1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/balloon_compaction.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/page_idle.h> 42 #include <linux/page_owner.h> 43 44 #include <asm/tlbflush.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/migrate.h> 48 49 #include "internal.h" 50 51 /* 52 * migrate_prep() needs to be called before we start compiling a list of pages 53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 54 * undesirable, use migrate_prep_local() 55 */ 56 int migrate_prep(void) 57 { 58 /* 59 * Clear the LRU lists so pages can be isolated. 60 * Note that pages may be moved off the LRU after we have 61 * drained them. Those pages will fail to migrate like other 62 * pages that may be busy. 63 */ 64 lru_add_drain_all(); 65 66 return 0; 67 } 68 69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 70 int migrate_prep_local(void) 71 { 72 lru_add_drain(); 73 74 return 0; 75 } 76 77 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 78 { 79 struct address_space *mapping; 80 81 /* 82 * Avoid burning cycles with pages that are yet under __free_pages(), 83 * or just got freed under us. 84 * 85 * In case we 'win' a race for a movable page being freed under us and 86 * raise its refcount preventing __free_pages() from doing its job 87 * the put_page() at the end of this block will take care of 88 * release this page, thus avoiding a nasty leakage. 89 */ 90 if (unlikely(!get_page_unless_zero(page))) 91 goto out; 92 93 /* 94 * Check PageMovable before holding a PG_lock because page's owner 95 * assumes anybody doesn't touch PG_lock of newly allocated page 96 * so unconditionally grapping the lock ruins page's owner side. 97 */ 98 if (unlikely(!__PageMovable(page))) 99 goto out_putpage; 100 /* 101 * As movable pages are not isolated from LRU lists, concurrent 102 * compaction threads can race against page migration functions 103 * as well as race against the releasing a page. 104 * 105 * In order to avoid having an already isolated movable page 106 * being (wrongly) re-isolated while it is under migration, 107 * or to avoid attempting to isolate pages being released, 108 * lets be sure we have the page lock 109 * before proceeding with the movable page isolation steps. 110 */ 111 if (unlikely(!trylock_page(page))) 112 goto out_putpage; 113 114 if (!PageMovable(page) || PageIsolated(page)) 115 goto out_no_isolated; 116 117 mapping = page_mapping(page); 118 VM_BUG_ON_PAGE(!mapping, page); 119 120 if (!mapping->a_ops->isolate_page(page, mode)) 121 goto out_no_isolated; 122 123 /* Driver shouldn't use PG_isolated bit of page->flags */ 124 WARN_ON_ONCE(PageIsolated(page)); 125 __SetPageIsolated(page); 126 unlock_page(page); 127 128 return true; 129 130 out_no_isolated: 131 unlock_page(page); 132 out_putpage: 133 put_page(page); 134 out: 135 return false; 136 } 137 138 /* It should be called on page which is PG_movable */ 139 void putback_movable_page(struct page *page) 140 { 141 struct address_space *mapping; 142 143 VM_BUG_ON_PAGE(!PageLocked(page), page); 144 VM_BUG_ON_PAGE(!PageMovable(page), page); 145 VM_BUG_ON_PAGE(!PageIsolated(page), page); 146 147 mapping = page_mapping(page); 148 mapping->a_ops->putback_page(page); 149 __ClearPageIsolated(page); 150 } 151 152 /* 153 * Put previously isolated pages back onto the appropriate lists 154 * from where they were once taken off for compaction/migration. 155 * 156 * This function shall be used whenever the isolated pageset has been 157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 158 * and isolate_huge_page(). 159 */ 160 void putback_movable_pages(struct list_head *l) 161 { 162 struct page *page; 163 struct page *page2; 164 165 list_for_each_entry_safe(page, page2, l, lru) { 166 if (unlikely(PageHuge(page))) { 167 putback_active_hugepage(page); 168 continue; 169 } 170 list_del(&page->lru); 171 /* 172 * We isolated non-lru movable page so here we can use 173 * __PageMovable because LRU page's mapping cannot have 174 * PAGE_MAPPING_MOVABLE. 175 */ 176 if (unlikely(__PageMovable(page))) { 177 VM_BUG_ON_PAGE(!PageIsolated(page), page); 178 lock_page(page); 179 if (PageMovable(page)) 180 putback_movable_page(page); 181 else 182 __ClearPageIsolated(page); 183 unlock_page(page); 184 put_page(page); 185 } else { 186 putback_lru_page(page); 187 dec_node_page_state(page, NR_ISOLATED_ANON + 188 page_is_file_cache(page)); 189 } 190 } 191 } 192 193 /* 194 * Restore a potential migration pte to a working pte entry 195 */ 196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 197 unsigned long addr, void *old) 198 { 199 struct mm_struct *mm = vma->vm_mm; 200 swp_entry_t entry; 201 pmd_t *pmd; 202 pte_t *ptep, pte; 203 spinlock_t *ptl; 204 205 if (unlikely(PageHuge(new))) { 206 ptep = huge_pte_offset(mm, addr); 207 if (!ptep) 208 goto out; 209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 210 } else { 211 pmd = mm_find_pmd(mm, addr); 212 if (!pmd) 213 goto out; 214 215 ptep = pte_offset_map(pmd, addr); 216 217 /* 218 * Peek to check is_swap_pte() before taking ptlock? No, we 219 * can race mremap's move_ptes(), which skips anon_vma lock. 220 */ 221 222 ptl = pte_lockptr(mm, pmd); 223 } 224 225 spin_lock(ptl); 226 pte = *ptep; 227 if (!is_swap_pte(pte)) 228 goto unlock; 229 230 entry = pte_to_swp_entry(pte); 231 232 if (!is_migration_entry(entry) || 233 migration_entry_to_page(entry) != old) 234 goto unlock; 235 236 get_page(new); 237 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 238 if (pte_swp_soft_dirty(*ptep)) 239 pte = pte_mksoft_dirty(pte); 240 241 /* Recheck VMA as permissions can change since migration started */ 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 #ifdef CONFIG_HUGETLB_PAGE 246 if (PageHuge(new)) { 247 