xref: /openbmc/linux/mm/migrate.c (revision 7066f0f9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		if (PageTransHuge(page) && PageMlocked(page))
279 			clear_page_mlock(page);
280 
281 		/* No need to invalidate - it was non-present before */
282 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 	}
284 
285 	return true;
286 }
287 
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 	struct rmap_walk_control rwc = {
295 		.rmap_one = remove_migration_pte,
296 		.arg = old,
297 	};
298 
299 	if (locked)
300 		rmap_walk_locked(new, &rwc);
301 	else
302 		rmap_walk(new, &rwc);
303 }
304 
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 				spinlock_t *ptl)
312 {
313 	pte_t pte;
314 	swp_entry_t entry;
315 	struct page *page;
316 
317 	spin_lock(ptl);
318 	pte = *ptep;
319 	if (!is_swap_pte(pte))
320 		goto out;
321 
322 	entry = pte_to_swp_entry(pte);
323 	if (!is_migration_entry(entry))
324 		goto out;
325 
326 	page = migration_entry_to_page(entry);
327 
328 	/*
329 	 * Once radix-tree replacement of page migration started, page_count
330 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 	 * against a page without get_page().
332 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
333 	 * will occur again.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	wait_on_page_locked(page);
339 	put_page(page);
340 	return;
341 out:
342 	pte_unmap_unlock(ptep, ptl);
343 }
344 
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 				unsigned long address)
347 {
348 	spinlock_t *ptl = pte_lockptr(mm, pmd);
349 	pte_t *ptep = pte_offset_map(pmd, address);
350 	__migration_entry_wait(mm, ptep, ptl);
351 }
352 
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 		struct mm_struct *mm, pte_t *pte)
355 {
356 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 	__migration_entry_wait(mm, pte, ptl);
358 }
359 
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 	spinlock_t *ptl;
364 	struct page *page;
365 
366 	ptl = pmd_lock(mm, pmd);
367 	if (!is_pmd_migration_entry(*pmd))
368 		goto unlock;
369 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 	if (!get_page_unless_zero(page))
371 		goto unlock;
372 	spin_unlock(ptl);
373 	wait_on_page_locked(page);
374 	put_page(page);
375 	return;
376 unlock:
377 	spin_unlock(ptl);
378 }
379 #endif
380 
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 							enum migrate_mode mode)
385 {
386 	struct buffer_head *bh = head;
387 
388 	/* Simple case, sync compaction */
389 	if (mode != MIGRATE_ASYNC) {
390 		do {
391 			get_bh(bh);
392 			lock_buffer(bh);
393 			bh = bh->b_this_page;
394 
395 		} while (bh != head);
396 
397 		return true;
398 	}
399 
400 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
401 	do {
402 		get_bh(bh);
403 		if (!trylock_buffer(bh)) {
404 			/*
405 			 * We failed to lock the buffer and cannot stall in
406 			 * async migration. Release the taken locks
407 			 */
408 			struct buffer_head *failed_bh = bh;
409 			put_bh(failed_bh);
410 			bh = head;
411 			while (bh != failed_bh) {
412 				unlock_buffer(bh);
413 				put_bh(bh);
414 				bh = bh->b_this_page;
415 			}
416 			return false;
417 		}
418 
419 		bh = bh->b_this_page;
420 	} while (bh != head);
421 	return true;
422 }
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 							enum migrate_mode mode)
426 {
427 	return true;
428 }
429 #endif /* CONFIG_BLOCK */
430 
431 /*
432  * Replace the page in the mapping.
433  *
434  * The number of remaining references must be:
435  * 1 for anonymous pages without a mapping
436  * 2 for pages with a mapping
437  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
438  */
439 int migrate_page_move_mapping(struct address_space *mapping,
440 		struct page *newpage, struct page *page,
441 		struct buffer_head *head, enum migrate_mode mode,
442 		int extra_count)
443 {
444 	struct zone *oldzone, *newzone;
445 	int dirty;
446 	int expected_count = 1 + extra_count;
447 	void **pslot;
448 
449 	/*
450 	 * Device public or private pages have an extra refcount as they are
451 	 * ZONE_DEVICE pages.
452 	 */
453 	expected_count += is_device_private_page(page);
454 	expected_count += is_device_public_page(page);
455 
456 	if (!mapping) {
457 		/* Anonymous page without mapping */
458 		if (page_count(page) != expected_count)
459 			return -EAGAIN;
460 
461 		/* No turning back from here */
462 		newpage->index = page->index;
463 		newpage->mapping = page->mapping;
464 		if (PageSwapBacked(page))
465 			__SetPageSwapBacked(newpage);
466 
467 		return MIGRATEPAGE_SUCCESS;
468 	}
469 
470 	oldzone = page_zone(page);
471 	newzone = page_zone(newpage);
472 
473 	xa_lock_irq(&mapping->i_pages);
474 
475 	pslot = radix_tree_lookup_slot(&mapping->i_pages,
476  					page_index(page));
477 
478 	expected_count += hpage_nr_pages(page) + page_has_private(page);
479 	if (page_count(page) != expected_count ||
480 		radix_tree_deref_slot_protected(pslot,
481 					&mapping->i_pages.xa_lock) != page) {
482 		xa_unlock_irq(&mapping->i_pages);
483 		return -EAGAIN;
484 	}
485 
486 	if (!page_ref_freeze(page, expected_count)) {
487 		xa_unlock_irq(&mapping->i_pages);
488 		return -EAGAIN;
489 	}
490 
491 	/*
492 	 * In the async migration case of moving a page with buffers, lock the
493 	 * buffers using trylock before the mapping is moved. If the mapping
494 	 * was moved, we later failed to lock the buffers and could not move
495 	 * the mapping back due to an elevated page count, we would have to
496 	 * block waiting on other references to be dropped.
497 	 */
498 	if (mode == MIGRATE_ASYNC && head &&
499 			!buffer_migrate_lock_buffers(head, mode)) {
500 		page_ref_unfreeze(page, expected_count);
501 		xa_unlock_irq(&mapping->i_pages);
502 		return -EAGAIN;
503 	}
504 
505 	/*
506 	 * Now we know that no one else is looking at the page:
507 	 * no turning back from here.
508 	 */
509 	newpage->index = page->index;
510 	newpage->mapping = page->mapping;
511 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
512 	if (PageSwapBacked(page)) {
513 		__SetPageSwapBacked(newpage);
514 		if (PageSwapCache(page)) {
515 			SetPageSwapCache(newpage);
516 			set_page_private(newpage, page_private(page));
517 		}
518 	} else {
519 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
520 	}
521 
522 	/* Move dirty while page refs frozen and newpage not yet exposed */
523 	dirty = PageDirty(page);
524 	if (dirty) {
525 		ClearPageDirty(page);
526 		SetPageDirty(newpage);
527 	}
528 
529 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
530 	if (PageTransHuge(page)) {
531 		int i;
532 		int index = page_index(page);
533 
534 		for (i = 1; i < HPAGE_PMD_NR; i++) {
535 			pslot = radix_tree_lookup_slot(&mapping->i_pages,
536 						       index + i);
537 			radix_tree_replace_slot(&mapping->i_pages, pslot,
538 						newpage + i);
539 		}
540 	}
541 
542 	/*
543 	 * Drop cache reference from old page by unfreezing
544 	 * to one less reference.
545 	 * We know this isn't the last reference.
546 	 */
547 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
548 
549 	xa_unlock(&mapping->i_pages);
550 	/* Leave irq disabled to prevent preemption while updating stats */
551 
552 	/*
553 	 * If moved to a different zone then also account
554 	 * the page for that zone. Other VM counters will be
555 	 * taken care of when we establish references to the
556 	 * new page and drop references to the old page.
557 	 *
558 	 * Note that anonymous pages are accounted for
559 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
560 	 * are mapped to swap space.
561 	 */
562 	if (newzone != oldzone) {
563 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
564 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
565 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
566 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
567 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
568 		}
569 		if (dirty && mapping_cap_account_dirty(mapping)) {
570 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
571 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
572 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
573 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
574 		}
575 	}
576 	local_irq_enable();
577 
578 	return MIGRATEPAGE_SUCCESS;
579 }
580 EXPORT_SYMBOL(migrate_page_move_mapping);
581 
582 /*
583  * The expected number of remaining references is the same as that
584  * of migrate_page_move_mapping().
585  */
586 int migrate_huge_page_move_mapping(struct address_space *mapping,
587 				   struct page *newpage, struct page *page)
588 {
589 	int expected_count;
590 	void **pslot;
591 
592 	xa_lock_irq(&mapping->i_pages);
593 
594 	pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
595 
596 	expected_count = 2 + page_has_private(page);
597 	if (page_count(page) != expected_count ||
598 		radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
599 		xa_unlock_irq(&mapping->i_pages);
600 		return -EAGAIN;
601 	}
602 
603 	if (!page_ref_freeze(page, expected_count)) {
604 		xa_unlock_irq(&mapping->i_pages);
605 		return -EAGAIN;
606 	}
607 
608 	newpage->index = page->index;
609 	newpage->mapping = page->mapping;
610 
611 	get_page(newpage);
612 
613 	radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
614 
615 	page_ref_unfreeze(page, expected_count - 1);
616 
617 	xa_unlock_irq(&mapping->i_pages);
618 
619 	return MIGRATEPAGE_SUCCESS;
620 }
621 
622 /*
623  * Gigantic pages are so large that we do not guarantee that page++ pointer
624  * arithmetic will work across the entire page.  We need something more
625  * specialized.
