst); 1431 1432 put_anon: 1433 if (anon_vma) 1434 put_anon_vma(anon_vma); 1435 1436 if (rc == MIGRATEPAGE_SUCCESS) { 1437 move_hugetlb_state(src, dst, reason); 1438 put_new_folio = NULL; 1439 } 1440 1441 out_unlock: 1442 folio_unlock(src); 1443 out: 1444 if (rc == MIGRATEPAGE_SUCCESS) 1445 folio_putback_active_hugetlb(src); 1446 else if (rc != -EAGAIN) 1447 list_move_tail(&src->lru, ret); 1448 1449 /* 1450 * If migration was not successful and there's a freeing callback, use 1451 * it. Otherwise, put_page() will drop the reference grabbed during 1452 * isolation. 1453 */ 1454 if (put_new_folio) 1455 put_new_folio(dst, private); 1456 else 1457 folio_putback_active_hugetlb(dst); 1458 1459 return rc; 1460 } 1461 1462 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1463 { 1464 int rc; 1465 1466 folio_lock(folio); 1467 rc = split_folio_to_list(folio, split_folios); 1468 folio_unlock(folio); 1469 if (!rc) 1470 list_move_tail(&folio->lru, split_folios); 1471 1472 return rc; 1473 } 1474 1475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1476 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1477 #else 1478 #define NR_MAX_BATCHED_MIGRATION 512 1479 #endif 1480 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1481 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1482 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1483 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1484 1485 struct migrate_pages_stats { 1486 int nr_succeeded; /* Normal and large folios migrated successfully, in 1487 units of base pages */ 1488 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1489 units of base pages. Untried folios aren't counted */ 1490 int nr_thp_succeeded; /* THP migrated successfully */ 1491 int nr_thp_failed; /* THP failed to be migrated */ 1492 int nr_thp_split; /* THP split before migrating */ 1493 }; 1494 1495 /* 1496 * Returns the number of hugetlb folios that were not migrated, or an error code 1497 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1498 * any more because the list has become empty or no retryable hugetlb folios 1499 * exist any more. It is caller's responsibility to call putback_movable_pages() 1500 * only if ret != 0. 1501 */ 1502 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1503 free_folio_t put_new_folio, unsigned long private, 1504 enum migrate_mode mode, int reason, 1505 struct migrate_pages_stats *stats, 1506 struct list_head *ret_folios) 1507 { 1508 int retry = 1; 1509 int nr_failed = 0; 1510 int nr_retry_pages = 0; 1511 int pass = 0; 1512 struct folio *folio, *folio2; 1513 int rc, nr_pages; 1514 1515 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1516 retry = 0; 1517 nr_retry_pages = 0; 1518 1519 list_for_each_entry_safe(folio, folio2, from, lru) { 1520 if (!folio_test_hugetlb(folio)) 1521 continue; 1522 1523 nr_pages = folio_nr_pages(folio); 1524 1525 cond_resched(); 1526 1527 /* 1528 * Migratability of hugepages depends on architectures and 1529 * their size. This check is necessary because some callers 1530 * of hugepage migration like soft offline and memory 1531 * hotremove don't walk through page tables or check whether 1532 * the hugepage is pmd-based or not before kicking migration. 1533 */ 1534 if (!hugepage_migration_supported(folio_hstate(folio))) { 1535 nr_failed++; 1536 stats->nr_failed_pages += nr_pages; 1537 list_move_tail(&folio->lru, ret_folios); 1538 continue; 1539 } 1540 1541 rc = unmap_and_move_huge_page(get_new_folio, 1542 put_new_folio, private, 1543 folio, pass > 2, mode, 1544 reason, ret_folios); 1545 /* 1546 * The rules are: 1547 * Success: hugetlb folio will be put back 1548 * -EAGAIN: stay on the from list 1549 * -ENOMEM: stay on the from list 1550 * Other errno: put on ret_folios list 1551 */ 1552 switch(rc) { 1553 case -ENOMEM: 1554 /* 1555 * When memory is low, don't bother to try to migrate 1556 * other folios, just exit. 1557 */ 1558 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1559 return -ENOMEM; 1560 case -EAGAIN: 1561 retry++; 1562 nr_retry_pages += nr_pages; 1563 break; 1564 case MIGRATEPAGE_SUCCESS: 1565 stats->nr_succeeded += nr_pages; 1566 break; 1567 default: 1568 /* 1569 * Permanent failure (-EBUSY, etc.): 1570 * unlike -EAGAIN case, the failed folio is 1571 * removed from migration folio list and not 1572 * retried in the next outer loop. 1573 */ 1574 nr_failed++; 1575 stats->nr_failed_pages += nr_pages; 1576 break; 1577 } 1578 } 1579 } 1580 /* 1581 * nr_failed is number of hugetlb folios failed to be migrated. After 1582 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1583 * folios as failed. 