pte = pte_mkhuge(pte); 248 pte = arch_make_huge_pte(pte, vma, new, 0); 249 } 250 #endif 251 flush_dcache_page(new); 252 set_pte_at(mm, addr, ptep, pte); 253 254 if (PageHuge(new)) { 255 if (PageAnon(new)) 256 hugepage_add_anon_rmap(new, vma, addr); 257 else 258 page_dup_rmap(new, true); 259 } else if (PageAnon(new)) 260 page_add_anon_rmap(new, vma, addr, false); 261 else 262 page_add_file_rmap(new, false); 263 264 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 265 mlock_vma_page(new); 266 267 /* No need to invalidate - it was non-present before */ 268 update_mmu_cache(vma, addr, ptep); 269 unlock: 270 pte_unmap_unlock(ptep, ptl); 271 out: 272 return SWAP_AGAIN; 273 } 274 275 /* 276 * Get rid of all migration entries and replace them by 277 * references to the indicated page. 278 */ 279 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 280 { 281 struct rmap_walk_control rwc = { 282 .rmap_one = remove_migration_pte, 283 .arg = old, 284 }; 285 286 if (locked) 287 rmap_walk_locked(new, &rwc); 288 else 289 rmap_walk(new, &rwc); 290 } 291 292 /* 293 * Something used the pte of a page under migration. We need to 294 * get to the page and wait until migration is finished. 295 * When we return from this function the fault will be retried. 296 */ 297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 298 spinlock_t *ptl) 299 { 300 pte_t pte; 301 swp_entry_t entry; 302 struct page *page; 303 304 spin_lock(ptl); 305 pte = *ptep; 306 if (!is_swap_pte(pte)) 307 goto out; 308 309 entry = pte_to_swp_entry(pte); 310 if (!is_migration_entry(entry)) 311 goto out; 312 313 page = migration_entry_to_page(entry); 314 315 /* 316 * Once radix-tree replacement of page migration started, page_count 317 * *must* be zero. And, we don't want to call wait_on_page_locked() 318 * against a page without get_page(). 319 * So, we use get_page_unless_zero(), here. Even failed, page fault 320 * will occur again. 321 */ 322 if (!get_page_unless_zero(page)) 323 goto out; 324 pte_unmap_unlock(ptep, ptl); 325 wait_on_page_locked(page); 326 put_page(page); 327 return; 328 out: 329 pte_unmap_unlock(ptep, ptl); 330 } 331 332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 333 unsigned long address) 334 { 335 spinlock_t *ptl = pte_lockptr(mm, pmd); 336 pte_t *ptep = pte_offset_map(pmd, address); 337 __migration_entry_wait(mm, ptep, ptl); 338 } 339 340 void migration_entry_wait_huge(struct vm_area_struct *vma, 341 struct mm_struct *mm, pte_t *pte) 342 { 343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 344 __migration_entry_wait(mm, pte, ptl); 345 } 346 347 #ifdef CONFIG_BLOCK 348 /* Returns true if all buffers are successfully locked */ 349 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 350 enum migrate_mode mode) 351 { 352 struct buffer_head *bh = head; 353 354 /* Simple case, sync compaction */ 355 if (mode != MIGRATE_ASYNC) { 356 do { 357 get_bh(bh); 358 lock_buffer(bh); 359 bh = bh->b_this_page; 360 361 } while (bh != head); 362 363 return true; 364 } 365 366 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 367 do { 368 get_bh(bh); 369 if (!trylock_buffer(bh)) { 370 /* 371 * We failed to lock the buffer and cannot stall in 372 * async migration. Release the taken locks 373 */ 374 struct buffer_head *failed_bh = bh; 375 put_bh(failed_bh); 376 bh = head; 377 while (bh != failed_bh) { 378 unlock_buffer(bh); 379 put_bh(bh); 380 bh = bh->b_this_page; 381 } 382 return false; 383 } 384 385 bh = bh->b_this_page; 386 } while (bh != head); 387 return true; 388 } 389 #else 390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 391 enum migrate_mode mode) 392 { 393 return true; 394 } 395 #endif /* CONFIG_BLOCK */ 396 397 /* 398 * Replace the page in the mapping. 399 * 400 * The number of remaining references must be: 401 * 1 for anonymous pages without a mapping 402 * 2 for pages with a mapping 403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 404 */ 405 int migrate_page_move_mapping(struct address_space *mapping, 406 struct page *newpage, struct page *page, 407 struct buffer_head *head, enum migrate_mode mode, 408 int extra_count) 409 { 410 struct zone *oldzone, *newzone; 411 int dirty; 412 int expected_count = 1 + extra_count; 413 void **pslot; 414 415 if (!mapping) { 416 /* Anonymous page without mapping */ 417 if (page_count(page) != expected_count) 418 return -EAGAIN; 419 420 /* No turning back from here */ 421 newpage->index = page->index; 422 newpage->mapping = page->mapping; 423 if (PageSwapBacked(page)) 424 __SetPageSwapBacked(newpage); 425 426 return MIGRATEPAGE_SUCCESS; 427 } 428 429 oldzone = page_zone(page); 430 newzone = page_zone(newpage); 431 432 spin_lock_irq(&mapping->tree_lock); 433 434 pslot = radix_tree_lookup_slot(&mapping->page_tree, 435 page_index(page)); 436 437 expected_count += 1 + page_has_private(page); 438 if (page_count(page) != expected_count || 439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 440 spin_unlock_irq(&mapping->tree_lock); 441 return -EAGAIN; 442 } 443 444 if (!page_ref_freeze(page, expected_count)) { 445 spin_unlock_irq(&mapping->tree_lock); 446 return -EAGAIN; 447 } 448 449 /* 450 * In the async migration case of moving a page with buffers, lock the 451 * buffers using trylock before the mapping is moved. If the mapping 452 * was moved, we later failed to lock the buffers and could not move 453 * the mapping back due to an elevated page count, we would have to 454 * block waiting on other references to be dropped. 