1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 if (PageTransHuge(page) && PageMlocked(page)) 279 clear_page_mlock(page); 280 281 /* No need to invalidate - it was non-present before */ 282 update_mmu_cache(vma, pvmw.address, pvmw.pte); 283 } 284 285 return true; 286 } 287 288 /* 289 * Get rid of all migration entries and replace them by 290 * references to the indicated page. 291 */ 292 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 293 { 294 struct rmap_walk_control rwc = { 295 .rmap_one = remove_migration_pte, 296 .arg = old, 297 }; 298 299 if (locked) 300 rmap_walk_locked(new, &rwc); 301 else 302 rmap_walk(new, &rwc); 303 } 304 305 /* 306 * Something used the pte of a page under migration. We need to 307 * get to the page and wait until migration is finished. 308 * When we return from this function the fault will be retried. 309 */ 310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 311 spinlock_t *ptl) 312 { 313 pte_t pte; 314 swp_entry_t entry; 315 struct page *page; 316 317 spin_lock(ptl); 318 pte = *ptep; 319 if (!is_swap_pte(pte)) 320 goto out; 321 322 entry = pte_to_swp_entry(pte); 323 if (!is_migration_entry(entry)) 324 goto out; 325 326 page = migration_entry_to_page(entry); 327 328 /* 329 * Once radix-tree replacement of page migration started, page_count 330 * *must* be zero. And, we don't want to call wait_on_page_locked() 331 * against a page without get_page(). 332 * So, we use get_page_unless_zero(), here. Even failed, page fault 333 * will occur again. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 wait_on_page_locked(page); 339 put_page(page); 340 return; 341 out: 342 pte_unmap_unlock(ptep, ptl); 343 } 344 345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 346 unsigned long address) 347 { 348 spinlock_t *ptl = pte_lockptr(mm, pmd); 349 pte_t *ptep = pte_offset_map(pmd, address); 350 __migration_entry_wait(mm, ptep, ptl); 351 } 352 353 void migration_entry_wait_huge(struct vm_area_struct *vma, 354 struct mm_struct *mm, pte_t *pte) 355 { 356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 357 __migration_entry_wait(mm, pte, ptl); 358 } 359 360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 362 { 363 spinlock_t *ptl; 364 struct page *page; 365 366 ptl = pmd_lock(mm, pmd); 367 if (!is_pmd_migration_entry(*pmd)) 368 goto unlock; 369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 370 if (!get_page_unless_zero(page)) 371 goto unlock; 372 spin_unlock(ptl); 373 wait_on_page_locked(page); 374 put_page(page); 375 return; 376 unlock: 377 spin_unlock(ptl); 378 } 379 #endif 380 381 #ifdef CONFIG_BLOCK 382 /* Returns true if all buffers are successfully locked */ 383 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 384 enum migrate_mode mode) 385 { 386 struct buffer_head *bh = head; 387 388 /* Simple case, sync compaction */ 389 if (mode != MIGRATE_ASYNC) { 390 do { 391 get_bh(bh); 392 lock_buffer(bh); 393 bh = bh->b_this_page; 394 395 } while (bh != head); 396 397 return true; 398 } 399 400 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 401 do { 402 get_bh(bh); 403 if (!trylock_buffer(bh)) { 404 /* 405 * We failed to lock the buffer and cannot stall in 406 * async migration. Release the taken locks 407 */ 408 struct buffer_head *failed_bh = bh; 409 put_bh(failed_bh); 410 bh = head; 411 while (bh != failed_bh) { 412 unlock_buffer(bh); 413 put_bh(bh); 414 bh = bh->b_this_page; 415 } 416 return false; 417 } 418 419 bh = bh->b_this_page; 420 } while (bh != head); 421 return true; 422 } 423 #else 424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 425 enum migrate_mode mode) 426 { 427 return true; 428 } 429 #endif /* CONFIG_BLOCK */ 430 431 /* 432 * Replace the page in the mapping. 433 * 434 * The number of remaining references must be: 435 * 1 for anonymous pages without a mapping 436 * 2 for pages with a mapping 437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 438 */ 439 int migrate_page_move_mapping(struct address_space *mapping, 440 struct page *newpage, struct page *page, 441 struct buffer_head *head, enum migrate_mode mode, 442 int extra_count) 443 { 444 struct zone *oldzone, *newzone; 445 int dirty; 446 int expected_count = 1 + extra_count; 447 void **pslot; 448 449 /* 450 * Device public or private pages have an extra refcount as they are 451 * ZONE_DEVICE pages. 452 */ 453 expected_count += is_device_private_page(page); 454 expected_count += is_device_public_page(page); 455 456 if (!mapping) { 457 /* Anonymous page without mapping */ 458 if (page_count(page) != expected_count) 459 return -EAGAIN; 460 461 /* No turning back from here */ 462 newpage->index = page->index; 463 newpage->mapping = page->mapping; 464 if (PageSwapBacked(page)) 465 __SetPageSwapBacked(newpage); 466 467 return MIGRATEPAGE_SUCCESS; 468 } 469 470 oldzone = page_zone(page); 471 newzone = page_zone(newpage); 472 473 xa_lock_irq(&mapping->i_pages); 474 475 pslot = radix_tree_lookup_slot(&mapping->i_pages, 476 page_index(page)); 477 478 expected_count += hpage_nr_pages(page) + page_has_private(page); 479 if (page_count(page) != expected_count || 480 radix_tree_deref_slot_protected(pslot, 481 &mapping->i_pages.xa_lock) != page) { 482 xa_unlock_irq(&mapping->i_pages); 483 return -EAGAIN; 484 } 485 486 if (!page_ref_freeze(page, expected_count)) { 487 xa_unlock_irq(&mapping->i_pages); 488 return -EAGAIN; 489 } 490 491 /* 492 * In the async migration case of moving a page with buffers, lock the 493 * buffers using trylock before the mapping is moved. If the mapping 494 * was moved, we later failed to lock the buffers and could not move 495 * the mapping back due to an elevated page count, we would have to 496 * block waiting on other references to be dropped. 497 */ 498 if (mode == MIGRATE_ASYNC && head && 499 !buffer_migrate_lock_buffers(head, mode)) { 500 page_ref_unfreeze(page, expected_count); 501 xa_unlock_irq(&mapping->i_pages); 502 return -EAGAIN; 503 } 504 505 /* 506 * Now we know that no one else is looking at the page: 507 * no turning back from here. 508 */ 509 newpage->index = page->index; 510 newpage->mapping = page->mapping; 511 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 512 if (PageSwapBacked(page)) { 513 __SetPageSwapBacked(newpage); 514 if (PageSwapCache(page)) { 515 SetPageSwapCache(newpage); 516 set_page_private(newpage, page_private(page)); 517 } 518 } else { 519 VM_BUG_ON_PAGE(PageSwapCache(page), page); 520 } 521 522 /* Move dirty while page refs frozen and newpage not yet exposed */ 523 dirty = PageDirty(page); 524 if (dirty) { 525 ClearPageDirty(page); 526 SetPageDirty(newpage); 527 } 528 529 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage); 530 if (PageTransHuge(page)) { 531 int i; 532 int index = page_index(page); 533 534 for (i = 1; i < HPAGE_PMD_NR; i++) { 535 pslot = radix_tree_lookup_slot(&mapping->i_pages, 536 index + i); 537 radix_tree_replace_slot(&mapping->i_pages, pslot, 538 newpage + i); 539 } 540 } 541 542 /* 543 * Drop cache reference from old page by unfreezing 544 * to one less reference. 545 * We know this isn't the last reference. 546 */ 547 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 548 549 xa_unlock(&mapping->i_pages); 550 /* Leave irq disabled to prevent preemption while updating stats */ 551 552 /* 553 * If moved to a different zone then also account 554 * the page for that zone. Other VM counters will be 555 * taken care of when we establish references to the 556 * new page and drop references to the old page. 557 * 558 * Note that anonymous pages are accounted for 559 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 560 * are mapped to swap space. 561 */ 562 if (newzone != oldzone) { 563 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 564 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 565 if (PageSwapBacked(page) && !PageSwapCache(page)) { 566 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 567 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 568 } 569 if (dirty && mapping_cap_account_dirty(mapping)) { 570 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 571 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 572 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 573 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 574 } 575 } 576 local_irq_enable(); 577 578 return MIGRATEPAGE_SUCCESS; 579 } 580 EXPORT_SYMBOL(migrate_page_move_mapping); 581 582 /* 583 * The expected number of remaining references is the same as that 584 * of migrate_page_move_mapping(). 585 */ 586 int migrate_huge_page_move_mapping(struct address_space *mapping, 587 struct page *newpage, struct page *page) 588 { 589 int expected_count; 590 void **pslot; 591 592 xa_lock_irq(&mapping->i_pages); 593 594 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page)); 595 596 expected_count = 2 + page_has_private(page); 597 if (page_count(page) != expected_count || 598 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) { 599 xa_unlock_irq(&mapping->i_pages); 600 return -EAGAIN; 601 } 602 603 if (!page_ref_freeze(page, expected_count)) { 604 xa_unlock_irq(&mapping->i_pages); 605 return -EAGAIN; 606 } 607 608 newpage->index = page->index; 609 newpage->mapping = page->mapping; 610 611 get_page(newpage); 612 613 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage); 614 615 page_ref_unfreeze(page, expected_count - 1); 616 617 xa_unlock_irq(&mapping->i_pages); 618 619 return MIGRATEPAGE_SUCCESS; 620 } 621 622 /* 623 * Gigantic pages are so large that we do not guarantee that page++ pointer 624 * arithmetic will work across the entire page. We need something more 625 * specialized. 