626  */
627 static void __copy_gigantic_page(struct page *dst, struct page *src,
628 				int nr_pages)
629 {
630 	int i;
631 	struct page *dst_base = dst;
632 	struct page *src_base = src;
633 
634 	for (i = 0; i < nr_pages; ) {
635 		cond_resched();
636 		copy_highpage(dst, src);
637 
638 		i++;
639 		dst = mem_map_next(dst, dst_base, i);
640 		src = mem_map_next(src, src_base, i);
641 	}
642 }
643 
644 static void copy_huge_page(struct page *dst, struct page *src)
645 {
646 	int i;
647 	int nr_pages;
648 
649 	if (PageHuge(src)) {
650 		/* hugetlbfs page */
651 		struct hstate *h = page_hstate(src);
652 		nr_pages = pages_per_huge_page(h);
653 
654 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
655 			__copy_gigantic_page(dst, src, nr_pages);
656 			return;
657 		}
658 	} else {
659 		/* thp page */
660 		BUG_ON(!PageTransHuge(src));
661 		nr_pages = hpage_nr_pages(src);
662 	}
663 
664 	for (i = 0; i < nr_pages; i++) {
665 		cond_resched();
666 		copy_highpage(dst + i, src + i);
667 	}
668 }
669 
670 /*
671  * Copy the page to its new location
672  */
673 void migrate_page_states(struct page *newpage, struct page *page)
674 {
675 	int cpupid;
676 
677 	if (PageError(page))
678 		SetPageError(newpage);
679 	if (PageReferenced(page))
680 		SetPageReferenced(newpage);
681 	if (PageUptodate(page))
682 		SetPageUptodate(newpage);
683 	if (TestClearPageActive(page)) {
684 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
685 		SetPageActive(newpage);
686 	} else if (TestClearPageUnevictable(page))
687 		SetPageUnevictable(newpage);
688 	if (PageWorkingset(page))
689 		SetPageWorkingset(newpage);
690 	if (PageChecked(page))
691 		SetPageChecked(newpage);
692 	if (PageMappedToDisk(page))
693 		SetPageMappedToDisk(newpage);
694 
695 	/* Move dirty on pages not done by migrate_page_move_mapping() */
696 	if (PageDirty(page))
697 		SetPageDirty(newpage);
698 
699 	if (page_is_young(page))
700 		set_page_young(newpage);
701 	if (page_is_idle(page))
702 		set_page_idle(newpage);
703 
704 	/*
705 	 * Copy NUMA information to the new page, to prevent over-eager
706 	 * future migrations of this same page.
707 	 */
708 	cpupid = page_cpupid_xchg_last(page, -1);
709 	page_cpupid_xchg_last(newpage, cpupid);
710 
711 	ksm_migrate_page(newpage, page);
712 	/*
713 	 * Please do not reorder this without considering how mm/ksm.c's
714 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
715 	 */
716 	if (PageSwapCache(page))
717 		ClearPageSwapCache(page);
718 	ClearPagePrivate(page);
719 	set_page_private(page, 0);
720 
721 	/*
722 	 * If any waiters have accumulated on the new page then
723 	 * wake them up.
724 	 */
725 	if (PageWriteback(newpage))
726 		end_page_writeback(newpage);
727 
728 	copy_page_owner(page, newpage);
729 
730 	mem_cgroup_migrate(page, newpage);
731 }
732 EXPORT_SYMBOL(migrate_page_states);
733 
734 void migrate_page_copy(struct page *newpage, struct page *page)
735 {
736 	if (PageHuge(page) || PageTransHuge(page))
737 		copy_huge_page(newpage, page);
738 	else
739 		copy_highpage(newpage, page);
740 
741 	migrate_page_states(newpage, page);
742 }
743 EXPORT_SYMBOL(migrate_page_copy);
744 
745 /************************************************************
746  *                    Migration functions
747  ***********************************************************/
748 
749 /*
750  * Common logic to directly migrate a single LRU page suitable for
751  * pages that do not use PagePrivate/PagePrivate2.
752  *
753  * Pages are locked upon entry and exit.
754  */
755 int migrate_page(struct address_space *mapping,
756 		struct page *newpage, struct page *page,
757 		enum migrate_mode mode)
758 {
759 	int rc;
760 
761 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
762 
763 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
764 
765 	if (rc != MIGRATEPAGE_SUCCESS)
766 		return rc;
767 
768 	if (mode != MIGRATE_SYNC_NO_COPY)
769 		migrate_page_copy(newpage, page);
770 	else
771 		migrate_page_states(newpage, page);
772 	return MIGRATEPAGE_SUCCESS;
773 }
774 EXPORT_SYMBOL(migrate_page);
775 
776 #ifdef CONFIG_BLOCK
777 /*
778  * Migration function for pages with buffers. This function can only be used
779  * if the underlying filesystem guarantees that no other references to "page"
780  * exist.
781  */
782 int buffer_migrate_page(struct address_space *mapping,
783 		struct page *newpage, struct page *page, enum migrate_mode mode)
784 {
785 	struct buffer_head *bh, *head;
786 	int rc;
787 
788 	if (!page_has_buffers(page))
789 		return migrate_page(mapping, newpage, page, mode);
790 
791 	head = page_buffers(page);
792 
793 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
794 
795 	if (rc != MIGRATEPAGE_SUCCESS)
796 		return rc;
797 
798 	/*
799 	 * In the async case, migrate_page_move_mapping locked the buffers
800 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
801 	 * need to be locked now
802 	 */
803 	if (mode != MIGRATE_ASYNC)
804 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
805 
806 	ClearPagePrivate(page);
807 	set_page_private(newpage, page_private(page));
808 	set_page_private(page, 0);
809 	put_page(page);
810 	get_page(newpage);
811 
812 	bh = head;
813 	do {
814 		set_bh_page(bh, newpage, bh_offset(bh));
815 		bh = bh->b_this_page;
816 
817 	} while (bh != head);
818 
819 	SetPagePrivate(newpage);
820 
821 	if (mode != MIGRATE_SYNC_NO_COPY)
822 		migrate_page_copy(newpage, page);
823 	else
824 		migrate_page_states(newpage, page);
825 
826 	bh = head;
827 	do {
828 		unlock_buffer(bh);
829 		put_bh(bh);
830 		bh = bh->b_this_page;
831 
832 	} while (bh != head);
833 
834 	return MIGRATEPAGE_SUCCESS;
835 }
836 EXPORT_SYMBOL(buffer_migrate_page);
837 #endif
838 
839 /*
840  * Writeback a page to clean the dirty state
841  */
842 static int writeout(struct address_space *mapping, struct page *page)
843 {
844 	struct writeback_control wbc = {
845 		.sync_mode = WB_SYNC_NONE,
846 		.nr_to_write = 1,
847 		.range_start = 0,
848 		.range_end = LLONG_MAX,
849 		.for_reclaim = 1
850 	};
851 	int rc;
852 
853 	if (!mapping->a_ops->writepage)
854 		/* No write method for the address space */
855 		return -EINVAL;
856 
857 	if (!clear_page_dirty_for_io(page))
858 		/* Someone else already triggered a write */
859 		return -EAGAIN;
860 
861 	/*
862 	 * A dirty page may imply that the underlying filesystem has
863 	 * the page on some queue. So the page must be clean for
864 	 * migration. Writeout may mean we loose the lock and the
865 	 * page state is no longer what we checked for earlier.
866 	 * At this point we know that the migration attempt cannot
867 	 * be successful.
868 	 */
869 	remove_migration_ptes(page, page, false);
870 
871 	rc = mapping->a_ops->writepage(page, &wbc);
872 
873 	if (rc != AOP_WRITEPAGE_ACTIVATE)
874 		/* unlocked. Relock */
875 		lock_page(page);
876 
877 	return (rc < 0) ? -EIO : -EAGAIN;
878 }
879 
880 /*
881  * Default handling if a filesystem does not provide a migration function.
882  */
883 static int fallback_migrate_page(struct address_space *mapping,
884 	struct page *newpage, struct page *page, enum migrate_mode mode)
885 {
886 	if (PageDirty(page)) {
887 		/* Only writeback pages in full synchronous migration */
888 		switch (mode) {
889 		case MIGRATE_SYNC:
890 		case MIGRATE_SYNC_NO_COPY:
891 			break;
892 		default:
893 			return -EBUSY;
894 		}
895 		return writeout(mapping, page);
896 	}
897 
898 	/*
899 	 * Buffers may be managed in a filesystem specific way.
900 	 * We must have no buffers or drop them.
901 	 */
902 	if (page_has_private(page) &&
903 	    !try_to_release_page(page, GFP_KERNEL))
904 		return -EAGAIN;
905 
906 	return migrate_page(mapping, newpage, page, mode);
907 }
908 
909 /*
910  * Move a page to a newly allocated page
911  * The page is locked and all ptes have been successfully removed.
912  *
913  * The new page will have replaced the old page if this function
914  * is successful.
915  *
916  * Return value:
917  *   < 0 - error code
918  *  MIGRATEPAGE_SUCCESS - success
919  */
920 static int move_to_new_page(struct page *newpage, struct page *page,
921 				enum migrate_mode mode)
922 {
923 	struct address_space *mapping;
924 	int rc = -EAGAIN;
925 	bool is_lru = !__PageMovable(page);
926 
927 	VM_BUG_ON_PAGE(!PageLocked(page), page);
928 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
929 
930 	mapping = page_mapping(page);
931 
932 	if (likely(is_lru)) {
933 		if (!mapping)
934 			rc = migrate_page(mapping, newpage, page, mode);
935 		else if (mapping->a_ops->migratepage)
936 			/*
937 			 * Most pages have a mapping and most filesystems
938 			 * provide a migratepage callback. Anonymous pages
939 			 * are part of swap space which also has its own
940 			 * migratepage callback. This is the most common path
941 			 * for page migration.
942 			 */
943 			rc = mapping->a_ops->migratepage(mapping, newpage,
944 							page, mode);
945 		else
946 			rc = fallback_migrate_page(mapping, newpage,
947 							page, mode);
948 	} else {
949 		/*
950 		 * In case of non-lru page, it could be released after
951 		 * isolation step. In that case, we shouldn't try migration.
952 		 */
953 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
954 		if (!PageMovable(page)) {
955 			rc = MIGRATEPAGE_SUCCESS;
956 			__ClearPageIsolated(page);
957 			goto out;
958 		}
959 
960 		rc = mapping->a_ops->migratepage(mapping, newpage,
961 						page, mode);
962 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
963 			!PageIsolated(page));
964 	}
965 
966 	/*
967 	 * When successful, old pagecache page->mapping must be cleared before
968 	 * page is freed; but stats require that PageAnon be left as PageAnon.
969 	 */
970 	if (rc == MIGRATEPAGE_SUCCESS) {
971 		if (__PageMovable(page)) {
972 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 
974 			/*
975 			 * We clear PG_movable under page_lock so any compactor
976 			 * cannot try to migrate this page.
977 			 */
978 			__ClearPageIsolated(page);
979 		}
980 
981 		/*
982 		 * Anonymous and movable page->mapping will be cleard by
983 		 * free_pages_prepare so don't reset it here for keeping
984 		 * the type to work PageAnon, for example.