455 */ 456 if (mode == MIGRATE_ASYNC && head && 457 !buffer_migrate_lock_buffers(head, mode)) { 458 page_ref_unfreeze(page, expected_count); 459 spin_unlock_irq(&mapping->tree_lock); 460 return -EAGAIN; 461 } 462 463 /* 464 * Now we know that no one else is looking at the page: 465 * no turning back from here. 466 */ 467 newpage->index = page->index; 468 newpage->mapping = page->mapping; 469 if (PageSwapBacked(page)) 470 __SetPageSwapBacked(newpage); 471 472 get_page(newpage); /* add cache reference */ 473 if (PageSwapCache(page)) { 474 SetPageSwapCache(newpage); 475 set_page_private(newpage, page_private(page)); 476 } 477 478 /* Move dirty while page refs frozen and newpage not yet exposed */ 479 dirty = PageDirty(page); 480 if (dirty) { 481 ClearPageDirty(page); 482 SetPageDirty(newpage); 483 } 484 485 radix_tree_replace_slot(pslot, newpage); 486 487 /* 488 * Drop cache reference from old page by unfreezing 489 * to one less reference. 490 * We know this isn't the last reference. 491 */ 492 page_ref_unfreeze(page, expected_count - 1); 493 494 spin_unlock(&mapping->tree_lock); 495 /* Leave irq disabled to prevent preemption while updating stats */ 496 497 /* 498 * If moved to a different zone then also account 499 * the page for that zone. Other VM counters will be 500 * taken care of when we establish references to the 501 * new page and drop references to the old page. 502 * 503 * Note that anonymous pages are accounted for 504 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 505 * are mapped to swap space. 506 */ 507 if (newzone != oldzone) { 508 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 510 if (PageSwapBacked(page) && !PageSwapCache(page)) { 511 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 512 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 513 } 514 if (dirty && mapping_cap_account_dirty(mapping)) { 515 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 516 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 517 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 518 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 519 } 520 } 521 local_irq_enable(); 522 523 return MIGRATEPAGE_SUCCESS; 524 } 525 EXPORT_SYMBOL(migrate_page_move_mapping); 526 527 /* 528 * The expected number of remaining references is the same as that 529 * of migrate_page_move_mapping(). 530 */ 531 int migrate_huge_page_move_mapping(struct address_space *mapping, 532 struct page *newpage, struct page *page) 533 { 534 int expected_count; 535 void **pslot; 536 537 spin_lock_irq(&mapping->tree_lock); 538 539 pslot = radix_tree_lookup_slot(&mapping->page_tree, 540 page_index(page)); 541 542 expected_count = 2 + page_has_private(page); 543 if (page_count(page) != expected_count || 544 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 545 spin_unlock_irq(&mapping->tree_lock); 546 return -EAGAIN; 547 } 548 549 if (!page_ref_freeze(page, expected_count)) { 550 spin_unlock_irq(&mapping->tree_lock); 551 return -EAGAIN; 552 } 553 554 newpage->index = page->index; 555 newpage->mapping = page->mapping; 556 557 get_page(newpage); 558 559 radix_tree_replace_slot(pslot, newpage); 560 561 page_ref_unfreeze(page, expected_count - 1); 562 563 spin_unlock_irq(&mapping->tree_lock); 564 565 return MIGRATEPAGE_SUCCESS; 566 } 567 568 /* 569 * Gigantic pages are so large that we do not guarantee that page++ pointer 570 * arithmetic will work across the entire page. We need something more 571 * specialized. 572 */ 573 static void __copy_gigantic_page(struct page *dst, struct page *src, 574 int nr_pages) 575 { 576 int i; 577 struct page *dst_base = dst; 578 struct page *src_base = src; 579 580 for (i = 0; i < nr_pages; ) { 581 cond_resched(); 582 copy_highpage(dst, src); 583 584 i++; 585 dst = mem_map_next(dst, dst_base, i); 586 src = mem_map_next(src, src_base, i); 587 } 588 } 589 590 static void copy_huge_page(struct page *dst, struct page *src) 591 { 592 int i; 593 int nr_pages; 594 595 if (PageHuge(src)) { 596 /* hugetlbfs page */ 597 struct hstate *h = page_hstate(src); 598 nr_pages = pages_per_huge_page(h); 599 600 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 601 __copy_gigantic_page(dst, src, nr_pages); 602 return; 603 } 604 } else { 605 /* thp page */ 606 BUG_ON(!PageTransHuge(src)); 607 nr_pages = hpage_nr_pages(src); 608 } 609 610 for (i = 0; i < nr_pages; i++) { 611 cond_resched(); 612 copy_highpage(dst + i, src + i); 613 } 614 } 615 616 /* 617 * Copy the page to its new location 618 */ 619 void migrate_page_copy(struct page *newpage, struct page *page) 620 { 621 int cpupid; 622 623 if (PageHuge(page) || PageTransHuge(page)) 624 copy_huge_page(newpage, page); 625 else 626 copy_highpage(newpage, page); 627 628 if (PageError(page)) 629 SetPageError(newpage); 630 if (PageReferenced(page)) 631 SetPageReferenced(newpage); 632 if (PageUptodate(page)) 633 SetPageUptodate(newpage); 634 if (TestClearPageActive(page)) { 635 VM_BUG_ON_PAGE(PageUnevictable(page), page); 636 SetPageActive(newpage); 637 } else if (TestClearPageUnevictable(page)) 638 SetPageUnevictable(newpage); 639 if (PageChecked(page)) 640 SetPageChecked(newpage); 641 if (PageMappedToDisk(page)) 642 SetPageMappedToDisk(newpage); 643 644 /* Move dirty on pages not done by migrate_page_move_mapping() */ 645 if (PageDirty(page)) 646 SetPageDirty(newpage); 647 648 if (page_is_young(page)) 649 set_page_young(newpage); 650 if (page_is_idle(page)) 651 set_page_idle(newpage); 652 653 /* 654 * Copy NUMA information to the new page, to prevent over-eager 655 * future migrations of this same page. 656 */ 657 cpupid = page_cpupid_xchg_last(page, -1); 658 page_cpupid_xchg_last(newpage, cpupid); 659 660 ksm_migrate_page(newpage, page); 661 /* 662 * Please do not reorder this without considering how mm/ksm.c's 663 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 664 */ 665 if (PageSwapCache(page)) 666 ClearPageSwapCache(page); 667 ClearPagePrivate(page); 668 set_page_private(page, 0); 669 670 /* 671 * If any waiters have accumulated on the new page then 672 * wake them up. 673 */ 674 if (PageWriteback(newpage)) 675 end_page_writeback(newpage); 676 677 copy_page_owner(page, newpage); 678 679 mem_cgroup_migrate(page, newpage); 680 } 681 EXPORT_SYMBOL(migrate_page_copy); 682 683 /************************************************************ 684 * Migration functions 685 ***********************************************************/ 686 687 /* 688 * Common logic to directly migrate a single LRU page suitable for 689 * pages that do not use PagePrivate/PagePrivate2. 