xref: /openbmc/linux/mm/migrate.c (revision 6ee73861)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
34 
35 #include "internal.h"
36 
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 
39 /*
40  * migrate_prep() needs to be called before we start compiling a list of pages
41  * to be migrated using isolate_lru_page().
42  */
43 int migrate_prep(void)
44 {
45 	/*
46 	 * Clear the LRU lists so pages can be isolated.
47 	 * Note that pages may be moved off the LRU after we have
48 	 * drained them. Those pages will fail to migrate like other
49 	 * pages that may be busy.
50 	 */
51 	lru_add_drain_all();
52 
53 	return 0;
54 }
55 
56 /*
57  * Add isolated pages on the list back to the LRU under page lock
58  * to avoid leaking evictable pages back onto unevictable list.
59  *
60  * returns the number of pages put back.
61  */
62 int putback_lru_pages(struct list_head *l)
63 {
64 	struct page *page;
65 	struct page *page2;
66 	int count = 0;
67 
68 	list_for_each_entry_safe(page, page2, l, lru) {
69 		list_del(&page->lru);
70 		dec_zone_page_state(page, NR_ISOLATED_ANON +
71 				page_is_file_cache(page));
72 		putback_lru_page(page);
73 		count++;
74 	}
75 	return count;
76 }
77 
78 /*
79  * Restore a potential migration pte to a working pte entry
80  */
81 static void remove_migration_pte(struct vm_area_struct *vma,
82 		struct page *old, struct page *new)
83 {
84 	struct mm_struct *mm = vma->vm_mm;
85 	swp_entry_t entry;
86  	pgd_t *pgd;
87  	pud_t *pud;
88  	pmd_t *pmd;
89 	pte_t *ptep, pte;
90  	spinlock_t *ptl;
91 	unsigned long addr = page_address_in_vma(new, vma);
92 
93 	if (addr == -EFAULT)
94 		return;
95 
96  	pgd = pgd_offset(mm, addr);
97 	if (!pgd_present(*pgd))
98                 return;
99 
100 	pud = pud_offset(pgd, addr);
101 	if (!pud_present(*pud))
102                 return;
103 
104 	pmd = pmd_offset(pud, addr);
105 	if (!pmd_present(*pmd))
106 		return;
107 
108 	ptep = pte_offset_map(pmd, addr);
109 
110 	if (!is_swap_pte(*ptep)) {
111 		pte_unmap(ptep);
112  		return;
113  	}
114 
115  	ptl = pte_lockptr(mm, pmd);
116  	spin_lock(ptl);
117 	pte = *ptep;
118 	if (!is_swap_pte(pte))
119 		goto out;
120 
121 	entry = pte_to_swp_entry(pte);
122 
123 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
124 		goto out;
125 
126 	get_page(new);
127 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
128 	if (is_write_migration_entry(entry))
129 		pte = pte_mkwrite(pte);
130 	flush_cache_page(vma, addr, pte_pfn(pte));
131 	set_pte_at(mm, addr, ptep, pte);
132 
133 	if (PageAnon(new))
134 		page_add_anon_rmap(new, vma, addr);
135 	else
136 		page_add_file_rmap(new);
137 
138 	/* No need to invalidate - it was non-present before */
139 	update_mmu_cache(vma, addr, pte);
140 
141 out:
142 	pte_unmap_unlock(ptep, ptl);
143 }
144 
145 /*
146  * Note that remove_file_migration_ptes will only work on regular mappings,
147  * Nonlinear mappings do not use migration entries.
148  */
149 static void remove_file_migration_ptes(struct page *old, struct page *new)
150 {
151 	struct vm_area_struct *vma;
152 	struct address_space *mapping = new->mapping;
153 	struct prio_tree_iter iter;
154 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
155 
156 	if (!mapping)
157 		return;
158 
159 	spin_lock(&mapping->i_mmap_lock);
160 
161 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
162 		remove_migration_pte(vma, old, new);
163 
164 	spin_unlock(&mapping->i_mmap_lock);
165 }
166 
167 /*
168  * Must hold mmap_sem lock on at least one of the vmas containing
169  * the page so that the anon_vma cannot vanish.