985 		 */
986 		if (!PageMappingFlags(page))
987 			page->mapping = NULL;
988 	}
989 out:
990 	return rc;
991 }
992 
993 static int __unmap_and_move(struct page *page, struct page *newpage,
994 				int force, enum migrate_mode mode)
995 {
996 	int rc = -EAGAIN;
997 	int page_was_mapped = 0;
998 	struct anon_vma *anon_vma = NULL;
999 	bool is_lru = !__PageMovable(page);
1000 
1001 	if (!trylock_page(page)) {
1002 		if (!force || mode == MIGRATE_ASYNC)
1003 			goto out;
1004 
1005 		/*
1006 		 * It's not safe for direct compaction to call lock_page.
1007 		 * For example, during page readahead pages are added locked
1008 		 * to the LRU. Later, when the IO completes the pages are
1009 		 * marked uptodate and unlocked. However, the queueing
1010 		 * could be merging multiple pages for one bio (e.g.
1011 		 * mpage_readpages). If an allocation happens for the
1012 		 * second or third page, the process can end up locking
1013 		 * the same page twice and deadlocking. Rather than
1014 		 * trying to be clever about what pages can be locked,
1015 		 * avoid the use of lock_page for direct compaction
1016 		 * altogether.
1017 		 */
1018 		if (current->flags & PF_MEMALLOC)
1019 			goto out;
1020 
1021 		lock_page(page);
1022 	}
1023 
1024 	if (PageWriteback(page)) {
1025 		/*
1026 		 * Only in the case of a full synchronous migration is it
1027 		 * necessary to wait for PageWriteback. In the async case,
1028 		 * the retry loop is too short and in the sync-light case,
1029 		 * the overhead of stalling is too much
1030 		 */
1031 		switch (mode) {
1032 		case MIGRATE_SYNC:
1033 		case MIGRATE_SYNC_NO_COPY:
1034 			break;
1035 		default:
1036 			rc = -EBUSY;
1037 			goto out_unlock;
1038 		}
1039 		if (!force)
1040 			goto out_unlock;
1041 		wait_on_page_writeback(page);
1042 	}
1043 
1044 	/*
1045 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1046 	 * we cannot notice that anon_vma is freed while we migrates a page.
1047 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1048 	 * of migration. File cache pages are no problem because of page_lock()
1049 	 * File Caches may use write_page() or lock_page() in migration, then,
1050 	 * just care Anon page here.
1051 	 *
1052 	 * Only page_get_anon_vma() understands the subtleties of
1053 	 * getting a hold on an anon_vma from outside one of its mms.
1054 	 * But if we cannot get anon_vma, then we won't need it anyway,
1055 	 * because that implies that the anon page is no longer mapped
1056 	 * (and cannot be remapped so long as we hold the page lock).
1057 	 */
1058 	if (PageAnon(page) && !PageKsm(page))
1059 		anon_vma = page_get_anon_vma(page);
1060 
1061 	/*
1062 	 * Block others from accessing the new page when we get around to
1063 	 * establishing additional references. We are usually the only one
1064 	 * holding a reference to newpage at this point. We used to have a BUG
1065 	 * here if trylock_page(newpage) fails, but would like to allow for
1066 	 * cases where there might be a race with the previous use of newpage.
1067 	 * This is much like races on refcount of oldpage: just don't BUG().
1068 	 */
1069 	if (unlikely(!trylock_page(newpage)))
1070 		goto out_unlock;
1071 
1072 	if (unlikely(!is_lru)) {
1073 		rc = move_to_new_page(newpage, page, mode);
1074 		goto out_unlock_both;
1075 	}
1076 
1077 	/*
1078 	 * Corner case handling:
1079 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1080 	 * and treated as swapcache but it has no rmap yet.
1081 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1082 	 * trigger a BUG.  So handle it here.
1083 	 * 2. An orphaned page (see truncate_complete_page) might have
1084 	 * fs-private metadata. The page can be picked up due to memory
1085 	 * offlining.  Everywhere else except page reclaim, the page is
1086 	 * invisible to the vm, so the page can not be migrated.  So try to
1087 	 * free the metadata, so the page can be freed.
1088 	 */
1089 	if (!page->mapping) {
1090 		VM_BUG_ON_PAGE(PageAnon(page), page);
1091 		if (page_has_private(page)) {
1092 			try_to_free_buffers(page);
1093 			goto out_unlock_both;
1094 		}
1095 	} else if (page_mapped(page)) {
1096 		/* Establish migration ptes */
1097 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1098 				page);
1099 		try_to_unmap(page,
1100 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1101 		page_was_mapped = 1;
1102 	}
1103 
1104 	if (!page_mapped(page))
1105 		rc = move_to_new_page(newpage, page, mode);
1106 
1107 	if (page_was_mapped)
1108 		remove_migration_ptes(page,
1109 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1110 
1111 out_unlock_both:
1112 	unlock_page(newpage);
1113 out_unlock:
1114 	/* Drop an anon_vma reference if we took one */
1115 	if (anon_vma)
1116 		put_anon_vma(anon_vma);
1117 	unlock_page(page);
1118 out:
1119 	/*
1120 	 * If migration is successful, decrease refcount of the newpage
1121 	 * which will not free the page because new page owner increased
1122 	 * refcounter. As well, if it is LRU page, add the page to LRU
1123 	 * list in here.
1124 	 */
1125 	if (rc == MIGRATEPAGE_SUCCESS) {
1126 		if (unlikely(__PageMovable(newpage)))
1127 			put_page(newpage);
1128 		else
1129 			putback_lru_page(newpage);
1130 	}
1131 
1132 	return rc;
1133 }
1134 
1135 /*
1136  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1137  * around it.
1138  */
1139 #if defined(CONFIG_ARM) && \
1140 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1141 #define ICE_noinline noinline
1142 #else
1143 #define ICE_noinline
1144 #endif
1145 
1146 /*
1147  * Obtain the lock on page, remove all ptes and migrate the page
1148  * to the newly allocated page in newpage.
1149  */
1150 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1151 				   free_page_t put_new_page,
1152 				   unsigned long private, struct page *page,
1153 				   int force, enum migrate_mode mode,
1154 				   enum migrate_reason reason)
1155 {
1156 	int rc = MIGRATEPAGE_SUCCESS;
1157 	struct page *newpage;
1158 
1159 	if (!thp_migration_supported() && PageTransHuge(page))
1160 		return -ENOMEM;
1161 
1162 	newpage = get_new_page(page, private);
1163 	if (!newpage)
1164 		return -ENOMEM;
1165 
1166 	if (page_count(page) == 1) {
1167 		/* page was freed from under us. So we are done. */
1168 		ClearPageActive(page);
1169 		ClearPageUnevictable(page);
1170 		if (unlikely(__PageMovable(page))) {
1171 			lock_page(page);
1172 			if (!PageMovable(page))
1173 				__ClearPageIsolated(page);
1174 			unlock_page(page);
1175 		}
1176 		if (put_new_page)
1177 			put_new_page(newpage, private);
1178 		else
1179 			put_page(newpage);
1180 		goto out;
1181 	}
1182 
1183 	rc = __unmap_and_move(page, newpage, force, mode);
1184 	if (rc == MIGRATEPAGE_SUCCESS)
1185 		set_page_owner_migrate_reason(newpage, reason);
1186 
1187 out:
1188 	if (rc != -EAGAIN) {
1189 		/*
1190 		 * A page that has been migrated has all references
1191 		 * removed and will be freed. A page that has not been
1192 		 * migrated will have kepts its references and be
1193 		 * restored.
1194 		 */
1195 		list_del(&page->lru);
1196 
1197 		/*
1198 		 * Compaction can migrate also non-LRU pages which are
1199 		 * not accounted to NR_ISOLATED_*. They can be recognized
1200 		 * as __PageMovable
1201 		 */
1202 		if (likely(!__PageMovable(page)))
1203 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1204 					page_is_file_cache(page), -hpage_nr_pages(page));
1205 	}
1206 
1207 	/*
1208 	 * If migration is successful, releases reference grabbed during
1209 	 * isolation. Otherwise, restore the page to right list unless
1210 	 * we want to retry.
1211 	 */
1212 	if (rc == MIGRATEPAGE_SUCCESS) {
1213 		put_page(page);
1214 		if (reason == MR_MEMORY_FAILURE) {
1215 			/*
1216 			 * Set PG_HWPoison on just freed page
1217 			 * intentionally. Although it's rather weird,
1218 			 * it's how HWPoison flag works at the moment.
1219 			 */
1220 			if (set_hwpoison_free_buddy_page(page))
1221 				num_poisoned_pages_inc();
1222 		}
1223 	} else {
1224 		if (rc != -EAGAIN) {
1225 			if (likely(!__PageMovable(page))) {
1226 				putback_lru_page(page);
1227 				goto put_new;
1228 			}
1229 
1230 			lock_page(page);
1231 			if (PageMovable(page))
1232 				putback_movable_page(page);
1233 			else
1234 				__ClearPageIsolated(page);
1235 			unlock_page(page);
1236 			put_page(page);
1237 		}
1238 put_new:
1239 		if (put_new_page)
1240 			put_new_page(newpage, private);
1241 		else
1242 			put_page(newpage);
1243 	}
1244 
1245 	return rc;
1246 }
1247 
1248 /*
1249  * Counterpart of unmap_and_move_page() for hugepage migration.
1250  *
1251  * This function doesn't wait the completion of hugepage I/O
1252  * because there is no race between I/O and migration for hugepage.
1253  * Note that currently hugepage I/O occurs only in direct I/O
1254  * where no lock is held and PG_writeback is irrelevant,
1255  * and writeback status of all subpages are counted in the reference
1256  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1257  * under direct I/O, the reference of the head page is 512 and a bit more.)
1258  * This means that when we try to migrate hugepage whose subpages are
1259  * doing direct I/O, some references remain after try_to_unmap() and
1260  * hugepage migration fails without data corruption.
1261  *
1262  * There is also no race when direct I/O is issued on the page under migration,
1263  * because then pte is replaced with migration swap entry and direct I/O code
1264  * will wait in the page fault for migration to complete.
1265  */
1266 static int unmap_and_move_huge_page(new_page_t get_new_page,
1267 				free_page_t put_new_page, unsigned long private,
1268 				struct page *hpage, int force,
1269 				enum migrate_mode mode, int reason)
1270 {
1271 	int rc = -EAGAIN;
1272 	int page_was_mapped = 0;
1273 	struct page *new_hpage;
1274 	struct anon_vma *anon_vma = NULL;
1275 
1276 	/*
1277 	 * Movability of hugepages depends on architectures and hugepage size.
1278 	 * This check is necessary because some callers of hugepage migration
1279 	 * like soft offline and memory hotremove don't walk through page
1280 	 * tables or check whether the hugepage is pmd-based or not before
1281 	 * kicking migration.