690 * 691 * Pages are locked upon entry and exit. 692 */ 693 int migrate_page(struct address_space *mapping, 694 struct page *newpage, struct page *page, 695 enum migrate_mode mode) 696 { 697 int rc; 698 699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 700 701 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 702 703 if (rc != MIGRATEPAGE_SUCCESS) 704 return rc; 705 706 migrate_page_copy(newpage, page); 707 return MIGRATEPAGE_SUCCESS; 708 } 709 EXPORT_SYMBOL(migrate_page); 710 711 #ifdef CONFIG_BLOCK 712 /* 713 * Migration function for pages with buffers. This function can only be used 714 * if the underlying filesystem guarantees that no other references to "page" 715 * exist. 716 */ 717 int buffer_migrate_page(struct address_space *mapping, 718 struct page *newpage, struct page *page, enum migrate_mode mode) 719 { 720 struct buffer_head *bh, *head; 721 int rc; 722 723 if (!page_has_buffers(page)) 724 return migrate_page(mapping, newpage, page, mode); 725 726 head = page_buffers(page); 727 728 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 729 730 if (rc != MIGRATEPAGE_SUCCESS) 731 return rc; 732 733 /* 734 * In the async case, migrate_page_move_mapping locked the buffers 735 * with an IRQ-safe spinlock held. In the sync case, the buffers 736 * need to be locked now 737 */ 738 if (mode != MIGRATE_ASYNC) 739 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 740 741 ClearPagePrivate(page); 742 set_page_private(newpage, page_private(page)); 743 set_page_private(page, 0); 744 put_page(page); 745 get_page(newpage); 746 747 bh = head; 748 do { 749 set_bh_page(bh, newpage, bh_offset(bh)); 750 bh = bh->b_this_page; 751 752 } while (bh != head); 753 754 SetPagePrivate(newpage); 755 756 migrate_page_copy(newpage, page); 757 758 bh = head; 759 do { 760 unlock_buffer(bh); 761 put_bh(bh); 762 bh = bh->b_this_page; 763 764 } while (bh != head); 765 766 return MIGRATEPAGE_SUCCESS; 767 } 768 EXPORT_SYMBOL(buffer_migrate_page); 769 #endif 770 771 /* 772 * Writeback a page to clean the dirty state 773 */ 774 static int writeout(struct address_space *mapping, struct page *page) 775 { 776 struct writeback_control wbc = { 777 .sync_mode = WB_SYNC_NONE, 778 .nr_to_write = 1, 779 .range_start = 0, 780 .range_end = LLONG_MAX, 781 .for_reclaim = 1 782 }; 783 int rc; 784 785 if (!mapping->a_ops->writepage) 786 /* No write method for the address space */ 787 return -EINVAL; 788 789 if (!clear_page_dirty_for_io(page)) 790 /* Someone else already triggered a write */ 791 return -EAGAIN; 792 793 /* 794 * A dirty page may imply that the underlying filesystem has 795 * the page on some queue. So the page must be clean for 796 * migration. Writeout may mean we loose the lock and the 797 * page state is no longer what we checked for earlier. 798 * At this point we know that the migration attempt cannot 799 * be successful. 800 */ 801 remove_migration_ptes(page, page, false); 802 803 rc = mapping->a_ops->writepage(page, &wbc); 804 805 if (rc != AOP_WRITEPAGE_ACTIVATE) 806 /* unlocked. Relock */ 807 lock_page(page); 808 809 return (rc < 0) ? -EIO : -EAGAIN; 810 } 811 812 /* 813 * Default handling if a filesystem does not provide a migration function. 814 */ 815 static int fallback_migrate_page(struct address_space *mapping, 816 struct page *newpage, struct page *page, enum migrate_mode mode) 817 { 818 if (PageDirty(page)) { 819 /* Only writeback pages in full synchronous migration */ 820 if (mode != MIGRATE_SYNC) 821 return -EBUSY; 822 return writeout(mapping, page); 823 } 824 825 /* 826 * Buffers may be managed in a filesystem specific way. 827 * We must have no buffers or drop them. 828 */ 829 if (page_has_private(page) && 830 !try_to_release_page(page, GFP_KERNEL)) 831 return -EAGAIN; 832 833 return migrate_page(mapping, newpage, page, mode); 834 } 835 836 /* 837 * Move a page to a newly allocated page 838 * The page is locked and all ptes have been successfully removed. 839 * 840 * The new page will have replaced the old page if this function 841 * is successful. 842 * 843 * Return value: 844 * < 0 - error code 845 * MIGRATEPAGE_SUCCESS - success 846 */ 847 static int move_to_new_page(struct page *newpage, struct page *page, 848 enum migrate_mode mode) 849 { 850 struct address_space *mapping; 851 int rc = -EAGAIN; 852 bool is_lru = !__PageMovable(page); 853 854 VM_BUG_ON_PAGE(!PageLocked(page), page); 855 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 856 857 mapping = page_mapping(page); 858 859 if (likely(is_lru)) { 860 if (!mapping) 861 rc = migrate_page(mapping, newpage, page, mode); 862 else if (mapping->a_ops->migratepage) 863 /* 864 * Most pages have a mapping and most filesystems 865 * provide a migratepage callback. Anonymous pages 866 * are part of swap space which also has its own 867 * migratepage callback. This is the most common path 868 * for page migration. 869 */ 870 rc = mapping->a_ops->migratepage(mapping, newpage, 871 page, mode); 872 else 873 rc = fallback_migrate_page(mapping, newpage, 874 page, mode); 875 } else { 876 /* 877 * In case of non-lru page, it could be released after 878 * isolation step. In that case, we shouldn't try migration. 