626 */ 627 static void __copy_gigantic_page(struct page *dst, struct page *src, 628 int nr_pages) 629 { 630 int i; 631 struct page *dst_base = dst; 632 struct page *src_base = src; 633 634 for (i = 0; i < nr_pages; ) { 635 cond_resched(); 636 copy_highpage(dst, src); 637 638 i++; 639 dst = mem_map_next(dst, dst_base, i); 640 src = mem_map_next(src, src_base, i); 641 } 642 } 643 644 static void copy_huge_page(struct page *dst, struct page *src) 645 { 646 int i; 647 int nr_pages; 648 649 if (PageHuge(src)) { 650 /* hugetlbfs page */ 651 struct hstate *h = page_hstate(src); 652 nr_pages = pages_per_huge_page(h); 653 654 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 655 __copy_gigantic_page(dst, src, nr_pages); 656 return; 657 } 658 } else { 659 /* thp page */ 660 BUG_ON(!PageTransHuge(src)); 661 nr_pages = hpage_nr_pages(src); 662 } 663 664 for (i = 0; i < nr_pages; i++) { 665 cond_resched(); 666 copy_highpage(dst + i, src + i); 667 } 668 } 669 670 /* 671 * Copy the page to its new location 672 */ 673 void migrate_page_states(struct page *newpage, struct page *page) 674 { 675 int cpupid; 676 677 if (PageError(page)) 678 SetPageError(newpage); 679 if (PageReferenced(page)) 680 SetPageReferenced(newpage); 681 if (PageUptodate(page)) 682 SetPageUptodate(newpage); 683 if (TestClearPageActive(page)) { 684 VM_BUG_ON_PAGE(PageUnevictable(page), page); 685 SetPageActive(newpage); 686 } else if (TestClearPageUnevictable(page)) 687 SetPageUnevictable(newpage); 688 if (PageWorkingset(page)) 689 SetPageWorkingset(newpage); 690 if (PageChecked(page)) 691 SetPageChecked(newpage); 692 if (PageMappedToDisk(page)) 693 SetPageMappedToDisk(newpage); 694 695 /* Move dirty on pages not done by migrate_page_move_mapping() */ 696 if (PageDirty(page)) 697 SetPageDirty(newpage); 698 699 if (page_is_young(page)) 700 set_page_young(newpage); 701 if (page_is_idle(page)) 702 set_page_idle(newpage); 703 704 /* 705 * Copy NUMA information to the new page, to prevent over-eager 706 * future migrations of this same page. 707 */ 708 cpupid = page_cpupid_xchg_last(page, -1); 709 page_cpupid_xchg_last(newpage, cpupid); 710 711 ksm_migrate_page(newpage, page); 712 /* 713 * Please do not reorder this without considering how mm/ksm.c's 714 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 715 */ 716 if (PageSwapCache(page)) 717 ClearPageSwapCache(page); 718 ClearPagePrivate(page); 719 set_page_private(page, 0); 720 721 /* 722 * If any waiters have accumulated on the new page then 723 * wake them up. 724 */ 725 if (PageWriteback(newpage)) 726 end_page_writeback(newpage); 727 728 copy_page_owner(page, newpage); 729 730 mem_cgroup_migrate(page, newpage); 731 } 732 EXPORT_SYMBOL(migrate_page_states); 733 734 void migrate_page_copy(struct page *newpage, struct page *page) 735 { 736 if (PageHuge(page) || PageTransHuge(page)) 737 copy_huge_page(newpage, page); 738 else 739 copy_highpage(newpage, page); 740 741 migrate_page_states(newpage, page); 742 } 743 EXPORT_SYMBOL(migrate_page_copy); 744 745 /************************************************************ 746 * Migration functions 747 ***********************************************************/ 748 749 /* 750 * Common logic to directly migrate a single LRU page suitable for 751 * pages that do not use PagePrivate/PagePrivate2. 752 * 753 * Pages are locked upon entry and exit. 754 */ 755 int migrate_page(struct address_space *mapping, 756 struct page *newpage, struct page *page, 757 enum migrate_mode mode) 758 { 759 int rc; 760 761 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 762 763 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 764 765 if (rc != MIGRATEPAGE_SUCCESS) 766 return rc; 767 768 if (mode != MIGRATE_SYNC_NO_COPY) 769 migrate_page_copy(newpage, page); 770 else 771 migrate_page_states(newpage, page); 772 return MIGRATEPAGE_SUCCESS; 773 } 774 EXPORT_SYMBOL(migrate_page); 775 776 #ifdef CONFIG_BLOCK 777 /* 778 * Migration function for pages with buffers. This function can only be used 779 * if the underlying filesystem guarantees that no other references to "page" 780 * exist. 781 */ 782 int buffer_migrate_page(struct address_space *mapping, 783 struct page *newpage, struct page *page, enum migrate_mode mode) 784 { 785 struct buffer_head *bh, *head; 786 int rc; 787 788 if (!page_has_buffers(page)) 789 return migrate_page(mapping, newpage, page, mode); 790 791 head = page_buffers(page); 792 793 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 794 795 if (rc != MIGRATEPAGE_SUCCESS) 796 return rc; 797 798 /* 799 * In the async case, migrate_page_move_mapping locked the buffers 800 * with an IRQ-safe spinlock held. In the sync case, the buffers 801 * need to be locked now 802 */ 803 if (mode != MIGRATE_ASYNC) 804 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 805 806 ClearPagePrivate(page); 807 set_page_private(newpage, page_private(page)); 808 set_page_private(page, 0); 809 put_page(page); 810 get_page(newpage); 811 812 bh = head; 813 do { 814 set_bh_page(bh, newpage, bh_offset(bh)); 815 bh = bh->b_this_page; 816 817 } while (bh != head); 818 819 SetPagePrivate(newpage); 820 821 if (mode != MIGRATE_SYNC_NO_COPY) 822 migrate_page_copy(newpage, page); 823 else 824 migrate_page_states(newpage, page); 825 826 bh = head; 827 do { 828 unlock_buffer(bh); 829 put_bh(bh); 830 bh = bh->b_this_page; 831 832 } while (bh != head); 833 834 return MIGRATEPAGE_SUCCESS; 835 } 836 EXPORT_SYMBOL(buffer_migrate_page); 837 #endif 838 839 /* 840 * Writeback a page to clean the dirty state 841 */ 842 static int writeout(struct address_space *mapping, struct page *page) 843 { 844 struct writeback_control wbc = { 845 .sync_mode = WB_SYNC_NONE, 846 .nr_to_write = 1, 847 .range_start = 0, 848 .range_end = LLONG_MAX, 849 .for_reclaim = 1 850 }; 851 int rc; 852 853 if (!mapping->a_ops->writepage) 854 /* No write method for the address space */ 855 return -EINVAL; 856 857 if (!clear_page_dirty_for_io(page)) 858 /* Someone else already triggered a write */ 859 return -EAGAIN; 860 861 /* 862 * A dirty page may imply that the underlying filesystem has 863 * the page on some queue. So the page must be clean for 864 * migration. Writeout may mean we loose the lock and the 865 * page state is no longer what we checked for earlier. 866 * At this point we know that the migration attempt cannot 867 * be successful. 868 */ 869 remove_migration_ptes(page, page, false); 870 871 rc = mapping->a_ops->writepage(page, &wbc); 872 873 if (rc != AOP_WRITEPAGE_ACTIVATE) 874 /* unlocked. Relock */ 875 lock_page(page); 876 877 return (rc < 0) ? -EIO : -EAGAIN; 878 } 879 880 /* 881 * Default handling if a filesystem does not provide a migration function. 882 */ 883 static int fallback_migrate_page(struct address_space *mapping, 884 struct page *newpage, struct page *page, enum migrate_mode mode) 885 { 886 if (PageDirty(page)) { 887 /* Only writeback pages in full synchronous migration */ 888 switch (mode) { 889 case MIGRATE_SYNC: 890 case MIGRATE_SYNC_NO_COPY: 891 break; 892 default: 893 return -EBUSY; 894 } 895 return writeout(mapping, page); 896 } 897 898 /* 899 * Buffers may be managed in a filesystem specific way. 900 * We must have no buffers or drop them. 901 */ 902 if (page_has_private(page) && 903 !try_to_release_page(page, GFP_KERNEL)) 904 return -EAGAIN; 905 906 return migrate_page(mapping, newpage, page, mode); 907 } 908 909 /* 910 * Move a page to a newly allocated page 911 * The page is locked and all ptes have been successfully removed. 912 * 913 * The new page will have replaced the old page if this function 914 * is successful. 915 * 916 * Return value: 917 * < 0 - error code 918 * MIGRATEPAGE_SUCCESS - success 919 */ 920 static int move_to_new_page(struct page *newpage, struct page *page, 921 enum migrate_mode mode) 922 { 923 struct address_space *mapping; 924 int rc = -EAGAIN; 925 bool is_lru = !__PageMovable(page); 926 927 VM_BUG_ON_PAGE(!PageLocked(page), page); 928 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 929 930 mapping = page_mapping(page); 931 932 if (likely(is_lru)) { 933 if (!mapping) 934 rc = migrate_page(mapping, newpage, page, mode); 935 else if (mapping->a_ops->migratepage) 936 /* 937 * Most pages have a mapping and most filesystems 938 * provide a migratepage callback. Anonymous pages 939 * are part of swap space which also has its own 940 * migratepage callback. This is the most common path 941 * for page migration. 942 */ 943 rc = mapping->a_ops->migratepage(mapping, newpage, 944 page, mode); 945 else 946 rc = fallback_migrate_page(mapping, newpage, 947 page, mode); 948 } else { 949 /* 950 * In case of non-lru page, it could be released after 951 * isolation step. In that case, we shouldn't try migration. 952 */ 953 VM_BUG_ON_PAGE(!PageIsolated(page), page); 954 if (!PageMovable(page)) { 955 rc = MIGRATEPAGE_SUCCESS; 956 __ClearPageIsolated(page); 957 goto out; 958 } 959 960 rc = mapping->a_ops->migratepage(mapping, newpage, 961 page, mode); 962 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 963 !PageIsolated(page)); 964 } 965 966 /* 967 * When successful, old pagecache page->mapping must be cleared before 968 * page is freed; but stats require that PageAnon be left as PageAnon. 969 */ 970 if (rc == MIGRATEPAGE_SUCCESS) { 971 if (__PageMovable(page)) { 972 VM_BUG_ON_PAGE(!PageIsolated(page), page); 973 974 /* 975 * We clear PG_movable under page_lock so any compactor 976 * cannot try to migrate this page. 977 */ 978 __ClearPageIsolated(page); 979 } 980 981 /* 982 * Anonymous and movable page->mapping will be cleard by 983 * free_pages_prepare so don't reset it here for keeping 984 * the type to work PageAnon, for example. 