1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/pfn_t.h> 40 #include <linux/memremap.h> 41 #include <linux/userfaultfd_k.h> 42 #include <linux/balloon_compaction.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 49 #include <asm/tlbflush.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/migrate.h> 53 54 #include "internal.h" 55 56 /* 57 * migrate_prep() needs to be called before we start compiling a list of pages 58 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 59 * undesirable, use migrate_prep_local() 60 */ 61 int migrate_prep(void) 62 { 63 /* 64 * Clear the LRU lists so pages can be isolated. 65 * Note that pages may be moved off the LRU after we have 66 * drained them. Those pages will fail to migrate like other 67 * pages that may be busy. 68 */ 69 lru_add_drain_all(); 70 71 return 0; 72 } 73 74 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 75 int migrate_prep_local(void) 76 { 77 lru_add_drain(); 78 79 return 0; 80 } 81 82 int isolate_movable_page(struct page *page, isolate_mode_t mode) 83 { 84 struct address_space *mapping; 85 86 /* 87 * Avoid burning cycles with pages that are yet under __free_pages(), 88 * or just got freed under us. 89 * 90 * In case we 'win' a race for a movable page being freed under us and 91 * raise its refcount preventing __free_pages() from doing its job 92 * the put_page() at the end of this block will take care of 93 * release this page, thus avoiding a nasty leakage. 94 */ 95 if (unlikely(!get_page_unless_zero(page))) 96 goto out; 97 98 /* 99 * Check PageMovable before holding a PG_lock because page's owner 100 * assumes anybody doesn't touch PG_lock of newly allocated page 101 * so unconditionally grapping the lock ruins page's owner side. 102 */ 103 if (unlikely(!__PageMovable(page))) 104 goto out_putpage; 105 /* 106 * As movable pages are not isolated from LRU lists, concurrent 107 * compaction threads can race against page migration functions 108 * as well as race against the releasing a page. 109 * 110 * In order to avoid having an already isolated movable page 111 * being (wrongly) re-isolated while it is under migration, 112 * or to avoid attempting to isolate pages being released, 113 * lets be sure we have the page lock 114 * before proceeding with the movable page isolation steps. 115 */ 116 if (unlikely(!trylock_page(page))) 117 goto out_putpage; 118 119 if (!PageMovable(page) || PageIsolated(page)) 120 goto out_no_isolated; 121 122 mapping = page_mapping(page); 123 VM_BUG_ON_PAGE(!mapping, page); 124 125 if (!mapping->a_ops->isolate_page(page, mode)) 126 goto out_no_isolated; 127 128 /* Driver shouldn't use PG_isolated bit of page->flags */ 129 WARN_ON_ONCE(PageIsolated(page)); 130 __SetPageIsolated(page); 131 unlock_page(page); 132 133 return 0; 134 135 out_no_isolated: 136 unlock_page(page); 137 out_putpage: 138 put_page(page); 139 out: 140 return -EBUSY; 141 } 142 143 /* It should be called on page which is PG_movable */ 144 void putback_movable_page(struct page *page) 145 { 146 struct address_space *mapping; 147 148 VM_BUG_ON_PAGE(!PageLocked(page), page); 149 VM_BUG_ON_PAGE(!PageMovable(page), page); 150 VM_BUG_ON_PAGE(!PageIsolated(page), page); 151 152 mapping = page_mapping(page); 153 mapping->a_ops->putback_page(page); 154 __ClearPageIsolated(page); 155 } 156 157 /* 158 * Put previously isolated pages back onto the appropriate lists 159 * from where they were once taken off for compaction/migration. 160 * 161 * This function shall be used whenever the isolated pageset has been 162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 163 * and isolate_huge_page(). 164 */ 165 void putback_movable_pages(struct list_head *l) 166 { 167 struct page *page; 168 struct page *page2; 169 170 list_for_each_entry_safe(page, page2, l, lru) { 171 if (unlikely(PageHuge(page))) { 172 putback_active_hugepage(page); 173 continue; 174 } 175 list_del(&page->lru); 176 /* 177 * We isolated non-lru movable page so here we can use 178 * __PageMovable because LRU page's mapping cannot have 179 * PAGE_MAPPING_MOVABLE. 180 */ 181 if (unlikely(__PageMovable(page))) { 182 VM_BUG_ON_PAGE(!PageIsolated(page), page); 183 lock_page(page); 184 if (PageMovable(page)) 185 putback_movable_page(page); 186 else 187 __ClearPageIsolated(page); 188 unlock_page(page); 189 put_page(page); 190 } else { 191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 192 page_is_file_cache(page), -hpage_nr_pages(page)); 193 putback_lru_page(page); 194 } 195 } 196 } 197 198 /* 199 * Restore a potential migration pte to a working pte entry 200 */ 201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 202 unsigned long addr, void *old) 203 { 204 struct page_vma_mapped_walk pvmw = { 205 .page = old, 206 .vma = vma, 207 .address = addr, 208 .flags = PVMW_SYNC | PVMW_MIGRATION, 209 }; 210 struct page *new; 211 pte_t pte; 212 swp_entry_t entry; 213 214 VM_BUG_ON_PAGE(PageTail(page), page); 215 while (page_vma_mapped_walk(&pvmw)) { 216 if (PageKsm(page)) 217 new = page; 218 else 219 new = page - pvmw.page->index + 220 linear_page_index(vma, pvmw.address); 221 222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 223 /* PMD-mapped THP migration entry */ 224 if (!pvmw.pte) { 225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 226 remove_migration_pmd(&pvmw, new); 227 continue; 228 } 229 #endif 230 231 get_page(new); 232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 233 if (pte_swp_soft_dirty(*pvmw.pte)) 234 pte = pte_mksoft_dirty(pte); 235 236 /* 237 * Recheck VMA as permissions can change since migration started 238 */ 239 entry = pte_to_swp_entry(*pvmw.pte); 240 if (is_write_migration_entry(entry)) 241 pte = maybe_mkwrite(pte, vma); 242 243 if (unlikely(is_zone_device_page(new))) { 244 if (is_device_private_page(new)) { 245 entry = make_device_private_entry(new, pte_write(pte)); 246 pte = swp_entry_to_pte(entry); 247 } else if (is_device_public_page(new)) { 248 pte = pte_mkdevmap(pte); 249 flush_dcache_page(new); 250 } 251 } else 252 flush_dcache_page(new); 253 254 #ifdef CONFIG_HUGETLB_PAGE 255 if (PageHuge(new)) { 256 pte = pte_mkhuge(pte); 257 pte = arch_make_huge_pte(pte, vma, new, 0); 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 259 if (PageAnon(new)) 260 hugepage_add_anon_rmap(new, vma, pvmw.address); 261 else 262 page_dup_rmap(new, true); 263 } else 264 #endif 265 { 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 268 if (PageAnon(new)) 269 page_add_anon_rmap(new, vma, pvmw.address, false); 270 else 271 page_add_file_rmap(new, false); 272 } 273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 274 mlock_vma_page(new); 275 276 /* No need to invalidate - it was non-present before */ 277 update_mmu_cache(vma, pvmw.address, pvmw.pte); 278 } 279 280 return true; 281 } 282 283 /* 284 * Get rid of all migration entries and replace them by 285 * references to the indicated page. 286 */ 287 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 288 { 289 struct rmap_walk_control rwc = { 290 .rmap_one = remove_migration_pte, 291 .arg = old, 292 }; 293 294 if (locked) 295 rmap_walk_locked(new, &rwc); 296 else 297 rmap_walk(new, &rwc); 298 } 299 300 /* 301 * Something used the pte of a page under migration. We need to 302 * get to the page and wait until migration is finished. 303 * When we return from this function the fault will be retried. 304 */ 305 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 306 spinlock_t *ptl) 307 { 308 pte_t pte; 309 swp_entry_t entry; 310 struct page *page; 311 312 spin_lock(ptl); 313 pte = *ptep; 314 if (!is_swap_pte(pte)) 315 goto out; 316 317 entry = pte_to_swp_entry(pte); 318 if (!is_migration_entry(entry)) 319 goto out; 320 321 page = migration_entry_to_page(entry); 322 323 /* 324 * Once radix-tree replacement of page migration started, page_count 325 * *must* be zero. And, we don't want to call wait_on_page_locked() 326 * against a page without get_page(). 327 * So, we use get_page_unless_zero(), here. Even failed, page fault 328 * will occur again. 329 */ 330 if (!get_page_unless_zero(page)) 331 goto out; 332 pte_unmap_unlock(ptep, ptl); 333 wait_on_page_locked(page); 334 put_page(page); 335 return; 336 out: 337 pte_unmap_unlock(ptep, ptl); 338 } 339 340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 341 unsigned long address) 342 { 343 spinlock_t *ptl = pte_lockptr(mm, pmd); 344 pte_t *ptep = pte_offset_map(pmd, address); 345 __migration_entry_wait(mm, ptep, ptl); 346 } 347 348 void migration_entry_wait_huge(struct vm_area_struct *vma, 349 struct mm_struct *mm, pte_t *pte) 350 { 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 352 __migration_entry_wait(mm, pte, ptl); 353 } 354 355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 357 { 358 spinlock_t *ptl; 359 struct page *page; 360 361 ptl = pmd_lock(mm, pmd); 362 if (!is_pmd_migration_entry(*pmd)) 363 goto unlock; 364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 365 if (!get_page_unless_zero(page)) 366 goto unlock; 367 spin_unlock(ptl); 368 wait_on_page_locked(page); 369 put_page(page); 370 return; 371 unlock: 372 spin_unlock(ptl); 373 } 374 #endif 375 376 #ifdef CONFIG_BLOCK 377 /* Returns true if all buffers are successfully locked */ 378 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 379 enum migrate_mode mode) 380 { 381 struct buffer_head *bh = head; 382 383 /* Simple case, sync compaction */ 384 if (mode != MIGRATE_ASYNC) { 385 do { 386 get_bh(bh); 387 lock_buffer(bh); 388 bh = bh->b_this_page; 389 390 } while (bh != head); 391 392 return true; 393 } 394 395 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 396 do { 397 get_bh(bh); 398 if (!trylock_buffer(bh)) { 399 /* 400 * We failed to lock the buffer and cannot stall in 401 * async migration. Release the taken locks 402 */ 403 struct buffer_head *failed_bh = bh; 404 put_bh(failed_bh); 405 bh = head; 406 while (bh != failed_bh) { 407 unlock_buffer(bh); 408 put_bh(bh); 409 bh = bh->b_this_page; 410 } 411 return false; 412 } 413 414 bh = bh->b_this_page; 415 } while (bh != head); 416 return true; 417 } 418 #else 419 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 420 enum migrate_mode mode) 421 { 422 return true; 423 } 424 #endif /* CONFIG_BLOCK */ 425 426 /* 427 * Replace the page in the mapping. 428 * 429 * The number of remaining references must be: 430 * 1 for anonymous pages without a mapping 431 * 2 for pages with a mapping 432 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 433 */ 434 int migrate_page_move_mapping(struct address_space *mapping, 435 struct page *newpage, struct page *page, 436 struct buffer_head *head, enum migrate_mode mode, 437 int extra_count) 438 { 439 struct zone *oldzone, *newzone; 440 int dirty; 441 int expected_count = 1 + extra_count; 442 void **pslot; 443 444 /* 445 * Device public or private pages have an extra refcount as they are 446 * ZONE_DEVICE pages. 