879 */ 880 VM_BUG_ON_PAGE(!PageIsolated(page), page); 881 if (!PageMovable(page)) { 882 rc = MIGRATEPAGE_SUCCESS; 883 __ClearPageIsolated(page); 884 goto out; 885 } 886 887 rc = mapping->a_ops->migratepage(mapping, newpage, 888 page, mode); 889 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 890 !PageIsolated(page)); 891 } 892 893 /* 894 * When successful, old pagecache page->mapping must be cleared before 895 * page is freed; but stats require that PageAnon be left as PageAnon. 896 */ 897 if (rc == MIGRATEPAGE_SUCCESS) { 898 if (__PageMovable(page)) { 899 VM_BUG_ON_PAGE(!PageIsolated(page), page); 900 901 /* 902 * We clear PG_movable under page_lock so any compactor 903 * cannot try to migrate this page. 904 */ 905 __ClearPageIsolated(page); 906 } 907 908 /* 909 * Anonymous and movable page->mapping will be cleard by 910 * free_pages_prepare so don't reset it here for keeping 911 * the type to work PageAnon, for example. 912 */ 913 if (!PageMappingFlags(page)) 914 page->mapping = NULL; 915 } 916 out: 917 return rc; 918 } 919 920 static int __unmap_and_move(struct page *page, struct page *newpage, 921 int force, enum migrate_mode mode) 922 { 923 int rc = -EAGAIN; 924 int page_was_mapped = 0; 925 struct anon_vma *anon_vma = NULL; 926 bool is_lru = !__PageMovable(page); 927 928 if (!trylock_page(page)) { 929 if (!force || mode == MIGRATE_ASYNC) 930 goto out; 931 932 /* 933 * It's not safe for direct compaction to call lock_page. 934 * For example, during page readahead pages are added locked 935 * to the LRU. Later, when the IO completes the pages are 936 * marked uptodate and unlocked. However, the queueing 937 * could be merging multiple pages for one bio (e.g. 938 * mpage_readpages). If an allocation happens for the 939 * second or third page, the process can end up locking 940 * the same page twice and deadlocking. Rather than 941 * trying to be clever about what pages can be locked, 942 * avoid the use of lock_page for direct compaction 943 * altogether. 944 */ 945 if (current->flags & PF_MEMALLOC) 946 goto out; 947 948 lock_page(page); 949 } 950 951 if (PageWriteback(page)) { 952 /* 953 * Only in the case of a full synchronous migration is it 954 * necessary to wait for PageWriteback. In the async case, 955 * the retry loop is too short and in the sync-light case, 956 * the overhead of stalling is too much 957 */ 958 if (mode != MIGRATE_SYNC) { 959 rc = -EBUSY; 960 goto out_unlock; 961 } 962 if (!force) 963 goto out_unlock; 964 wait_on_page_writeback(page); 965 } 966 967 /* 968 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 969 * we cannot notice that anon_vma is freed while we migrates a page. 970 * This get_anon_vma() delays freeing anon_vma pointer until the end 971 * of migration. File cache pages are no problem because of page_lock() 972 * File Caches may use write_page() or lock_page() in migration, then, 973 * just care Anon page here. 974 * 975 * Only page_get_anon_vma() understands the subtleties of 976 * getting a hold on an anon_vma from outside one of its mms. 977 * But if we cannot get anon_vma, then we won't need it anyway, 978 * because that implies that the anon page is no longer mapped 979 * (and cannot be remapped so long as we hold the page lock). 980 */ 981 if (PageAnon(page) && !PageKsm(page)) 982 anon_vma = page_get_anon_vma(page); 983 984 /* 985 * Block others from accessing the new page when we get around to 986 * establishing additional references. We are usually the only one 987 * holding a reference to newpage at this point. We used to have a BUG 988 * here if trylock_page(newpage) fails, but would like to allow for 989 * cases where there might be a race with the previous use of newpage. 990 * This is much like races on refcount of oldpage: just don't BUG(). 991 */ 992 if (unlikely(!trylock_page(newpage))) 993 goto out_unlock; 994 995 if (unlikely(!is_lru)) { 996 rc = move_to_new_page(newpage, page, mode); 997 goto out_unlock_both; 998 } 999 1000 /* 1001 * Corner case handling: 1002 * 1. When a new swap-cache page is read into, it is added to the LRU 1003 * and treated as swapcache but it has no rmap yet. 1004 * Calling try_to_unmap() against a page->mapping==NULL page will 1005 * trigger a BUG. So handle it here. 1006 * 2. An orphaned page (see truncate_complete_page) might have 1007 * fs-private metadata. The page can be picked up due to memory 1008 * offlining. Everywhere else except page reclaim, the page is 1009 * invisible to the vm, so the page can not be migrated. So try to 1010 * free the metadata, so the page can be freed. 1011 */ 1012 if (!page->mapping) { 1013 VM_BUG_ON_PAGE(PageAnon(page), page); 1014 if (page_has_private(page)) { 1015 try_to_free_buffers(page); 1016 goto out_unlock_both; 1017 } 1018 } else if (page_mapped(page)) { 1019 /* Establish migration ptes */ 1020 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1021 page); 1022 try_to_unmap(page, 1023 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1024 page_was_mapped = 1; 1025 } 1026 1027 if (!page_mapped(page)) 1028 rc = move_to_new_page(newpage, page, mode); 1029 1030 if (page_was_mapped) 1031 remove_migration_ptes(page, 1032 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1033 1034 out_unlock_both: 1035 unlock_page(newpage); 1036 out_unlock: 1037 /* Drop an anon_vma reference if we took one */ 1038 if (anon_vma) 1039 put_anon_vma(anon_vma); 1040 unlock_page(page); 1041 out: 1042 /* 1043 * If migration is successful, decrease refcount of the newpage 1044 * which will not free the page because new page owner increased 1045 * refcounter. As well, if it is LRU page, add the page to LRU 1046 * list in here. 1047 */ 1048 if (rc == MIGRATEPAGE_SUCCESS) { 1049 if (unlikely(__PageMovable(newpage))) 1050 put_page(newpage); 1051 else 1052 putback_lru_page(newpage); 1053 } 1054 1055 return rc; 1056 } 1057 1058 /* 1059 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1060 * around it. 1061 */ 1062 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1063 #define ICE_noinline noinline 1064 #else 1065 #define ICE_noinline 1066 #endif 1067 1068 /* 1069 * Obtain the lock on page, remove all ptes and migrate the page 1070 * to the newly allocated page in newpage. 