170  */
171 static void remove_anon_migration_ptes(struct page *old, struct page *new)
172 {
173 	struct anon_vma *anon_vma;
174 	struct vm_area_struct *vma;
175 	unsigned long mapping;
176 
177 	mapping = (unsigned long)new->mapping;
178 
179 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
180 		return;
181 
182 	/*
183 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
184 	 */
185 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
186 	spin_lock(&anon_vma->lock);
187 
188 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
189 		remove_migration_pte(vma, old, new);
190 
191 	spin_unlock(&anon_vma->lock);
192 }
193 
194 /*
195  * Get rid of all migration entries and replace them by
196  * references to the indicated page.
197  */
198 static void remove_migration_ptes(struct page *old, struct page *new)
199 {
200 	if (PageAnon(new))
201 		remove_anon_migration_ptes(old, new);
202 	else
203 		remove_file_migration_ptes(old, new);
204 }
205 
206 /*
207  * Something used the pte of a page under migration. We need to
208  * get to the page and wait until migration is finished.
209  * When we return from this function the fault will be retried.
210  *
211  * This function is called from do_swap_page().
212  */
213 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
214 				unsigned long address)
215 {
216 	pte_t *ptep, pte;
217 	spinlock_t *ptl;
218 	swp_entry_t entry;
219 	struct page *page;
220 
221 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
222 	pte = *ptep;
223 	if (!is_swap_pte(pte))
224 		goto out;
225 
226 	entry = pte_to_swp_entry(pte);
227 	if (!is_migration_entry(entry))
228 		goto out;
229 
230 	page = migration_entry_to_page(entry);
231 
232 	/*
233 	 * Once radix-tree replacement of page migration started, page_count
234 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
235 	 * against a page without get_page().
236 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
237 	 * will occur again.
238 	 */
239 	if (!get_page_unless_zero(page))
240 		goto out;
241 	pte_unmap_unlock(ptep, ptl);
242 	wait_on_page_locked(page);
243 	put_page(page);
244 	return;
245 out:
246 	pte_unmap_unlock(ptep, ptl);
247 }
248 
249 /*
250  * Replace the page in the mapping.
251  *
252  * The number of remaining references must be:
253  * 1 for anonymous pages without a mapping
254  * 2 for pages with a mapping
255  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
256  */
257 static int migrate_page_move_mapping(struct address_space *mapping,
258 		struct page *newpage, struct page *page)
259 {
260 	int expected_count;
261 	void **pslot;
262 
263 	if (!mapping) {
264 		/* Anonymous page without mapping */
265 		if (page_count(page) != 1)
266 			return -EAGAIN;
267 		return 0;
268 	}
269 
270 	spin_lock_irq(&mapping->tree_lock);
271 
272 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
273  					page_index(page));
274 
275 	expected_count = 2 + page_has_private(page);
276 	if (page_count(page) != expected_count ||
277 			(struct page *)radix_tree_deref_slot(pslot) != page) {
278 		spin_unlock_irq(&mapping->tree_lock);
279 		return -EAGAIN;
280 	}
281 
282 	if (!page_freeze_refs(page, expected_count)) {
283 		spin_unlock_irq(&mapping->tree_lock);
284 		return -EAGAIN;
285 	}
286 
287 	/*
288 	 * Now we know that no one else is looking at the page.
289 	 */
290 	get_page(newpage);	/* add cache reference */
291 	if (PageSwapCache(page)) {
292 		SetPageSwapCache(newpage);
293 		set_page_private(newpage, page_private(page));
294 	}
295 
296 	radix_tree_replace_slot(pslot, newpage);
297 
298 	page_unfreeze_refs(page, expected_count);
299 	/*
300 	 * Drop cache reference from old page.
301 	 * We know this isn't the last reference.
302 	 */
303 	__put_page(page);
304 
305 	/*
306 	 * If moved to a different zone then also account
307 	 * the page for that zone. Other VM counters will be
308 	 * taken care of when we establish references to the
309 	 * new page and drop references to the old page.
310 	 *
311 	 * Note that anonymous pages are accounted for
312 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
313 	 * are mapped to swap space.