447 */ 448 expected_count += is_device_private_page(page); 449 expected_count += is_device_public_page(page); 450 451 if (!mapping) { 452 /* Anonymous page without mapping */ 453 if (page_count(page) != expected_count) 454 return -EAGAIN; 455 456 /* No turning back from here */ 457 newpage->index = page->index; 458 newpage->mapping = page->mapping; 459 if (PageSwapBacked(page)) 460 __SetPageSwapBacked(newpage); 461 462 return MIGRATEPAGE_SUCCESS; 463 } 464 465 oldzone = page_zone(page); 466 newzone = page_zone(newpage); 467 468 spin_lock_irq(&mapping->tree_lock); 469 470 pslot = radix_tree_lookup_slot(&mapping->page_tree, 471 page_index(page)); 472 473 expected_count += 1 + page_has_private(page); 474 if (page_count(page) != expected_count || 475 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 476 spin_unlock_irq(&mapping->tree_lock); 477 return -EAGAIN; 478 } 479 480 if (!page_ref_freeze(page, expected_count)) { 481 spin_unlock_irq(&mapping->tree_lock); 482 return -EAGAIN; 483 } 484 485 /* 486 * In the async migration case of moving a page with buffers, lock the 487 * buffers using trylock before the mapping is moved. If the mapping 488 * was moved, we later failed to lock the buffers and could not move 489 * the mapping back due to an elevated page count, we would have to 490 * block waiting on other references to be dropped. 491 */ 492 if (mode == MIGRATE_ASYNC && head && 493 !buffer_migrate_lock_buffers(head, mode)) { 494 page_ref_unfreeze(page, expected_count); 495 spin_unlock_irq(&mapping->tree_lock); 496 return -EAGAIN; 497 } 498 499 /* 500 * Now we know that no one else is looking at the page: 501 * no turning back from here. 502 */ 503 newpage->index = page->index; 504 newpage->mapping = page->mapping; 505 get_page(newpage); /* add cache reference */ 506 if (PageSwapBacked(page)) { 507 __SetPageSwapBacked(newpage); 508 if (PageSwapCache(page)) { 509 SetPageSwapCache(newpage); 510 set_page_private(newpage, page_private(page)); 511 } 512 } else { 513 VM_BUG_ON_PAGE(PageSwapCache(page), page); 514 } 515 516 /* Move dirty while page refs frozen and newpage not yet exposed */ 517 dirty = PageDirty(page); 518 if (dirty) { 519 ClearPageDirty(page); 520 SetPageDirty(newpage); 521 } 522 523 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 524 525 /* 526 * Drop cache reference from old page by unfreezing 527 * to one less reference. 528 * We know this isn't the last reference. 529 */ 530 page_ref_unfreeze(page, expected_count - 1); 531 532 spin_unlock(&mapping->tree_lock); 533 /* Leave irq disabled to prevent preemption while updating stats */ 534 535 /* 536 * If moved to a different zone then also account 537 * the page for that zone. Other VM counters will be 538 * taken care of when we establish references to the 539 * new page and drop references to the old page. 540 * 541 * Note that anonymous pages are accounted for 542 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 543 * are mapped to swap space. 544 */ 545 if (newzone != oldzone) { 546 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 547 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 548 if (PageSwapBacked(page) && !PageSwapCache(page)) { 549 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 550 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 551 } 552 if (dirty && mapping_cap_account_dirty(mapping)) { 553 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 554 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 555 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 556 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 557 } 558 } 559 local_irq_enable(); 560 561 return MIGRATEPAGE_SUCCESS; 562 } 563 EXPORT_SYMBOL(migrate_page_move_mapping); 564 565 /* 566 * The expected number of remaining references is the same as that 567 * of migrate_page_move_mapping(). 568 */ 569 int migrate_huge_page_move_mapping(struct address_space *mapping, 570 struct page *newpage, struct page *page) 571 { 572 int expected_count; 573 void **pslot; 574 575 spin_lock_irq(&mapping->tree_lock); 576 577 pslot = radix_tree_lookup_slot(&mapping->page_tree, 578 page_index(page)); 579 580 expected_count = 2 + page_has_private(page); 581 if (page_count(page) != expected_count || 582 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 583 spin_unlock_irq(&mapping->tree_lock); 584 return -EAGAIN; 585 } 586 587 if (!page_ref_freeze(page, expected_count)) { 588 spin_unlock_irq(&mapping->tree_lock); 589 return -EAGAIN; 590 } 591 592 newpage->index = page->index; 593 newpage->mapping = page->mapping; 594 595 get_page(newpage); 596 597 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 598 599 page_ref_unfreeze(page, expected_count - 1); 600 601 spin_unlock_irq(&mapping->tree_lock); 602 603 return MIGRATEPAGE_SUCCESS; 604 } 605 606 /* 607 * Gigantic pages are so large that we do not guarantee that page++ pointer 608 * arithmetic will work across the entire page. We need something more 609 * specialized. 610 */ 611 static void __copy_gigantic_page(struct page *dst, struct page *src, 612 int nr_pages) 613 { 614 int i; 615 struct page *dst_base = dst; 616 struct page *src_base = src; 617 618 for (i = 0; i < nr_pages; ) { 619 cond_resched(); 620 copy_highpage(dst, src); 621 622 i++; 623 dst = mem_map_next(dst, dst_base, i); 624 src = mem_map_next(src, src_base, i); 625 } 626 } 627 628 static void copy_huge_page(struct page *dst, struct page *src) 629 { 630 int i; 631 int nr_pages; 632 633 if (PageHuge(src)) { 634 /* hugetlbfs page */ 635 struct hstate *h = page_hstate(src); 636 nr_pages = pages_per_huge_page(h); 637 638 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 639 __copy_gigantic_page(dst, src, nr_pages); 640 return; 641 } 642 } else { 643 /* thp page */ 644 BUG_ON(!PageTransHuge(src)); 645 nr_pages = hpage_nr_pages(src); 646 } 647 648 for (i = 0; i < nr_pages; i++) { 649 cond_resched(); 650 copy_highpage(dst + i, src + i); 651 } 652 } 653 654 /* 655 * Copy the page to its new location 656 */ 657 void migrate_page_states(struct page *newpage, struct page *page) 658 { 659 int cpupid; 660 661 if (PageError(page)) 662 SetPageError(newpage); 663 if (PageReferenced(page)) 664 SetPageReferenced(newpage); 665 if (PageUptodate(page)) 666 SetPageUptodate(newpage); 667 if (TestClearPageActive(page)) { 668 VM_BUG_ON_PAGE(PageUnevictable(page), page); 669 SetPageActive(newpage); 670 } else if (TestClearPageUnevictable(page)) 671 SetPageUnevictable(newpage); 672 if (PageChecked(page)) 673 SetPageChecked(newpage); 674 if (PageMappedToDisk(page)) 675 SetPageMappedToDisk(newpage); 676 677 /* Move dirty on pages not done by migrate_page_move_mapping() */ 678 if (PageDirty(page)) 679 SetPageDirty(newpage); 680 681 if (page_is_young(page)) 682 set_page_young(newpage); 683 if (page_is_idle(page)) 684 set_page_idle(newpage); 685 686 /* 687 * Copy NUMA information to the new page, to prevent over-eager 688 * future migrations of this same page. 689 */ 690 cpupid = page_cpupid_xchg_last(page, -1); 691 page_cpupid_xchg_last(newpage, cpupid); 692 693 ksm_migrate_page(newpage, page); 694 /* 695 * Please do not reorder this without considering how mm/ksm.c's 696 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 697 */ 698 if (PageSwapCache(page)) 699 ClearPageSwapCache(page); 700 ClearPagePrivate(page); 701 set_page_private(page, 0); 702 703 /* 704 * If any waiters have accumulated on the new page then 705 * wake them up. 706 */ 707 if (PageWriteback(newpage)) 708 end_page_writeback(newpage); 709 710 copy_page_owner(page, newpage); 711 712 mem_cgroup_migrate(page, newpage); 713 } 714 EXPORT_SYMBOL(migrate_page_states); 715 716 void migrate_page_copy(struct page *newpage, struct page *page) 717 { 718 if (PageHuge(page) || PageTransHuge(page)) 719 copy_huge_page(newpage, page); 720 else 721 copy_highpage(newpage, page); 722 723 migrate_page_states(newpage, page); 724 } 725 EXPORT_SYMBOL(migrate_page_copy); 726 727 /************************************************************ 728 * Migration functions 729 ***********************************************************/ 730 731 /* 732 * Common logic to directly migrate a single LRU page suitable for 733 * pages that do not use PagePrivate/PagePrivate2. 734 * 735 * Pages are locked upon entry and exit. 736 */ 737 int migrate_page(struct address_space *mapping, 738 struct page *newpage, struct page *page, 739 enum migrate_mode mode) 740 { 741 int rc; 742 743 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 744 745 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 746 747 if (rc != MIGRATEPAGE_SUCCESS) 748 return rc; 749 750 if (mode != MIGRATE_SYNC_NO_COPY) 751 migrate_page_copy(newpage, page); 752 else 753 migrate_page_states(newpage, page); 754 return MIGRATEPAGE_SUCCESS; 755 } 756 EXPORT_SYMBOL(migrate_page); 757 758 #ifdef CONFIG_BLOCK 759 /* 760 * Migration function for pages with buffers. This function can only be used 761 * if the underlying filesystem guarantees that no other references to "page" 762 * exist. 763 */ 764 int buffer_migrate_page(struct address_space *mapping, 765 struct page *newpage, struct page *page, enum migrate_mode mode) 766 { 767 struct buffer_head *bh, *head; 768 int rc; 769 770 if (!page_has_buffers(page)) 771 return migrate_page(mapping, newpage, page, mode); 772 773 head = page_buffers(page); 774 775 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 776 777 if (rc != MIGRATEPAGE_SUCCESS) 778 return rc; 779 780 /* 781 * In the async case, migrate_page_move_mapping locked the buffers 782 * with an IRQ-safe spinlock held. In the sync case, the buffers 783 * need to be locked now 784 */ 785 if (mode != MIGRATE_ASYNC) 786 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 787 788 ClearPagePrivate(page); 789 set_page_private(newpage, page_private(page)); 790 set_page_private(page, 0); 791 put_page(page); 792 get_page(newpage); 793 794 bh = head; 795 do { 796 set_bh_page(bh, newpage, bh_offset(bh)); 797 bh = bh->b_this_page; 798 799 } while (bh != head); 800 801 SetPagePrivate(newpage); 802 803 if (mode != MIGRATE_SYNC_NO_COPY) 804 migrate_page_copy(newpage, page); 805 else 806 migrate_page_states(newpage, page); 807 808 bh = head; 809 do { 810 unlock_buffer(bh); 811 put_bh(bh); 812 bh = bh->b_this_page; 813 814 } while (bh != head); 815 816 return MIGRATEPAGE_SUCCESS; 817 } 818 EXPORT_SYMBOL(buffer_migrate_page); 819 #endif 820 821 /* 822 * Writeback a page to clean the dirty state 823 */ 824 static int writeout(struct address_space *mapping, struct page *page) 825 { 826 struct writeback_control wbc = { 827 .sync_mode = WB_SYNC_NONE, 828 .nr_to_write = 1, 829 .range_start = 0, 830 .range_end = LLONG_MAX, 831 .for_reclaim = 1 832 }; 833 int rc; 834 835 if (!mapping->a_ops->writepage) 836 /* No write method for the address space */ 837 return -EINVAL; 838 839 if (!clear_page_dirty_for_io(page)) 840 /* Someone else already triggered a write */ 841 return -EAGAIN; 842 843 /* 844 * A dirty page may imply that the underlying filesystem has 845 * the page on some queue. So the page must be clean for 846 * migration. Writeout may mean we loose the lock and the 847 * page state is no longer what we checked for earlier. 