1071 */ 1072 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1073 free_page_t put_new_page, 1074 unsigned long private, struct page *page, 1075 int force, enum migrate_mode mode, 1076 enum migrate_reason reason) 1077 { 1078 int rc = MIGRATEPAGE_SUCCESS; 1079 int *result = NULL; 1080 struct page *newpage; 1081 1082 newpage = get_new_page(page, private, &result); 1083 if (!newpage) 1084 return -ENOMEM; 1085 1086 if (page_count(page) == 1) { 1087 /* page was freed from under us. So we are done. */ 1088 ClearPageActive(page); 1089 ClearPageUnevictable(page); 1090 if (unlikely(__PageMovable(page))) { 1091 lock_page(page); 1092 if (!PageMovable(page)) 1093 __ClearPageIsolated(page); 1094 unlock_page(page); 1095 } 1096 if (put_new_page) 1097 put_new_page(newpage, private); 1098 else 1099 put_page(newpage); 1100 goto out; 1101 } 1102 1103 if (unlikely(PageTransHuge(page))) { 1104 lock_page(page); 1105 rc = split_huge_page(page); 1106 unlock_page(page); 1107 if (rc) 1108 goto out; 1109 } 1110 1111 rc = __unmap_and_move(page, newpage, force, mode); 1112 if (rc == MIGRATEPAGE_SUCCESS) 1113 set_page_owner_migrate_reason(newpage, reason); 1114 1115 out: 1116 if (rc != -EAGAIN) { 1117 /* 1118 * A page that has been migrated has all references 1119 * removed and will be freed. A page that has not been 1120 * migrated will have kepts its references and be 1121 * restored. 1122 */ 1123 list_del(&page->lru); 1124 1125 /* 1126 * Compaction can migrate also non-LRU pages which are 1127 * not accounted to NR_ISOLATED_*. They can be recognized 1128 * as __PageMovable 1129 */ 1130 if (likely(!__PageMovable(page))) 1131 dec_node_page_state(page, NR_ISOLATED_ANON + 1132 page_is_file_cache(page)); 1133 } 1134 1135 /* 1136 * If migration is successful, releases reference grabbed during 1137 * isolation. Otherwise, restore the page to right list unless 1138 * we want to retry. 1139 */ 1140 if (rc == MIGRATEPAGE_SUCCESS) { 1141 put_page(page); 1142 if (reason == MR_MEMORY_FAILURE) { 1143 /* 1144 * Set PG_HWPoison on just freed page 1145 * intentionally. Although it's rather weird, 1146 * it's how HWPoison flag works at the moment. 1147 */ 1148 if (!test_set_page_hwpoison(page)) 1149 num_poisoned_pages_inc(); 1150 } 1151 } else { 1152 if (rc != -EAGAIN) { 1153 if (likely(!__PageMovable(page))) { 1154 putback_lru_page(page); 1155 goto put_new; 1156 } 1157 1158 lock_page(page); 1159 if (PageMovable(page)) 1160 putback_movable_page(page); 1161 else 1162 __ClearPageIsolated(page); 1163 unlock_page(page); 1164 put_page(page); 1165 } 1166 put_new: 1167 if (put_new_page) 1168 put_new_page(newpage, private); 1169 else 1170 put_page(newpage); 1171 } 1172 1173 if (result) { 1174 if (rc) 1175 *result = rc; 1176 else 1177 *result = page_to_nid(newpage); 1178 } 1179 return rc; 1180 } 1181 1182 /* 1183 * Counterpart of unmap_and_move_page() for hugepage migration. 1184 * 1185 * This function doesn't wait the completion of hugepage I/O 1186 * because there is no race between I/O and migration for hugepage. 1187 * Note that currently hugepage I/O occurs only in direct I/O 1188 * where no lock is held and PG_writeback is irrelevant, 1189 * and writeback status of all subpages are counted in the reference 1190 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1191 * under direct I/O, the reference of the head page is 512 and a bit more.) 1192 * This means that when we try to migrate hugepage whose subpages are 1193 * doing direct I/O, some references remain after try_to_unmap() and 1194 * hugepage migration fails without data corruption. 1195 * 1196 * There is also no race when direct I/O is issued on the page under migration, 1197 * because then pte is replaced with migration swap entry and direct I/O code 1198 * will wait in the page fault for migration to complete. 1199 */ 1200 static int unmap_and_move_huge_page(new_page_t get_new_page, 1201 free_page_t put_new_page, unsigned long private, 1202 struct page *hpage, int force, 1203 enum migrate_mode mode, int reason) 1204 { 1205 int rc = -EAGAIN; 1206 int *result = NULL; 1207 int page_was_mapped = 0; 1208 struct page *new_hpage; 1209 struct anon_vma *anon_vma = NULL; 1210 1211 /* 1212 * Movability of hugepages depends on architectures and hugepage size. 1213 * This check is necessary because some callers of hugepage migration 1214 * like soft offline and memory hotremove don't walk through page 1215 * tables or check whether the hugepage is pmd-based or not before 1216 * kicking migration. 1217 */ 1218 if (!hugepage_migration_supported(page_hstate(hpage))) { 1219 putback_active_hugepage(hpage); 1220 return -ENOSYS; 1221 } 1222 1223 new_hpage = get_new_page(hpage, private, &result); 1224 if (!new_hpage) 1225 return -ENOMEM; 1226 1227 if (!trylock_page(hpage)) { 1228 if (!force || mode != MIGRATE_SYNC) 1229 goto out; 1230 lock_page(hpage); 1231 } 1232 1233 if (PageAnon(hpage)) 1234 anon_vma = page_get_anon_vma(hpage); 1235 1236 if (unlikely(!trylock_page(new_hpage))) 1237 goto put_anon; 1238 1239 if (page_mapped(hpage)) { 1240 try_to_unmap(hpage, 1241 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1242 page_was_mapped = 1; 1243 } 1244 1245 if (!page_mapped(hpage)) 1246 rc = move_to_new_page(new_hpage, hpage, mode); 1247 1248 if (page_was_mapped) 1249 remove_migration_ptes(hpage, 1250 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1251 1252 unlock_page(new_hpage); 1253 1254 put_anon: 1255 if (anon_vma) 1256 put_anon_vma(anon_vma); 1257 1258 if (rc == MIGRATEPAGE_SUCCESS) { 1259 hugetlb_cgroup_migrate(hpage, new_hpage); 1260 put_new_page = NULL; 1261 set_page_owner_migrate_reason(new_hpage, reason); 1262 } 1263 1264 unlock_page(hpage); 1265 out: 1266 if (rc != -EAGAIN) 1267 putback_active_hugepage(hpage); 1268 1269 /* 1270 * If migration was not successful and there's a freeing callback, use 1271 * it. Otherwise, put_page() will drop the reference grabbed during 1272 * isolation. 