314 	 */
315 	__dec_zone_page_state(page, NR_FILE_PAGES);
316 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
317 	if (PageSwapBacked(page)) {
318 		__dec_zone_page_state(page, NR_SHMEM);
319 		__inc_zone_page_state(newpage, NR_SHMEM);
320 	}
321 	spin_unlock_irq(&mapping->tree_lock);
322 
323 	return 0;
324 }
325 
326 /*
327  * Copy the page to its new location
328  */
329 static void migrate_page_copy(struct page *newpage, struct page *page)
330 {
331 	int anon;
332 
333 	copy_highpage(newpage, page);
334 
335 	if (PageError(page))
336 		SetPageError(newpage);
337 	if (PageReferenced(page))
338 		SetPageReferenced(newpage);
339 	if (PageUptodate(page))
340 		SetPageUptodate(newpage);
341 	if (TestClearPageActive(page)) {
342 		VM_BUG_ON(PageUnevictable(page));
343 		SetPageActive(newpage);
344 	} else
345 		unevictable_migrate_page(newpage, page);
346 	if (PageChecked(page))
347 		SetPageChecked(newpage);
348 	if (PageMappedToDisk(page))
349 		SetPageMappedToDisk(newpage);
350 
351 	if (PageDirty(page)) {
352 		clear_page_dirty_for_io(page);
353 		/*
354 		 * Want to mark the page and the radix tree as dirty, and
355 		 * redo the accounting that clear_page_dirty_for_io undid,
356 		 * but we can't use set_page_dirty because that function
357 		 * is actually a signal that all of the page has become dirty.
358 		 * Wheras only part of our page may be dirty.
359 		 */
360 		__set_page_dirty_nobuffers(newpage);
361  	}
362 
363 	mlock_migrate_page(newpage, page);
364 
365 	ClearPageSwapCache(page);
366 	ClearPagePrivate(page);
367 	set_page_private(page, 0);
368 	/* page->mapping contains a flag for PageAnon() */
369 	anon = PageAnon(page);
370 	page->mapping = NULL;
371 
372 	/*
373 	 * If any waiters have accumulated on the new page then
374 	 * wake them up.
375 	 */
376 	if (PageWriteback(newpage))
377 		end_page_writeback(newpage);
378 }
379 
380 /************************************************************
381  *                    Migration functions
382  ***********************************************************/
383 
384 /* Always fail migration. Used for mappings that are not movable */
385 int fail_migrate_page(struct address_space *mapping,
386 			struct page *newpage, struct page *page)
387 {
388 	return -EIO;
389 }
390 EXPORT_SYMBOL(fail_migrate_page);
391 
392 /*
393  * Common logic to directly migrate a single page suitable for
394  * pages that do not use PagePrivate/PagePrivate2.
395  *
396  * Pages are locked upon entry and exit.
397  */
398 int migrate_page(struct address_space *mapping,
399 		struct page *newpage, struct page *page)
400 {
401 	int rc;
402 
403 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
404 
405 	rc = migrate_page_move_mapping(mapping, newpage, page);
406 
407 	if (rc)
408 		return rc;
409 
410 	migrate_page_copy(newpage, page);
411 	return 0;
412 }
413 EXPORT_SYMBOL(migrate_page);
414 
415 #ifdef CONFIG_BLOCK
416 /*
417  * Migration function for pages with buffers. This function can only be used
418  * if the underlying filesystem guarantees that no other references to "page"
419  * exist.