848 * At this point we know that the migration attempt cannot 849 * be successful. 850 */ 851 remove_migration_ptes(page, page, false); 852 853 rc = mapping->a_ops->writepage(page, &wbc); 854 855 if (rc != AOP_WRITEPAGE_ACTIVATE) 856 /* unlocked. Relock */ 857 lock_page(page); 858 859 return (rc < 0) ? -EIO : -EAGAIN; 860 } 861 862 /* 863 * Default handling if a filesystem does not provide a migration function. 864 */ 865 static int fallback_migrate_page(struct address_space *mapping, 866 struct page *newpage, struct page *page, enum migrate_mode mode) 867 { 868 if (PageDirty(page)) { 869 /* Only writeback pages in full synchronous migration */ 870 switch (mode) { 871 case MIGRATE_SYNC: 872 case MIGRATE_SYNC_NO_COPY: 873 break; 874 default: 875 return -EBUSY; 876 } 877 return writeout(mapping, page); 878 } 879 880 /* 881 * Buffers may be managed in a filesystem specific way. 882 * We must have no buffers or drop them. 883 */ 884 if (page_has_private(page) && 885 !try_to_release_page(page, GFP_KERNEL)) 886 return -EAGAIN; 887 888 return migrate_page(mapping, newpage, page, mode); 889 } 890 891 /* 892 * Move a page to a newly allocated page 893 * The page is locked and all ptes have been successfully removed. 894 * 895 * The new page will have replaced the old page if this function 896 * is successful. 897 * 898 * Return value: 899 * < 0 - error code 900 * MIGRATEPAGE_SUCCESS - success 901 */ 902 static int move_to_new_page(struct page *newpage, struct page *page, 903 enum migrate_mode mode) 904 { 905 struct address_space *mapping; 906 int rc = -EAGAIN; 907 bool is_lru = !__PageMovable(page); 908 909 VM_BUG_ON_PAGE(!PageLocked(page), page); 910 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 911 912 mapping = page_mapping(page); 913 914 if (likely(is_lru)) { 915 if (!mapping) 916 rc = migrate_page(mapping, newpage, page, mode); 917 else if (mapping->a_ops->migratepage) 918 /* 919 * Most pages have a mapping and most filesystems 920 * provide a migratepage callback. Anonymous pages 921 * are part of swap space which also has its own 922 * migratepage callback. This is the most common path 923 * for page migration. 924 */ 925 rc = mapping->a_ops->migratepage(mapping, newpage, 926 page, mode); 927 else 928 rc = fallback_migrate_page(mapping, newpage, 929 page, mode); 930 } else { 931 /* 932 * In case of non-lru page, it could be released after 933 * isolation step. In that case, we shouldn't try migration. 934 */ 935 VM_BUG_ON_PAGE(!PageIsolated(page), page); 936 if (!PageMovable(page)) { 937 rc = MIGRATEPAGE_SUCCESS; 938 __ClearPageIsolated(page); 939 goto out; 940 } 941 942 rc = mapping->a_ops->migratepage(mapping, newpage, 943 page, mode); 944 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 945 !PageIsolated(page)); 946 } 947 948 /* 949 * When successful, old pagecache page->mapping must be cleared before 950 * page is freed; but stats require that PageAnon be left as PageAnon. 951 */ 952 if (rc == MIGRATEPAGE_SUCCESS) { 953 if (__PageMovable(page)) { 954 VM_BUG_ON_PAGE(!PageIsolated(page), page); 955 956 /* 957 * We clear PG_movable under page_lock so any compactor 958 * cannot try to migrate this page. 959 */ 960 __ClearPageIsolated(page); 961 } 962 963 /* 964 * Anonymous and movable page->mapping will be cleard by 965 * free_pages_prepare so don't reset it here for keeping 966 * the type to work PageAnon, for example. 967 */ 968 if (!PageMappingFlags(page)) 969 page->mapping = NULL; 970 } 971 out: 972 return rc; 973 } 974 975 static int __unmap_and_move(struct page *page, struct page *newpage, 976 int force, enum migrate_mode mode) 977 { 978 int rc = -EAGAIN; 979 int page_was_mapped = 0; 980 struct anon_vma *anon_vma = NULL; 981 bool is_lru = !__PageMovable(page); 982 983 if (!trylock_page(page)) { 984 if (!force || mode == MIGRATE_ASYNC) 985 goto out; 986 987 /* 988 * It's not safe for direct compaction to call lock_page. 989 * For example, during page readahead pages are added locked 990 * to the LRU. Later, when the IO completes the pages are 991 * marked uptodate and unlocked. However, the queueing 992 * could be merging multiple pages for one bio (e.g. 993 * mpage_readpages). If an allocation happens for the 994 * second or third page, the process can end up locking 995 * the same page twice and deadlocking. Rather than 996 * trying to be clever about what pages can be locked, 997 * avoid the use of lock_page for direct compaction 998 * altogether. 999 */ 1000 if (current->flags & PF_MEMALLOC) 1001 goto out; 1002 1003 lock_page(page); 1004 } 1005 1006 if (PageWriteback(page)) { 1007 /* 1008 * Only in the case of a full synchronous migration is it 1009 * necessary to wait for PageWriteback. In the async case, 1010 * the retry loop is too short and in the sync-light case, 1011 * the overhead of stalling is too much 1012 */ 1013 switch (mode) { 1014 case MIGRATE_SYNC: 1015 case MIGRATE_SYNC_NO_COPY: 1016 break; 1017 default: 1018 rc = -EBUSY; 1019 goto out_unlock; 1020 } 1021 if (!force) 1022 goto out_unlock; 1023 wait_on_page_writeback(page); 1024 } 1025 1026 /* 1027 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1028 * we cannot notice that anon_vma is freed while we migrates a page. 1029 * This get_anon_vma() delays freeing anon_vma pointer until the end 1030 * of migration. File cache pages are no problem because of page_lock() 1031 * File Caches may use write_page() or lock_page() in migration, then, 1032 * just care Anon page here. 1033 * 1034 * Only page_get_anon_vma() understands the subtleties of 1035 * getting a hold on an anon_vma from outside one of its mms. 1036 * But if we cannot get anon_vma, then we won't need it anyway, 1037 * because that implies that the anon page is no longer mapped 1038 * (and cannot be remapped so long as we hold the page lock). 1039 */ 1040 if (PageAnon(page) && !PageKsm(page)) 1041 anon_vma = page_get_anon_vma(page); 1042 1043 /* 1044 * Block others from accessing the new page when we get around to 1045 * establishing additional references. We are usually the only one 1046 * holding a reference to newpage at this point. We used to have a BUG 1047 * here if trylock_page(newpage) fails, but would like to allow for 1048 * cases where there might be a race with the previous use of newpage. 1049 * This is much like races on refcount of oldpage: just don't BUG(). 1050 */ 1051 if (unlikely(!trylock_page(newpage))) 1052 goto out_unlock; 1053 1054 if (unlikely(!is_lru)) { 1055 rc = move_to_new_page(newpage, page, mode); 1056 goto out_unlock_both; 1057 } 1058 1059 /* 1060 * Corner case handling: 1061 * 1. When a new swap-cache page is read into, it is added to the LRU 1062 * and treated as swapcache but it has no rmap yet. 1063 * Calling try_to_unmap() against a page->mapping==NULL page will 1064 * trigger a BUG. So handle it here. 1065 * 2. An orphaned page (see truncate_complete_page) might have 1066 * fs-private metadata. The page can be picked up due to memory 1067 * offlining. Everywhere else except page reclaim, the page is 1068 * invisible to the vm, so the page can not be migrated. So try to 1069 * free the metadata, so the page can be freed. 1070 */ 1071 if (!page->mapping) { 1072 VM_BUG_ON_PAGE(PageAnon(page), page); 1073 if (page_has_private(page)) { 1074 try_to_free_buffers(page); 1075 goto out_unlock_both; 1076 } 1077 } else if (page_mapped(page)) { 1078 /* Establish migration ptes */ 1079 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1080 page); 1081 try_to_unmap(page, 1082 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1083 page_was_mapped = 1; 1084 } 1085 1086 if (!page_mapped(page)) 1087 rc = move_to_new_page(newpage, page, mode); 1088 1089 if (page_was_mapped) 1090 remove_migration_ptes(page, 1091 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1092 1093 out_unlock_both: 1094 unlock_page(newpage); 1095 out_unlock: 1096 /* Drop an anon_vma reference if we took one */ 1097 if (anon_vma) 1098 put_anon_vma(anon_vma); 1099 unlock_page(page); 1100 out: 1101 /* 1102 * If migration is successful, decrease refcount of the newpage 1103 * which will not free the page because new page owner increased 1104 * refcounter. As well, if it is LRU page, add the page to LRU 1105 * list in here. 1106 */ 1107 if (rc == MIGRATEPAGE_SUCCESS) { 1108 if (unlikely(__PageMovable(newpage))) 1109 put_page(newpage); 1110 else 1111 putback_lru_page(newpage); 1112 } 1113 1114 return rc; 1115 } 1116 1117 /* 1118 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1119 * around it. 1120 */ 1121 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1122 #define ICE_noinline noinline 1123 #else 1124 #define ICE_noinline 1125 #endif 1126 1127 /* 1128 * Obtain the lock on page, remove all ptes and migrate the page 1129 * to the newly allocated page in newpage. 1130 */ 1131 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1132 free_page_t put_new_page, 1133 unsigned long private, struct page *page, 1134 int force, enum migrate_mode mode, 1135 enum migrate_reason reason) 1136 { 1137 int rc = MIGRATEPAGE_SUCCESS; 1138 int *result = NULL; 1139 struct page *newpage; 1140 1141 newpage = get_new_page(page, private, &result); 1142 if (!newpage) 1143 return -ENOMEM; 1144 1145 if (page_count(page) == 1) { 1146 /* page was freed from under us. So we are done. */ 1147 ClearPageActive(page); 1148 ClearPageUnevictable(page); 1149 if (unlikely(__PageMovable(page))) { 1150 lock_page(page); 1151 if (!PageMovable(page)) 1152 __ClearPageIsolated(page); 1153 unlock_page(page); 1154 } 1155 if (put_new_page) 1156 put_new_page(newpage, private); 1157 else 1158 put_page(newpage); 1159 goto out; 1160 } 1161 1162 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) { 1163 lock_page(page); 1164 rc = split_huge_page(page); 1165 unlock_page(page); 1166 if (rc) 1167 goto out; 1168 } 1169 1170 rc = __unmap_and_move(page, newpage, force, mode); 1171 if (rc == MIGRATEPAGE_SUCCESS) 1172 set_page_owner_migrate_reason(newpage, reason); 1173 1174 out: 1175 if (rc != -EAGAIN) { 1176 /* 1177 * A page that has been migrated has all references 1178 * removed and will be freed. A page that has not been 1179 * migrated will have kepts its references and be 1180 * restored. 