1584 */ 1585 nr_failed += retry; 1586 stats->nr_failed_pages += nr_retry_pages; 1587 1588 return nr_failed; 1589 } 1590 1591 /* 1592 * migrate_pages_batch() first unmaps folios in the from list as many as 1593 * possible, then move the unmapped folios. 1594 * 1595 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1596 * lock or bit when we have locked more than one folio. Which may cause 1597 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1598 * length of the from list must be <= 1. 1599 */ 1600 static int migrate_pages_batch(struct list_head *from, 1601 new_folio_t get_new_folio, free_folio_t put_new_folio, 1602 unsigned long private, enum migrate_mode mode, int reason, 1603 struct list_head *ret_folios, struct list_head *split_folios, 1604 struct migrate_pages_stats *stats, int nr_pass) 1605 { 1606 int retry = 1; 1607 int thp_retry = 1; 1608 int nr_failed = 0; 1609 int nr_retry_pages = 0; 1610 int pass = 0; 1611 bool is_thp = false; 1612 struct folio *folio, *folio2, *dst = NULL, *dst2; 1613 int rc, rc_saved = 0, nr_pages; 1614 LIST_HEAD(unmap_folios); 1615 LIST_HEAD(dst_folios); 1616 bool nosplit = (reason == MR_NUMA_MISPLACED); 1617 1618 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1619 !list_empty(from) && !list_is_singular(from)); 1620 1621 for (pass = 0; pass < nr_pass && retry; pass++) { 1622 retry = 0; 1623 thp_retry = 0; 1624 nr_retry_pages = 0; 1625 1626 list_for_each_entry_safe(folio, folio2, from, lru) { 1627 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1628 nr_pages = folio_nr_pages(folio); 1629 1630 cond_resched(); 1631 1632 /* 1633 * Large folio migration might be unsupported or 1634 * the allocation might be failed so we should retry 1635 * on the same folio with the large folio split 1636 * to normal folios. 1637 * 1638 * Split folios are put in split_folios, and 1639 * we will migrate them after the rest of the 1640 * list is processed. 1641 */ 1642 if (!thp_migration_supported() && is_thp) { 1643 nr_failed++; 1644 stats->nr_thp_failed++; 1645 if (!try_split_folio(folio, split_folios)) { 1646 stats->nr_thp_split++; 1647 continue; 1648 } 1649 stats->nr_failed_pages += nr_pages; 1650 list_move_tail(&folio->lru, ret_folios); 1651 continue; 1652 } 1653 1654 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1655 private, folio, &dst, mode, reason, 1656 ret_folios); 1657 /* 1658 * The rules are: 1659 * Success: folio will be freed 1660 * Unmap: folio will be put on unmap_folios list, 1661 * dst folio put on dst_folios list 1662 * -EAGAIN: stay on the from list 1663 * -ENOMEM: stay on the from list 1664 * Other errno: put on ret_folios list 1665 */ 1666 switch(rc) { 1667 case -ENOMEM: 1668 /* 1669 * When memory is low, don't bother to try to migrate 1670 * other folios, move unmapped folios, then exit. 1671 */ 1672 nr_failed++; 1673 stats->nr_thp_failed += is_thp; 1674 /* Large folio NUMA faulting doesn't split to retry. */ 1675 if (folio_test_large(folio) && !nosplit) { 1676 int ret = try_split_folio(folio, split_folios); 1677 1678 if (!ret) { 1679 stats->nr_thp_split += is_thp; 1680 break; 1681 } else if (reason == MR_LONGTERM_PIN && 1682 ret == -EAGAIN) { 1683 /* 1684 * Try again to split large folio to 1685 * mitigate the failure of longterm pinning. 