1282 	 */
1283 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1284 		putback_active_hugepage(hpage);
1285 		return -ENOSYS;
1286 	}
1287 
1288 	new_hpage = get_new_page(hpage, private);
1289 	if (!new_hpage)
1290 		return -ENOMEM;
1291 
1292 	if (!trylock_page(hpage)) {
1293 		if (!force)
1294 			goto out;
1295 		switch (mode) {
1296 		case MIGRATE_SYNC:
1297 		case MIGRATE_SYNC_NO_COPY:
1298 			break;
1299 		default:
1300 			goto out;
1301 		}
1302 		lock_page(hpage);
1303 	}
1304 
1305 	if (PageAnon(hpage))
1306 		anon_vma = page_get_anon_vma(hpage);
1307 
1308 	if (unlikely(!trylock_page(new_hpage)))
1309 		goto put_anon;
1310 
1311 	if (page_mapped(hpage)) {
1312 		try_to_unmap(hpage,
1313 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1314 		page_was_mapped = 1;
1315 	}
1316 
1317 	if (!page_mapped(hpage))
1318 		rc = move_to_new_page(new_hpage, hpage, mode);
1319 
1320 	if (page_was_mapped)
1321 		remove_migration_ptes(hpage,
1322 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1323 
1324 	unlock_page(new_hpage);
1325 
1326 put_anon:
1327 	if (anon_vma)
1328 		put_anon_vma(anon_vma);
1329 
1330 	if (rc == MIGRATEPAGE_SUCCESS) {
1331 		move_hugetlb_state(hpage, new_hpage, reason);
1332 		put_new_page = NULL;
1333 	}
1334 
1335 	unlock_page(hpage);
1336 out:
1337 	if (rc != -EAGAIN)
1338 		putback_active_hugepage(hpage);
1339 
1340 	/*
1341 	 * If migration was not successful and there's a freeing callback, use
1342 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1343 	 * isolation.
1344 	 */
1345 	if (put_new_page)
1346 		put_new_page(new_hpage, private);
1347 	else
1348 		putback_active_hugepage(new_hpage);
1349 
1350 	return rc;
1351 }
1352 
1353 /*
1354  * migrate_pages - migrate the pages specified in a list, to the free pages
1355  *		   supplied as the target for the page migration
1356  *
1357  * @from:		The list of pages to be migrated.
1358  * @get_new_page:	The function used to allocate free pages to be used
1359  *			as the target of the page migration.
1360  * @put_new_page:	The function used to free target pages if migration
1361  *			fails, or NULL if no special handling is necessary.
1362  * @private:		Private data to be passed on to get_new_page()
1363  * @mode:		The migration mode that specifies the constraints for
1364  *			page migration, if any.
1365  * @reason:		The reason for page migration.
1366  *
1367  * The function returns after 10 attempts or if no pages are movable any more
1368  * because the list has become empty or no retryable pages exist any more.
1369  * The caller should call putback_movable_pages() to return pages to the LRU
1370  * or free list only if ret != 0.
1371  *
1372  * Returns the number of pages that were not migrated, or an error code.
1373  */
1374 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1375 		free_page_t put_new_page, unsigned long private,
1376 		enum migrate_mode mode, int reason)
1377 {
1378 	int retry = 1;
1379 	int nr_failed = 0;
1380 	int nr_succeeded = 0;
1381 	int pass = 0;
1382 	struct page *page;
1383 	struct page *page2;
1384 	int swapwrite = current->flags & PF_SWAPWRITE;
1385 	int rc;
1386 
1387 	if (!swapwrite)
1388 		current->flags |= PF_SWAPWRITE;
1389 
1390 	for(pass = 0; pass < 10 && retry; pass++) {
1391 		retry = 0;
1392 
1393 		list_for_each_entry_safe(page, page2, from, lru) {
1394 retry:
1395 			cond_resched();
1396 
1397 			if (PageHuge(page))
1398 				rc = unmap_and_move_huge_page(get_new_page,
1399 						put_new_page, private, page,
1400 						pass > 2, mode, reason);
1401 			else
1402 				rc = unmap_and_move(get_new_page, put_new_page,
1403 						private, page, pass > 2, mode,
1404 						reason);
1405 
1406 			switch(rc) {
1407 			case -ENOMEM:
1408 				/*
1409 				 * THP migration might be unsupported or the
1410 				 * allocation could've failed so we should
1411 				 * retry on the same page with the THP split
1412 				 * to base pages.
1413 				 *
1414 				 * Head page is retried immediately and tail
1415 				 * pages are added to the tail of the list so
1416 				 * we encounter them after the rest of the list
1417 				 * is processed.
1418 				 */
1419 				if (PageTransHuge(page) && !PageHuge(page)) {
1420 					lock_page(page);
1421 					rc = split_huge_page_to_list(page, from);
1422 					unlock_page(page);
1423 					if (!rc) {
1424 						list_safe_reset_next(page, page2, lru);
1425 						goto retry;
1426 					}
1427 				}
1428 				nr_failed++;
1429 				goto out;
1430 			case -EAGAIN:
1431 				retry++;
1432 				break;
1433 			case MIGRATEPAGE_SUCCESS:
1434 				nr_succeeded++;
1435 				break;
1436 			default:
1437 				/*
1438 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1439 				 * unlike -EAGAIN case, the failed page is
1440 				 * removed from migration page list and not
1441 				 * retried in the next outer loop.
1442 				 */
1443 				nr_failed++;
1444 				break;
1445 			}
1446 		}
1447 	}
1448 	nr_failed += retry;
1449 	rc = nr_failed;
1450 out:
1451 	if (nr_succeeded)
1452 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1453 	if (nr_failed)
1454 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1455 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1456 
1457 	if (!swapwrite)
1458 		current->flags &= ~PF_SWAPWRITE;
1459 
1460 	return rc;
1461 }
1462 
1463 #ifdef CONFIG_NUMA
1464 
1465 static int store_status(int __user *status, int start, int value, int nr)
1466 {
1467 	while (nr-- > 0) {
1468 		if (put_user(value, status + start))
1469 			return -EFAULT;
1470 		start++;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static int do_move_pages_to_node(struct mm_struct *mm,
1477 		struct list_head *pagelist, int node)
1478 {
1479 	int err;
1480 
1481 	if (list_empty(pagelist))
1482 		return 0;
1483 
1484 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1485 			MIGRATE_SYNC, MR_SYSCALL);
1486 	if (err)
1487 		putback_movable_pages(pagelist);
1488 	return err;
1489 }
1490 
1491 /*
1492  * Resolves the given address to a struct page, isolates it from the LRU and
1493  * puts it to the given pagelist.
1494  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1495  * queued or the page doesn't need to be migrated because it is already on
1496  * the target node
1497  */
1498 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1499 		int node, struct list_head *pagelist, bool migrate_all)
1500 {
1501 	struct vm_area_struct *vma;
1502 	struct page *page;
1503 	unsigned int follflags;
1504 	int err;
1505 
1506 	down_read(&mm->mmap_sem);
1507 	err = -EFAULT;
1508 	vma = find_vma(mm, addr);
1509 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1510 		goto out;
1511 
1512 	/* FOLL_DUMP to ignore special (like zero) pages */
1513 	follflags = FOLL_GET | FOLL_DUMP;
1514 	page = follow_page(vma, addr, follflags);
1515 
1516 	err = PTR_ERR(page);
1517 	if (IS_ERR(page))
1518 		goto out;
1519 
1520 	err = -ENOENT;
1521 	if (!page)
1522 		goto out;
1523 
1524 	err = 0;
1525 	if (page_to_nid(page) == node)
1526 		goto out_putpage;
1527 
1528 	err = -EACCES;
1529 	if (page_mapcount(page) > 1 && !migrate_all)
1530 		goto out_putpage;
1531 
1532 	if (PageHuge(page)) {
1533 		if (PageHead(page)) {
1534 			isolate_huge_page(page, pagelist);
1535 			err = 0;
1536 		}
1537 	} else {
1538 		struct page *head;
1539 
1540 		head = compound_head(page);
1541 		err = isolate_lru_page(head);
1542 		if (err)
1543 			goto out_putpage;
1544 
1545 		err = 0;
1546 		list_add_tail(&head->lru, pagelist);
1547 		mod_node_page_state(page_pgdat(head),
1548 			NR_ISOLATED_ANON + page_is_file_cache(head),
1549 			hpage_nr_pages(head));
1550 	}
1551 out_putpage:
1552 	/*
1553 	 * Either remove the duplicate refcount from
1554 	 * isolate_lru_page() or drop the page ref if it was
1555 	 * not isolated.
1556 	 */
1557 	put_page(page);
1558 out:
1559 	up_read(&mm->mmap_sem);
1560 	return err;
1561 }
1562 
1563 /*
1564  * Migrate an array of page address onto an array of nodes and fill
1565  * the corresponding array of status.
1566  */
1567 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1568 			 unsigned long nr_pages,
1569 			 const void __user * __user *pages,
1570 			 const int __user *nodes,
1571 			 int __user *status, int flags)
1572 {
1573 	int current_node = NUMA_NO_NODE;
1574 	LIST_HEAD(pagelist);
1575 	int start, i;
1576 	int err = 0, err1;
1577 
1578 	migrate_prep();
1579 
1580 	for (i = start = 0; i < nr_pages; i++) {
1581 		const void __user *p;
1582 		unsigned long addr;
1583 		int node;
1584 
1585 		err = -EFAULT;
1586 		if (get_user(p, pages + i))
1587 			goto out_flush;
1588 		if (get_user(node, nodes + i))
1589 			goto out_flush;
1590 		addr = (unsigned long)p;
1591 
1592 		err = -ENODEV;
1593 		if (node < 0 || node >= MAX_NUMNODES)
1594 			goto out_flush;
1595 		if (!node_state(node, N_MEMORY))
1596 			goto out_flush;
1597 
1598 		err = -EACCES;
1599 		if (!node_isset(node, task_nodes))
1600 			goto out_flush;
1601 
1602 		if (current_node == NUMA_NO_NODE) {
1603 			current_node = node;
1604 			start = i;
1605 		} else if (node != current_node) {
1606 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1607 			if (err)
1608 				goto out;
1609 			err = store_status(status, start, current_node, i - start);
1610 			if (err)
1611 				goto out;
1612 			start = i;
1613 			current_node = node;
1614 		}
1615 
1616 		/*
1617 		 * Errors in the page lookup or isolation are not fatal and we simply
1618 		 * report them via status
1619 		 */
1620 		err = add_page_for_migration(mm, addr, current_node,
1621 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1622 		if (!err)
1623 			continue;
1624 
1625 		err = store_status(status, i, err, 1);
1626 		if (err)
1627 			goto out_flush;
1628 
1629 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1630 		if (err)
1631 			goto out;
1632 		if (i > start) {
1633 			err = store_status(status, start, current_node, i - start);
1634 			if (err)
1635 				goto out;
1636 		}
1637 		current_node = NUMA_NO_NODE;
1638 	}
1639 out_flush:
1640 	if (list_empty(&pagelist))
1641 		return err;
1642 
1643 	/* Make sure we do not overwrite the existing error */
1644 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1645 	if (!err1)
1646 		err1 = store_status(status, start, current_node, i - start);
1647 	if (!err)
1648 		err = err1;
1649 out:
1650 	return err;
1651 }
1652 
1653 /*
1654  * Determine the nodes of an array of pages and store it in an array of status.