985 */ 986 if (!PageMappingFlags(page)) 987 page->mapping = NULL; 988 } 989 out: 990 return rc; 991 } 992 993 static int __unmap_and_move(struct page *page, struct page *newpage, 994 int force, enum migrate_mode mode) 995 { 996 int rc = -EAGAIN; 997 int page_was_mapped = 0; 998 struct anon_vma *anon_vma = NULL; 999 bool is_lru = !__PageMovable(page); 1000 1001 if (!trylock_page(page)) { 1002 if (!force || mode == MIGRATE_ASYNC) 1003 goto out; 1004 1005 /* 1006 * It's not safe for direct compaction to call lock_page. 1007 * For example, during page readahead pages are added locked 1008 * to the LRU. Later, when the IO completes the pages are 1009 * marked uptodate and unlocked. However, the queueing 1010 * could be merging multiple pages for one bio (e.g. 1011 * mpage_readpages). If an allocation happens for the 1012 * second or third page, the process can end up locking 1013 * the same page twice and deadlocking. Rather than 1014 * trying to be clever about what pages can be locked, 1015 * avoid the use of lock_page for direct compaction 1016 * altogether. 1017 */ 1018 if (current->flags & PF_MEMALLOC) 1019 goto out; 1020 1021 lock_page(page); 1022 } 1023 1024 if (PageWriteback(page)) { 1025 /* 1026 * Only in the case of a full synchronous migration is it 1027 * necessary to wait for PageWriteback. In the async case, 1028 * the retry loop is too short and in the sync-light case, 1029 * the overhead of stalling is too much 1030 */ 1031 switch (mode) { 1032 case MIGRATE_SYNC: 1033 case MIGRATE_SYNC_NO_COPY: 1034 break; 1035 default: 1036 rc = -EBUSY; 1037 goto out_unlock; 1038 } 1039 if (!force) 1040 goto out_unlock; 1041 wait_on_page_writeback(page); 1042 } 1043 1044 /* 1045 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1046 * we cannot notice that anon_vma is freed while we migrates a page. 1047 * This get_anon_vma() delays freeing anon_vma pointer until the end 1048 * of migration. File cache pages are no problem because of page_lock() 1049 * File Caches may use write_page() or lock_page() in migration, then, 1050 * just care Anon page here. 1051 * 1052 * Only page_get_anon_vma() understands the subtleties of 1053 * getting a hold on an anon_vma from outside one of its mms. 1054 * But if we cannot get anon_vma, then we won't need it anyway, 1055 * because that implies that the anon page is no longer mapped 1056 * (and cannot be remapped so long as we hold the page lock). 1057 */ 1058 if (PageAnon(page) && !PageKsm(page)) 1059 anon_vma = page_get_anon_vma(page); 1060 1061 /* 1062 * Block others from accessing the new page when we get around to 1063 * establishing additional references. We are usually the only one 1064 * holding a reference to newpage at this point. We used to have a BUG 1065 * here if trylock_page(newpage) fails, but would like to allow for 1066 * cases where there might be a race with the previous use of newpage. 1067 * This is much like races on refcount of oldpage: just don't BUG(). 1068 */ 1069 if (unlikely(!trylock_page(newpage))) 1070 goto out_unlock; 1071 1072 if (unlikely(!is_lru)) { 1073 rc = move_to_new_page(newpage, page, mode); 1074 goto out_unlock_both; 1075 } 1076 1077 /* 1078 * Corner case handling: 1079 * 1. When a new swap-cache page is read into, it is added to the LRU 1080 * and treated as swapcache but it has no rmap yet. 1081 * Calling try_to_unmap() against a page->mapping==NULL page will 1082 * trigger a BUG. So handle it here. 1083 * 2. An orphaned page (see truncate_complete_page) might have 1084 * fs-private metadata. The page can be picked up due to memory 1085 * offlining. Everywhere else except page reclaim, the page is 1086 * invisible to the vm, so the page can not be migrated. So try to 1087 * free the metadata, so the page can be freed. 1088 */ 1089 if (!page->mapping) { 1090 VM_BUG_ON_PAGE(PageAnon(page), page); 1091 if (page_has_private(page)) { 1092 try_to_free_buffers(page); 1093 goto out_unlock_both; 1094 } 1095 } else if (page_mapped(page)) { 1096 /* Establish migration ptes */ 1097 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1098 page); 1099 try_to_unmap(page, 1100 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1101 page_was_mapped = 1; 1102 } 1103 1104 if (!page_mapped(page)) 1105 rc = move_to_new_page(newpage, page, mode); 1106 1107 if (page_was_mapped) 1108 remove_migration_ptes(page, 1109 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1110 1111 out_unlock_both: 1112 unlock_page(newpage); 1113 out_unlock: 1114 /* Drop an anon_vma reference if we took one */ 1115 if (anon_vma) 1116 put_anon_vma(anon_vma); 1117 unlock_page(page); 1118 out: 1119 /* 1120 * If migration is successful, decrease refcount of the newpage 1121 * which will not free the page because new page owner increased 1122 * refcounter. As well, if it is LRU page, add the page to LRU 1123 * list in here. 1124 */ 1125 if (rc == MIGRATEPAGE_SUCCESS) { 1126 if (unlikely(__PageMovable(newpage))) 1127 put_page(newpage); 1128 else 1129 putback_lru_page(newpage); 1130 } 1131 1132 return rc; 1133 } 1134 1135 /* 1136 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1137 * around it. 1138 */ 1139 #if defined(CONFIG_ARM) && \ 1140 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1141 #define ICE_noinline noinline 1142 #else 1143 #define ICE_noinline 1144 #endif 1145 1146 /* 1147 * Obtain the lock on page, remove all ptes and migrate the page 1148 * to the newly allocated page in newpage. 1149 */ 1150 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1151 free_page_t put_new_page, 1152 unsigned long private, struct page *page, 1153 int force, enum migrate_mode mode, 1154 enum migrate_reason reason) 1155 { 1156 int rc = MIGRATEPAGE_SUCCESS; 1157 struct page *newpage; 1158 1159 if (!thp_migration_supported() && PageTransHuge(page)) 1160 return -ENOMEM; 1161 1162 newpage = get_new_page(page, private); 1163 if (!newpage) 1164 return -ENOMEM; 1165 1166 if (page_count(page) == 1) { 1167 /* page was freed from under us. So we are done. */ 1168 ClearPageActive(page); 1169 ClearPageUnevictable(page); 1170 if (unlikely(__PageMovable(page))) { 1171 lock_page(page); 1172 if (!PageMovable(page)) 1173 __ClearPageIsolated(page); 1174 unlock_page(page); 1175 } 1176 if (put_new_page) 1177 put_new_page(newpage, private); 1178 else 1179 put_page(newpage); 1180 goto out; 1181 } 1182 1183 rc = __unmap_and_move(page, newpage, force, mode); 1184 if (rc == MIGRATEPAGE_SUCCESS) 1185 set_page_owner_migrate_reason(newpage, reason); 1186 1187 out: 1188 if (rc != -EAGAIN) { 1189 /* 1190 * A page that has been migrated has all references 1191 * removed and will be freed. A page that has not been 1192 * migrated will have kepts its references and be 1193 * restored. 1194 */ 1195 list_del(&page->lru); 1196 1197 /* 1198 * Compaction can migrate also non-LRU pages which are 1199 * not accounted to NR_ISOLATED_*. They can be recognized 1200 * as __PageMovable 1201 */ 1202 if (likely(!__PageMovable(page))) 1203 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1204 page_is_file_cache(page), -hpage_nr_pages(page)); 1205 } 1206 1207 /* 1208 * If migration is successful, releases reference grabbed during 1209 * isolation. Otherwise, restore the page to right list unless 1210 * we want to retry. 1211 */ 1212 if (rc == MIGRATEPAGE_SUCCESS) { 1213 put_page(page); 1214 if (reason == MR_MEMORY_FAILURE) { 1215 /* 1216 * Set PG_HWPoison on just freed page 1217 * intentionally. Although it's rather weird, 1218 * it's how HWPoison flag works at the moment. 1219 */ 1220 if (set_hwpoison_free_buddy_page(page)) 1221 num_poisoned_pages_inc(); 1222 } 1223 } else { 1224 if (rc != -EAGAIN) { 1225 if (likely(!__PageMovable(page))) { 1226 putback_lru_page(page); 1227 goto put_new; 1228 } 1229 1230 lock_page(page); 1231 if (PageMovable(page)) 1232 putback_movable_page(page); 1233 else 1234 __ClearPageIsolated(page); 1235 unlock_page(page); 1236 put_page(page); 1237 } 1238 put_new: 1239 if (put_new_page) 1240 put_new_page(newpage, private); 1241 else 1242 put_page(newpage); 1243 } 1244 1245 return rc; 1246 } 1247 1248 /* 1249 * Counterpart of unmap_and_move_page() for hugepage migration. 1250 * 1251 * This function doesn't wait the completion of hugepage I/O 1252 * because there is no race between I/O and migration for hugepage. 1253 * Note that currently hugepage I/O occurs only in direct I/O 1254 * where no lock is held and PG_writeback is irrelevant, 1255 * and writeback status of all subpages are counted in the reference 1256 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1257 * under direct I/O, the reference of the head page is 512 and a bit more.) 1258 * This means that when we try to migrate hugepage whose subpages are 1259 * doing direct I/O, some references remain after try_to_unmap() and 1260 * hugepage migration fails without data corruption. 1261 * 1262 * There is also no race when direct I/O is issued on the page under migration, 1263 * because then pte is replaced with migration swap entry and direct I/O code 1264 * will wait in the page fault for migration to complete. 1265 */ 1266 static int unmap_and_move_huge_page(new_page_t get_new_page, 1267 free_page_t put_new_page, unsigned long private, 1268 struct page *hpage, int force, 1269 enum migrate_mode mode, int reason) 1270 { 1271 int rc = -EAGAIN; 1272 int page_was_mapped = 0; 1273 struct page *new_hpage; 1274 struct anon_vma *anon_vma = NULL; 1275 1276 /* 1277 * Movability of hugepages depends on architectures and hugepage size. 1278 * This check is necessary because some callers of hugepage migration 1279 * like soft offline and memory hotremove don't walk through page 1280 * tables or check whether the hugepage is pmd-based or not before 1281 * kicking migration. 