1686 */ 1687 retry++; 1688 thp_retry += is_thp; 1689 nr_retry_pages += nr_pages; 1690 /* Undo duplicated failure counting. */ 1691 nr_failed--; 1692 stats->nr_thp_failed -= is_thp; 1693 break; 1694 } 1695 } 1696 1697 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1698 /* nr_failed isn't updated for not used */ 1699 stats->nr_thp_failed += thp_retry; 1700 rc_saved = rc; 1701 if (list_empty(&unmap_folios)) 1702 goto out; 1703 else 1704 goto move; 1705 case -EAGAIN: 1706 retry++; 1707 thp_retry += is_thp; 1708 nr_retry_pages += nr_pages; 1709 break; 1710 case MIGRATEPAGE_SUCCESS: 1711 stats->nr_succeeded += nr_pages; 1712 stats->nr_thp_succeeded += is_thp; 1713 break; 1714 case MIGRATEPAGE_UNMAP: 1715 list_move_tail(&folio->lru, &unmap_folios); 1716 list_add_tail(&dst->lru, &dst_folios); 1717 break; 1718 default: 1719 /* 1720 * Permanent failure (-EBUSY, etc.): 1721 * unlike -EAGAIN case, the failed folio is 1722 * removed from migration folio list and not 1723 * retried in the next outer loop. 1724 */ 1725 nr_failed++; 1726 stats->nr_thp_failed += is_thp; 1727 stats->nr_failed_pages += nr_pages; 1728 break; 1729 } 1730 } 1731 } 1732 nr_failed += retry; 1733 stats->nr_thp_failed += thp_retry; 1734 stats->nr_failed_pages += nr_retry_pages; 1735 move: 1736 /* Flush TLBs for all unmapped folios */ 1737 try_to_unmap_flush(); 1738 1739 retry = 1; 1740 for (pass = 0; pass < nr_pass && retry; pass++) { 1741 retry = 0; 1742 thp_retry = 0; 1743 nr_retry_pages = 0; 1744 1745 dst = list_first_entry(&dst_folios, struct folio, lru); 1746 dst2 = list_next_entry(dst, lru); 1747 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1748 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1749 nr_pages = folio_nr_pages(folio); 1750 1751 cond_resched(); 1752 1753 rc = migrate_folio_move(put_new_folio, private, 1754 folio, dst, mode, 1755 reason, ret_folios); 1756 /* 1757 * The rules are: 1758 * Success: folio will be freed 1759 * -EAGAIN: stay on the unmap_folios list 1760 * Other errno: put on ret_folios list 1761 */ 1762 switch(rc) { 1763 case -EAGAIN: 1764 retry++; 1765 thp_retry += is_thp; 1766 nr_retry_pages += nr_pages; 1767 break; 1768 case MIGRATEPAGE_SUCCESS: 1769 stats->nr_succeeded += nr_pages; 1770 stats->nr_thp_succeeded += is_thp; 1771 break; 1772 default: 1773 nr_failed++; 1774 stats->nr_thp_failed += is_thp; 1775 stats->nr_failed_pages += nr_pages; 1776 break; 1777 } 1778 dst = dst2; 1779 dst2 = list_next_entry(dst, lru); 1780 } 1781 } 1782 nr_failed += retry; 1783 stats->nr_thp_failed += thp_retry; 1784 stats->nr_failed_pages += nr_retry_pages; 1785 1786 rc = rc_saved ? : nr_failed; 1787 out: 1788 /* Cleanup remaining folios */ 1789 dst = list_first_entry(&dst_folios, struct folio, lru); 1790 dst2 = list_next_entry(dst, lru); 1791 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1792 int page_was_mapped = 0; 1793 struct anon_vma *anon_vma = NULL; 1794 1795 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma); 1796 migrate_folio_undo_src(folio, page_was_mapped, anon_vma, 1797 true, ret_folios); 1798 list_del(&dst->lru); 1799 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1800 dst = dst2; 1801 dst2 = list_next_entry(dst, lru); 1802 } 1803 1804 return rc; 1805 } 1806 1807 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1808 free_folio_t put_new_folio, unsigned long private, 1809 enum migrate_mode mode, int reason, 1810 struct list_head *ret_folios, struct list_head *split_folios, 1811 struct migrate_pages_stats *stats) 1812 { 1813 int rc, nr_failed = 0; 1814 LIST_HEAD(folios); 1815 struct migrate_pages_stats astats; 1816 1817 memset(&astats, 0, sizeof(astats)); 1818 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1819 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1820 reason, &folios, split_folios, &astats, 1821 NR_MAX_MIGRATE_ASYNC_RETRY); 1822 stats->nr_succeeded += astats.nr_succeeded; 1823 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1824 stats->nr_thp_split += astats.nr_thp_split; 1825 if (rc < 0) { 1826 stats->nr_failed_pages += astats.nr_failed_pages; 1827 stats->nr_thp_failed += astats.nr_thp_failed; 1828 list_splice_tail(&folios, ret_folios); 1829 return rc; 1830 } 1831 stats->nr_thp_failed += astats.nr_thp_split; 1832 nr_failed += astats.nr_thp_split; 1833 /* 1834 * Fall back to migrate all failed folios one by one synchronously. All 1835 * failed folios except split THPs will be retried, so their failure 1836 * isn't counted 1837 */ 1838 list_splice_tail_init(&folios, from); 1839 while (!list_empty(from)) { 1840 list_move(from->next, &folios); 1841 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1842 private, mode, reason, ret_folios, 1843 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1844 list_splice_tail_init(&folios, ret_folios); 1845 if (rc < 0) 1846 return rc; 1847 nr_failed += rc; 1848 } 1849 1850 return nr_failed; 1851 } 1852 1853 /* 1854 * migrate_pages - migrate the folios specified in a list, to the free folios 1855 * supplied as the target for the page migration 1856 * 1857 * @from: The list of folios to be migrated. 