1181 */ 1182 list_del(&page->lru); 1183 1184 /* 1185 * Compaction can migrate also non-LRU pages which are 1186 * not accounted to NR_ISOLATED_*. They can be recognized 1187 * as __PageMovable 1188 */ 1189 if (likely(!__PageMovable(page))) 1190 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1191 page_is_file_cache(page), -hpage_nr_pages(page)); 1192 } 1193 1194 /* 1195 * If migration is successful, releases reference grabbed during 1196 * isolation. Otherwise, restore the page to right list unless 1197 * we want to retry. 1198 */ 1199 if (rc == MIGRATEPAGE_SUCCESS) { 1200 put_page(page); 1201 if (reason == MR_MEMORY_FAILURE) { 1202 /* 1203 * Set PG_HWPoison on just freed page 1204 * intentionally. Although it's rather weird, 1205 * it's how HWPoison flag works at the moment. 1206 */ 1207 if (!test_set_page_hwpoison(page)) 1208 num_poisoned_pages_inc(); 1209 } 1210 } else { 1211 if (rc != -EAGAIN) { 1212 if (likely(!__PageMovable(page))) { 1213 putback_lru_page(page); 1214 goto put_new; 1215 } 1216 1217 lock_page(page); 1218 if (PageMovable(page)) 1219 putback_movable_page(page); 1220 else 1221 __ClearPageIsolated(page); 1222 unlock_page(page); 1223 put_page(page); 1224 } 1225 put_new: 1226 if (put_new_page) 1227 put_new_page(newpage, private); 1228 else 1229 put_page(newpage); 1230 } 1231 1232 if (result) { 1233 if (rc) 1234 *result = rc; 1235 else 1236 *result = page_to_nid(newpage); 1237 } 1238 return rc; 1239 } 1240 1241 /* 1242 * Counterpart of unmap_and_move_page() for hugepage migration. 1243 * 1244 * This function doesn't wait the completion of hugepage I/O 1245 * because there is no race between I/O and migration for hugepage. 1246 * Note that currently hugepage I/O occurs only in direct I/O 1247 * where no lock is held and PG_writeback is irrelevant, 1248 * and writeback status of all subpages are counted in the reference 1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1250 * under direct I/O, the reference of the head page is 512 and a bit more.) 1251 * This means that when we try to migrate hugepage whose subpages are 1252 * doing direct I/O, some references remain after try_to_unmap() and 1253 * hugepage migration fails without data corruption. 1254 * 1255 * There is also no race when direct I/O is issued on the page under migration, 1256 * because then pte is replaced with migration swap entry and direct I/O code 1257 * will wait in the page fault for migration to complete. 1258 */ 1259 static int unmap_and_move_huge_page(new_page_t get_new_page, 1260 free_page_t put_new_page, unsigned long private, 1261 struct page *hpage, int force, 1262 enum migrate_mode mode, int reason) 1263 { 1264 int rc = -EAGAIN; 1265 int *result = NULL; 1266 int page_was_mapped = 0; 1267 struct page *new_hpage; 1268 struct anon_vma *anon_vma = NULL; 1269 1270 /* 1271 * Movability of hugepages depends on architectures and hugepage size. 1272 * This check is necessary because some callers of hugepage migration 1273 * like soft offline and memory hotremove don't walk through page 1274 * tables or check whether the hugepage is pmd-based or not before 1275 * kicking migration. 1276 */ 1277 if (!hugepage_migration_supported(page_hstate(hpage))) { 1278 putback_active_hugepage(hpage); 1279 return -ENOSYS; 1280 } 1281 1282 new_hpage = get_new_page(hpage, private, &result); 1283 if (!new_hpage) 1284 return -ENOMEM; 1285 1286 if (!trylock_page(hpage)) { 1287 if (!force) 1288 goto out; 1289 switch (mode) { 1290 case MIGRATE_SYNC: 1291 case MIGRATE_SYNC_NO_COPY: 1292 break; 1293 default: 1294 goto out; 1295 } 1296 lock_page(hpage); 1297 } 1298 1299 if (PageAnon(hpage)) 1300 anon_vma = page_get_anon_vma(hpage); 1301 1302 if (unlikely(!trylock_page(new_hpage))) 1303 goto put_anon; 1304 1305 if (page_mapped(hpage)) { 1306 try_to_unmap(hpage, 1307 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1308 page_was_mapped = 1; 1309 } 1310 1311 if (!page_mapped(hpage)) 1312 rc = move_to_new_page(new_hpage, hpage, mode); 1313 1314 if (page_was_mapped) 1315 remove_migration_ptes(hpage, 1316 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1317 1318 unlock_page(new_hpage); 1319 1320 put_anon: 1321 if (anon_vma) 1322 put_anon_vma(anon_vma); 1323 1324 if (rc == MIGRATEPAGE_SUCCESS) { 1325 hugetlb_cgroup_migrate(hpage, new_hpage); 1326 put_new_page = NULL; 1327 set_page_owner_migrate_reason(new_hpage, reason); 1328 } 1329 1330 unlock_page(hpage); 1331 out: 1332 if (rc != -EAGAIN) 1333 putback_active_hugepage(hpage); 1334 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage)) 1335 num_poisoned_pages_inc(); 1336 1337 /* 1338 * If migration was not successful and there's a freeing callback, use 1339 * it. Otherwise, put_page() will drop the reference grabbed during 1340 * isolation. 1341 */ 1342 if (put_new_page) 1343 put_new_page(new_hpage, private); 1344 else 1345 putback_active_hugepage(new_hpage); 1346 1347 if (result) { 1348 if (rc) 1349 *result = rc; 1350 else 1351 *result = page_to_nid(new_hpage); 1352 } 1353 return rc; 1354 } 1355 1356 /* 1357 * migrate_pages - migrate the pages specified in a list, to the free pages 1358 * supplied as the target for the page migration 1359 * 1360 * @from: The list of pages to be migrated. 1361 * @get_new_page: The function used to allocate free pages to be used 1362 * as the target of the page migration. 1363 * @put_new_page: The function used to free target pages if migration 1364 * fails, or NULL if no special handling is necessary. 1365 * @private: Private data to be passed on to get_new_page() 1366 * @mode: The migration mode that specifies the constraints for 1367 * page migration, if any. 1368 * @reason: The reason for page migration. 1369 * 1370 * The function returns after 10 attempts or if no pages are movable any more 1371 * because the list has become empty or no retryable pages exist any more. 1372 * The caller should call putback_movable_pages() to return pages to the LRU 1373 * or free list only if ret != 0. 1374 * 1375 * Returns the number of pages that were not migrated, or an error code. 1376 */ 1377 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1378 free_page_t put_new_page, unsigned long private, 1379 enum migrate_mode mode, int reason) 1380 { 1381 int retry = 1; 1382 int nr_failed = 0; 1383 int nr_succeeded = 0; 1384 int pass = 0; 1385 struct page *page; 1386 struct page *page2; 1387 int swapwrite = current->flags & PF_SWAPWRITE; 1388 int rc; 1389 1390 if (!swapwrite) 1391 current->flags |= PF_SWAPWRITE; 1392 1393 for(pass = 0; pass < 10 && retry; pass++) { 1394 retry = 0; 1395 1396 list_for_each_entry_safe(page, page2, from, lru) { 1397 cond_resched(); 1398 1399 if (PageHuge(page)) 1400 rc = unmap_and_move_huge_page(get_new_page, 1401 put_new_page, private, page, 1402 pass > 2, mode, reason); 1403 else 1404 rc = unmap_and_move(get_new_page, put_new_page, 1405 private, page, pass > 2, mode, 1406 reason); 1407 1408 switch(rc) { 1409 case -ENOMEM: 1410 nr_failed++; 1411 goto out; 1412 case -EAGAIN: 1413 retry++; 1414 break; 1415 case MIGRATEPAGE_SUCCESS: 1416 nr_succeeded++; 1417 break; 1418 default: 1419 /* 1420 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1421 * unlike -EAGAIN case, the failed page is 1422 * removed from migration page list and not 1423 * retried in the next outer loop. 1424 */ 1425 nr_failed++; 1426 break; 1427 } 1428 } 1429 } 1430 nr_failed += retry; 1431 rc = nr_failed; 1432 out: 1433 if (nr_succeeded) 1434 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1435 if (nr_failed) 1436 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1437 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1438 1439 if (!swapwrite) 1440 current->flags &= ~PF_SWAPWRITE; 1441 1442 return rc; 1443 } 1444 1445 #ifdef CONFIG_NUMA 1446 /* 1447 * Move a list of individual pages 1448 */ 1449 struct page_to_node { 1450 unsigned long addr; 1451 struct page *page; 1452 int node; 1453 int status; 1454 }; 1455 1456 static struct page *new_page_node(struct page *p, unsigned long private, 1457 int **result) 1458 { 1459 struct page_to_node *pm = (struct page_to_node *)private; 1460 1461 while (pm->node != MAX_NUMNODES && pm->page != p) 1462 pm++; 1463 1464 if (pm->node == MAX_NUMNODES) 1465 return NULL; 1466 1467 *result = &pm->status; 1468 1469 if (PageHuge(p)) 1470 return alloc_huge_page_node(page_hstate(compound_head(p)), 1471 pm->node); 1472 else if (thp_migration_supported() && PageTransHuge(p)) { 1473 struct page *thp; 1474 1475 thp = alloc_pages_node(pm->node, 1476 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1477 HPAGE_PMD_ORDER); 1478 if (!thp) 1479 return NULL; 1480 prep_transhuge_page(thp); 1481 return thp; 1482 } else 1483 return __alloc_pages_node(pm->node, 1484 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1485 } 1486 1487 /* 1488 * Move a set of pages as indicated in the pm array. The addr 1489 * field must be set to the virtual address of the page to be moved 1490 * and the node number must contain a valid target node. 1491 * The pm array ends with node = MAX_NUMNODES. 1492 */ 1493 static int do_move_page_to_node_array(struct mm_struct *mm, 1494 struct page_to_node *pm, 1495 int migrate_all) 1496 { 1497 int err; 1498 struct page_to_node *pp; 1499 LIST_HEAD(pagelist); 1500 1501 down_read(&mm->mmap_sem); 1502 1503 /* 1504 * Build a list of pages to migrate 1505 */ 1506 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1507 struct vm_area_struct *vma; 1508 struct page *page; 1509 struct page *head; 1510 unsigned int follflags; 1511 1512 err = -EFAULT; 1513 vma = find_vma(mm, pp->addr); 1514 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1515 goto set_status; 1516 1517 /* FOLL_DUMP to ignore special (like zero) pages */ 1518 follflags = FOLL_GET | FOLL_DUMP; 1519 if (!thp_migration_supported()) 1520 follflags |= FOLL_SPLIT; 1521 page = follow_page(vma, pp->addr, follflags); 1522 1523 err = PTR_ERR(page); 1524 if (IS_ERR(page)) 1525 goto set_status; 1526 1527 err = -ENOENT; 1528 if (!page) 1529 goto set_status; 1530 1531 err = page_to_nid(page); 1532 1533 if (err == pp->node) 1534 /* 1535 * Node already in the right place 1536 */ 1537 goto put_and_set; 1538 1539 err = -EACCES; 1540 if (page_mapcount(page) > 1 && 1541 !migrate_all) 1542 goto put_and_set; 1543 1544 if (PageHuge(page)) { 1545 if (PageHead(page)) { 1546 isolate_huge_page(page, &pagelist); 1547 err = 0; 1548 pp->page = page; 1549 } 1550 goto put_and_set; 1551 } 1552 1553 pp->page = compound_head(page); 1554 head = compound_head(page); 1555 err = isolate_lru_page(head); 1556 if (!err) { 1557 list_add_tail(&head->lru, &pagelist); 1558 mod_node_page_state(page_pgdat(head), 1559 NR_ISOLATED_ANON + page_is_file_cache(head), 1560 hpage_nr_pages(head)); 1561 } 1562 put_and_set: 1563 /* 1564 * Either remove the duplicate refcount from 1565 * isolate_lru_page() or drop the page ref if it was 1566 * not isolated. 