1282 */ 1283 if (!hugepage_migration_supported(page_hstate(hpage))) { 1284 putback_active_hugepage(hpage); 1285 return -ENOSYS; 1286 } 1287 1288 new_hpage = get_new_page(hpage, private); 1289 if (!new_hpage) 1290 return -ENOMEM; 1291 1292 if (!trylock_page(hpage)) { 1293 if (!force) 1294 goto out; 1295 switch (mode) { 1296 case MIGRATE_SYNC: 1297 case MIGRATE_SYNC_NO_COPY: 1298 break; 1299 default: 1300 goto out; 1301 } 1302 lock_page(hpage); 1303 } 1304 1305 if (PageAnon(hpage)) 1306 anon_vma = page_get_anon_vma(hpage); 1307 1308 if (unlikely(!trylock_page(new_hpage))) 1309 goto put_anon; 1310 1311 if (page_mapped(hpage)) { 1312 try_to_unmap(hpage, 1313 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1314 page_was_mapped = 1; 1315 } 1316 1317 if (!page_mapped(hpage)) 1318 rc = move_to_new_page(new_hpage, hpage, mode); 1319 1320 if (page_was_mapped) 1321 remove_migration_ptes(hpage, 1322 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1323 1324 unlock_page(new_hpage); 1325 1326 put_anon: 1327 if (anon_vma) 1328 put_anon_vma(anon_vma); 1329 1330 if (rc == MIGRATEPAGE_SUCCESS) { 1331 move_hugetlb_state(hpage, new_hpage, reason); 1332 put_new_page = NULL; 1333 } 1334 1335 unlock_page(hpage); 1336 out: 1337 if (rc != -EAGAIN) 1338 putback_active_hugepage(hpage); 1339 1340 /* 1341 * If migration was not successful and there's a freeing callback, use 1342 * it. Otherwise, put_page() will drop the reference grabbed during 1343 * isolation. 1344 */ 1345 if (put_new_page) 1346 put_new_page(new_hpage, private); 1347 else 1348 putback_active_hugepage(new_hpage); 1349 1350 return rc; 1351 } 1352 1353 /* 1354 * migrate_pages - migrate the pages specified in a list, to the free pages 1355 * supplied as the target for the page migration 1356 * 1357 * @from: The list of pages to be migrated. 1358 * @get_new_page: The function used to allocate free pages to be used 1359 * as the target of the page migration. 1360 * @put_new_page: The function used to free target pages if migration 1361 * fails, or NULL if no special handling is necessary. 1362 * @private: Private data to be passed on to get_new_page() 1363 * @mode: The migration mode that specifies the constraints for 1364 * page migration, if any. 1365 * @reason: The reason for page migration. 1366 * 1367 * The function returns after 10 attempts or if no pages are movable any more 1368 * because the list has become empty or no retryable pages exist any more. 1369 * The caller should call putback_movable_pages() to return pages to the LRU 1370 * or free list only if ret != 0. 1371 * 1372 * Returns the number of pages that were not migrated, or an error code. 1373 */ 1374 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1375 free_page_t put_new_page, unsigned long private, 1376 enum migrate_mode mode, int reason) 1377 { 1378 int retry = 1; 1379 int nr_failed = 0; 1380 int nr_succeeded = 0; 1381 int pass = 0; 1382 struct page *page; 1383 struct page *page2; 1384 int swapwrite = current->flags & PF_SWAPWRITE; 1385 int rc; 1386 1387 if (!swapwrite) 1388 current->flags |= PF_SWAPWRITE; 1389 1390 for(pass = 0; pass < 10 && retry; pass++) { 1391 retry = 0; 1392 1393 list_for_each_entry_safe(page, page2, from, lru) { 1394 retry: 1395 cond_resched(); 1396 1397 if (PageHuge(page)) 1398 rc = unmap_and_move_huge_page(get_new_page, 1399 put_new_page, private, page, 1400 pass > 2, mode, reason); 1401 else 1402 rc = unmap_and_move(get_new_page, put_new_page, 1403 private, page, pass > 2, mode, 1404 reason); 1405 1406 switch(rc) { 1407 case -ENOMEM: 1408 /* 1409 * THP migration might be unsupported or the 1410 * allocation could've failed so we should 1411 * retry on the same page with the THP split 1412 * to base pages. 1413 * 1414 * Head page is retried immediately and tail 1415 * pages are added to the tail of the list so 1416 * we encounter them after the rest of the list 1417 * is processed. 1418 */ 1419 if (PageTransHuge(page) && !PageHuge(page)) { 1420 lock_page(page); 1421 rc = split_huge_page_to_list(page, from); 1422 unlock_page(page); 1423 if (!rc) { 1424 list_safe_reset_next(page, page2, lru); 1425 goto retry; 1426 } 1427 } 1428 nr_failed++; 1429 goto out; 1430 case -EAGAIN: 1431 retry++; 1432 break; 1433 case MIGRATEPAGE_SUCCESS: 1434 nr_succeeded++; 1435 break; 1436 default: 1437 /* 1438 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1439 * unlike -EAGAIN case, the failed page is 1440 * removed from migration page list and not 1441 * retried in the next outer loop. 1442 */ 1443 nr_failed++; 1444 break; 1445 } 1446 } 1447 } 1448 nr_failed += retry; 1449 rc = nr_failed; 1450 out: 1451 if (nr_succeeded) 1452 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1453 if (nr_failed) 1454 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1455 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1456 1457 if (!swapwrite) 1458 current->flags &= ~PF_SWAPWRITE; 1459 1460 return rc; 1461 } 1462 1463 #ifdef CONFIG_NUMA 1464 1465 static int store_status(int __user *status, int start, int value, int nr) 1466 { 1467 while (nr-- > 0) { 1468 if (put_user(value, status + start)) 1469 return -EFAULT; 1470 start++; 1471 } 1472 1473 return 0; 1474 } 1475 1476 static int do_move_pages_to_node(struct mm_struct *mm, 1477 struct list_head *pagelist, int node) 1478 { 1479 int err; 1480 1481 if (list_empty(pagelist)) 1482 return 0; 1483 1484 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1485 MIGRATE_SYNC, MR_SYSCALL); 1486 if (err) 1487 putback_movable_pages(pagelist); 1488 return err; 1489 } 1490 1491 /* 1492 * Resolves the given address to a struct page, isolates it from the LRU and 1493 * puts it to the given pagelist. 1494 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1495 * queued or the page doesn't need to be migrated because it is already on 1496 * the target node 1497 */ 1498 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1499 int node, struct list_head *pagelist, bool migrate_all) 1500 { 1501 struct vm_area_struct *vma; 1502 struct page *page; 1503 unsigned int follflags; 1504 int err; 1505 1506 down_read(&mm->mmap_sem); 1507 err = -EFAULT; 1508 vma = find_vma(mm, addr); 1509 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1510 goto out; 1511 1512 /* FOLL_DUMP to ignore special (like zero) pages */ 1513 follflags = FOLL_GET | FOLL_DUMP; 1514 page = follow_page(vma, addr, follflags); 1515 1516 err = PTR_ERR(page); 1517 if (IS_ERR(page)) 1518 goto out; 1519 1520 err = -ENOENT; 1521 if (!page) 1522 goto out; 1523 1524 err = 0; 1525 if (page_to_nid(page) == node) 1526 goto out_putpage; 1527 1528 err = -EACCES; 1529 if (page_mapcount(page) > 1 && !migrate_all) 1530 goto out_putpage; 1531 1532 if (PageHuge(page)) { 1533 if (PageHead(page)) { 1534 isolate_huge_page(page, pagelist); 1535 err = 0; 1536 } 1537 } else { 1538 struct page *head; 1539 1540 head = compound_head(page); 1541 err = isolate_lru_page(head); 1542 if (err) 1543 goto out_putpage; 1544 1545 err = 0; 1546 list_add_tail(&head->lru, pagelist); 1547 mod_node_page_state(page_pgdat(head), 1548 NR_ISOLATED_ANON + page_is_file_cache(head), 1549 hpage_nr_pages(head)); 1550 } 1551 out_putpage: 1552 /* 1553 * Either remove the duplicate refcount from 1554 * isolate_lru_page() or drop the page ref if it was 1555 * not isolated. 1556 */ 1557 put_page(page); 1558 out: 1559 up_read(&mm->mmap_sem); 1560 return err; 1561 } 1562 1563 /* 1564 * Migrate an array of page address onto an array of nodes and fill 1565 * the corresponding array of status. 1566 */ 1567 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1568 unsigned long nr_pages, 1569 const void __user * __user *pages, 1570 const int __user *nodes, 1571 int __user *status, int flags) 1572 { 1573 int current_node = NUMA_NO_NODE; 1574 LIST_HEAD(pagelist); 1575 int start, i; 1576 int err = 0, err1; 1577 1578 migrate_prep(); 1579 1580 for (i = start = 0; i < nr_pages; i++) { 1581 const void __user *p; 1582 unsigned long addr; 1583 int node; 1584 1585 err = -EFAULT; 1586 if (get_user(p, pages + i)) 1587 goto out_flush; 1588 if (get_user(node, nodes + i)) 1589 goto out_flush; 1590 addr = (unsigned long)p; 1591 1592 err = -ENODEV; 1593 if (node < 0 || node >= MAX_NUMNODES) 1594 goto out_flush; 1595 if (!node_state(node, N_MEMORY)) 1596 goto out_flush; 1597 1598 err = -EACCES; 1599 if (!node_isset(node, task_nodes)) 1600 goto out_flush; 1601 1602 if (current_node == NUMA_NO_NODE) { 1603 current_node = node; 1604 start = i; 1605 } else if (node != current_node) { 1606 err = do_move_pages_to_node(mm, &pagelist, current_node); 1607 if (err) 1608 goto out; 1609 err = store_status(status, start, current_node, i - start); 1610 if (err) 1611 goto out; 1612 start = i; 1613 current_node = node; 1614 } 1615 1616 /* 1617 * Errors in the page lookup or isolation are not fatal and we simply 1618 * report them via status 1619 */ 1620 err = add_page_for_migration(mm, addr, current_node, 1621 &pagelist, flags & MPOL_MF_MOVE_ALL); 1622 if (!err) 1623 continue; 1624 1625 err = store_status(status, i, err, 1); 1626 if (err) 1627 goto out_flush; 1628 1629 err = do_move_pages_to_node(mm, &pagelist, current_node); 1630 if (err) 1631 goto out; 1632 if (i > start) { 1633 err = store_status(status, start, current_node, i - start); 1634 if (err) 1635 goto out; 1636 } 1637 current_node = NUMA_NO_NODE; 1638 } 1639 out_flush: 1640 if (list_empty(&pagelist)) 1641 return err; 1642 1643 /* Make sure we do not overwrite the existing error */ 1644 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1645 if (!err1) 1646 err1 = store_status(status, start, current_node, i - start); 1647 if (!err) 1648 err = err1; 1649 out: 1650 return err; 1651 } 1652 1653 /* 1654 * Determine the nodes of an array of pages and store it in an array of status. 