1273 */ 1274 if (put_new_page) 1275 put_new_page(new_hpage, private); 1276 else 1277 putback_active_hugepage(new_hpage); 1278 1279 if (result) { 1280 if (rc) 1281 *result = rc; 1282 else 1283 *result = page_to_nid(new_hpage); 1284 } 1285 return rc; 1286 } 1287 1288 /* 1289 * migrate_pages - migrate the pages specified in a list, to the free pages 1290 * supplied as the target for the page migration 1291 * 1292 * @from: The list of pages to be migrated. 1293 * @get_new_page: The function used to allocate free pages to be used 1294 * as the target of the page migration. 1295 * @put_new_page: The function used to free target pages if migration 1296 * fails, or NULL if no special handling is necessary. 1297 * @private: Private data to be passed on to get_new_page() 1298 * @mode: The migration mode that specifies the constraints for 1299 * page migration, if any. 1300 * @reason: The reason for page migration. 1301 * 1302 * The function returns after 10 attempts or if no pages are movable any more 1303 * because the list has become empty or no retryable pages exist any more. 1304 * The caller should call putback_movable_pages() to return pages to the LRU 1305 * or free list only if ret != 0. 1306 * 1307 * Returns the number of pages that were not migrated, or an error code. 1308 */ 1309 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1310 free_page_t put_new_page, unsigned long private, 1311 enum migrate_mode mode, int reason) 1312 { 1313 int retry = 1; 1314 int nr_failed = 0; 1315 int nr_succeeded = 0; 1316 int pass = 0; 1317 struct page *page; 1318 struct page *page2; 1319 int swapwrite = current->flags & PF_SWAPWRITE; 1320 int rc; 1321 1322 if (!swapwrite) 1323 current->flags |= PF_SWAPWRITE; 1324 1325 for(pass = 0; pass < 10 && retry; pass++) { 1326 retry = 0; 1327 1328 list_for_each_entry_safe(page, page2, from, lru) { 1329 cond_resched(); 1330 1331 if (PageHuge(page)) 1332 rc = unmap_and_move_huge_page(get_new_page, 1333 put_new_page, private, page, 1334 pass > 2, mode, reason); 1335 else 1336 rc = unmap_and_move(get_new_page, put_new_page, 1337 private, page, pass > 2, mode, 1338 reason); 1339 1340 switch(rc) { 1341 case -ENOMEM: 1342 nr_failed++; 1343 goto out; 1344 case -EAGAIN: 1345 retry++; 1346 break; 1347 case MIGRATEPAGE_SUCCESS: 1348 nr_succeeded++; 1349 break; 1350 default: 1351 /* 1352 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1353 * unlike -EAGAIN case, the failed page is 1354 * removed from migration page list and not 1355 * retried in the next outer loop. 1356 */ 1357 nr_failed++; 1358 break; 1359 } 1360 } 1361 } 1362 nr_failed += retry; 1363 rc = nr_failed; 1364 out: 1365 if (nr_succeeded) 1366 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1367 if (nr_failed) 1368 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1369 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1370 1371 if (!swapwrite) 1372 current->flags &= ~PF_SWAPWRITE; 1373 1374 return rc; 1375 } 1376 1377 #ifdef CONFIG_NUMA 1378 /* 1379 * Move a list of individual pages 1380 */ 1381 struct page_to_node { 1382 unsigned long addr; 1383 struct page *page; 1384 int node; 1385 int status; 1386 }; 1387 1388 static struct page *new_page_node(struct page *p, unsigned long private, 1389 int **result) 1390 { 1391 struct page_to_node *pm = (struct page_to_node *)private; 1392 1393 while (pm->node != MAX_NUMNODES && pm->page != p) 1394 pm++; 1395 1396 if (pm->node == MAX_NUMNODES) 1397 return NULL; 1398 1399 *result = &pm->status; 1400 1401 if (PageHuge(p)) 1402 return alloc_huge_page_node(page_hstate(compound_head(p)), 1403 pm->node); 1404 else 1405 return __alloc_pages_node(pm->node, 1406 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1407 } 1408 1409 /* 1410 * Move a set of pages as indicated in the pm array. The addr 1411 * field must be set to the virtual address of the page to be moved 1412 * and the node number must contain a valid target node. 1413 * The pm array ends with node = MAX_NUMNODES. 1414 */ 1415 static int do_move_page_to_node_array(struct mm_struct *mm, 1416 struct page_to_node *pm, 1417 int migrate_all) 1418 { 1419 int err; 1420 struct page_to_node *pp; 1421 LIST_HEAD(pagelist); 1422 1423 down_read(&mm->mmap_sem); 1424 1425 /* 1426 * Build a list of pages to migrate 1427 */ 1428 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1429 struct vm_area_struct *vma; 1430 struct page *page; 1431 1432 err = -EFAULT; 1433 vma = find_vma(mm, pp->addr); 1434 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1435 goto set_status; 1436 1437 /* FOLL_DUMP to ignore special (like zero) pages */ 1438 page = follow_page(vma, pp->addr, 1439 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1440 1441 err = PTR_ERR(page); 1442 if (IS_ERR(page)) 1443 goto set_status; 1444 1445 err = -ENOENT; 1446 if (!page) 1447 goto set_status; 1448 1449 pp->page = page; 1450 err = page_to_nid(page); 1451 1452 if (err == pp->node) 1453 /* 1454 * Node already in the right place 1455 */ 1456 goto put_and_set; 1457 1458 err = -EACCES; 1459 if (page_mapcount(page) > 1 && 1460 !migrate_all) 1461 goto put_and_set; 1462 1463 if (PageHuge(page)) { 1464 if (PageHead(page)) 1465 isolate_huge_page(page, &pagelist); 1466 goto put_and_set; 1467 } 1468 1469 err = isolate_lru_page(page); 1470 if (!err) { 1471 list_add_tail(&page->lru, &pagelist); 1472 inc_node_page_state(page, NR_ISOLATED_ANON + 1473 page_is_file_cache(page)); 1474 } 1475 put_and_set: 1476 /* 1477 * Either remove the duplicate refcount from 1478 * isolate_lru_page() or drop the page ref if it was 1479 * not isolated. 