1567 */ 1568 put_page(page); 1569 set_status: 1570 pp->status = err; 1571 } 1572 1573 err = 0; 1574 if (!list_empty(&pagelist)) { 1575 err = migrate_pages(&pagelist, new_page_node, NULL, 1576 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1577 if (err) 1578 putback_movable_pages(&pagelist); 1579 } 1580 1581 up_read(&mm->mmap_sem); 1582 return err; 1583 } 1584 1585 /* 1586 * Migrate an array of page address onto an array of nodes and fill 1587 * the corresponding array of status. 1588 */ 1589 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1590 unsigned long nr_pages, 1591 const void __user * __user *pages, 1592 const int __user *nodes, 1593 int __user *status, int flags) 1594 { 1595 struct page_to_node *pm; 1596 unsigned long chunk_nr_pages; 1597 unsigned long chunk_start; 1598 int err; 1599 1600 err = -ENOMEM; 1601 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1602 if (!pm) 1603 goto out; 1604 1605 migrate_prep(); 1606 1607 /* 1608 * Store a chunk of page_to_node array in a page, 1609 * but keep the last one as a marker 1610 */ 1611 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1612 1613 for (chunk_start = 0; 1614 chunk_start < nr_pages; 1615 chunk_start += chunk_nr_pages) { 1616 int j; 1617 1618 if (chunk_start + chunk_nr_pages > nr_pages) 1619 chunk_nr_pages = nr_pages - chunk_start; 1620 1621 /* fill the chunk pm with addrs and nodes from user-space */ 1622 for (j = 0; j < chunk_nr_pages; j++) { 1623 const void __user *p; 1624 int node; 1625 1626 err = -EFAULT; 1627 if (get_user(p, pages + j + chunk_start)) 1628 goto out_pm; 1629 pm[j].addr = (unsigned long) p; 1630 1631 if (get_user(node, nodes + j + chunk_start)) 1632 goto out_pm; 1633 1634 err = -ENODEV; 1635 if (node < 0 || node >= MAX_NUMNODES) 1636 goto out_pm; 1637 1638 if (!node_state(node, N_MEMORY)) 1639 goto out_pm; 1640 1641 err = -EACCES; 1642 if (!node_isset(node, task_nodes)) 1643 goto out_pm; 1644 1645 pm[j].node = node; 1646 } 1647 1648 /* End marker for this chunk */ 1649 pm[chunk_nr_pages].node = MAX_NUMNODES; 1650 1651 /* Migrate this chunk */ 1652 err = do_move_page_to_node_array(mm, pm, 1653 flags & MPOL_MF_MOVE_ALL); 1654 if (err < 0) 1655 goto out_pm; 1656 1657 /* Return status information */ 1658 for (j = 0; j < chunk_nr_pages; j++) 1659 if (put_user(pm[j].status, status + j + chunk_start)) { 1660 err = -EFAULT; 1661 goto out_pm; 1662 } 1663 } 1664 err = 0; 1665 1666 out_pm: 1667 free_page((unsigned long)pm); 1668 out: 1669 return err; 1670 } 1671 1672 /* 1673 * Determine the nodes of an array of pages and store it in an array of status. 1674 */ 1675 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1676 const void __user **pages, int *status) 1677 { 1678 unsigned long i; 1679 1680 down_read(&mm->mmap_sem); 1681 1682 for (i = 0; i < nr_pages; i++) { 1683 unsigned long addr = (unsigned long)(*pages); 1684 struct vm_area_struct *vma; 1685 struct page *page; 1686 int err = -EFAULT; 1687 1688 vma = find_vma(mm, addr); 1689 if (!vma || addr < vma->vm_start) 1690 goto set_status; 1691 1692 /* FOLL_DUMP to ignore special (like zero) pages */ 1693 page = follow_page(vma, addr, FOLL_DUMP); 1694 1695 err = PTR_ERR(page); 1696 if (IS_ERR(page)) 1697 goto set_status; 1698 1699 err = page ? page_to_nid(page) : -ENOENT; 1700 set_status: 1701 *status = err; 1702 1703 pages++; 1704 status++; 1705 } 1706 1707 up_read(&mm->mmap_sem); 1708 } 1709 1710 /* 1711 * Determine the nodes of a user array of pages and store it in 1712 * a user array of status. 1713 */ 1714 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1715 const void __user * __user *pages, 1716 int __user *status) 1717 { 1718 #define DO_PAGES_STAT_CHUNK_NR 16 1719 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1720 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1721 1722 while (nr_pages) { 1723 unsigned long chunk_nr; 1724 1725 chunk_nr = nr_pages; 1726 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1727 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1728 1729 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1730 break; 1731 1732 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1733 1734 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1735 break; 1736 1737 pages += chunk_nr; 1738 status += chunk_nr; 1739 nr_pages -= chunk_nr; 1740 } 1741 return nr_pages ? -EFAULT : 0; 1742 } 1743 1744 /* 1745 * Move a list of pages in the address space of the currently executing 1746 * process. 1747 */ 1748 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1749 const void __user * __user *, pages, 1750 const int __user *, nodes, 1751 int __user *, status, int, flags) 1752 { 1753 struct task_struct *task; 1754 struct mm_struct *mm; 1755 int err; 1756 nodemask_t task_nodes; 1757 1758 /* Check flags */ 1759 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1760 return -EINVAL; 1761 1762 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1763 return -EPERM; 1764 1765 /* Find the mm_struct */ 1766 rcu_read_lock(); 1767 task = pid ? find_task_by_vpid(pid) : current; 1768 if (!task) { 1769 rcu_read_unlock(); 1770 return -ESRCH; 1771 } 1772 get_task_struct(task); 1773 1774 /* 1775 * Check if this process has the right to modify the specified 1776 * process. Use the regular "ptrace_may_access()" checks. 1777 */ 1778 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1779 rcu_read_unlock(); 1780 err = -EPERM; 1781 goto out; 1782 } 1783 rcu_read_unlock(); 1784 1785 err = security_task_movememory(task); 1786 if (err) 1787 goto out; 1788 1789 task_nodes = cpuset_mems_allowed(task); 1790 mm = get_task_mm(task); 1791 put_task_struct(task); 1792 1793 if (!mm) 1794 return -EINVAL; 1795 1796 if (nodes) 1797 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1798 nodes, status, flags); 1799 else 1800 err = do_pages_stat(mm, nr_pages, pages, status); 1801 1802 mmput(mm); 1803 return err; 1804 1805 out: 1806 put_task_struct(task); 1807 return err; 1808 } 1809 1810 #ifdef CONFIG_NUMA_BALANCING 1811 /* 1812 * Returns true if this is a safe migration target node for misplaced NUMA 1813 * pages. Currently it only checks the watermarks which crude 1814 */ 1815 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1816 unsigned long nr_migrate_pages) 1817 { 1818 int z; 1819 1820 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1821 struct zone *zone = pgdat->node_zones + z; 1822 1823 if (!populated_zone(zone)) 1824 continue; 1825 1826 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1827 if (!zone_watermark_ok(zone, 0, 1828 high_wmark_pages(zone) + 1829 nr_migrate_pages, 1830 0, 0)) 1831 continue; 1832 return true; 1833 } 1834 return false; 1835 } 1836 1837 static struct page *alloc_misplaced_dst_page(struct page *page, 1838 unsigned long data, 1839 int **result) 1840 { 1841 int nid = (int) data; 1842 struct page *newpage; 1843 1844 newpage = __alloc_pages_node(nid, 1845 (GFP_HIGHUSER_MOVABLE | 1846 __GFP_THISNODE | __GFP_NOMEMALLOC | 1847 __GFP_NORETRY | __GFP_NOWARN) & 1848 ~__GFP_RECLAIM, 0); 1849 1850 return newpage; 1851 } 1852 1853 /* 1854 * page migration rate limiting control. 1855 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1856 * window of time. Default here says do not migrate more than 1280M per second. 1857 */ 1858 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1859 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1860 1861 /* Returns true if the node is migrate rate-limited after the update */ 1862 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1863 unsigned long nr_pages) 1864 { 1865 /* 1866 * Rate-limit the amount of data that is being migrated to a node. 1867 * Optimal placement is no good if the memory bus is saturated and 1868 * all the time is being spent migrating! 1869 */ 1870 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1871 spin_lock(&pgdat->numabalancing_migrate_lock); 1872 pgdat->numabalancing_migrate_nr_pages = 0; 1873 pgdat->numabalancing_migrate_next_window = jiffies + 1874 msecs_to_jiffies(migrate_interval_millisecs); 1875 spin_unlock(&pgdat->numabalancing_migrate_lock); 1876 } 1877 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1878 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1879 nr_pages); 1880 return true; 1881 } 1882 1883 /* 1884 * This is an unlocked non-atomic update so errors are possible. 1885 * The consequences are failing to migrate when we potentiall should 1886 * have which is not severe enough to warrant locking. If it is ever 1887 * a problem, it can be converted to a per-cpu counter. 1888 */ 1889 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1890 return false; 1891 } 1892 1893 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1894 { 1895 int page_lru; 1896 1897 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1898 1899 /* Avoid migrating to a node that is nearly full */ 1900 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1901 return 0; 1902 1903 if (isolate_lru_page(page)) 1904 return 0; 1905 1906 /* 1907 * migrate_misplaced_transhuge_page() skips page migration's usual 1908 * check on page_count(), so we must do it here, now that the page 1909 * has been isolated: a GUP pin, or any other pin, prevents migration. 1910 * The expected page count is 3: 1 for page's mapcount and 1 for the 1911 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1912 */ 1913 if (PageTransHuge(page) && page_count(page) != 3) { 1914 putback_lru_page(page); 1915 return 0; 1916 } 1917 1918 page_lru = page_is_file_cache(page); 1919 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1920 hpage_nr_pages(page)); 1921 1922 /* 1923 * Isolating the page has taken another reference, so the 1924 * caller's reference can be safely dropped without the page 1925 * disappearing underneath us during migration. 1926 */ 1927 put_page(page); 1928 return 1; 1929 } 1930 1931 bool pmd_trans_migrating(pmd_t pmd) 1932 { 1933 struct page *page = pmd_page(pmd); 1934 return PageLocked(page); 1935 } 1936 1937 /* 1938 * Attempt to migrate a misplaced page to the specified destination 1939 * node. Caller is expected to have an elevated reference count on 1940 * the page that will be dropped by this function before returning. 