1858 * @get_new_folio: The function used to allocate free folios to be used 1859 * as the target of the folio migration. 1860 * @put_new_folio: The function used to free target folios if migration 1861 * fails, or NULL if no special handling is necessary. 1862 * @private: Private data to be passed on to get_new_folio() 1863 * @mode: The migration mode that specifies the constraints for 1864 * folio migration, if any. 1865 * @reason: The reason for folio migration. 1866 * @ret_succeeded: Set to the number of folios migrated successfully if 1867 * the caller passes a non-NULL pointer. 1868 * 1869 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1870 * are movable any more because the list has become empty or no retryable folios 1871 * exist any more. It is caller's responsibility to call putback_movable_pages() 1872 * only if ret != 0. 1873 * 1874 * Returns the number of {normal folio, large folio, hugetlb} that were not 1875 * migrated, or an error code. The number of large folio splits will be 1876 * considered as the number of non-migrated large folio, no matter how many 1877 * split folios of the large folio are migrated successfully. 1878 */ 1879 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1880 free_folio_t put_new_folio, unsigned long private, 1881 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1882 { 1883 int rc, rc_gather; 1884 int nr_pages; 1885 struct folio *folio, *folio2; 1886 LIST_HEAD(folios); 1887 LIST_HEAD(ret_folios); 1888 LIST_HEAD(split_folios); 1889 struct migrate_pages_stats stats; 1890 1891 trace_mm_migrate_pages_start(mode, reason); 1892 1893 memset(&stats, 0, sizeof(stats)); 1894 1895 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1896 mode, reason, &stats, &ret_folios); 1897 if (rc_gather < 0) 1898 goto out; 1899 1900 again: 1901 nr_pages = 0; 1902 list_for_each_entry_safe(folio, folio2, from, lru) { 1903 /* Retried hugetlb folios will be kept in list */ 1904 if (folio_test_hugetlb(folio)) { 1905 list_move_tail(&folio->lru, &ret_folios); 1906 continue; 1907 } 1908 1909 nr_pages += folio_nr_pages(folio); 1910 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1911 break; 1912 } 1913 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1914 list_cut_before(&folios, from, &folio2->lru); 1915 else 1916 list_splice_init(from, &folios); 1917 if (mode == MIGRATE_ASYNC) 1918 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1919 private, mode, reason, &ret_folios, 1920 &split_folios, &stats, 1921 NR_MAX_MIGRATE_PAGES_RETRY); 1922 else 1923 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1924 private, mode, reason, &ret_folios, 1925 &split_folios, &stats); 1926 list_splice_tail_init(&folios, &ret_folios); 1927 if (rc < 0) { 1928 rc_gather = rc; 1929 list_splice_tail(&split_folios, &ret_folios); 1930 goto out; 1931 } 1932 if (!list_empty(&split_folios)) { 1933 /* 1934 * Failure isn't counted since all split folios of a large folio 1935 * is counted as 1 failure already. And, we only try to migrate 1936 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1937 */ 1938 migrate_pages_batch(&split_folios, get_new_folio, 1939 put_new_folio, private, MIGRATE_ASYNC, reason, 1940 &ret_folios, NULL, &stats, 1); 1941 list_splice_tail_init(&split_folios, &ret_folios); 1942 } 1943 rc_gather += rc; 1944 if (!list_empty(from)) 1945 goto again; 1946 out: 1947 /* 1948 * Put the permanent failure folio back to migration list, they 1949 * will be put back to the right list by the caller. 1950 */ 1951 list_splice(&ret_folios, from); 1952 1953 /* 1954 * Return 0 in case all split folios of fail-to-migrate large folios 1955 * are migrated successfully. 