1655 */ 1656 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1657 const void __user **pages, int *status) 1658 { 1659 unsigned long i; 1660 1661 down_read(&mm->mmap_sem); 1662 1663 for (i = 0; i < nr_pages; i++) { 1664 unsigned long addr = (unsigned long)(*pages); 1665 struct vm_area_struct *vma; 1666 struct page *page; 1667 int err = -EFAULT; 1668 1669 vma = find_vma(mm, addr); 1670 if (!vma || addr < vma->vm_start) 1671 goto set_status; 1672 1673 /* FOLL_DUMP to ignore special (like zero) pages */ 1674 page = follow_page(vma, addr, FOLL_DUMP); 1675 1676 err = PTR_ERR(page); 1677 if (IS_ERR(page)) 1678 goto set_status; 1679 1680 err = page ? page_to_nid(page) : -ENOENT; 1681 set_status: 1682 *status = err; 1683 1684 pages++; 1685 status++; 1686 } 1687 1688 up_read(&mm->mmap_sem); 1689 } 1690 1691 /* 1692 * Determine the nodes of a user array of pages and store it in 1693 * a user array of status. 1694 */ 1695 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1696 const void __user * __user *pages, 1697 int __user *status) 1698 { 1699 #define DO_PAGES_STAT_CHUNK_NR 16 1700 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1701 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1702 1703 while (nr_pages) { 1704 unsigned long chunk_nr; 1705 1706 chunk_nr = nr_pages; 1707 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1708 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1709 1710 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1711 break; 1712 1713 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1714 1715 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1716 break; 1717 1718 pages += chunk_nr; 1719 status += chunk_nr; 1720 nr_pages -= chunk_nr; 1721 } 1722 return nr_pages ? -EFAULT : 0; 1723 } 1724 1725 /* 1726 * Move a list of pages in the address space of the currently executing 1727 * process. 1728 */ 1729 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1730 const void __user * __user *pages, 1731 const int __user *nodes, 1732 int __user *status, int flags) 1733 { 1734 struct task_struct *task; 1735 struct mm_struct *mm; 1736 int err; 1737 nodemask_t task_nodes; 1738 1739 /* Check flags */ 1740 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1741 return -EINVAL; 1742 1743 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1744 return -EPERM; 1745 1746 /* Find the mm_struct */ 1747 rcu_read_lock(); 1748 task = pid ? find_task_by_vpid(pid) : current; 1749 if (!task) { 1750 rcu_read_unlock(); 1751 return -ESRCH; 1752 } 1753 get_task_struct(task); 1754 1755 /* 1756 * Check if this process has the right to modify the specified 1757 * process. Use the regular "ptrace_may_access()" checks. 1758 */ 1759 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1760 rcu_read_unlock(); 1761 err = -EPERM; 1762 goto out; 1763 } 1764 rcu_read_unlock(); 1765 1766 err = security_task_movememory(task); 1767 if (err) 1768 goto out; 1769 1770 task_nodes = cpuset_mems_allowed(task); 1771 mm = get_task_mm(task); 1772 put_task_struct(task); 1773 1774 if (!mm) 1775 return -EINVAL; 1776 1777 if (nodes) 1778 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1779 nodes, status, flags); 1780 else 1781 err = do_pages_stat(mm, nr_pages, pages, status); 1782 1783 mmput(mm); 1784 return err; 1785 1786 out: 1787 put_task_struct(task); 1788 return err; 1789 } 1790 1791 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1792 const void __user * __user *, pages, 1793 const int __user *, nodes, 1794 int __user *, status, int, flags) 1795 { 1796 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1797 } 1798 1799 #ifdef CONFIG_COMPAT 1800 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1801 compat_uptr_t __user *, pages32, 1802 const int __user *, nodes, 1803 int __user *, status, 1804 int, flags) 1805 { 1806 const void __user * __user *pages; 1807 int i; 1808 1809 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1810 for (i = 0; i < nr_pages; i++) { 1811 compat_uptr_t p; 1812 1813 if (get_user(p, pages32 + i) || 1814 put_user(compat_ptr(p), pages + i)) 1815 return -EFAULT; 1816 } 1817 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1818 } 1819 #endif /* CONFIG_COMPAT */ 1820 1821 #ifdef CONFIG_NUMA_BALANCING 1822 /* 1823 * Returns true if this is a safe migration target node for misplaced NUMA 1824 * pages. Currently it only checks the watermarks which crude 1825 */ 1826 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1827 unsigned long nr_migrate_pages) 1828 { 1829 int z; 1830 1831 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1832 struct zone *zone = pgdat->node_zones + z; 1833 1834 if (!populated_zone(zone)) 1835 continue; 1836 1837 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1838 if (!zone_watermark_ok(zone, 0, 1839 high_wmark_pages(zone) + 1840 nr_migrate_pages, 1841 0, 0)) 1842 continue; 1843 return true; 1844 } 1845 return false; 1846 } 1847 1848 static struct page *alloc_misplaced_dst_page(struct page *page, 1849 unsigned long data) 1850 { 1851 int nid = (int) data; 1852 struct page *newpage; 1853 1854 newpage = __alloc_pages_node(nid, 1855 (GFP_HIGHUSER_MOVABLE | 1856 __GFP_THISNODE | __GFP_NOMEMALLOC | 1857 __GFP_NORETRY | __GFP_NOWARN) & 1858 ~__GFP_RECLAIM, 0); 1859 1860 return newpage; 1861 } 1862 1863 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1864 { 1865 int page_lru; 1866 1867 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1868 1869 /* Avoid migrating to a node that is nearly full */ 1870 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1871 return 0; 1872 1873 if (isolate_lru_page(page)) 1874 return 0; 1875 1876 /* 1877 * migrate_misplaced_transhuge_page() skips page migration's usual 1878 * check on page_count(), so we must do it here, now that the page 1879 * has been isolated: a GUP pin, or any other pin, prevents migration. 1880 * The expected page count is 3: 1 for page's mapcount and 1 for the 1881 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1882 */ 1883 if (PageTransHuge(page) && page_count(page) != 3) { 1884 putback_lru_page(page); 1885 return 0; 1886 } 1887 1888 page_lru = page_is_file_cache(page); 1889 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1890 hpage_nr_pages(page)); 1891 1892 /* 1893 * Isolating the page has taken another reference, so the 1894 * caller's reference can be safely dropped without the page 1895 * disappearing underneath us during migration. 1896 */ 1897 put_page(page); 1898 return 1; 1899 } 1900 1901 bool pmd_trans_migrating(pmd_t pmd) 1902 { 1903 struct page *page = pmd_page(pmd); 1904 return PageLocked(page); 1905 } 1906 1907 /* 1908 * Attempt to migrate a misplaced page to the specified destination 1909 * node. Caller is expected to have an elevated reference count on 1910 * the page that will be dropped by this function before returning. 1911 */ 1912 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1913 int node) 1914 { 1915 pg_data_t *pgdat = NODE_DATA(node); 1916 int isolated; 1917 int nr_remaining; 1918 LIST_HEAD(migratepages); 1919 1920 /* 1921 * Don't migrate file pages that are mapped in multiple processes 1922 * with execute permissions as they are probably shared libraries. 1923 */ 1924 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1925 (vma->vm_flags & VM_EXEC)) 1926 goto out; 1927 1928 /* 1929 * Also do not migrate dirty pages as not all filesystems can move 1930 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1931 */ 1932 if (page_is_file_cache(page) && PageDirty(page)) 1933 goto out; 1934 1935 isolated = numamigrate_isolate_page(pgdat, page); 1936 if (!isolated) 1937 goto out; 1938 1939 list_add(&page->lru, &migratepages); 1940 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1941 NULL, node, MIGRATE_ASYNC, 1942 MR_NUMA_MISPLACED); 1943 if (nr_remaining) { 1944 if (!list_empty(&migratepages)) { 1945 list_del(&page->lru); 1946 dec_node_page_state(page, NR_ISOLATED_ANON + 1947 page_is_file_cache(page)); 1948 putback_lru_page(page); 1949 } 1950 isolated = 0; 1951 } else 1952 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1953 BUG_ON(!list_empty(&migratepages)); 1954 return isolated; 1955 1956 out: 1957 put_page(page); 1958 return 0; 1959 } 1960 #endif /* CONFIG_NUMA_BALANCING */ 1961 1962 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1963 /* 1964 * Migrates a THP to a given target node. page must be locked and is unlocked 1965 * before returning. 1966 */ 1967 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1968 struct vm_area_struct *vma, 1969 pmd_t *pmd, pmd_t entry, 1970 unsigned long address, 1971 struct page *page, int node) 1972 { 1973 spinlock_t *ptl; 1974 pg_data_t *pgdat = NODE_DATA(node); 1975 int isolated = 0; 1976 struct page *new_page = NULL; 1977 int page_lru = page_is_file_cache(page); 1978 unsigned long start = address & HPAGE_PMD_MASK; 1979 unsigned long end = start + HPAGE_PMD_SIZE; 1980 1981 new_page = alloc_pages_node(node, 1982 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1983 HPAGE_PMD_ORDER); 1984 if (!new_page) 1985 goto out_fail; 1986 prep_transhuge_page(new_page); 1987 1988 isolated = numamigrate_isolate_page(pgdat, page); 1989 if (!isolated) { 1990 put_page(new_page); 1991 goto out_fail; 1992 } 1993 1994 /* Prepare a page as a migration target */ 1995 __SetPageLocked(new_page); 1996 if (PageSwapBacked(page)) 1997 __SetPageSwapBacked(new_page); 1998 1999 /* anon mapping, we can simply copy page->mapping to the new page: */ 2000 new_page->mapping = page->mapping; 2001 new_page->index = page->index; 2002 migrate_page_copy(new_page, page); 2003 WARN_ON(PageLRU(new_page)); 2004 2005 /* Recheck the target PMD */ 2006 ptl = pmd_lock(mm, pmd); 2007 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2008 spin_unlock(ptl); 2009 2010 /* Reverse changes made by migrate_page_copy() */ 2011 if (TestClearPageActive(new_page)) 2012 SetPageActive(page); 2013 if (TestClearPageUnevictable(new_page)) 2014 SetPageUnevictable(page); 2015 2016 unlock_page(new_page); 2017 put_page(new_page); /* Free it */ 2018 2019 /* Retake the callers reference and putback on LRU */ 2020 get_page(page); 2021 putback_lru_page(page); 2022 mod_node_page_state(page_pgdat(page), 2023 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2024 2025 goto out_unlock; 2026 } 2027 2028 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2029 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2030 2031 /* 2032 * Overwrite the old entry under pagetable lock and establish 2033 * the new PTE. Any parallel GUP will either observe the old 2034 * page blocking on the page lock, block on the page table 2035 * lock or observe the new page. The SetPageUptodate on the 2036 * new page and page_add_new_anon_rmap guarantee the copy is 2037 * visible before the pagetable update. 