1655  */
1656 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1657 				const void __user **pages, int *status)
1658 {
1659 	unsigned long i;
1660 
1661 	down_read(&mm->mmap_sem);
1662 
1663 	for (i = 0; i < nr_pages; i++) {
1664 		unsigned long addr = (unsigned long)(*pages);
1665 		struct vm_area_struct *vma;
1666 		struct page *page;
1667 		int err = -EFAULT;
1668 
1669 		vma = find_vma(mm, addr);
1670 		if (!vma || addr < vma->vm_start)
1671 			goto set_status;
1672 
1673 		/* FOLL_DUMP to ignore special (like zero) pages */
1674 		page = follow_page(vma, addr, FOLL_DUMP);
1675 
1676 		err = PTR_ERR(page);
1677 		if (IS_ERR(page))
1678 			goto set_status;
1679 
1680 		err = page ? page_to_nid(page) : -ENOENT;
1681 set_status:
1682 		*status = err;
1683 
1684 		pages++;
1685 		status++;
1686 	}
1687 
1688 	up_read(&mm->mmap_sem);
1689 }
1690 
1691 /*
1692  * Determine the nodes of a user array of pages and store it in
1693  * a user array of status.
1694  */
1695 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1696 			 const void __user * __user *pages,
1697 			 int __user *status)
1698 {
1699 #define DO_PAGES_STAT_CHUNK_NR 16
1700 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1701 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1702 
1703 	while (nr_pages) {
1704 		unsigned long chunk_nr;
1705 
1706 		chunk_nr = nr_pages;
1707 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1708 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1709 
1710 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1711 			break;
1712 
1713 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1714 
1715 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1716 			break;
1717 
1718 		pages += chunk_nr;
1719 		status += chunk_nr;
1720 		nr_pages -= chunk_nr;
1721 	}
1722 	return nr_pages ? -EFAULT : 0;
1723 }
1724 
1725 /*
1726  * Move a list of pages in the address space of the currently executing
1727  * process.
1728  */
1729 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1730 			     const void __user * __user *pages,
1731 			     const int __user *nodes,
1732 			     int __user *status, int flags)
1733 {
1734 	struct task_struct *task;
1735 	struct mm_struct *mm;
1736 	int err;
1737 	nodemask_t task_nodes;
1738 
1739 	/* Check flags */
1740 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1741 		return -EINVAL;
1742 
1743 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1744 		return -EPERM;
1745 
1746 	/* Find the mm_struct */
1747 	rcu_read_lock();
1748 	task = pid ? find_task_by_vpid(pid) : current;
1749 	if (!task) {
1750 		rcu_read_unlock();
1751 		return -ESRCH;
1752 	}
1753 	get_task_struct(task);
1754 
1755 	/*
1756 	 * Check if this process has the right to modify the specified
1757 	 * process. Use the regular "ptrace_may_access()" checks.
1758 	 */
1759 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1760 		rcu_read_unlock();
1761 		err = -EPERM;
1762 		goto out;
1763 	}
1764 	rcu_read_unlock();
1765 
1766  	err = security_task_movememory(task);
1767  	if (err)
1768 		goto out;
1769 
1770 	task_nodes = cpuset_mems_allowed(task);
1771 	mm = get_task_mm(task);
1772 	put_task_struct(task);
1773 
1774 	if (!mm)
1775 		return -EINVAL;
1776 
1777 	if (nodes)
1778 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1779 				    nodes, status, flags);
1780 	else
1781 		err = do_pages_stat(mm, nr_pages, pages, status);
1782 
1783 	mmput(mm);
1784 	return err;
1785 
1786 out:
1787 	put_task_struct(task);
1788 	return err;
1789 }
1790 
1791 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1792 		const void __user * __user *, pages,
1793 		const int __user *, nodes,
1794 		int __user *, status, int, flags)
1795 {
1796 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1797 }
1798 
1799 #ifdef CONFIG_COMPAT
1800 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1801 		       compat_uptr_t __user *, pages32,
1802 		       const int __user *, nodes,
1803 		       int __user *, status,
1804 		       int, flags)
1805 {
1806 	const void __user * __user *pages;
1807 	int i;
1808 
1809 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1810 	for (i = 0; i < nr_pages; i++) {
1811 		compat_uptr_t p;
1812 
1813 		if (get_user(p, pages32 + i) ||
1814 			put_user(compat_ptr(p), pages + i))
1815 			return -EFAULT;
1816 	}
1817 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1818 }
1819 #endif /* CONFIG_COMPAT */
1820 
1821 #ifdef CONFIG_NUMA_BALANCING
1822 /*
1823  * Returns true if this is a safe migration target node for misplaced NUMA
1824  * pages. Currently it only checks the watermarks which crude
1825  */
1826 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1827 				   unsigned long nr_migrate_pages)
1828 {
1829 	int z;
1830 
1831 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1832 		struct zone *zone = pgdat->node_zones + z;
1833 
1834 		if (!populated_zone(zone))
1835 			continue;
1836 
1837 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1838 		if (!zone_watermark_ok(zone, 0,
1839 				       high_wmark_pages(zone) +
1840 				       nr_migrate_pages,
1841 				       0, 0))
1842 			continue;
1843 		return true;
1844 	}
1845 	return false;
1846 }
1847 
1848 static struct page *alloc_misplaced_dst_page(struct page *page,
1849 					   unsigned long data)
1850 {
1851 	int nid = (int) data;
1852 	struct page *newpage;
1853 
1854 	newpage = __alloc_pages_node(nid,
1855 					 (GFP_HIGHUSER_MOVABLE |
1856 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1857 					  __GFP_NORETRY | __GFP_NOWARN) &
1858 					 ~__GFP_RECLAIM, 0);
1859 
1860 	return newpage;
1861 }
1862 
1863 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1864 {
1865 	int page_lru;
1866 
1867 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1868 
1869 	/* Avoid migrating to a node that is nearly full */
1870 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1871 		return 0;
1872 
1873 	if (isolate_lru_page(page))
1874 		return 0;
1875 
1876 	/*
1877 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1878 	 * check on page_count(), so we must do it here, now that the page
1879 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1880 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1881 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1882 	 */
1883 	if (PageTransHuge(page) && page_count(page) != 3) {
1884 		putback_lru_page(page);
1885 		return 0;
1886 	}
1887 
1888 	page_lru = page_is_file_cache(page);
1889 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1890 				hpage_nr_pages(page));
1891 
1892 	/*
1893 	 * Isolating the page has taken another reference, so the
1894 	 * caller's reference can be safely dropped without the page
1895 	 * disappearing underneath us during migration.
1896 	 */
1897 	put_page(page);
1898 	return 1;
1899 }
1900 
1901 bool pmd_trans_migrating(pmd_t pmd)
1902 {
1903 	struct page *page = pmd_page(pmd);
1904 	return PageLocked(page);
1905 }
1906 
1907 /*
1908  * Attempt to migrate a misplaced page to the specified destination
1909  * node. Caller is expected to have an elevated reference count on
1910  * the page that will be dropped by this function before returning.
1911  */
1912 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1913 			   int node)
1914 {
1915 	pg_data_t *pgdat = NODE_DATA(node);
1916 	int isolated;
1917 	int nr_remaining;
1918 	LIST_HEAD(migratepages);
1919 
1920 	/*
1921 	 * Don't migrate file pages that are mapped in multiple processes
1922 	 * with execute permissions as they are probably shared libraries.
1923 	 */
1924 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1925 	    (vma->vm_flags & VM_EXEC))
1926 		goto out;
1927 
1928 	/*
1929 	 * Also do not migrate dirty pages as not all filesystems can move
1930 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1931 	 */
1932 	if (page_is_file_cache(page) && PageDirty(page))
1933 		goto out;
1934 
1935 	isolated = numamigrate_isolate_page(pgdat, page);
1936 	if (!isolated)
1937 		goto out;
1938 
1939 	list_add(&page->lru, &migratepages);
1940 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1941 				     NULL, node, MIGRATE_ASYNC,
1942 				     MR_NUMA_MISPLACED);
1943 	if (nr_remaining) {
1944 		if (!list_empty(&migratepages)) {
1945 			list_del(&page->lru);
1946 			dec_node_page_state(page, NR_ISOLATED_ANON +
1947 					page_is_file_cache(page));
1948 			putback_lru_page(page);
1949 		}
1950 		isolated = 0;
1951 	} else
1952 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1953 	BUG_ON(!list_empty(&migratepages));
1954 	return isolated;
1955 
1956 out:
1957 	put_page(page);
1958 	return 0;
1959 }
1960 #endif /* CONFIG_NUMA_BALANCING */
1961 
1962 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1963 /*
1964  * Migrates a THP to a given target node. page must be locked and is unlocked
1965  * before returning.