1956 */ 1957 if (list_empty(from)) 1958 rc_gather = 0; 1959 1960 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 1961 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 1962 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 1963 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 1964 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 1965 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 1966 stats.nr_thp_succeeded, stats.nr_thp_failed, 1967 stats.nr_thp_split, mode, reason); 1968 1969 if (ret_succeeded) 1970 *ret_succeeded = stats.nr_succeeded; 1971 1972 return rc_gather; 1973 } 1974 1975 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 1976 { 1977 struct migration_target_control *mtc; 1978 gfp_t gfp_mask; 1979 unsigned int order = 0; 1980 int nid; 1981 int zidx; 1982 1983 mtc = (struct migration_target_control *)private; 1984 gfp_mask = mtc->gfp_mask; 1985 nid = mtc->nid; 1986 if (nid == NUMA_NO_NODE) 1987 nid = folio_nid(src); 1988 1989 if (folio_test_hugetlb(src)) { 1990 struct hstate *h = folio_hstate(src); 1991 1992 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1993 return alloc_hugetlb_folio_nodemask(h, nid, 1994 mtc->nmask, gfp_mask); 1995 } 1996 1997 if (folio_test_large(src)) { 1998 /* 1999 * clear __GFP_RECLAIM to make the migration callback 2000 * consistent with regular THP allocations. 2001 */ 2002 gfp_mask &= ~__GFP_RECLAIM; 2003 gfp_mask |= GFP_TRANSHUGE; 2004 order = folio_order(src); 2005 } 2006 zidx = zone_idx(folio_zone(src)); 2007 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2008 gfp_mask |= __GFP_HIGHMEM; 2009 2010 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2011 } 2012 2013 #ifdef CONFIG_NUMA 2014 2015 static int store_status(int __user *status, int start, int value, int nr) 2016 { 2017 while (nr-- > 0) { 2018 if (put_user(value, status + start)) 2019 return -EFAULT; 2020 start++; 2021 } 2022 2023 return 0; 2024 } 2025 2026 static int do_move_pages_to_node(struct mm_struct *mm, 2027 struct list_head *pagelist, int node) 2028 { 2029 int err; 2030 struct migration_target_control mtc = { 2031 .nid = node, 2032 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2033 }; 2034 2035 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2036 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2037 if (err) 2038 putback_movable_pages(pagelist); 2039 return err; 2040 } 2041 2042 /* 2043 * Resolves the given address to a struct page, isolates it from the LRU and 2044 * puts it to the given pagelist. 2045 * Returns: 2046 * errno - if the page cannot be found/isolated 2047 * 0 - when it doesn't have to be migrated because it is already on the 2048 * target node 2049 * 1 - when it has been queued 2050 */ 2051 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2052 int node, struct list_head *pagelist, bool migrate_all) 2053 { 2054 struct vm_area_struct *vma; 2055 unsigned long addr; 2056 struct page *page; 2057 int err; 2058 bool isolated; 2059 2060 mmap_read_lock(mm); 2061 addr = (unsigned long)untagged_addr_remote(mm, p); 2062 2063 err = -EFAULT; 2064 vma = vma_lookup(mm, addr); 2065 if (!vma || !vma_migratable(vma)) 2066 goto out; 2067 2068 /* FOLL_DUMP to ignore special (like zero) pages */ 2069 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2070 2071 err = PTR_ERR(page); 2072 if (IS_ERR(page)) 2073 goto out; 2074 2075 err = -ENOENT; 2076 if (!page) 2077 goto out; 2078 2079 if (is_zone_device_page(page)) 2080 goto out_putpage; 2081 2082 err = 0; 2083 if (page_to_nid(page) == node) 2084 goto out_putpage; 2085 2086 err = -EACCES; 2087 if (page_mapcount(page) > 1 && !migrate_all) 2088 goto out_putpage; 2089 2090 if (PageHuge(page)) { 2091 if (PageHead(page)) { 2092 isolated = isolate_hugetlb(page_folio(page), pagelist); 2093 err = isolated ? 1 : -EBUSY; 2094 } 2095 } else { 2096 struct page *head; 2097 2098 head = compound_head(page); 2099 isolated = isolate_lru_page(head); 2100 if (!isolated) { 2101 err = -EBUSY; 2102 goto out_putpage; 2103 } 2104 2105 err = 1; 2106 list_add_tail(&head->lru, pagelist); 2107 mod_node_page_state(page_pgdat(head), 2108 NR_ISOLATED_ANON + page_is_file_lru(head), 2109 thp_nr_pages(head)); 2110 } 2111 out_putpage: 2112 /* 2113 * Either remove the duplicate refcount from 2114 * isolate_lru_page() or drop the page ref if it was 2115 * not isolated. 