2038 */ 2039 flush_cache_range(vma, start, end); 2040 page_add_anon_rmap(new_page, vma, start, true); 2041 /* 2042 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2043 * has already been flushed globally. So no TLB can be currently 2044 * caching this non present pmd mapping. There's no need to clear the 2045 * pmd before doing set_pmd_at(), nor to flush the TLB after 2046 * set_pmd_at(). Clearing the pmd here would introduce a race 2047 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2048 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2049 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2050 * pmd. 2051 */ 2052 set_pmd_at(mm, start, pmd, entry); 2053 update_mmu_cache_pmd(vma, address, &entry); 2054 2055 page_ref_unfreeze(page, 2); 2056 mlock_migrate_page(new_page, page); 2057 page_remove_rmap(page, true); 2058 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2059 2060 spin_unlock(ptl); 2061 2062 /* Take an "isolate" reference and put new page on the LRU. */ 2063 get_page(new_page); 2064 putback_lru_page(new_page); 2065 2066 unlock_page(new_page); 2067 unlock_page(page); 2068 put_page(page); /* Drop the rmap reference */ 2069 put_page(page); /* Drop the LRU isolation reference */ 2070 2071 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2072 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2073 2074 mod_node_page_state(page_pgdat(page), 2075 NR_ISOLATED_ANON + page_lru, 2076 -HPAGE_PMD_NR); 2077 return isolated; 2078 2079 out_fail: 2080 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2081 ptl = pmd_lock(mm, pmd); 2082 if (pmd_same(*pmd, entry)) { 2083 entry = pmd_modify(entry, vma->vm_page_prot); 2084 set_pmd_at(mm, start, pmd, entry); 2085 update_mmu_cache_pmd(vma, address, &entry); 2086 } 2087 spin_unlock(ptl); 2088 2089 out_unlock: 2090 unlock_page(page); 2091 put_page(page); 2092 return 0; 2093 } 2094 #endif /* CONFIG_NUMA_BALANCING */ 2095 2096 #endif /* CONFIG_NUMA */ 2097 2098 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2099 struct migrate_vma { 2100 struct vm_area_struct *vma; 2101 unsigned long *dst; 2102 unsigned long *src; 2103 unsigned long cpages; 2104 unsigned long npages; 2105 unsigned long start; 2106 unsigned long end; 2107 }; 2108 2109 static int migrate_vma_collect_hole(unsigned long start, 2110 unsigned long end, 2111 struct mm_walk *walk) 2112 { 2113 struct migrate_vma *migrate = walk->private; 2114 unsigned long addr; 2115 2116 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2117 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2118 migrate->dst[migrate->npages] = 0; 2119 migrate->npages++; 2120 migrate->cpages++; 2121 } 2122 2123 return 0; 2124 } 2125 2126 static int migrate_vma_collect_skip(unsigned long start, 2127 unsigned long end, 2128 struct mm_walk *walk) 2129 { 2130 struct migrate_vma *migrate = walk->private; 2131 unsigned long addr; 2132 2133 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2134 migrate->dst[migrate->npages] = 0; 2135 migrate->src[migrate->npages++] = 0; 2136 } 2137 2138 return 0; 2139 } 2140 2141 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2142 unsigned long start, 2143 unsigned long end, 2144 struct mm_walk *walk) 2145 { 2146 struct migrate_vma *migrate = walk->private; 2147 struct vm_area_struct *vma = walk->vma; 2148 struct mm_struct *mm = vma->vm_mm; 2149 unsigned long addr = start, unmapped = 0; 2150 spinlock_t *ptl; 2151 pte_t *ptep; 2152 2153 again: 2154 if (pmd_none(*pmdp)) 2155 return migrate_vma_collect_hole(start, end, walk); 2156 2157 if (pmd_trans_huge(*pmdp)) { 2158 struct page *page; 2159 2160 ptl = pmd_lock(mm, pmdp); 2161 if (unlikely(!pmd_trans_huge(*pmdp))) { 2162 spin_unlock(ptl); 2163 goto again; 2164 } 2165 2166 page = pmd_page(*pmdp); 2167 if (is_huge_zero_page(page)) { 2168 spin_unlock(ptl); 2169 split_huge_pmd(vma, pmdp, addr); 2170 if (pmd_trans_unstable(pmdp)) 2171 return migrate_vma_collect_skip(start, end, 2172 walk); 2173 } else { 2174 int ret; 2175 2176 get_page(page); 2177 spin_unlock(ptl); 2178 if (unlikely(!trylock_page(page))) 2179 return migrate_vma_collect_skip(start, end, 2180 walk); 2181 ret = split_huge_page(page); 2182 unlock_page(page); 2183 put_page(page); 2184 if (ret) 2185 return migrate_vma_collect_skip(start, end, 2186 walk); 2187 if (pmd_none(*pmdp)) 2188 return migrate_vma_collect_hole(start, end, 2189 walk); 2190 } 2191 } 2192 2193 if (unlikely(pmd_bad(*pmdp))) 2194 return migrate_vma_collect_skip(start, end, walk); 2195 2196 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2197 arch_enter_lazy_mmu_mode(); 2198 2199 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2200 unsigned long mpfn, pfn; 2201 struct page *page; 2202 swp_entry_t entry; 2203 pte_t pte; 2204 2205 pte = *ptep; 2206 pfn = pte_pfn(pte); 2207 2208 if (pte_none(pte)) { 2209 mpfn = MIGRATE_PFN_MIGRATE; 2210 migrate->cpages++; 2211 pfn = 0; 2212 goto next; 2213 } 2214 2215 if (!pte_present(pte)) { 2216 mpfn = pfn = 0; 2217 2218 /* 2219 * Only care about unaddressable device page special 2220 * page table entry. Other special swap entries are not 2221 * migratable, and we ignore regular swapped page. 2222 */ 2223 entry = pte_to_swp_entry(pte); 2224 if (!is_device_private_entry(entry)) 2225 goto next; 2226 2227 page = device_private_entry_to_page(entry); 2228 mpfn = migrate_pfn(page_to_pfn(page))| 2229 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2230 if (is_write_device_private_entry(entry)) 2231 mpfn |= MIGRATE_PFN_WRITE; 2232 } else { 2233 if (is_zero_pfn(pfn)) { 2234 mpfn = MIGRATE_PFN_MIGRATE; 2235 migrate->cpages++; 2236 pfn = 0; 2237 goto next; 2238 } 2239 page = _vm_normal_page(migrate->vma, addr, pte, true); 2240 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2241 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2242 } 2243 2244 /* FIXME support THP */ 2245 if (!page || !page->mapping || PageTransCompound(page)) { 2246 mpfn = pfn = 0; 2247 goto next; 2248 } 2249 pfn = page_to_pfn(page); 2250 2251 /* 2252 * By getting a reference on the page we pin it and that blocks 2253 * any kind of migration. Side effect is that it "freezes" the 2254 * pte. 2255 * 2256 * We drop this reference after isolating the page from the lru 2257 * for non device page (device page are not on the lru and thus 2258 * can't be dropped from it). 2259 */ 2260 get_page(page); 2261 migrate->cpages++; 2262 2263 /* 2264 * Optimize for the common case where page is only mapped once 2265 * in one process. If we can lock the page, then we can safely 2266 * set up a special migration page table entry now. 2267 */ 2268 if (trylock_page(page)) { 2269 pte_t swp_pte; 2270 2271 mpfn |= MIGRATE_PFN_LOCKED; 2272 ptep_get_and_clear(mm, addr, ptep); 2273 2274 /* Setup special migration page table entry */ 2275 entry = make_migration_entry(page, mpfn & 2276 MIGRATE_PFN_WRITE); 2277 swp_pte = swp_entry_to_pte(entry); 2278 if (pte_soft_dirty(pte)) 2279 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2280 set_pte_at(mm, addr, ptep, swp_pte); 2281 2282 /* 2283 * This is like regular unmap: we remove the rmap and 2284 * drop page refcount. Page won't be freed, as we took 2285 * a reference just above. 2286 */ 2287 page_remove_rmap(page, false); 2288 put_page(page); 2289 2290 if (pte_present(pte)) 2291 unmapped++; 2292 } 2293 2294 next: 2295 migrate->dst[migrate->npages] = 0; 2296 migrate->src[migrate->npages++] = mpfn; 2297 } 2298 arch_leave_lazy_mmu_mode(); 2299 pte_unmap_unlock(ptep - 1, ptl); 2300 2301 /* Only flush the TLB if we actually modified any entries */ 2302 if (unmapped) 2303 flush_tlb_range(walk->vma, start, end); 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * migrate_vma_collect() - collect pages over a range of virtual addresses 2310 * @migrate: migrate struct containing all migration information 2311 * 2312 * This will walk the CPU page table. For each virtual address backed by a 2313 * valid page, it updates the src array and takes a reference on the page, in 2314 * order to pin the page until we lock it and unmap it. 2315 */ 2316 static void migrate_vma_collect(struct migrate_vma *migrate) 2317 { 2318 struct mm_walk mm_walk; 2319 2320 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2321 mm_walk.pte_entry = NULL; 2322 mm_walk.pte_hole = migrate_vma_collect_hole; 2323 mm_walk.hugetlb_entry = NULL; 2324 mm_walk.test_walk = NULL; 2325 mm_walk.vma = migrate->vma; 2326 mm_walk.mm = migrate->vma->vm_mm; 2327 mm_walk.private = migrate; 2328 2329 mmu_notifier_invalidate_range_start(mm_walk.mm, 2330 migrate->start, 2331 migrate->end); 2332 walk_page_range(migrate->start, migrate->end, &mm_walk); 2333 mmu_notifier_invalidate_range_end(mm_walk.mm, 2334 migrate->start, 2335 migrate->end); 2336 2337 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2338 } 2339 2340 /* 2341 * migrate_vma_check_page() - check if page is pinned or not 2342 * @page: struct page to check 2343 * 2344 * Pinned pages cannot be migrated. This is the same test as in 2345 * migrate_page_move_mapping(), except that here we allow migration of a 2346 * ZONE_DEVICE page. 2347 */ 2348 static bool migrate_vma_check_page(struct page *page) 2349 { 2350 /* 2351 * One extra ref because caller holds an extra reference, either from 2352 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2353 * a device page. 2354 */ 2355 int extra = 1; 2356 2357 /* 2358 * FIXME support THP (transparent huge page), it is bit more complex to 2359 * check them than regular pages, because they can be mapped with a pmd 2360 * or with a pte (split pte mapping). 