420  */
421 int buffer_migrate_page(struct address_space *mapping,
422 		struct page *newpage, struct page *page)
423 {
424 	struct buffer_head *bh, *head;
425 	int rc;
426 
427 	if (!page_has_buffers(page))
428 		return migrate_page(mapping, newpage, page);
429 
430 	head = page_buffers(page);
431 
432 	rc = migrate_page_move_mapping(mapping, newpage, page);
433 
434 	if (rc)
435 		return rc;
436 
437 	bh = head;
438 	do {
439 		get_bh(bh);
440 		lock_buffer(bh);
441 		bh = bh->b_this_page;
442 
443 	} while (bh != head);
444 
445 	ClearPagePrivate(page);
446 	set_page_private(newpage, page_private(page));
447 	set_page_private(page, 0);
448 	put_page(page);
449 	get_page(newpage);
450 
451 	bh = head;
452 	do {
453 		set_bh_page(bh, newpage, bh_offset(bh));
454 		bh = bh->b_this_page;
455 
456 	} while (bh != head);
457 
458 	SetPagePrivate(newpage);
459 
460 	migrate_page_copy(newpage, page);
461 
462 	bh = head;
463 	do {
464 		unlock_buffer(bh);
465  		put_bh(bh);
466 		bh = bh->b_this_page;
467 
468 	} while (bh != head);
469 
470 	return 0;
471 }
472 EXPORT_SYMBOL(buffer_migrate_page);
473 #endif
474 
475 /*
476  * Writeback a page to clean the dirty state
477  */
478 static int writeout(struct address_space *mapping, struct page *page)
479 {
480 	struct writeback_control wbc = {
481 		.sync_mode = WB_SYNC_NONE,
482 		.nr_to_write = 1,
483 		.range_start = 0,
484 		.range_end = LLONG_MAX,
485 		.nonblocking = 1,
486 		.for_reclaim = 1
487 	};
488 	int rc;
489 
490 	if (!mapping->a_ops->writepage)
491 		/* No write method for the address space */
492 		return -EINVAL;
493 
494 	if (!clear_page_dirty_for_io(page))
495 		/* Someone else already triggered a write */
496 		return -EAGAIN;
497 
498 	/*
499 	 * A dirty page may imply that the underlying filesystem has
500 	 * the page on some queue. So the page must be clean for
501 	 * migration. Writeout may mean we loose the lock and the
502 	 * page state is no longer what we checked for earlier.
503 	 * At this point we know that the migration attempt cannot
504 	 * be successful.
505 	 */
506 	remove_migration_ptes(page, page);
507 
508 	rc = mapping->a_ops->writepage(page, &wbc);
509 
510 	if (rc != AOP_WRITEPAGE_ACTIVATE)
511 		/* unlocked. Relock */
512 		lock_page(page);
513 
514 	return (rc < 0) ? -EIO : -EAGAIN;
515 }
516 
517 /*
518  * Default handling if a filesystem does not provide a migration function.
519  */
520 static int fallback_migrate_page(struct address_space *mapping,
521 	struct page *newpage, struct page *page)
522 {
523 	if (PageDirty(page))
524 		return writeout(mapping, page);
525 
526 	/*
527 	 * Buffers may be managed in a filesystem specific way.
528 	 * We must have no buffers or drop them.
529 	 */
530 	if (page_has_private(page) &&
531 	    !try_to_release_page(page, GFP_KERNEL))
532 		return -EAGAIN;
533 
534 	return migrate_page(mapping, newpage, page);
535 }
536 
537 /*
538  * Move a page to a newly allocated page
539  * The page is locked and all ptes have been successfully removed.
540  *
541  * The new page will have replaced the old page if this function
542  * is successful.
543  *
544  * Return value:
545  *   < 0 - error code
546  *  == 0 - success
547  */
548 static int move_to_new_page(struct page *newpage, struct page *page)
549 {
550 	struct address_space *mapping;
551 	int rc;
552 
553 	/*
554 	 * Block others from accessing the page when we get around to
555 	 * establishing additional references. We are the only one
556 	 * holding a reference to the new page at this point.
557 	 */
558 	if (!trylock_page(newpage))
559 		BUG();
560 
561 	/* Prepare mapping for the new page.*/
562 	newpage->index = page->index;
563 	newpage->mapping = page->mapping;
564 	if (PageSwapBacked(page))
565 		SetPageSwapBacked(newpage);
566 
567 	mapping = page_mapping(page);
568 	if (!mapping)
569 		rc = migrate_page(mapping, newpage, page);
570 	else if (mapping->a_ops->migratepage)
571 		/*
572 		 * Most pages have a mapping and most filesystems
573 		 * should provide a migration function. Anonymous
574 		 * pages are part of swap space which also has its
575 		 * own migration function. This is the most common
576 		 * path for page migration.
577 		 */
578 		rc = mapping->a_ops->migratepage(mapping,
579 						newpage, page);
580 	else
581 		rc = fallback_migrate_page(mapping, newpage, page);
582 
583 	if (!rc) {
584 		remove_migration_ptes(page, newpage);
585 	} else
586 		newpage->mapping = NULL;
587 
588 	unlock_page(newpage);
589 
590 	return rc;
591 }
592 
593 /*
594  * Obtain the lock on page, remove all ptes and migrate the page
595  * to the newly allocated page in newpage.