2116 */ 2117 put_page(page); 2118 out: 2119 mmap_read_unlock(mm); 2120 return err; 2121 } 2122 2123 static int move_pages_and_store_status(struct mm_struct *mm, int node, 2124 struct list_head *pagelist, int __user *status, 2125 int start, int i, unsigned long nr_pages) 2126 { 2127 int err; 2128 2129 if (list_empty(pagelist)) 2130 return 0; 2131 2132 err = do_move_pages_to_node(mm, pagelist, node); 2133 if (err) { 2134 /* 2135 * Positive err means the number of failed 2136 * pages to migrate. Since we are going to 2137 * abort and return the number of non-migrated 2138 * pages, so need to include the rest of the 2139 * nr_pages that have not been attempted as 2140 * well. 2141 */ 2142 if (err > 0) 2143 err += nr_pages - i; 2144 return err; 2145 } 2146 return store_status(status, start, node, i - start); 2147 } 2148 2149 /* 2150 * Migrate an array of page address onto an array of nodes and fill 2151 * the corresponding array of status. 2152 */ 2153 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2154 unsigned long nr_pages, 2155 const void __user * __user *pages, 2156 const int __user *nodes, 2157 int __user *status, int flags) 2158 { 2159 int current_node = NUMA_NO_NODE; 2160 LIST_HEAD(pagelist); 2161 int start, i; 2162 int err = 0, err1; 2163 2164 lru_cache_disable(); 2165 2166 for (i = start = 0; i < nr_pages; i++) { 2167 const void __user *p; 2168 int node; 2169 2170 err = -EFAULT; 2171 if (get_user(p, pages + i)) 2172 goto out_flush; 2173 if (get_user(node, nodes + i)) 2174 goto out_flush; 2175 2176 err = -ENODEV; 2177 if (node < 0 || node >= MAX_NUMNODES) 2178 goto out_flush; 2179 if (!node_state(node, N_MEMORY)) 2180 goto out_flush; 2181 2182 err = -EACCES; 2183 if (!node_isset(node, task_nodes)) 2184 goto out_flush; 2185 2186 if (current_node == NUMA_NO_NODE) { 2187 current_node = node; 2188 start = i; 2189 } else if (node != current_node) { 2190 err = move_pages_and_store_status(mm, current_node, 2191 &pagelist, status, start, i, nr_pages); 2192 if (err) 2193 goto out; 2194 start = i; 2195 current_node = node; 2196 } 2197 2198 /* 2199 * Errors in the page lookup or isolation are not fatal and we simply 2200 * report them via status 2201 */ 2202 err = add_page_for_migration(mm, p, current_node, &pagelist, 2203 flags & MPOL_MF_MOVE_ALL); 2204 2205 if (err > 0) { 2206 /* The page is successfully queued for migration */ 2207 continue; 2208 } 2209 2210 /* 2211 * The move_pages() man page does not have an -EEXIST choice, so 2212 * use -EFAULT instead. 2213 */ 2214 if (err == -EEXIST) 2215 err = -EFAULT; 2216 2217 /* 2218 * If the page is already on the target node (!err), store the 2219 * node, otherwise, store the err. 2220 */ 2221 err = store_status(status, i, err ? : current_node, 1); 2222 if (err) 2223 goto out_flush; 2224 2225 err = move_pages_and_store_status(mm, current_node, &pagelist, 2226 status, start, i, nr_pages); 2227 if (err) { 2228 /* We have accounted for page i */ 2229 if (err > 0) 2230 err--; 2231 goto out; 2232 } 2233 current_node = NUMA_NO_NODE; 2234 } 2235 out_flush: 2236 /* Make sure we do not overwrite the existing error */ 2237 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 2238 status, start, i, nr_pages); 2239 if (err >= 0) 2240 err = err1; 2241 out: 2242 lru_cache_enable(); 2243 return err; 2244 } 2245 2246 /* 2247 * Determine the nodes of an array of pages and store it in an array of status. 