1941 */ 1942 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1943 int node) 1944 { 1945 pg_data_t *pgdat = NODE_DATA(node); 1946 int isolated; 1947 int nr_remaining; 1948 LIST_HEAD(migratepages); 1949 1950 /* 1951 * Don't migrate file pages that are mapped in multiple processes 1952 * with execute permissions as they are probably shared libraries. 1953 */ 1954 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1955 (vma->vm_flags & VM_EXEC)) 1956 goto out; 1957 1958 /* 1959 * Rate-limit the amount of data that is being migrated to a node. 1960 * Optimal placement is no good if the memory bus is saturated and 1961 * all the time is being spent migrating! 1962 */ 1963 if (numamigrate_update_ratelimit(pgdat, 1)) 1964 goto out; 1965 1966 isolated = numamigrate_isolate_page(pgdat, page); 1967 if (!isolated) 1968 goto out; 1969 1970 list_add(&page->lru, &migratepages); 1971 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1972 NULL, node, MIGRATE_ASYNC, 1973 MR_NUMA_MISPLACED); 1974 if (nr_remaining) { 1975 if (!list_empty(&migratepages)) { 1976 list_del(&page->lru); 1977 dec_node_page_state(page, NR_ISOLATED_ANON + 1978 page_is_file_cache(page)); 1979 putback_lru_page(page); 1980 } 1981 isolated = 0; 1982 } else 1983 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1984 BUG_ON(!list_empty(&migratepages)); 1985 return isolated; 1986 1987 out: 1988 put_page(page); 1989 return 0; 1990 } 1991 #endif /* CONFIG_NUMA_BALANCING */ 1992 1993 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1994 /* 1995 * Migrates a THP to a given target node. page must be locked and is unlocked 1996 * before returning. 1997 */ 1998 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1999 struct vm_area_struct *vma, 2000 pmd_t *pmd, pmd_t entry, 2001 unsigned long address, 2002 struct page *page, int node) 2003 { 2004 spinlock_t *ptl; 2005 pg_data_t *pgdat = NODE_DATA(node); 2006 int isolated = 0; 2007 struct page *new_page = NULL; 2008 int page_lru = page_is_file_cache(page); 2009 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2010 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 2011 2012 /* 2013 * Rate-limit the amount of data that is being migrated to a node. 2014 * Optimal placement is no good if the memory bus is saturated and 2015 * all the time is being spent migrating! 2016 */ 2017 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 2018 goto out_dropref; 2019 2020 new_page = alloc_pages_node(node, 2021 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2022 HPAGE_PMD_ORDER); 2023 if (!new_page) 2024 goto out_fail; 2025 prep_transhuge_page(new_page); 2026 2027 isolated = numamigrate_isolate_page(pgdat, page); 2028 if (!isolated) { 2029 put_page(new_page); 2030 goto out_fail; 2031 } 2032 2033 /* Prepare a page as a migration target */ 2034 __SetPageLocked(new_page); 2035 if (PageSwapBacked(page)) 2036 __SetPageSwapBacked(new_page); 2037 2038 /* anon mapping, we can simply copy page->mapping to the new page: */ 2039 new_page->mapping = page->mapping; 2040 new_page->index = page->index; 2041 migrate_page_copy(new_page, page); 2042 WARN_ON(PageLRU(new_page)); 2043 2044 /* Recheck the target PMD */ 2045 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2046 ptl = pmd_lock(mm, pmd); 2047 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2048 spin_unlock(ptl); 2049 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2050 2051 /* Reverse changes made by migrate_page_copy() */ 2052 if (TestClearPageActive(new_page)) 2053 SetPageActive(page); 2054 if (TestClearPageUnevictable(new_page)) 2055 SetPageUnevictable(page); 2056 2057 unlock_page(new_page); 2058 put_page(new_page); /* Free it */ 2059 2060 /* Retake the callers reference and putback on LRU */ 2061 get_page(page); 2062 putback_lru_page(page); 2063 mod_node_page_state(page_pgdat(page), 2064 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2065 2066 goto out_unlock; 2067 } 2068 2069 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2070 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2071 2072 /* 2073 * Clear the old entry under pagetable lock and establish the new PTE. 2074 * Any parallel GUP will either observe the old page blocking on the 2075 * page lock, block on the page table lock or observe the new page. 2076 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2077 * guarantee the copy is visible before the pagetable update. 2078 */ 2079 flush_cache_range(vma, mmun_start, mmun_end); 2080 page_add_anon_rmap(new_page, vma, mmun_start, true); 2081 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2082 set_pmd_at(mm, mmun_start, pmd, entry); 2083 update_mmu_cache_pmd(vma, address, &entry); 2084 2085 page_ref_unfreeze(page, 2); 2086 mlock_migrate_page(new_page, page); 2087 page_remove_rmap(page, true); 2088 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2089 2090 spin_unlock(ptl); 2091 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2092 2093 /* Take an "isolate" reference and put new page on the LRU. */ 2094 get_page(new_page); 2095 putback_lru_page(new_page); 2096 2097 unlock_page(new_page); 2098 unlock_page(page); 2099 put_page(page); /* Drop the rmap reference */ 2100 put_page(page); /* Drop the LRU isolation reference */ 2101 2102 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2103 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2104 2105 mod_node_page_state(page_pgdat(page), 2106 NR_ISOLATED_ANON + page_lru, 2107 -HPAGE_PMD_NR); 2108 return isolated; 2109 2110 out_fail: 2111 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2112 out_dropref: 2113 ptl = pmd_lock(mm, pmd); 2114 if (pmd_same(*pmd, entry)) { 2115 entry = pmd_modify(entry, vma->vm_page_prot); 2116 set_pmd_at(mm, mmun_start, pmd, entry); 2117 update_mmu_cache_pmd(vma, address, &entry); 2118 } 2119 spin_unlock(ptl); 2120 2121 out_unlock: 2122 unlock_page(page); 2123 put_page(page); 2124 return 0; 2125 } 2126 #endif /* CONFIG_NUMA_BALANCING */ 2127 2128 #endif /* CONFIG_NUMA */ 2129 2130 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2131 struct migrate_vma { 2132 struct vm_area_struct *vma; 2133 unsigned long *dst; 2134 unsigned long *src; 2135 unsigned long cpages; 2136 unsigned long npages; 2137 unsigned long start; 2138 unsigned long end; 2139 }; 2140 2141 static int migrate_vma_collect_hole(unsigned long start, 2142 unsigned long end, 2143 struct mm_walk *walk) 2144 { 2145 struct migrate_vma *migrate = walk->private; 2146 unsigned long addr; 2147 2148 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2149 migrate->src[migrate->npages++] = MIGRATE_PFN_MIGRATE; 2150 migrate->dst[migrate->npages] = 0; 2151 migrate->cpages++; 2152 } 2153 2154 return 0; 2155 } 2156 2157 static int migrate_vma_collect_skip(unsigned long start, 2158 unsigned long end, 2159 struct mm_walk *walk) 2160 { 2161 struct migrate_vma *migrate = walk->private; 2162 unsigned long addr; 2163 2164 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2165 migrate->dst[migrate->npages] = 0; 2166 migrate->src[migrate->npages++] = 0; 2167 } 2168 2169 return 0; 2170 } 2171 2172 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2173 unsigned long start, 2174 unsigned long end, 2175 struct mm_walk *walk) 2176 { 2177 struct migrate_vma *migrate = walk->private; 2178 struct vm_area_struct *vma = walk->vma; 2179 struct mm_struct *mm = vma->vm_mm; 2180 unsigned long addr = start, unmapped = 0; 2181 spinlock_t *ptl; 2182 pte_t *ptep; 2183 2184 again: 2185 if (pmd_none(*pmdp)) 2186 return migrate_vma_collect_hole(start, end, walk); 2187 2188 if (pmd_trans_huge(*pmdp)) { 2189 struct page *page; 2190 2191 ptl = pmd_lock(mm, pmdp); 2192 if (unlikely(!pmd_trans_huge(*pmdp))) { 2193 spin_unlock(ptl); 2194 goto again; 2195 } 2196 2197 page = pmd_page(*pmdp); 2198 if (is_huge_zero_page(page)) { 2199 spin_unlock(ptl); 2200 split_huge_pmd(vma, pmdp, addr); 2201 if (pmd_trans_unstable(pmdp)) 2202 return migrate_vma_collect_skip(start, end, 2203 walk); 2204 } else { 2205 int ret; 2206 2207 get_page(page); 2208 spin_unlock(ptl); 2209 if (unlikely(!trylock_page(page))) 2210 return migrate_vma_collect_skip(start, end, 2211 walk); 2212 ret = split_huge_page(page); 2213 unlock_page(page); 2214 put_page(page); 2215 if (ret) 2216 return migrate_vma_collect_skip(start, end, 2217 walk); 2218 if (pmd_none(*pmdp)) 2219 return migrate_vma_collect_hole(start, end, 2220 walk); 2221 } 2222 } 2223 2224 if (unlikely(pmd_bad(*pmdp))) 2225 return migrate_vma_collect_skip(start, end, walk); 2226 2227 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2228 arch_enter_lazy_mmu_mode(); 2229 2230 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2231 unsigned long mpfn, pfn; 2232 struct page *page; 2233 swp_entry_t entry; 2234 pte_t pte; 2235 2236 pte = *ptep; 2237 pfn = pte_pfn(pte); 2238 2239 if (pte_none(pte)) { 2240 mpfn = MIGRATE_PFN_MIGRATE; 2241 migrate->cpages++; 2242 pfn = 0; 2243 goto next; 2244 } 2245 2246 if (!pte_present(pte)) { 2247 mpfn = pfn = 0; 2248 2249 /* 2250 * Only care about unaddressable device page special 2251 * page table entry. Other special swap entries are not 2252 * migratable, and we ignore regular swapped page. 2253 */ 2254 entry = pte_to_swp_entry(pte); 2255 if (!is_device_private_entry(entry)) 2256 goto next; 2257 2258 page = device_private_entry_to_page(entry); 2259 mpfn = migrate_pfn(page_to_pfn(page))| 2260 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2261 if (is_write_device_private_entry(entry)) 2262 mpfn |= MIGRATE_PFN_WRITE; 2263 } else { 2264 if (is_zero_pfn(pfn)) { 2265 mpfn = MIGRATE_PFN_MIGRATE; 2266 migrate->cpages++; 2267 pfn = 0; 2268 goto next; 2269 } 2270 page = _vm_normal_page(migrate->vma, addr, pte, true); 2271 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2272 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2273 } 2274 2275 /* FIXME support THP */ 2276 if (!page || !page->mapping || PageTransCompound(page)) { 2277 mpfn = pfn = 0; 2278 goto next; 2279 } 2280 pfn = page_to_pfn(page); 2281 2282 /* 2283 * By getting a reference on the page we pin it and that blocks 2284 * any kind of migration. Side effect is that it "freezes" the 2285 * pte. 2286 * 2287 * We drop this reference after isolating the page from the lru 2288 * for non device page (device page are not on the lru and thus 2289 * can't be dropped from it). 