596  */
597 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
598 			struct page *page, int force)
599 {
600 	int rc = 0;
601 	int *result = NULL;
602 	struct page *newpage = get_new_page(page, private, &result);
603 	int rcu_locked = 0;
604 	int charge = 0;
605 	struct mem_cgroup *mem = NULL;
606 
607 	if (!newpage)
608 		return -ENOMEM;
609 
610 	if (page_count(page) == 1) {
611 		/* page was freed from under us. So we are done. */
612 		goto move_newpage;
613 	}
614 
615 	/* prepare cgroup just returns 0 or -ENOMEM */
616 	rc = -EAGAIN;
617 
618 	if (!trylock_page(page)) {
619 		if (!force)
620 			goto move_newpage;
621 		lock_page(page);
622 	}
623 
624 	/* charge against new page */
625 	charge = mem_cgroup_prepare_migration(page, &mem);
626 	if (charge == -ENOMEM) {
627 		rc = -ENOMEM;
628 		goto unlock;
629 	}
630 	BUG_ON(charge);
631 
632 	if (PageWriteback(page)) {
633 		if (!force)
634 			goto uncharge;
635 		wait_on_page_writeback(page);
636 	}
637 	/*
638 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
639 	 * we cannot notice that anon_vma is freed while we migrates a page.
640 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
641 	 * of migration. File cache pages are no problem because of page_lock()
642 	 * File Caches may use write_page() or lock_page() in migration, then,
643 	 * just care Anon page here.
644 	 */
645 	if (PageAnon(page)) {
646 		rcu_read_lock();
647 		rcu_locked = 1;
648 	}
649 
650 	/*
651 	 * Corner case handling:
652 	 * 1. When a new swap-cache page is read into, it is added to the LRU
653 	 * and treated as swapcache but it has no rmap yet.
654 	 * Calling try_to_unmap() against a page->mapping==NULL page will
655 	 * trigger a BUG.  So handle it here.
656 	 * 2. An orphaned page (see truncate_complete_page) might have
657 	 * fs-private metadata. The page can be picked up due to memory
658 	 * offlining.  Everywhere else except page reclaim, the page is
659 	 * invisible to the vm, so the page can not be migrated.  So try to
660 	 * free the metadata, so the page can be freed.
661 	 */
662 	if (!page->mapping) {
663 		if (!PageAnon(page) && page_has_private(page)) {
664 			/*
665 			 * Go direct to try_to_free_buffers() here because
666 			 * a) that's what try_to_release_page() would do anyway
667 			 * b) we may be under rcu_read_lock() here, so we can't
668 			 *    use GFP_KERNEL which is what try_to_release_page()
669 			 *    needs to be effective.
670 			 */
671 			try_to_free_buffers(page);
672 			goto rcu_unlock;
673 		}
674 		goto skip_unmap;
675 	}
676 
677 	/* Establish migration ptes or remove ptes */
678 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
679 
680 skip_unmap:
681 	if (!page_mapped(page))
682 		rc = move_to_new_page(newpage, page);
683 
684 	if (rc)
685 		remove_migration_ptes(page, page);
686 rcu_unlock:
687 	if (rcu_locked)
688 		rcu_read_unlock();
689 uncharge:
690 	if (!charge)
691 		mem_cgroup_end_migration(mem, page, newpage);
692 unlock:
693 	unlock_page(page);
694 
695 	if (rc != -EAGAIN) {
696  		/*
697  		 * A page that has been migrated has all references
698  		 * removed and will be freed. A page that has not been
699  		 * migrated will have kepts its references and be
700  		 * restored.
701  		 */
702  		list_del(&page->lru);
703 		dec_zone_page_state(page, NR_ISOLATED_ANON +
704 				page_is_file_cache(page));
705 		putback_lru_page(page);
706 	}
707 
708 move_newpage:
709 
710 	/*
711 	 * Move the new page to the LRU. If migration was not successful
712 	 * then this will free the page.