1966  */
1967 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1968 				struct vm_area_struct *vma,
1969 				pmd_t *pmd, pmd_t entry,
1970 				unsigned long address,
1971 				struct page *page, int node)
1972 {
1973 	spinlock_t *ptl;
1974 	pg_data_t *pgdat = NODE_DATA(node);
1975 	int isolated = 0;
1976 	struct page *new_page = NULL;
1977 	int page_lru = page_is_file_cache(page);
1978 	unsigned long start = address & HPAGE_PMD_MASK;
1979 	unsigned long end = start + HPAGE_PMD_SIZE;
1980 
1981 	new_page = alloc_pages_node(node,
1982 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1983 		HPAGE_PMD_ORDER);
1984 	if (!new_page)
1985 		goto out_fail;
1986 	prep_transhuge_page(new_page);
1987 
1988 	isolated = numamigrate_isolate_page(pgdat, page);
1989 	if (!isolated) {
1990 		put_page(new_page);
1991 		goto out_fail;
1992 	}
1993 
1994 	/* Prepare a page as a migration target */
1995 	__SetPageLocked(new_page);
1996 	if (PageSwapBacked(page))
1997 		__SetPageSwapBacked(new_page);
1998 
1999 	/* anon mapping, we can simply copy page->mapping to the new page: */
2000 	new_page->mapping = page->mapping;
2001 	new_page->index = page->index;
2002 	migrate_page_copy(new_page, page);
2003 	WARN_ON(PageLRU(new_page));
2004 
2005 	/* Recheck the target PMD */
2006 	ptl = pmd_lock(mm, pmd);
2007 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2008 		spin_unlock(ptl);
2009 
2010 		/* Reverse changes made by migrate_page_copy() */
2011 		if (TestClearPageActive(new_page))
2012 			SetPageActive(page);
2013 		if (TestClearPageUnevictable(new_page))
2014 			SetPageUnevictable(page);
2015 
2016 		unlock_page(new_page);
2017 		put_page(new_page);		/* Free it */
2018 
2019 		/* Retake the callers reference and putback on LRU */
2020 		get_page(page);
2021 		putback_lru_page(page);
2022 		mod_node_page_state(page_pgdat(page),
2023 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2024 
2025 		goto out_unlock;
2026 	}
2027 
2028 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2029 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2030 
2031 	/*
2032 	 * Overwrite the old entry under pagetable lock and establish
2033 	 * the new PTE. Any parallel GUP will either observe the old
2034 	 * page blocking on the page lock, block on the page table
2035 	 * lock or observe the new page. The SetPageUptodate on the
2036 	 * new page and page_add_new_anon_rmap guarantee the copy is
2037 	 * visible before the pagetable update.
2038 	 */
2039 	flush_cache_range(vma, start, end);
2040 	page_add_anon_rmap(new_page, vma, start, true);
2041 	/*
2042 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2043 	 * has already been flushed globally.  So no TLB can be currently
2044 	 * caching this non present pmd mapping.  There's no need to clear the
2045 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2046 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2047 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2048 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2049 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2050 	 * pmd.
2051 	 */
2052 	set_pmd_at(mm, start, pmd, entry);
2053 	update_mmu_cache_pmd(vma, address, &entry);
2054 
2055 	page_ref_unfreeze(page, 2);
2056 	mlock_migrate_page(new_page, page);
2057 	page_remove_rmap(page, true);
2058 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2059 
2060 	spin_unlock(ptl);
2061 
2062 	/* Take an "isolate" reference and put new page on the LRU. */
2063 	get_page(new_page);
2064 	putback_lru_page(new_page);
2065 
2066 	unlock_page(new_page);
2067 	unlock_page(page);
2068 	put_page(page);			/* Drop the rmap reference */
2069 	put_page(page);			/* Drop the LRU isolation reference */
2070 
2071 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2072 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2073 
2074 	mod_node_page_state(page_pgdat(page),
2075 			NR_ISOLATED_ANON + page_lru,
2076 			-HPAGE_PMD_NR);
2077 	return isolated;
2078 
2079 out_fail:
2080 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2081 	ptl = pmd_lock(mm, pmd);
2082 	if (pmd_same(*pmd, entry)) {
2083 		entry = pmd_modify(entry, vma->vm_page_prot);
2084 		set_pmd_at(mm, start, pmd, entry);
2085 		update_mmu_cache_pmd(vma, address, &entry);
2086 	}
2087 	spin_unlock(ptl);
2088 
2089 out_unlock:
2090 	unlock_page(page);
2091 	put_page(page);
2092 	return 0;
2093 }
2094 #endif /* CONFIG_NUMA_BALANCING */
2095 
2096 #endif /* CONFIG_NUMA */
2097 
2098 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2099 struct migrate_vma {
2100 	struct vm_area_struct	*vma;
2101 	unsigned long		*dst;
2102 	unsigned long		*src;
2103 	unsigned long		cpages;
2104 	unsigned long		npages;
2105 	unsigned long		start;
2106 	unsigned long		end;
2107 };
2108 
2109 static int migrate_vma_collect_hole(unsigned long start,
2110 				    unsigned long end,
2111 				    struct mm_walk *walk)
2112 {
2113 	struct migrate_vma *migrate = walk->private;
2114 	unsigned long addr;
2115 
2116 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2117 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2118 		migrate->dst[migrate->npages] = 0;
2119 		migrate->npages++;
2120 		migrate->cpages++;
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 static int migrate_vma_collect_skip(unsigned long start,
2127 				    unsigned long end,
2128 				    struct mm_walk *walk)
2129 {
2130 	struct migrate_vma *migrate = walk->private;
2131 	unsigned long addr;
2132 
2133 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2134 		migrate->dst[migrate->npages] = 0;
2135 		migrate->src[migrate->npages++] = 0;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2142 				   unsigned long start,
2143 				   unsigned long end,
2144 				   struct mm_walk *walk)
2145 {
2146 	struct migrate_vma *migrate = walk->private;
2147 	struct vm_area_struct *vma = walk->vma;
2148 	struct mm_struct *mm = vma->vm_mm;
2149 	unsigned long addr = start, unmapped = 0;
2150 	spinlock_t *ptl;
2151 	pte_t *ptep;
2152 
2153 again:
2154 	if (pmd_none(*pmdp))
2155 		return migrate_vma_collect_hole(start, end, walk);
2156 
2157 	if (pmd_trans_huge(*pmdp)) {
2158 		struct page *page;
2159 
2160 		ptl = pmd_lock(mm, pmdp);
2161 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2162 			spin_unlock(ptl);
2163 			goto again;
2164 		}
2165 
2166 		page = pmd_page(*pmdp);
2167 		if (is_huge_zero_page(page)) {
2168 			spin_unlock(ptl);
2169 			split_huge_pmd(vma, pmdp, addr);
2170 			if (pmd_trans_unstable(pmdp))
2171 				return migrate_vma_collect_skip(start, end,
2172 								walk);
2173 		} else {
2174 			int ret;
2175 
2176 			get_page(page);
2177 			spin_unlock(ptl);
2178 			if (unlikely(!trylock_page(page)))
2179 				return migrate_vma_collect_skip(start, end,
2180 								walk);
2181 			ret = split_huge_page(page);
2182 			unlock_page(page);
2183 			put_page(page);
2184 			if (ret)
2185 				return migrate_vma_collect_skip(start, end,
2186 								walk);
2187 			if (pmd_none(*pmdp))
2188 				return migrate_vma_collect_hole(start, end,
2189 								walk);
2190 		}
2191 	}
2192 
2193 	if (unlikely(pmd_bad(*pmdp)))
2194 		return migrate_vma_collect_skip(start, end, walk);
2195 
2196 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2197 	arch_enter_lazy_mmu_mode();
2198 
2199 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2200 		unsigned long mpfn, pfn;
2201 		struct page *page;
2202 		swp_entry_t entry;
2203 		pte_t pte;
2204 
2205 		pte = *ptep;
2206 		pfn = pte_pfn(pte);
2207 
2208 		if (pte_none(pte)) {
2209 			mpfn = MIGRATE_PFN_MIGRATE;
2210 			migrate->cpages++;
2211 			pfn = 0;
2212 			goto next;
2213 		}
2214 
2215 		if (!pte_present(pte)) {
2216 			mpfn = pfn = 0;
2217 
2218 			/*
2219 			 * Only care about unaddressable device page special
2220 			 * page table entry. Other special swap entries are not
2221 			 * migratable, and we ignore regular swapped page.
2222 			 */
2223 			entry = pte_to_swp_entry(pte);
2224 			if (!is_device_private_entry(entry))
2225 				goto next;
2226 
2227 			page = device_private_entry_to_page(entry);
2228 			mpfn = migrate_pfn(page_to_pfn(page))|
2229 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2230 			if (is_write_device_private_entry(entry))
2231 				mpfn |= MIGRATE_PFN_WRITE;
2232 		} else {
2233 			if (is_zero_pfn(pfn)) {
2234 				mpfn = MIGRATE_PFN_MIGRATE;
2235 				migrate->cpages++;
2236 				pfn = 0;
2237 				goto next;
2238 			}
2239 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2240 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2241 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2242 		}
2243 
2244 		/* FIXME support THP */
2245 		if (!page || !page->mapping || PageTransCompound(page)) {
2246 			mpfn = pfn = 0;
2247 			goto next;
2248 		}
2249 		pfn = page_to_pfn(page);
2250 
2251 		/*
2252 		 * By getting a reference on the page we pin it and that blocks
2253 		 * any kind of migration. Side effect is that it "freezes" the
2254 		 * pte.
2255 		 *
2256 		 * We drop this reference after isolating the page from the lru
2257 		 * for non device page (device page are not on the lru and thus
2258 		 * can't be dropped from it).
2259 		 */
2260 		get_page(page);
2261 		migrate->cpages++;
2262 
2263 		/*
2264 		 * Optimize for the common case where page is only mapped once
2265 		 * in one process. If we can lock the page, then we can safely
2266 		 * set up a special migration page table entry now.
2267 		 */
2268 		if (trylock_page(page)) {
2269 			pte_t swp_pte;
2270 
2271 			mpfn |= MIGRATE_PFN_LOCKED;
2272 			ptep_get_and_clear(mm, addr, ptep);
2273 
2274 			/* Setup special migration page table entry */
2275 			entry = make_migration_entry(page, mpfn &
2276 						     MIGRATE_PFN_WRITE);
2277 			swp_pte = swp_entry_to_pte(entry);
2278 			if (pte_soft_dirty(pte))
2279 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2280 			set_pte_at(mm, addr, ptep, swp_pte);
2281 
2282 			/*
2283 			 * This is like regular unmap: we remove the rmap and
2284 			 * drop page refcount. Page won't be freed, as we took
2285 			 * a reference just above.
2286 			 */
2287 			page_remove_rmap(page, false);
2288 			put_page(page);
2289 
2290 			if (pte_present(pte))
2291 				unmapped++;
2292 		}
2293 
2294 next:
2295 		migrate->dst[migrate->npages] = 0;
2296 		migrate->src[migrate->npages++] = mpfn;
2297 	}
2298 	arch_leave_lazy_mmu_mode();
2299 	pte_unmap_unlock(ptep - 1, ptl);
2300 
2301 	/* Only flush the TLB if we actually modified any entries */
2302 	if (unmapped)
2303 		flush_tlb_range(walk->vma, start, end);
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * migrate_vma_collect() - collect pages over a range of virtual addresses
2310  * @migrate: migrate struct containing all migration information
2311  *
2312  * This will walk the CPU page table. For each virtual address backed by a
2313  * valid page, it updates the src array and takes a reference on the page, in
2314  * order to pin the page until we lock it and unmap it.