2290 */ 2291 get_page(page); 2292 migrate->cpages++; 2293 2294 /* 2295 * Optimize for the common case where page is only mapped once 2296 * in one process. If we can lock the page, then we can safely 2297 * set up a special migration page table entry now. 2298 */ 2299 if (trylock_page(page)) { 2300 pte_t swp_pte; 2301 2302 mpfn |= MIGRATE_PFN_LOCKED; 2303 ptep_get_and_clear(mm, addr, ptep); 2304 2305 /* Setup special migration page table entry */ 2306 entry = make_migration_entry(page, pte_write(pte)); 2307 swp_pte = swp_entry_to_pte(entry); 2308 if (pte_soft_dirty(pte)) 2309 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2310 set_pte_at(mm, addr, ptep, swp_pte); 2311 2312 /* 2313 * This is like regular unmap: we remove the rmap and 2314 * drop page refcount. Page won't be freed, as we took 2315 * a reference just above. 2316 */ 2317 page_remove_rmap(page, false); 2318 put_page(page); 2319 2320 if (pte_present(pte)) 2321 unmapped++; 2322 } 2323 2324 next: 2325 migrate->dst[migrate->npages] = 0; 2326 migrate->src[migrate->npages++] = mpfn; 2327 } 2328 arch_leave_lazy_mmu_mode(); 2329 pte_unmap_unlock(ptep - 1, ptl); 2330 2331 /* Only flush the TLB if we actually modified any entries */ 2332 if (unmapped) 2333 flush_tlb_range(walk->vma, start, end); 2334 2335 return 0; 2336 } 2337 2338 /* 2339 * migrate_vma_collect() - collect pages over a range of virtual addresses 2340 * @migrate: migrate struct containing all migration information 2341 * 2342 * This will walk the CPU page table. For each virtual address backed by a 2343 * valid page, it updates the src array and takes a reference on the page, in 2344 * order to pin the page until we lock it and unmap it. 2345 */ 2346 static void migrate_vma_collect(struct migrate_vma *migrate) 2347 { 2348 struct mm_walk mm_walk; 2349 2350 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2351 mm_walk.pte_entry = NULL; 2352 mm_walk.pte_hole = migrate_vma_collect_hole; 2353 mm_walk.hugetlb_entry = NULL; 2354 mm_walk.test_walk = NULL; 2355 mm_walk.vma = migrate->vma; 2356 mm_walk.mm = migrate->vma->vm_mm; 2357 mm_walk.private = migrate; 2358 2359 mmu_notifier_invalidate_range_start(mm_walk.mm, 2360 migrate->start, 2361 migrate->end); 2362 walk_page_range(migrate->start, migrate->end, &mm_walk); 2363 mmu_notifier_invalidate_range_end(mm_walk.mm, 2364 migrate->start, 2365 migrate->end); 2366 2367 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2368 } 2369 2370 /* 2371 * migrate_vma_check_page() - check if page is pinned or not 2372 * @page: struct page to check 2373 * 2374 * Pinned pages cannot be migrated. This is the same test as in 2375 * migrate_page_move_mapping(), except that here we allow migration of a 2376 * ZONE_DEVICE page. 2377 */ 2378 static bool migrate_vma_check_page(struct page *page) 2379 { 2380 /* 2381 * One extra ref because caller holds an extra reference, either from 2382 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2383 * a device page. 2384 */ 2385 int extra = 1; 2386 2387 /* 2388 * FIXME support THP (transparent huge page), it is bit more complex to 2389 * check them than regular pages, because they can be mapped with a pmd 2390 * or with a pte (split pte mapping). 2391 */ 2392 if (PageCompound(page)) 2393 return false; 2394 2395 /* Page from ZONE_DEVICE have one extra reference */ 2396 if (is_zone_device_page(page)) { 2397 /* 2398 * Private page can never be pin as they have no valid pte and 2399 * GUP will fail for those. Yet if there is a pending migration 2400 * a thread might try to wait on the pte migration entry and 2401 * will bump the page reference count. Sadly there is no way to 2402 * differentiate a regular pin from migration wait. Hence to 2403 * avoid 2 racing thread trying to migrate back to CPU to enter 2404 * infinite loop (one stoping migration because the other is 2405 * waiting on pte migration entry). We always return true here. 2406 * 2407 * FIXME proper solution is to rework migration_entry_wait() so 2408 * it does not need to take a reference on page. 2409 */ 2410 if (is_device_private_page(page)) 2411 return true; 2412 2413 /* 2414 * Only allow device public page to be migrated and account for 2415 * the extra reference count imply by ZONE_DEVICE pages. 2416 */ 2417 if (!is_device_public_page(page)) 2418 return false; 2419 extra++; 2420 } 2421 2422 /* For file back page */ 2423 if (page_mapping(page)) 2424 extra += 1 + page_has_private(page); 2425 2426 if ((page_count(page) - extra) > page_mapcount(page)) 2427 return false; 2428 2429 return true; 2430 } 2431 2432 /* 2433 * migrate_vma_prepare() - lock pages and isolate them from the lru 2434 * @migrate: migrate struct containing all migration information 2435 * 2436 * This locks pages that have been collected by migrate_vma_collect(). Once each 2437 * page is locked it is isolated from the lru (for non-device pages). Finally, 2438 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2439 * migrated by concurrent kernel threads. 2440 */ 2441 static void migrate_vma_prepare(struct migrate_vma *migrate) 2442 { 2443 const unsigned long npages = migrate->npages; 2444 const unsigned long start = migrate->start; 2445 unsigned long addr, i, restore = 0; 2446 bool allow_drain = true; 2447 2448 lru_add_drain(); 2449 2450 for (i = 0; (i < npages) && migrate->cpages; i++) { 2451 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2452 bool remap = true; 2453 2454 if (!page) 2455 continue; 2456 2457 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2458 /* 2459 * Because we are migrating several pages there can be 2460 * a deadlock between 2 concurrent migration where each 2461 * are waiting on each other page lock. 2462 * 2463 * Make migrate_vma() a best effort thing and backoff 2464 * for any page we can not lock right away. 2465 */ 2466 if (!trylock_page(page)) { 2467 migrate->src[i] = 0; 2468 migrate->cpages--; 2469 put_page(page); 2470 continue; 2471 } 2472 remap = false; 2473 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2474 } 2475 2476 /* ZONE_DEVICE pages are not on LRU */ 2477 if (!is_zone_device_page(page)) { 2478 if (!PageLRU(page) && allow_drain) { 2479 /* Drain CPU's pagevec */ 2480 lru_add_drain_all(); 2481 allow_drain = false; 2482 } 2483 2484 if (isolate_lru_page(page)) { 2485 if (remap) { 2486 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2487 migrate->cpages--; 2488 restore++; 2489 } else { 2490 migrate->src[i] = 0; 2491 unlock_page(page); 2492 migrate->cpages--; 2493 put_page(page); 2494 } 2495 continue; 2496 } 2497 2498 /* Drop the reference we took in collect */ 2499 put_page(page); 2500 } 2501 2502 if (!migrate_vma_check_page(page)) { 2503 if (remap) { 2504 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2505 migrate->cpages--; 2506 restore++; 2507 2508 if (!is_zone_device_page(page)) { 2509 get_page(page); 2510 putback_lru_page(page); 2511 } 2512 } else { 2513 migrate->src[i] = 0; 2514 unlock_page(page); 2515 migrate->cpages--; 2516 2517 if (!is_zone_device_page(page)) 2518 putback_lru_page(page); 2519 else 2520 put_page(page); 2521 } 2522 } 2523 } 2524 2525 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2526 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2527 2528 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2529 continue; 2530 2531 remove_migration_pte(page, migrate->vma, addr, page); 2532 2533 migrate->src[i] = 0; 2534 unlock_page(page); 2535 put_page(page); 2536 restore--; 2537 } 2538 } 2539 2540 /* 2541 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2542 * @migrate: migrate struct containing all migration information 2543 * 2544 * Replace page mapping (CPU page table pte) with a special migration pte entry 2545 * and check again if it has been pinned. Pinned pages are restored because we 2546 * cannot migrate them. 2547 * 2548 * This is the last step before we call the device driver callback to allocate 2549 * destination memory and copy contents of original page over to new page. 2550 */ 2551 static void migrate_vma_unmap(struct migrate_vma *migrate) 2552 { 2553 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2554 const unsigned long npages = migrate->npages; 2555 const unsigned long start = migrate->start; 2556 unsigned long addr, i, restore = 0; 2557 2558 for (i = 0; i < npages; i++) { 2559 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2560 2561 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2562 continue; 2563 2564 if (page_mapped(page)) { 2565 try_to_unmap(page, flags); 2566 if (page_mapped(page)) 2567 goto restore; 2568 } 2569 2570 if (migrate_vma_check_page(page)) 2571 continue; 2572 2573 restore: 2574 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2575 migrate->cpages--; 2576 restore++; 2577 } 2578 2579 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2580 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2581 2582 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2583 continue; 2584 2585 remove_migration_ptes(page, page, false); 2586 2587 migrate->src[i] = 0; 2588 unlock_page(page); 2589 restore--; 2590 2591 if (is_zone_device_page(page)) 2592 put_page(page); 2593 else 2594 putback_lru_page(page); 2595 } 2596 } 2597 2598 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2599 unsigned long addr, 2600 struct page *page, 2601 unsigned long *src, 2602 unsigned long *dst) 2603 { 2604 struct vm_area_struct *vma = migrate->vma; 2605 struct mm_struct *mm = vma->vm_mm; 2606 struct mem_cgroup *memcg; 2607 bool flush = false; 2608 spinlock_t *ptl; 2609 pte_t entry; 2610 pgd_t *pgdp; 2611 p4d_t *p4dp; 2612 pud_t *pudp; 2613 pmd_t *pmdp; 2614 pte_t *ptep; 2615 2616 /* Only allow populating anonymous memory */ 2617 if (!vma_is_anonymous(vma)) 2618 goto abort; 2619 2620 pgdp = pgd_offset(mm, addr); 2621 p4dp = p4d_alloc(mm, pgdp, addr); 2622 if (!p4dp) 2623 goto abort; 2624 pudp = pud_alloc(mm, p4dp, addr); 2625 if (!pudp) 2626 goto abort; 2627 pmdp = pmd_alloc(mm, pudp, addr); 2628 if (!pmdp) 2629 goto abort; 2630 2631 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2632 goto abort; 2633 2634 /* 2635 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2636 * pte_offset_map() on pmds where a huge pmd might be created 2637 * from a different thread. 2638 * 2639 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2640 * parallel threads are excluded by other means. 2641 * 2642 * Here we only have down_read(mmap_sem). 2643 */ 2644 if (pte_alloc(mm, pmdp, addr)) 2645 goto abort; 2646 2647 /* See the comment in pte_alloc_one_map() */ 2648 if (unlikely(pmd_trans_unstable(pmdp))) 2649 goto abort; 2650 2651 if (unlikely(anon_vma_prepare(vma))) 2652 goto abort; 2653 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2654 goto abort; 2655 2656 /* 2657 * The memory barrier inside __SetPageUptodate makes sure that 2658 * preceding stores to the page contents become visible before 2659 * the set_pte_at() write. 