713 	 */
714 	putback_lru_page(newpage);
715 
716 	if (result) {
717 		if (rc)
718 			*result = rc;
719 		else
720 			*result = page_to_nid(newpage);
721 	}
722 	return rc;
723 }
724 
725 /*
726  * migrate_pages
727  *
728  * The function takes one list of pages to migrate and a function
729  * that determines from the page to be migrated and the private data
730  * the target of the move and allocates the page.
731  *
732  * The function returns after 10 attempts or if no pages
733  * are movable anymore because to has become empty
734  * or no retryable pages exist anymore. All pages will be
735  * returned to the LRU or freed.
736  *
737  * Return: Number of pages not migrated or error code.
738  */
739 int migrate_pages(struct list_head *from,
740 		new_page_t get_new_page, unsigned long private)
741 {
742 	int retry = 1;
743 	int nr_failed = 0;
744 	int pass = 0;
745 	struct page *page;
746 	struct page *page2;
747 	int swapwrite = current->flags & PF_SWAPWRITE;
748 	int rc;
749 	unsigned long flags;
750 
751 	local_irq_save(flags);
752 	list_for_each_entry(page, from, lru)
753 		__inc_zone_page_state(page, NR_ISOLATED_ANON +
754 				page_is_file_cache(page));
755 	local_irq_restore(flags);
756 
757 	if (!swapwrite)
758 		current->flags |= PF_SWAPWRITE;
759 
760 	for(pass = 0; pass < 10 && retry; pass++) {
761 		retry = 0;
762 
763 		list_for_each_entry_safe(page, page2, from, lru) {
764 			cond_resched();
765 
766 			rc = unmap_and_move(get_new_page, private,
767 						page, pass > 2);
768 
769 			switch(rc) {
770 			case -ENOMEM:
771 				goto out;
772 			case -EAGAIN:
773 				retry++;
774 				break;
775 			case 0:
776 				break;
777 			default:
778 				/* Permanent failure */
779 				nr_failed++;
780 				break;
781 			}
782 		}
783 	}
784 	rc = 0;
785 out:
786 	if (!swapwrite)
787 		current->flags &= ~PF_SWAPWRITE;
788 
789 	putback_lru_pages(from);
790 
791 	if (rc)
792 		return rc;
793 
794 	return nr_failed + retry;
795 }
796 
797 #ifdef CONFIG_NUMA
798 /*
799  * Move a list of individual pages
800  */
801 struct page_to_node {
802 	unsigned long addr;
803 	struct page *page;
804 	int node;
805 	int status;
806 };
807 
808 static struct page *new_page_node(struct page *p, unsigned long private,
809 		int **result)
810 {
811 	struct page_to_node *pm = (struct page_to_node *)private;
812 
813 	while (pm->node != MAX_NUMNODES && pm->page != p)
814 		pm++;
815 
816 	if (pm->node == MAX_NUMNODES)
817 		return NULL;
818 
819 	*result = &pm->status;
820 
821 	return alloc_pages_exact_node(pm->node,
822 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
823 }
824 
825 /*
826  * Move a set of pages as indicated in the pm array. The addr
827  * field must be set to the virtual address of the page to be moved
828  * and the node number must contain a valid target node.
829  * The pm array ends with node = MAX_NUMNODES.
830  */
831 static int do_move_page_to_node_array(struct mm_struct *mm,
832 				      struct page_to_node *pm,
833 				      int migrate_all)
834 {
835 	int err;
836 	struct page_to_node *pp;
837 	LIST_HEAD(pagelist);
838 
839 	down_read(&mm->mmap_sem);
840 
841 	/*
842 	 * Build a list of pages to migrate
843 	 */
844 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
845 		struct vm_area_struct *vma;
846 		struct page *page;
847 
848 		err = -EFAULT;
849 		vma = find_vma(mm, pp->addr);
850 		if (!vma || !vma_migratable(vma))
851 			goto set_status;
852 
853 		page = follow_page(vma, pp->addr, FOLL_GET);
854 
855 		err = PTR_ERR(page);
856 		if (IS_ERR(page))
857 			goto set_status;
858 
859 		err = -ENOENT;
860 		if (!page)
861 			goto set_status;
862 
863 		if (PageReserved(page))		/* Check for zero page */
864 			goto put_and_set;
865 
866 		pp->page = page;
867 		err = page_to_nid(page);
868 
869 		if (err == pp->node)
870 			/*
871 			 * Node already in the right place
872 			 */
873 			goto put_and_set;
874 
875 		err = -EACCES;
876 		if (page_mapcount(page) > 1 &&
877 				!migrate_all)
878 			goto put_and_set;
879 
880 		err = isolate_lru_page(page);
881 		if (!err)
882 			list_add_tail(&page->lru, &pagelist);
883 put_and_set:
884 		/*
885 		 * Either remove the duplicate refcount from
886 		 * isolate_lru_page() or drop the page ref if it was
887 		 * not isolated.