2315  */
2316 static void migrate_vma_collect(struct migrate_vma *migrate)
2317 {
2318 	struct mm_walk mm_walk;
2319 
2320 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2321 	mm_walk.pte_entry = NULL;
2322 	mm_walk.pte_hole = migrate_vma_collect_hole;
2323 	mm_walk.hugetlb_entry = NULL;
2324 	mm_walk.test_walk = NULL;
2325 	mm_walk.vma = migrate->vma;
2326 	mm_walk.mm = migrate->vma->vm_mm;
2327 	mm_walk.private = migrate;
2328 
2329 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2330 					    migrate->start,
2331 					    migrate->end);
2332 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2333 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2334 					  migrate->start,
2335 					  migrate->end);
2336 
2337 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2338 }
2339 
2340 /*
2341  * migrate_vma_check_page() - check if page is pinned or not
2342  * @page: struct page to check
2343  *
2344  * Pinned pages cannot be migrated. This is the same test as in
2345  * migrate_page_move_mapping(), except that here we allow migration of a
2346  * ZONE_DEVICE page.
2347  */
2348 static bool migrate_vma_check_page(struct page *page)
2349 {
2350 	/*
2351 	 * One extra ref because caller holds an extra reference, either from
2352 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2353 	 * a device page.
2354 	 */
2355 	int extra = 1;
2356 
2357 	/*
2358 	 * FIXME support THP (transparent huge page), it is bit more complex to
2359 	 * check them than regular pages, because they can be mapped with a pmd
2360 	 * or with a pte (split pte mapping).
2361 	 */
2362 	if (PageCompound(page))
2363 		return false;
2364 
2365 	/* Page from ZONE_DEVICE have one extra reference */
2366 	if (is_zone_device_page(page)) {
2367 		/*
2368 		 * Private page can never be pin as they have no valid pte and
2369 		 * GUP will fail for those. Yet if there is a pending migration
2370 		 * a thread might try to wait on the pte migration entry and
2371 		 * will bump the page reference count. Sadly there is no way to
2372 		 * differentiate a regular pin from migration wait. Hence to
2373 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2374 		 * infinite loop (one stoping migration because the other is
2375 		 * waiting on pte migration entry). We always return true here.
2376 		 *
2377 		 * FIXME proper solution is to rework migration_entry_wait() so
2378 		 * it does not need to take a reference on page.
2379 		 */
2380 		if (is_device_private_page(page))
2381 			return true;
2382 
2383 		/*
2384 		 * Only allow device public page to be migrated and account for
2385 		 * the extra reference count imply by ZONE_DEVICE pages.
2386 		 */
2387 		if (!is_device_public_page(page))
2388 			return false;
2389 		extra++;
2390 	}
2391 
2392 	/* For file back page */
2393 	if (page_mapping(page))
2394 		extra += 1 + page_has_private(page);
2395 
2396 	if ((page_count(page) - extra) > page_mapcount(page))
2397 		return false;
2398 
2399 	return true;
2400 }
2401 
2402 /*
2403  * migrate_vma_prepare() - lock pages and isolate them from the lru
2404  * @migrate: migrate struct containing all migration information
2405  *
2406  * This locks pages that have been collected by migrate_vma_collect(). Once each
2407  * page is locked it is isolated from the lru (for non-device pages). Finally,
2408  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2409  * migrated by concurrent kernel threads.
2410  */
2411 static void migrate_vma_prepare(struct migrate_vma *migrate)
2412 {
2413 	const unsigned long npages = migrate->npages;
2414 	const unsigned long start = migrate->start;
2415 	unsigned long addr, i, restore = 0;
2416 	bool allow_drain = true;
2417 
2418 	lru_add_drain();
2419 
2420 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2421 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2422 		bool remap = true;
2423 
2424 		if (!page)
2425 			continue;
2426 
2427 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2428 			/*
2429 			 * Because we are migrating several pages there can be
2430 			 * a deadlock between 2 concurrent migration where each
2431 			 * are waiting on each other page lock.
2432 			 *
2433 			 * Make migrate_vma() a best effort thing and backoff
2434 			 * for any page we can not lock right away.
2435 			 */
2436 			if (!trylock_page(page)) {
2437 				migrate->src[i] = 0;
2438 				migrate->cpages--;
2439 				put_page(page);
2440 				continue;
2441 			}
2442 			remap = false;
2443 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2444 		}
2445 
2446 		/* ZONE_DEVICE pages are not on LRU */
2447 		if (!is_zone_device_page(page)) {
2448 			if (!PageLRU(page) && allow_drain) {
2449 				/* Drain CPU's pagevec */
2450 				lru_add_drain_all();
2451 				allow_drain = false;
2452 			}
2453 
2454 			if (isolate_lru_page(page)) {
2455 				if (remap) {
2456 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2457 					migrate->cpages--;
2458 					restore++;
2459 				} else {
2460 					migrate->src[i] = 0;
2461 					unlock_page(page);
2462 					migrate->cpages--;
2463 					put_page(page);
2464 				}
2465 				continue;
2466 			}
2467 
2468 			/* Drop the reference we took in collect */
2469 			put_page(page);
2470 		}
2471 
2472 		if (!migrate_vma_check_page(page)) {
2473 			if (remap) {
2474 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2475 				migrate->cpages--;
2476 				restore++;
2477 
2478 				if (!is_zone_device_page(page)) {
2479 					get_page(page);
2480 					putback_lru_page(page);
2481 				}
2482 			} else {
2483 				migrate->src[i] = 0;
2484 				unlock_page(page);
2485 				migrate->cpages--;
2486 
2487 				if (!is_zone_device_page(page))
2488 					putback_lru_page(page);
2489 				else
2490 					put_page(page);
2491 			}
2492 		}
2493 	}
2494 
2495 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2496 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2497 
2498 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2499 			continue;
2500 
2501 		remove_migration_pte(page, migrate->vma, addr, page);
2502 
2503 		migrate->src[i] = 0;
2504 		unlock_page(page);
2505 		put_page(page);
2506 		restore--;
2507 	}
2508 }
2509 
2510 /*
2511  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2512  * @migrate: migrate struct containing all migration information
2513  *
2514  * Replace page mapping (CPU page table pte) with a special migration pte entry
2515  * and check again if it has been pinned. Pinned pages are restored because we
2516  * cannot migrate them.
2517  *
2518  * This is the last step before we call the device driver callback to allocate
2519  * destination memory and copy contents of original page over to new page.
2520  */
2521 static void migrate_vma_unmap(struct migrate_vma *migrate)
2522 {
2523 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2524 	const unsigned long npages = migrate->npages;
2525 	const unsigned long start = migrate->start;
2526 	unsigned long addr, i, restore = 0;
2527 
2528 	for (i = 0; i < npages; i++) {
2529 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2530 
2531 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2532 			continue;
2533 
2534 		if (page_mapped(page)) {
2535 			try_to_unmap(page, flags);
2536 			if (page_mapped(page))
2537 				goto restore;
2538 		}
2539 
2540 		if (migrate_vma_check_page(page))
2541 			continue;
2542 
2543 restore:
2544 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2545 		migrate->cpages--;
2546 		restore++;
2547 	}
2548 
2549 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2550 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551 
2552 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553 			continue;
2554 
2555 		remove_migration_ptes(page, page, false);
2556 
2557 		migrate->src[i] = 0;
2558 		unlock_page(page);
2559 		restore--;
2560 
2561 		if (is_zone_device_page(page))
2562 			put_page(page);
2563 		else
2564 			putback_lru_page(page);
2565 	}
2566 }
2567 
2568 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2569 				    unsigned long addr,
2570 				    struct page *page,
2571 				    unsigned long *src,
2572 				    unsigned long *dst)
2573 {
2574 	struct vm_area_struct *vma = migrate->vma;
2575 	struct mm_struct *mm = vma->vm_mm;
2576 	struct mem_cgroup *memcg;
2577 	bool flush = false;
2578 	spinlock_t *ptl;
2579 	pte_t entry;
2580 	pgd_t *pgdp;
2581 	p4d_t *p4dp;
2582 	pud_t *pudp;
2583 	pmd_t *pmdp;
2584 	pte_t *ptep;
2585 
2586 	/* Only allow populating anonymous memory */
2587 	if (!vma_is_anonymous(vma))
2588 		goto abort;
2589 
2590 	pgdp = pgd_offset(mm, addr);
2591 	p4dp = p4d_alloc(mm, pgdp, addr);
2592 	if (!p4dp)
2593 		goto abort;
2594 	pudp = pud_alloc(mm, p4dp, addr);
2595 	if (!pudp)
2596 		goto abort;
2597 	pmdp = pmd_alloc(mm, pudp, addr);
2598 	if (!pmdp)
2599 		goto abort;
2600 
2601 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2602 		goto abort;
2603 
2604 	/*
2605 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2606 	 * pte_offset_map() on pmds where a huge pmd might be created
2607 	 * from a different thread.
2608 	 *
2609 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2610 	 * parallel threads are excluded by other means.
2611 	 *
2612 	 * Here we only have down_read(mmap_sem).
2613 	 */
2614 	if (pte_alloc(mm, pmdp, addr))
2615 		goto abort;
2616 
2617 	/* See the comment in pte_alloc_one_map() */
2618 	if (unlikely(pmd_trans_unstable(pmdp)))
2619 		goto abort;
2620 
2621 	if (unlikely(anon_vma_prepare(vma)))
2622 		goto abort;
2623 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2624 		goto abort;
2625 
2626 	/*
2627 	 * The memory barrier inside __SetPageUptodate makes sure that
2628 	 * preceding stores to the page contents become visible before
2629 	 * the set_pte_at() write.