2660 */ 2661 __SetPageUptodate(page); 2662 2663 if (is_zone_device_page(page)) { 2664 if (is_device_private_page(page)) { 2665 swp_entry_t swp_entry; 2666 2667 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2668 entry = swp_entry_to_pte(swp_entry); 2669 } else if (is_device_public_page(page)) { 2670 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2671 if (vma->vm_flags & VM_WRITE) 2672 entry = pte_mkwrite(pte_mkdirty(entry)); 2673 entry = pte_mkdevmap(entry); 2674 } 2675 } else { 2676 entry = mk_pte(page, vma->vm_page_prot); 2677 if (vma->vm_flags & VM_WRITE) 2678 entry = pte_mkwrite(pte_mkdirty(entry)); 2679 } 2680 2681 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2682 2683 if (pte_present(*ptep)) { 2684 unsigned long pfn = pte_pfn(*ptep); 2685 2686 if (!is_zero_pfn(pfn)) { 2687 pte_unmap_unlock(ptep, ptl); 2688 mem_cgroup_cancel_charge(page, memcg, false); 2689 goto abort; 2690 } 2691 flush = true; 2692 } else if (!pte_none(*ptep)) { 2693 pte_unmap_unlock(ptep, ptl); 2694 mem_cgroup_cancel_charge(page, memcg, false); 2695 goto abort; 2696 } 2697 2698 /* 2699 * Check for usefaultfd but do not deliver the fault. Instead, 2700 * just back off. 2701 */ 2702 if (userfaultfd_missing(vma)) { 2703 pte_unmap_unlock(ptep, ptl); 2704 mem_cgroup_cancel_charge(page, memcg, false); 2705 goto abort; 2706 } 2707 2708 inc_mm_counter(mm, MM_ANONPAGES); 2709 page_add_new_anon_rmap(page, vma, addr, false); 2710 mem_cgroup_commit_charge(page, memcg, false, false); 2711 if (!is_zone_device_page(page)) 2712 lru_cache_add_active_or_unevictable(page, vma); 2713 get_page(page); 2714 2715 if (flush) { 2716 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2717 ptep_clear_flush_notify(vma, addr, ptep); 2718 set_pte_at_notify(mm, addr, ptep, entry); 2719 update_mmu_cache(vma, addr, ptep); 2720 } else { 2721 /* No need to invalidate - it was non-present before */ 2722 set_pte_at(mm, addr, ptep, entry); 2723 update_mmu_cache(vma, addr, ptep); 2724 } 2725 2726 pte_unmap_unlock(ptep, ptl); 2727 *src = MIGRATE_PFN_MIGRATE; 2728 return; 2729 2730 abort: 2731 *src &= ~MIGRATE_PFN_MIGRATE; 2732 } 2733 2734 /* 2735 * migrate_vma_pages() - migrate meta-data from src page to dst page 2736 * @migrate: migrate struct containing all migration information 2737 * 2738 * This migrates struct page meta-data from source struct page to destination 2739 * struct page. This effectively finishes the migration from source page to the 2740 * destination page. 2741 */ 2742 static void migrate_vma_pages(struct migrate_vma *migrate) 2743 { 2744 const unsigned long npages = migrate->npages; 2745 const unsigned long start = migrate->start; 2746 struct vm_area_struct *vma = migrate->vma; 2747 struct mm_struct *mm = vma->vm_mm; 2748 unsigned long addr, i, mmu_start; 2749 bool notified = false; 2750 2751 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2752 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2753 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2754 struct address_space *mapping; 2755 int r; 2756 2757 if (!newpage) { 2758 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2759 continue; 2760 } 2761 2762 if (!page) { 2763 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2764 continue; 2765 } 2766 if (!notified) { 2767 mmu_start = addr; 2768 notified = true; 2769 mmu_notifier_invalidate_range_start(mm, 2770 mmu_start, 2771 migrate->end); 2772 } 2773 migrate_vma_insert_page(migrate, addr, newpage, 2774 &migrate->src[i], 2775 &migrate->dst[i]); 2776 continue; 2777 } 2778 2779 mapping = page_mapping(page); 2780 2781 if (is_zone_device_page(newpage)) { 2782 if (is_device_private_page(newpage)) { 2783 /* 2784 * For now only support private anonymous when 2785 * migrating to un-addressable device memory. 2786 */ 2787 if (mapping) { 2788 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2789 continue; 2790 } 2791 } else if (!is_device_public_page(newpage)) { 2792 /* 2793 * Other types of ZONE_DEVICE page are not 2794 * supported. 2795 */ 2796 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2797 continue; 2798 } 2799 } 2800 2801 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2802 if (r != MIGRATEPAGE_SUCCESS) 2803 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2804 } 2805 2806 if (notified) 2807 mmu_notifier_invalidate_range_end(mm, mmu_start, 2808 migrate->end); 2809 } 2810 2811 /* 2812 * migrate_vma_finalize() - restore CPU page table entry 2813 * @migrate: migrate struct containing all migration information 2814 * 2815 * This replaces the special migration pte entry with either a mapping to the 2816 * new page if migration was successful for that page, or to the original page 2817 * otherwise. 2818 * 2819 * This also unlocks the pages and puts them back on the lru, or drops the extra 2820 * refcount, for device pages. 2821 */ 2822 static void migrate_vma_finalize(struct migrate_vma *migrate) 2823 { 2824 const unsigned long npages = migrate->npages; 2825 unsigned long i; 2826 2827 for (i = 0; i < npages; i++) { 2828 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2829 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2830 2831 if (!page) { 2832 if (newpage) { 2833 unlock_page(newpage); 2834 put_page(newpage); 2835 } 2836 continue; 2837 } 2838 2839 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2840 if (newpage) { 2841 unlock_page(newpage); 2842 put_page(newpage); 2843 } 2844 newpage = page; 2845 } 2846 2847 remove_migration_ptes(page, newpage, false); 2848 unlock_page(page); 2849 migrate->cpages--; 2850 2851 if (is_zone_device_page(page)) 2852 put_page(page); 2853 else 2854 putback_lru_page(page); 2855 2856 if (newpage != page) { 2857 unlock_page(newpage); 2858 if (is_zone_device_page(newpage)) 2859 put_page(newpage); 2860 else 2861 putback_lru_page(newpage); 2862 } 2863 } 2864 } 2865 2866 /* 2867 * migrate_vma() - migrate a range of memory inside vma 2868 * 2869 * @ops: migration callback for allocating destination memory and copying 2870 * @vma: virtual memory area containing the range to be migrated 2871 * @start: start address of the range to migrate (inclusive) 2872 * @end: end address of the range to migrate (exclusive) 2873 * @src: array of hmm_pfn_t containing source pfns 2874 * @dst: array of hmm_pfn_t containing destination pfns 2875 * @private: pointer passed back to each of the callback 2876 * Returns: 0 on success, error code otherwise 2877 * 2878 * This function tries to migrate a range of memory virtual address range, using 2879 * callbacks to allocate and copy memory from source to destination. First it 2880 * collects all the pages backing each virtual address in the range, saving this 2881 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2882 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2883 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2884 * in the corresponding src array entry. It then restores any pages that are 2885 * pinned, by remapping and unlocking those pages. 2886 * 2887 * At this point it calls the alloc_and_copy() callback. For documentation on 2888 * what is expected from that callback, see struct migrate_vma_ops comments in 2889 * include/linux/migrate.h 2890 * 2891 * After the alloc_and_copy() callback, this function goes over each entry in 2892 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2893 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2894 * then the function tries to migrate struct page information from the source 2895 * struct page to the destination struct page. If it fails to migrate the struct 2896 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2897 * array. 2898 * 2899 * At this point all successfully migrated pages have an entry in the src 2900 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2901 * array entry with MIGRATE_PFN_VALID flag set. 2902 * 2903 * It then calls the finalize_and_map() callback. See comments for "struct 2904 * migrate_vma_ops", in include/linux/migrate.h for details about 2905 * finalize_and_map() behavior. 2906 * 2907 * After the finalize_and_map() callback, for successfully migrated pages, this 2908 * function updates the CPU page table to point to new pages, otherwise it 2909 * restores the CPU page table to point to the original source pages. 2910 * 2911 * Function returns 0 after the above steps, even if no pages were migrated 2912 * (The function only returns an error if any of the arguments are invalid.) 2913 * 2914 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2915 * unsigned long entries. 2916 */ 2917 int migrate_vma(const struct migrate_vma_ops *ops, 2918 struct vm_area_struct *vma, 2919 unsigned long start, 2920 unsigned long end, 2921 unsigned long *src, 2922 unsigned long *dst, 2923 void *private) 2924 { 2925 struct migrate_vma migrate; 2926 2927 /* Sanity check the arguments */ 2928 start &= PAGE_MASK; 2929 end &= PAGE_MASK; 2930 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) 2931 return -EINVAL; 2932 if (start < vma->vm_start || start >= vma->vm_end) 2933 return -EINVAL; 2934 if (end <= vma->vm_start || end > vma->vm_end) 2935 return -EINVAL; 2936 if (!ops || !src || !dst || start >= end) 2937 return -EINVAL; 2938 2939 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2940 migrate.src = src; 2941 migrate.dst = dst; 2942 migrate.start = start; 2943 migrate.npages = 0; 2944 migrate.cpages = 0; 2945 migrate.end = end; 2946 migrate.vma = vma; 2947 2948 /* Collect, and try to unmap source pages */ 2949 migrate_vma_collect(&migrate); 2950 if (!migrate.cpages) 2951 return 0; 2952 2953 /* Lock and isolate page */ 2954 migrate_vma_prepare(&migrate); 2955 if (!migrate.cpages) 2956 return 0; 2957 2958 /* Unmap pages */ 2959 migrate_vma_unmap(&migrate); 2960 if (!migrate.cpages) 2961 return 0; 2962 2963 /* 2964 * At this point pages are locked and unmapped, and thus they have 2965 * stable content and can safely be copied to destination memory that 2966 * is allocated by the callback. 2967 * 2968 * Note that migration can fail in migrate_vma_struct_page() for each 2969 * individual page. 2970 */ 2971 ops->alloc_and_copy(vma, src, dst, start, end, private); 2972 2973 /* This does the real migration of struct page */ 2974 migrate_vma_pages(&migrate); 2975 2976 ops->finalize_and_map(vma, src, dst, start, end, private); 2977 2978 /* Unlock and remap pages */ 2979 migrate_vma_finalize(&migrate); 2980 2981 return 0; 2982 } 2983 EXPORT_SYMBOL(migrate_vma); 2984 #endif /* defined(MIGRATE_VMA_HELPER) */ 2985