888 		 */
889 		put_page(page);
890 set_status:
891 		pp->status = err;
892 	}
893 
894 	err = 0;
895 	if (!list_empty(&pagelist))
896 		err = migrate_pages(&pagelist, new_page_node,
897 				(unsigned long)pm);
898 
899 	up_read(&mm->mmap_sem);
900 	return err;
901 }
902 
903 /*
904  * Migrate an array of page address onto an array of nodes and fill
905  * the corresponding array of status.
906  */
907 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
908 			 unsigned long nr_pages,
909 			 const void __user * __user *pages,
910 			 const int __user *nodes,
911 			 int __user *status, int flags)
912 {
913 	struct page_to_node *pm;
914 	nodemask_t task_nodes;
915 	unsigned long chunk_nr_pages;
916 	unsigned long chunk_start;
917 	int err;
918 
919 	task_nodes = cpuset_mems_allowed(task);
920 
921 	err = -ENOMEM;
922 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
923 	if (!pm)
924 		goto out;
925 
926 	migrate_prep();
927 
928 	/*
929 	 * Store a chunk of page_to_node array in a page,
930 	 * but keep the last one as a marker
931 	 */
932 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
933 
934 	for (chunk_start = 0;
935 	     chunk_start < nr_pages;
936 	     chunk_start += chunk_nr_pages) {
937 		int j;
938 
939 		if (chunk_start + chunk_nr_pages > nr_pages)
940 			chunk_nr_pages = nr_pages - chunk_start;
941 
942 		/* fill the chunk pm with addrs and nodes from user-space */
943 		for (j = 0; j < chunk_nr_pages; j++) {
944 			const void __user *p;
945 			int node;
946 
947 			err = -EFAULT;
948 			if (get_user(p, pages + j + chunk_start))
949 				goto out_pm;
950 			pm[j].addr = (unsigned long) p;
951 
952 			if (get_user(node, nodes + j + chunk_start))
953 				goto out_pm;
954 
955 			err = -ENODEV;
956 			if (!node_state(node, N_HIGH_MEMORY))
957 				goto out_pm;
958 
959 			err = -EACCES;
960 			if (!node_isset(node, task_nodes))
961 				goto out_pm;
962 
963 			pm[j].node = node;
964 		}
965 
966 		/* End marker for this chunk */
967 		pm[chunk_nr_pages].node = MAX_NUMNODES;
968 
969 		/* Migrate this chunk */
970 		err = do_move_page_to_node_array(mm, pm,
971 						 flags & MPOL_MF_MOVE_ALL);
972 		if (err < 0)
973 			goto out_pm;
974 
975 		/* Return status information */
976 		for (j = 0; j < chunk_nr_pages; j++)
977 			if (put_user(pm[j].status, status + j + chunk_start)) {
978 				err = -EFAULT;
979 				goto out_pm;
980 			}
981 	}
982 	err = 0;
983 
984 out_pm:
985 	free_page((unsigned long)pm);
986 out:
987 	return err;
988 }
989 
990 /*
991  * Determine the nodes of an array of pages and store it in an array of status.