2361 */ 2362 if (PageCompound(page)) 2363 return false; 2364 2365 /* Page from ZONE_DEVICE have one extra reference */ 2366 if (is_zone_device_page(page)) { 2367 /* 2368 * Private page can never be pin as they have no valid pte and 2369 * GUP will fail for those. Yet if there is a pending migration 2370 * a thread might try to wait on the pte migration entry and 2371 * will bump the page reference count. Sadly there is no way to 2372 * differentiate a regular pin from migration wait. Hence to 2373 * avoid 2 racing thread trying to migrate back to CPU to enter 2374 * infinite loop (one stoping migration because the other is 2375 * waiting on pte migration entry). We always return true here. 2376 * 2377 * FIXME proper solution is to rework migration_entry_wait() so 2378 * it does not need to take a reference on page. 2379 */ 2380 if (is_device_private_page(page)) 2381 return true; 2382 2383 /* 2384 * Only allow device public page to be migrated and account for 2385 * the extra reference count imply by ZONE_DEVICE pages. 2386 */ 2387 if (!is_device_public_page(page)) 2388 return false; 2389 extra++; 2390 } 2391 2392 /* For file back page */ 2393 if (page_mapping(page)) 2394 extra += 1 + page_has_private(page); 2395 2396 if ((page_count(page) - extra) > page_mapcount(page)) 2397 return false; 2398 2399 return true; 2400 } 2401 2402 /* 2403 * migrate_vma_prepare() - lock pages and isolate them from the lru 2404 * @migrate: migrate struct containing all migration information 2405 * 2406 * This locks pages that have been collected by migrate_vma_collect(). Once each 2407 * page is locked it is isolated from the lru (for non-device pages). Finally, 2408 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2409 * migrated by concurrent kernel threads. 2410 */ 2411 static void migrate_vma_prepare(struct migrate_vma *migrate) 2412 { 2413 const unsigned long npages = migrate->npages; 2414 const unsigned long start = migrate->start; 2415 unsigned long addr, i, restore = 0; 2416 bool allow_drain = true; 2417 2418 lru_add_drain(); 2419 2420 for (i = 0; (i < npages) && migrate->cpages; i++) { 2421 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2422 bool remap = true; 2423 2424 if (!page) 2425 continue; 2426 2427 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2428 /* 2429 * Because we are migrating several pages there can be 2430 * a deadlock between 2 concurrent migration where each 2431 * are waiting on each other page lock. 2432 * 2433 * Make migrate_vma() a best effort thing and backoff 2434 * for any page we can not lock right away. 2435 */ 2436 if (!trylock_page(page)) { 2437 migrate->src[i] = 0; 2438 migrate->cpages--; 2439 put_page(page); 2440 continue; 2441 } 2442 remap = false; 2443 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2444 } 2445 2446 /* ZONE_DEVICE pages are not on LRU */ 2447 if (!is_zone_device_page(page)) { 2448 if (!PageLRU(page) && allow_drain) { 2449 /* Drain CPU's pagevec */ 2450 lru_add_drain_all(); 2451 allow_drain = false; 2452 } 2453 2454 if (isolate_lru_page(page)) { 2455 if (remap) { 2456 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2457 migrate->cpages--; 2458 restore++; 2459 } else { 2460 migrate->src[i] = 0; 2461 unlock_page(page); 2462 migrate->cpages--; 2463 put_page(page); 2464 } 2465 continue; 2466 } 2467 2468 /* Drop the reference we took in collect */ 2469 put_page(page); 2470 } 2471 2472 if (!migrate_vma_check_page(page)) { 2473 if (remap) { 2474 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2475 migrate->cpages--; 2476 restore++; 2477 2478 if (!is_zone_device_page(page)) { 2479 get_page(page); 2480 putback_lru_page(page); 2481 } 2482 } else { 2483 migrate->src[i] = 0; 2484 unlock_page(page); 2485 migrate->cpages--; 2486 2487 if (!is_zone_device_page(page)) 2488 putback_lru_page(page); 2489 else 2490 put_page(page); 2491 } 2492 } 2493 } 2494 2495 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2496 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2497 2498 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2499 continue; 2500 2501 remove_migration_pte(page, migrate->vma, addr, page); 2502 2503 migrate->src[i] = 0; 2504 unlock_page(page); 2505 put_page(page); 2506 restore--; 2507 } 2508 } 2509 2510 /* 2511 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2512 * @migrate: migrate struct containing all migration information 2513 * 2514 * Replace page mapping (CPU page table pte) with a special migration pte entry 2515 * and check again if it has been pinned. Pinned pages are restored because we 2516 * cannot migrate them. 2517 * 2518 * This is the last step before we call the device driver callback to allocate 2519 * destination memory and copy contents of original page over to new page. 2520 */ 2521 static void migrate_vma_unmap(struct migrate_vma *migrate) 2522 { 2523 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2524 const unsigned long npages = migrate->npages; 2525 const unsigned long start = migrate->start; 2526 unsigned long addr, i, restore = 0; 2527 2528 for (i = 0; i < npages; i++) { 2529 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2530 2531 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2532 continue; 2533 2534 if (page_mapped(page)) { 2535 try_to_unmap(page, flags); 2536 if (page_mapped(page)) 2537 goto restore; 2538 } 2539 2540 if (migrate_vma_check_page(page)) 2541 continue; 2542 2543 restore: 2544 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2545 migrate->cpages--; 2546 restore++; 2547 } 2548 2549 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2550 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2551 2552 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2553 continue; 2554 2555 remove_migration_ptes(page, page, false); 2556 2557 migrate->src[i] = 0; 2558 unlock_page(page); 2559 restore--; 2560 2561 if (is_zone_device_page(page)) 2562 put_page(page); 2563 else 2564 putback_lru_page(page); 2565 } 2566 } 2567 2568 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2569 unsigned long addr, 2570 struct page *page, 2571 unsigned long *src, 2572 unsigned long *dst) 2573 { 2574 struct vm_area_struct *vma = migrate->vma; 2575 struct mm_struct *mm = vma->vm_mm; 2576 struct mem_cgroup *memcg; 2577 bool flush = false; 2578 spinlock_t *ptl; 2579 pte_t entry; 2580 pgd_t *pgdp; 2581 p4d_t *p4dp; 2582 pud_t *pudp; 2583 pmd_t *pmdp; 2584 pte_t *ptep; 2585 2586 /* Only allow populating anonymous memory */ 2587 if (!vma_is_anonymous(vma)) 2588 goto abort; 2589 2590 pgdp = pgd_offset(mm, addr); 2591 p4dp = p4d_alloc(mm, pgdp, addr); 2592 if (!p4dp) 2593 goto abort; 2594 pudp = pud_alloc(mm, p4dp, addr); 2595 if (!pudp) 2596 goto abort; 2597 pmdp = pmd_alloc(mm, pudp, addr); 2598 if (!pmdp) 2599 goto abort; 2600 2601 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2602 goto abort; 2603 2604 /* 2605 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2606 * pte_offset_map() on pmds where a huge pmd might be created 2607 * from a different thread. 2608 * 2609 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2610 * parallel threads are excluded by other means. 2611 * 2612 * Here we only have down_read(mmap_sem). 2613 */ 2614 if (pte_alloc(mm, pmdp, addr)) 2615 goto abort; 2616 2617 /* See the comment in pte_alloc_one_map() */ 2618 if (unlikely(pmd_trans_unstable(pmdp))) 2619 goto abort; 2620 2621 if (unlikely(anon_vma_prepare(vma))) 2622 goto abort; 2623 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2624 goto abort; 2625 2626 /* 2627 * The memory barrier inside __SetPageUptodate makes sure that 2628 * preceding stores to the page contents become visible before 2629 * the set_pte_at() write. 