2248 */ 2249 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2250 const void __user **pages, int *status) 2251 { 2252 unsigned long i; 2253 2254 mmap_read_lock(mm); 2255 2256 for (i = 0; i < nr_pages; i++) { 2257 unsigned long addr = (unsigned long)(*pages); 2258 struct vm_area_struct *vma; 2259 struct page *page; 2260 int err = -EFAULT; 2261 2262 vma = vma_lookup(mm, addr); 2263 if (!vma) 2264 goto set_status; 2265 2266 /* FOLL_DUMP to ignore special (like zero) pages */ 2267 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2268 2269 err = PTR_ERR(page); 2270 if (IS_ERR(page)) 2271 goto set_status; 2272 2273 err = -ENOENT; 2274 if (!page) 2275 goto set_status; 2276 2277 if (!is_zone_device_page(page)) 2278 err = page_to_nid(page); 2279 2280 put_page(page); 2281 set_status: 2282 *status = err; 2283 2284 pages++; 2285 status++; 2286 } 2287 2288 mmap_read_unlock(mm); 2289 } 2290 2291 static int get_compat_pages_array(const void __user *chunk_pages[], 2292 const void __user * __user *pages, 2293 unsigned long chunk_nr) 2294 { 2295 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2296 compat_uptr_t p; 2297 int i; 2298 2299 for (i = 0; i < chunk_nr; i++) { 2300 if (get_user(p, pages32 + i)) 2301 return -EFAULT; 2302 chunk_pages[i] = compat_ptr(p); 2303 } 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * Determine the nodes of a user array of pages and store it in 2310 * a user array of status. 2311 */ 2312 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2313 const void __user * __user *pages, 2314 int __user *status) 2315 { 2316 #define DO_PAGES_STAT_CHUNK_NR 16UL 2317 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2318 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2319 2320 while (nr_pages) { 2321 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2322 2323 if (in_compat_syscall()) { 2324 if (get_compat_pages_array(chunk_pages, pages, 2325 chunk_nr)) 2326 break; 2327 } else { 2328 if (copy_from_user(chunk_pages, pages, 2329 chunk_nr * sizeof(*chunk_pages))) 2330 break; 2331 } 2332 2333 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2334 2335 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2336 break; 2337 2338 pages += chunk_nr; 2339 status += chunk_nr; 2340 nr_pages -= chunk_nr; 2341 } 2342 return nr_pages ? -EFAULT : 0; 2343 } 2344 2345 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2346 { 2347 struct task_struct *task; 2348 struct mm_struct *mm; 2349 2350 /* 2351 * There is no need to check if current process has the right to modify 2352 * the specified process when they are same. 2353 */ 2354 if (!pid) { 2355 mmget(current->mm); 2356 *mem_nodes = cpuset_mems_allowed(current); 2357 return current->mm; 2358 } 2359 2360 /* Find the mm_struct */ 2361 rcu_read_lock(); 2362 task = find_task_by_vpid(pid); 2363 if (!task) { 2364 rcu_read_unlock(); 2365 return ERR_PTR(-ESRCH); 2366 } 2367 get_task_struct(task); 2368 2369 /* 2370 * Check if this process has the right to modify the specified 2371 * process. Use the regular "ptrace_may_access()" checks. 2372 */ 2373 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2374 rcu_read_unlock(); 2375 mm = ERR_PTR(-EPERM); 2376 goto out; 2377 } 2378 rcu_read_unlock(); 2379 2380 mm = ERR_PTR(security_task_movememory(task)); 2381 if (IS_ERR(mm)) 2382 goto out; 2383 *mem_nodes = cpuset_mems_allowed(task); 2384 mm = get_task_mm(task); 2385 out: 2386 put_task_struct(task); 2387 if (!mm) 2388 mm = ERR_PTR(-EINVAL); 2389 return mm; 2390 } 2391 2392 /* 2393 * Move a list of pages in the address space of the currently executing 2394 * process. 2395 */ 2396 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2397 const void __user * __user *pages, 2398 const int __user *nodes, 2399 int __user *status, int flags) 2400 { 2401 struct mm_struct *mm; 2402 int err; 2403 nodemask_t task_nodes; 2404 2405 /* Check flags */ 2406 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2407 return -EINVAL; 2408 2409 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2410 return -EPERM; 2411 2412 mm = find_mm_struct(pid, &task_nodes); 2413 if (IS_ERR(mm)) 2414 return PTR_ERR(mm); 2415 2416 if (nodes) 2417 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2418 nodes, status, flags); 2419 else 2420 err = do_pages_stat(mm, nr_pages, pages, status); 2421 2422 mmput(mm); 2423 return err; 2424 } 2425 2426 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2427 const void __user * __user *, pages, 2428 const int __user *, nodes, 2429 int __user *, status, int, flags) 2430 { 2431 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2432 } 2433 2434 #ifdef CONFIG_NUMA_BALANCING 2435 /* 2436 * Returns true if this is a safe migration target node for misplaced NUMA 2437 * pages. Currently it only checks the watermarks which is crude. 