992  */
993 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
994 				const void __user **pages, int *status)
995 {
996 	unsigned long i;
997 
998 	down_read(&mm->mmap_sem);
999 
1000 	for (i = 0; i < nr_pages; i++) {
1001 		unsigned long addr = (unsigned long)(*pages);
1002 		struct vm_area_struct *vma;
1003 		struct page *page;
1004 		int err = -EFAULT;
1005 
1006 		vma = find_vma(mm, addr);
1007 		if (!vma)
1008 			goto set_status;
1009 
1010 		page = follow_page(vma, addr, 0);
1011 
1012 		err = PTR_ERR(page);
1013 		if (IS_ERR(page))
1014 			goto set_status;
1015 
1016 		err = -ENOENT;
1017 		/* Use PageReserved to check for zero page */
1018 		if (!page || PageReserved(page))
1019 			goto set_status;
1020 
1021 		err = page_to_nid(page);
1022 set_status:
1023 		*status = err;
1024 
1025 		pages++;
1026 		status++;
1027 	}
1028 
1029 	up_read(&mm->mmap_sem);
1030 }
1031 
1032 /*
1033  * Determine the nodes of a user array of pages and store it in
1034  * a user array of status.
1035  */
1036 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1037 			 const void __user * __user *pages,
1038 			 int __user *status)
1039 {
1040 #define DO_PAGES_STAT_CHUNK_NR 16
1041 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1042 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1043 	unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1044 	int err;
1045 
1046 	for (i = 0; i < nr_pages; i += chunk_nr) {
1047 		if (chunk_nr + i > nr_pages)
1048 			chunk_nr = nr_pages - i;
1049 
1050 		err = copy_from_user(chunk_pages, &pages[i],
1051 				     chunk_nr * sizeof(*chunk_pages));
1052 		if (err) {
1053 			err = -EFAULT;
1054 			goto out;
1055 		}
1056 
1057 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1058 
1059 		err = copy_to_user(&status[i], chunk_status,
1060 				   chunk_nr * sizeof(*chunk_status));
1061 		if (err) {
1062 			err = -EFAULT;
1063 			goto out;
1064 		}
1065 	}
1066 	err = 0;
1067 
1068 out:
1069 	return err;
1070 }
1071 
1072 /*
1073  * Move a list of pages in the address space of the currently executing
1074  * process.
1075  */
1076 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1077 		const void __user * __user *, pages,
1078 		const int __user *, nodes,
1079 		int __user *, status, int, flags)
1080 {
1081 	const struct cred *cred = current_cred(), *tcred;
1082 	struct task_struct *task;
1083 	struct mm_struct *mm;
1084 	int err;
1085 
1086 	/* Check flags */
1087 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1088 		return -EINVAL;
1089 
1090 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1091 		return -EPERM;
1092 
1093 	/* Find the mm_struct */
1094 	read_lock(&tasklist_lock);
1095 	task = pid ? find_task_by_vpid(pid) : current;
1096 	if (!task) {
1097 		read_unlock(&tasklist_lock);
1098 		return -ESRCH;
1099 	}
1100 	mm = get_task_mm(task);
1101 	read_unlock(&tasklist_lock);
1102 
1103 	if (!mm)
1104 		return -EINVAL;
1105 
1106 	/*
1107 	 * Check if this process has the right to modify the specified
1108 	 * process. The right exists if the process has administrative
1109 	 * capabilities, superuser privileges or the same
1110 	 * userid as the target process.
1111 	 */
1112 	rcu_read_lock();
1113 	tcred = __task_cred(task);
1114 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1115 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1116 	    !capable(CAP_SYS_NICE)) {
1117 		rcu_read_unlock();
1118 		err = -EPERM;
1119 		goto out;
1120 	}
1121 	rcu_read_unlock();
1122 
1123  	err = security_task_movememory(task);
1124  	if (err)
1125 		goto out;
1126 
1127 	if (nodes) {
1128 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1129 				    flags);
1130 	} else {
1131 		err = do_pages_stat(mm, nr_pages, pages, status);
1132 	}
1133 
1134 out:
1135 	mmput(mm);
1136 	return err;
1137 }
1138 
1139 /*
1140  * Call migration functions in the vma_ops that may prepare
1141  * memory in a vm for migration. migration functions may perform
1142  * the migration for vmas that do not have an underlying page struct.
1143  */
1144 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1145 	const nodemask_t *from, unsigned long flags)
1146 {
1147  	struct vm_area_struct *vma;
1148  	int err = 0;
1149 
1150 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1151  		if (vma->vm_ops && vma->vm_ops->migrate) {
1152  			err = vma->vm_ops->migrate(vma, to, from, flags);
1153  			if (err)
1154  				break;
1155  		}
1156  	}
1157  	return err;
1158 }
1159 #endif
1160