2630 */ 2631 __SetPageUptodate(page); 2632 2633 if (is_zone_device_page(page)) { 2634 if (is_device_private_page(page)) { 2635 swp_entry_t swp_entry; 2636 2637 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2638 entry = swp_entry_to_pte(swp_entry); 2639 } else if (is_device_public_page(page)) { 2640 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2641 if (vma->vm_flags & VM_WRITE) 2642 entry = pte_mkwrite(pte_mkdirty(entry)); 2643 entry = pte_mkdevmap(entry); 2644 } 2645 } else { 2646 entry = mk_pte(page, vma->vm_page_prot); 2647 if (vma->vm_flags & VM_WRITE) 2648 entry = pte_mkwrite(pte_mkdirty(entry)); 2649 } 2650 2651 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2652 2653 if (pte_present(*ptep)) { 2654 unsigned long pfn = pte_pfn(*ptep); 2655 2656 if (!is_zero_pfn(pfn)) { 2657 pte_unmap_unlock(ptep, ptl); 2658 mem_cgroup_cancel_charge(page, memcg, false); 2659 goto abort; 2660 } 2661 flush = true; 2662 } else if (!pte_none(*ptep)) { 2663 pte_unmap_unlock(ptep, ptl); 2664 mem_cgroup_cancel_charge(page, memcg, false); 2665 goto abort; 2666 } 2667 2668 /* 2669 * Check for usefaultfd but do not deliver the fault. Instead, 2670 * just back off. 2671 */ 2672 if (userfaultfd_missing(vma)) { 2673 pte_unmap_unlock(ptep, ptl); 2674 mem_cgroup_cancel_charge(page, memcg, false); 2675 goto abort; 2676 } 2677 2678 inc_mm_counter(mm, MM_ANONPAGES); 2679 page_add_new_anon_rmap(page, vma, addr, false); 2680 mem_cgroup_commit_charge(page, memcg, false, false); 2681 if (!is_zone_device_page(page)) 2682 lru_cache_add_active_or_unevictable(page, vma); 2683 get_page(page); 2684 2685 if (flush) { 2686 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2687 ptep_clear_flush_notify(vma, addr, ptep); 2688 set_pte_at_notify(mm, addr, ptep, entry); 2689 update_mmu_cache(vma, addr, ptep); 2690 } else { 2691 /* No need to invalidate - it was non-present before */ 2692 set_pte_at(mm, addr, ptep, entry); 2693 update_mmu_cache(vma, addr, ptep); 2694 } 2695 2696 pte_unmap_unlock(ptep, ptl); 2697 *src = MIGRATE_PFN_MIGRATE; 2698 return; 2699 2700 abort: 2701 *src &= ~MIGRATE_PFN_MIGRATE; 2702 } 2703 2704 /* 2705 * migrate_vma_pages() - migrate meta-data from src page to dst page 2706 * @migrate: migrate struct containing all migration information 2707 * 2708 * This migrates struct page meta-data from source struct page to destination 2709 * struct page. This effectively finishes the migration from source page to the 2710 * destination page. 2711 */ 2712 static void migrate_vma_pages(struct migrate_vma *migrate) 2713 { 2714 const unsigned long npages = migrate->npages; 2715 const unsigned long start = migrate->start; 2716 struct vm_area_struct *vma = migrate->vma; 2717 struct mm_struct *mm = vma->vm_mm; 2718 unsigned long addr, i, mmu_start; 2719 bool notified = false; 2720 2721 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2722 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2723 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2724 struct address_space *mapping; 2725 int r; 2726 2727 if (!newpage) { 2728 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2729 continue; 2730 } 2731 2732 if (!page) { 2733 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2734 continue; 2735 } 2736 if (!notified) { 2737 mmu_start = addr; 2738 notified = true; 2739 mmu_notifier_invalidate_range_start(mm, 2740 mmu_start, 2741 migrate->end); 2742 } 2743 migrate_vma_insert_page(migrate, addr, newpage, 2744 &migrate->src[i], 2745 &migrate->dst[i]); 2746 continue; 2747 } 2748 2749 mapping = page_mapping(page); 2750 2751 if (is_zone_device_page(newpage)) { 2752 if (is_device_private_page(newpage)) { 2753 /* 2754 * For now only support private anonymous when 2755 * migrating to un-addressable device memory. 2756 */ 2757 if (mapping) { 2758 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2759 continue; 2760 } 2761 } else if (!is_device_public_page(newpage)) { 2762 /* 2763 * Other types of ZONE_DEVICE page are not 2764 * supported. 2765 */ 2766 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2767 continue; 2768 } 2769 } 2770 2771 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2772 if (r != MIGRATEPAGE_SUCCESS) 2773 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2774 } 2775 2776 /* 2777 * No need to double call mmu_notifier->invalidate_range() callback as 2778 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2779 * did already call it. 2780 */ 2781 if (notified) 2782 mmu_notifier_invalidate_range_only_end(mm, mmu_start, 2783 migrate->end); 2784 } 2785 2786 /* 2787 * migrate_vma_finalize() - restore CPU page table entry 2788 * @migrate: migrate struct containing all migration information 2789 * 2790 * This replaces the special migration pte entry with either a mapping to the 2791 * new page if migration was successful for that page, or to the original page 2792 * otherwise. 2793 * 2794 * This also unlocks the pages and puts them back on the lru, or drops the extra 2795 * refcount, for device pages. 2796 */ 2797 static void migrate_vma_finalize(struct migrate_vma *migrate) 2798 { 2799 const unsigned long npages = migrate->npages; 2800 unsigned long i; 2801 2802 for (i = 0; i < npages; i++) { 2803 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2804 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2805 2806 if (!page) { 2807 if (newpage) { 2808 unlock_page(newpage); 2809 put_page(newpage); 2810 } 2811 continue; 2812 } 2813 2814 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2815 if (newpage) { 2816 unlock_page(newpage); 2817 put_page(newpage); 2818 } 2819 newpage = page; 2820 } 2821 2822 remove_migration_ptes(page, newpage, false); 2823 unlock_page(page); 2824 migrate->cpages--; 2825 2826 if (is_zone_device_page(page)) 2827 put_page(page); 2828 else 2829 putback_lru_page(page); 2830 2831 if (newpage != page) { 2832 unlock_page(newpage); 2833 if (is_zone_device_page(newpage)) 2834 put_page(newpage); 2835 else 2836 putback_lru_page(newpage); 2837 } 2838 } 2839 } 2840 2841 /* 2842 * migrate_vma() - migrate a range of memory inside vma 2843 * 2844 * @ops: migration callback for allocating destination memory and copying 2845 * @vma: virtual memory area containing the range to be migrated 2846 * @start: start address of the range to migrate (inclusive) 2847 * @end: end address of the range to migrate (exclusive) 2848 * @src: array of hmm_pfn_t containing source pfns 2849 * @dst: array of hmm_pfn_t containing destination pfns 2850 * @private: pointer passed back to each of the callback 2851 * Returns: 0 on success, error code otherwise 2852 * 2853 * This function tries to migrate a range of memory virtual address range, using 2854 * callbacks to allocate and copy memory from source to destination. First it 2855 * collects all the pages backing each virtual address in the range, saving this 2856 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2857 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2858 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2859 * in the corresponding src array entry. It then restores any pages that are 2860 * pinned, by remapping and unlocking those pages. 2861 * 2862 * At this point it calls the alloc_and_copy() callback. For documentation on 2863 * what is expected from that callback, see struct migrate_vma_ops comments in 2864 * include/linux/migrate.h 2865 * 2866 * After the alloc_and_copy() callback, this function goes over each entry in 2867 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2868 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2869 * then the function tries to migrate struct page information from the source 2870 * struct page to the destination struct page. If it fails to migrate the struct 2871 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2872 * array. 2873 * 2874 * At this point all successfully migrated pages have an entry in the src 2875 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2876 * array entry with MIGRATE_PFN_VALID flag set. 2877 * 2878 * It then calls the finalize_and_map() callback. See comments for "struct 2879 * migrate_vma_ops", in include/linux/migrate.h for details about 2880 * finalize_and_map() behavior. 2881 * 2882 * After the finalize_and_map() callback, for successfully migrated pages, this 2883 * function updates the CPU page table to point to new pages, otherwise it 2884 * restores the CPU page table to point to the original source pages. 2885 * 2886 * Function returns 0 after the above steps, even if no pages were migrated 2887 * (The function only returns an error if any of the arguments are invalid.) 2888 * 2889 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2890 * unsigned long entries. 2891 */ 2892 int migrate_vma(const struct migrate_vma_ops *ops, 2893 struct vm_area_struct *vma, 2894 unsigned long start, 2895 unsigned long end, 2896 unsigned long *src, 2897 unsigned long *dst, 2898 void *private) 2899 { 2900 struct migrate_vma migrate; 2901 2902 /* Sanity check the arguments */ 2903 start &= PAGE_MASK; 2904 end &= PAGE_MASK; 2905 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2906 vma_is_dax(vma)) 2907 return -EINVAL; 2908 if (start < vma->vm_start || start >= vma->vm_end) 2909 return -EINVAL; 2910 if (end <= vma->vm_start || end > vma->vm_end) 2911 return -EINVAL; 2912 if (!ops || !src || !dst || start >= end) 2913 return -EINVAL; 2914 2915 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2916 migrate.src = src; 2917 migrate.dst = dst; 2918 migrate.start = start; 2919 migrate.npages = 0; 2920 migrate.cpages = 0; 2921 migrate.end = end; 2922 migrate.vma = vma; 2923 2924 /* Collect, and try to unmap source pages */ 2925 migrate_vma_collect(&migrate); 2926 if (!migrate.cpages) 2927 return 0; 2928 2929 /* Lock and isolate page */ 2930 migrate_vma_prepare(&migrate); 2931 if (!migrate.cpages) 2932 return 0; 2933 2934 /* Unmap pages */ 2935 migrate_vma_unmap(&migrate); 2936 if (!migrate.cpages) 2937 return 0; 2938 2939 /* 2940 * At this point pages are locked and unmapped, and thus they have 2941 * stable content and can safely be copied to destination memory that 2942 * is allocated by the callback. 2943 * 2944 * Note that migration can fail in migrate_vma_struct_page() for each 2945 * individual page. 2946 */ 2947 ops->alloc_and_copy(vma, src, dst, start, end, private); 2948 2949 /* This does the real migration of struct page */ 2950 migrate_vma_pages(&migrate); 2951 2952 ops->finalize_and_map(vma, src, dst, start, end, private); 2953 2954 /* Unlock and remap pages */ 2955 migrate_vma_finalize(&migrate); 2956 2957 return 0; 2958 } 2959 EXPORT_SYMBOL(migrate_vma); 2960 #endif /* defined(MIGRATE_VMA_HELPER) */ 2961