2630 	 */
2631 	__SetPageUptodate(page);
2632 
2633 	if (is_zone_device_page(page)) {
2634 		if (is_device_private_page(page)) {
2635 			swp_entry_t swp_entry;
2636 
2637 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2638 			entry = swp_entry_to_pte(swp_entry);
2639 		} else if (is_device_public_page(page)) {
2640 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2641 			if (vma->vm_flags & VM_WRITE)
2642 				entry = pte_mkwrite(pte_mkdirty(entry));
2643 			entry = pte_mkdevmap(entry);
2644 		}
2645 	} else {
2646 		entry = mk_pte(page, vma->vm_page_prot);
2647 		if (vma->vm_flags & VM_WRITE)
2648 			entry = pte_mkwrite(pte_mkdirty(entry));
2649 	}
2650 
2651 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2652 
2653 	if (pte_present(*ptep)) {
2654 		unsigned long pfn = pte_pfn(*ptep);
2655 
2656 		if (!is_zero_pfn(pfn)) {
2657 			pte_unmap_unlock(ptep, ptl);
2658 			mem_cgroup_cancel_charge(page, memcg, false);
2659 			goto abort;
2660 		}
2661 		flush = true;
2662 	} else if (!pte_none(*ptep)) {
2663 		pte_unmap_unlock(ptep, ptl);
2664 		mem_cgroup_cancel_charge(page, memcg, false);
2665 		goto abort;
2666 	}
2667 
2668 	/*
2669 	 * Check for usefaultfd but do not deliver the fault. Instead,
2670 	 * just back off.
2671 	 */
2672 	if (userfaultfd_missing(vma)) {
2673 		pte_unmap_unlock(ptep, ptl);
2674 		mem_cgroup_cancel_charge(page, memcg, false);
2675 		goto abort;
2676 	}
2677 
2678 	inc_mm_counter(mm, MM_ANONPAGES);
2679 	page_add_new_anon_rmap(page, vma, addr, false);
2680 	mem_cgroup_commit_charge(page, memcg, false, false);
2681 	if (!is_zone_device_page(page))
2682 		lru_cache_add_active_or_unevictable(page, vma);
2683 	get_page(page);
2684 
2685 	if (flush) {
2686 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2687 		ptep_clear_flush_notify(vma, addr, ptep);
2688 		set_pte_at_notify(mm, addr, ptep, entry);
2689 		update_mmu_cache(vma, addr, ptep);
2690 	} else {
2691 		/* No need to invalidate - it was non-present before */
2692 		set_pte_at(mm, addr, ptep, entry);
2693 		update_mmu_cache(vma, addr, ptep);
2694 	}
2695 
2696 	pte_unmap_unlock(ptep, ptl);
2697 	*src = MIGRATE_PFN_MIGRATE;
2698 	return;
2699 
2700 abort:
2701 	*src &= ~MIGRATE_PFN_MIGRATE;
2702 }
2703 
2704 /*
2705  * migrate_vma_pages() - migrate meta-data from src page to dst page
2706  * @migrate: migrate struct containing all migration information
2707  *
2708  * This migrates struct page meta-data from source struct page to destination
2709  * struct page. This effectively finishes the migration from source page to the
2710  * destination page.
2711  */
2712 static void migrate_vma_pages(struct migrate_vma *migrate)
2713 {
2714 	const unsigned long npages = migrate->npages;
2715 	const unsigned long start = migrate->start;
2716 	struct vm_area_struct *vma = migrate->vma;
2717 	struct mm_struct *mm = vma->vm_mm;
2718 	unsigned long addr, i, mmu_start;
2719 	bool notified = false;
2720 
2721 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2722 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2723 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2724 		struct address_space *mapping;
2725 		int r;
2726 
2727 		if (!newpage) {
2728 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2729 			continue;
2730 		}
2731 
2732 		if (!page) {
2733 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2734 				continue;
2735 			}
2736 			if (!notified) {
2737 				mmu_start = addr;
2738 				notified = true;
2739 				mmu_notifier_invalidate_range_start(mm,
2740 								mmu_start,
2741 								migrate->end);
2742 			}
2743 			migrate_vma_insert_page(migrate, addr, newpage,
2744 						&migrate->src[i],
2745 						&migrate->dst[i]);
2746 			continue;
2747 		}
2748 
2749 		mapping = page_mapping(page);
2750 
2751 		if (is_zone_device_page(newpage)) {
2752 			if (is_device_private_page(newpage)) {
2753 				/*
2754 				 * For now only support private anonymous when
2755 				 * migrating to un-addressable device memory.
2756 				 */
2757 				if (mapping) {
2758 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2759 					continue;
2760 				}
2761 			} else if (!is_device_public_page(newpage)) {
2762 				/*
2763 				 * Other types of ZONE_DEVICE page are not
2764 				 * supported.
2765 				 */
2766 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2767 				continue;
2768 			}
2769 		}
2770 
2771 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2772 		if (r != MIGRATEPAGE_SUCCESS)
2773 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2774 	}
2775 
2776 	/*
2777 	 * No need to double call mmu_notifier->invalidate_range() callback as
2778 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2779 	 * did already call it.
2780 	 */
2781 	if (notified)
2782 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2783 						       migrate->end);
2784 }
2785 
2786 /*
2787  * migrate_vma_finalize() - restore CPU page table entry
2788  * @migrate: migrate struct containing all migration information
2789  *
2790  * This replaces the special migration pte entry with either a mapping to the
2791  * new page if migration was successful for that page, or to the original page
2792  * otherwise.
2793  *
2794  * This also unlocks the pages and puts them back on the lru, or drops the extra
2795  * refcount, for device pages.
2796  */
2797 static void migrate_vma_finalize(struct migrate_vma *migrate)
2798 {
2799 	const unsigned long npages = migrate->npages;
2800 	unsigned long i;
2801 
2802 	for (i = 0; i < npages; i++) {
2803 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2804 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2805 
2806 		if (!page) {
2807 			if (newpage) {
2808 				unlock_page(newpage);
2809 				put_page(newpage);
2810 			}
2811 			continue;
2812 		}
2813 
2814 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2815 			if (newpage) {
2816 				unlock_page(newpage);
2817 				put_page(newpage);
2818 			}
2819 			newpage = page;
2820 		}
2821 
2822 		remove_migration_ptes(page, newpage, false);
2823 		unlock_page(page);
2824 		migrate->cpages--;
2825 
2826 		if (is_zone_device_page(page))
2827 			put_page(page);
2828 		else
2829 			putback_lru_page(page);
2830 
2831 		if (newpage != page) {
2832 			unlock_page(newpage);
2833 			if (is_zone_device_page(newpage))
2834 				put_page(newpage);
2835 			else
2836 				putback_lru_page(newpage);
2837 		}
2838 	}
2839 }
2840 
2841 /*
2842  * migrate_vma() - migrate a range of memory inside vma
2843  *
2844  * @ops: migration callback for allocating destination memory and copying
2845  * @vma: virtual memory area containing the range to be migrated
2846  * @start: start address of the range to migrate (inclusive)
2847  * @end: end address of the range to migrate (exclusive)
2848  * @src: array of hmm_pfn_t containing source pfns
2849  * @dst: array of hmm_pfn_t containing destination pfns
2850  * @private: pointer passed back to each of the callback
2851  * Returns: 0 on success, error code otherwise
2852  *
2853  * This function tries to migrate a range of memory virtual address range, using
2854  * callbacks to allocate and copy memory from source to destination. First it
2855  * collects all the pages backing each virtual address in the range, saving this
2856  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2857  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2858  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2859  * in the corresponding src array entry. It then restores any pages that are
2860  * pinned, by remapping and unlocking those pages.
2861  *
2862  * At this point it calls the alloc_and_copy() callback. For documentation on
2863  * what is expected from that callback, see struct migrate_vma_ops comments in
2864  * include/linux/migrate.h
2865  *
2866  * After the alloc_and_copy() callback, this function goes over each entry in
2867  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2868  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2869  * then the function tries to migrate struct page information from the source
2870  * struct page to the destination struct page. If it fails to migrate the struct
2871  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2872  * array.
2873  *
2874  * At this point all successfully migrated pages have an entry in the src
2875  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2876  * array entry with MIGRATE_PFN_VALID flag set.
2877  *
2878  * It then calls the finalize_and_map() callback. See comments for "struct
2879  * migrate_vma_ops", in include/linux/migrate.h for details about
2880  * finalize_and_map() behavior.
2881  *
2882  * After the finalize_and_map() callback, for successfully migrated pages, this
2883  * function updates the CPU page table to point to new pages, otherwise it
2884  * restores the CPU page table to point to the original source pages.
2885  *
2886  * Function returns 0 after the above steps, even if no pages were migrated
2887  * (The function only returns an error if any of the arguments are invalid.)
2888  *
2889  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2890  * unsigned long entries.
2891  */
2892 int migrate_vma(const struct migrate_vma_ops *ops,
2893 		struct vm_area_struct *vma,
2894 		unsigned long start,
2895 		unsigned long end,
2896 		unsigned long *src,
2897 		unsigned long *dst,
2898 		void *private)
2899 {
2900 	struct migrate_vma migrate;
2901 
2902 	/* Sanity check the arguments */
2903 	start &= PAGE_MASK;
2904 	end &= PAGE_MASK;
2905 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2906 			vma_is_dax(vma))
2907 		return -EINVAL;
2908 	if (start < vma->vm_start || start >= vma->vm_end)
2909 		return -EINVAL;
2910 	if (end <= vma->vm_start || end > vma->vm_end)
2911 		return -EINVAL;
2912 	if (!ops || !src || !dst || start >= end)
2913 		return -EINVAL;
2914 
2915 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2916 	migrate.src = src;
2917 	migrate.dst = dst;
2918 	migrate.start = start;
2919 	migrate.npages = 0;
2920 	migrate.cpages = 0;
2921 	migrate.end = end;
2922 	migrate.vma = vma;
2923 
2924 	/* Collect, and try to unmap source pages */
2925 	migrate_vma_collect(&migrate);
2926 	if (!migrate.cpages)
2927 		return 0;
2928 
2929 	/* Lock and isolate page */
2930 	migrate_vma_prepare(&migrate);
2931 	if (!migrate.cpages)
2932 		return 0;
2933 
2934 	/* Unmap pages */
2935 	migrate_vma_unmap(&migrate);
2936 	if (!migrate.cpages)
2937 		return 0;
2938 
2939 	/*
2940 	 * At this point pages are locked and unmapped, and thus they have
2941 	 * stable content and can safely be copied to destination memory that
2942 	 * is allocated by the callback.
2943 	 *
2944 	 * Note that migration can fail in migrate_vma_struct_page() for each
2945 	 * individual page.
2946 	 */
2947 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2948 
2949 	/* This does the real migration of struct page */
2950 	migrate_vma_pages(&migrate);
2951 
2952 	ops->finalize_and_map(vma, src, dst, start, end, private);
2953 
2954 	/* Unlock and remap pages */
2955 	migrate_vma_finalize(&migrate);
2956 
2957 	return 0;
2958 }
2959 EXPORT_SYMBOL(migrate_vma);
2960 #endif /* defined(MIGRATE_VMA_HELPER) */
2961