2438 */ 2439 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2440 unsigned long nr_migrate_pages) 2441 { 2442 int z; 2443 2444 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2445 struct zone *zone = pgdat->node_zones + z; 2446 2447 if (!managed_zone(zone)) 2448 continue; 2449 2450 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2451 if (!zone_watermark_ok(zone, 0, 2452 high_wmark_pages(zone) + 2453 nr_migrate_pages, 2454 ZONE_MOVABLE, 0)) 2455 continue; 2456 return true; 2457 } 2458 return false; 2459 } 2460 2461 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2462 unsigned long data) 2463 { 2464 int nid = (int) data; 2465 int order = folio_order(src); 2466 gfp_t gfp = __GFP_THISNODE; 2467 2468 if (order > 0) 2469 gfp |= GFP_TRANSHUGE_LIGHT; 2470 else { 2471 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2472 __GFP_NOWARN; 2473 gfp &= ~__GFP_RECLAIM; 2474 } 2475 return __folio_alloc_node(gfp, order, nid); 2476 } 2477 2478 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2479 { 2480 int nr_pages = thp_nr_pages(page); 2481 int order = compound_order(page); 2482 2483 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2484 2485 /* Do not migrate THP mapped by multiple processes */ 2486 if (PageTransHuge(page) && total_mapcount(page) > 1) 2487 return 0; 2488 2489 /* Avoid migrating to a node that is nearly full */ 2490 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2491 int z; 2492 2493 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2494 return 0; 2495 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2496 if (managed_zone(pgdat->node_zones + z)) 2497 break; 2498 } 2499 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2500 return 0; 2501 } 2502 2503 if (!isolate_lru_page(page)) 2504 return 0; 2505 2506 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2507 nr_pages); 2508 2509 /* 2510 * Isolating the page has taken another reference, so the 2511 * caller's reference can be safely dropped without the page 2512 * disappearing underneath us during migration. 2513 */ 2514 put_page(page); 2515 return 1; 2516 } 2517 2518 /* 2519 * Attempt to migrate a misplaced page to the specified destination 2520 * node. Caller is expected to have an elevated reference count on 2521 * the page that will be dropped by this function before returning. 2522 */ 2523 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2524 int node) 2525 { 2526 pg_data_t *pgdat = NODE_DATA(node); 2527 int isolated; 2528 int nr_remaining; 2529 unsigned int nr_succeeded; 2530 LIST_HEAD(migratepages); 2531 int nr_pages = thp_nr_pages(page); 2532 2533 /* 2534 * Don't migrate file pages that are mapped in multiple processes 2535 * with execute permissions as they are probably shared libraries. 2536 */ 2537 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2538 (vma->vm_flags & VM_EXEC)) 2539 goto out; 2540 2541 /* 2542 * Also do not migrate dirty pages as not all filesystems can move 2543 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2544 */ 2545 if (page_is_file_lru(page) && PageDirty(page)) 2546 goto out; 2547 2548 isolated = numamigrate_isolate_page(pgdat, page); 2549 if (!isolated) 2550 goto out; 2551 2552 list_add(&page->lru, &migratepages); 2553 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2554 NULL, node, MIGRATE_ASYNC, 2555 MR_NUMA_MISPLACED, &nr_succeeded); 2556 if (nr_remaining) { 2557 if (!list_empty(&migratepages)) { 2558 list_del(&page->lru); 2559 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2560 page_is_file_lru(page), -nr_pages); 2561 putback_lru_page(page); 2562 } 2563 isolated = 0; 2564 } 2565 if (nr_succeeded) { 2566 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2567 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2568 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2569 nr_succeeded); 2570 } 2571 BUG_ON(!list_empty(&migratepages)); 2572 return isolated; 2573 2574 out: 2575 put_page(page); 2576 return 0; 2577 } 2578 #endif /* CONFIG_NUMA_BALANCING */ 2579 #endif /* CONFIG_NUMA */ 2580