1480 */ 1481 put_page(page); 1482 set_status: 1483 pp->status = err; 1484 } 1485 1486 err = 0; 1487 if (!list_empty(&pagelist)) { 1488 err = migrate_pages(&pagelist, new_page_node, NULL, 1489 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1490 if (err) 1491 putback_movable_pages(&pagelist); 1492 } 1493 1494 up_read(&mm->mmap_sem); 1495 return err; 1496 } 1497 1498 /* 1499 * Migrate an array of page address onto an array of nodes and fill 1500 * the corresponding array of status. 1501 */ 1502 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1503 unsigned long nr_pages, 1504 const void __user * __user *pages, 1505 const int __user *nodes, 1506 int __user *status, int flags) 1507 { 1508 struct page_to_node *pm; 1509 unsigned long chunk_nr_pages; 1510 unsigned long chunk_start; 1511 int err; 1512 1513 err = -ENOMEM; 1514 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1515 if (!pm) 1516 goto out; 1517 1518 migrate_prep(); 1519 1520 /* 1521 * Store a chunk of page_to_node array in a page, 1522 * but keep the last one as a marker 1523 */ 1524 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1525 1526 for (chunk_start = 0; 1527 chunk_start < nr_pages; 1528 chunk_start += chunk_nr_pages) { 1529 int j; 1530 1531 if (chunk_start + chunk_nr_pages > nr_pages) 1532 chunk_nr_pages = nr_pages - chunk_start; 1533 1534 /* fill the chunk pm with addrs and nodes from user-space */ 1535 for (j = 0; j < chunk_nr_pages; j++) { 1536 const void __user *p; 1537 int node; 1538 1539 err = -EFAULT; 1540 if (get_user(p, pages + j + chunk_start)) 1541 goto out_pm; 1542 pm[j].addr = (unsigned long) p; 1543 1544 if (get_user(node, nodes + j + chunk_start)) 1545 goto out_pm; 1546 1547 err = -ENODEV; 1548 if (node < 0 || node >= MAX_NUMNODES) 1549 goto out_pm; 1550 1551 if (!node_state(node, N_MEMORY)) 1552 goto out_pm; 1553 1554 err = -EACCES; 1555 if (!node_isset(node, task_nodes)) 1556 goto out_pm; 1557 1558 pm[j].node = node; 1559 } 1560 1561 /* End marker for this chunk */ 1562 pm[chunk_nr_pages].node = MAX_NUMNODES; 1563 1564 /* Migrate this chunk */ 1565 err = do_move_page_to_node_array(mm, pm, 1566 flags & MPOL_MF_MOVE_ALL); 1567 if (err < 0) 1568 goto out_pm; 1569 1570 /* Return status information */ 1571 for (j = 0; j < chunk_nr_pages; j++) 1572 if (put_user(pm[j].status, status + j + chunk_start)) { 1573 err = -EFAULT; 1574 goto out_pm; 1575 } 1576 } 1577 err = 0; 1578 1579 out_pm: 1580 free_page((unsigned long)pm); 1581 out: 1582 return err; 1583 } 1584 1585 /* 1586 * Determine the nodes of an array of pages and store it in an array of status. 1587 */ 1588 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1589 const void __user **pages, int *status) 1590 { 1591 unsigned long i; 1592 1593 down_read(&mm->mmap_sem); 1594 1595 for (i = 0; i < nr_pages; i++) { 1596 unsigned long addr = (unsigned long)(*pages); 1597 struct vm_area_struct *vma; 1598 struct page *page; 1599 int err = -EFAULT; 1600 1601 vma = find_vma(mm, addr); 1602 if (!vma || addr < vma->vm_start) 1603 goto set_status; 1604 1605 /* FOLL_DUMP to ignore special (like zero) pages */ 1606 page = follow_page(vma, addr, FOLL_DUMP); 1607 1608 err = PTR_ERR(page); 1609 if (IS_ERR(page)) 1610 goto set_status; 1611 1612 err = page ? page_to_nid(page) : -ENOENT; 1613 set_status: 1614 *status = err; 1615 1616 pages++; 1617 status++; 1618 } 1619 1620 up_read(&mm->mmap_sem); 1621 } 1622 1623 /* 1624 * Determine the nodes of a user array of pages and store it in 1625 * a user array of status. 1626 */ 1627 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1628 const void __user * __user *pages, 1629 int __user *status) 1630 { 1631 #define DO_PAGES_STAT_CHUNK_NR 16 1632 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1633 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1634 1635 while (nr_pages) { 1636 unsigned long chunk_nr; 1637 1638 chunk_nr = nr_pages; 1639 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1640 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1641 1642 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1643 break; 1644 1645 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1646 1647 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1648 break; 1649 1650 pages += chunk_nr; 1651 status += chunk_nr; 1652 nr_pages -= chunk_nr; 1653 } 1654 return nr_pages ? -EFAULT : 0; 1655 } 1656 1657 /* 1658 * Move a list of pages in the address space of the currently executing 1659 * process. 1660 */ 1661 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1662 const void __user * __user *, pages, 1663 const int __user *, nodes, 1664 int __user *, status, int, flags) 1665 { 1666 const struct cred *cred = current_cred(), *tcred; 1667 struct task_struct *task; 1668 struct mm_struct *mm; 1669 int err; 1670 nodemask_t task_nodes; 1671 1672 /* Check flags */ 1673 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1674 return -EINVAL; 1675 1676 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1677 return -EPERM; 1678 1679 /* Find the mm_struct */ 1680 rcu_read_lock(); 1681 task = pid ? find_task_by_vpid(pid) : current; 1682 if (!task) { 1683 rcu_read_unlock(); 1684 return -ESRCH; 1685 } 1686 get_task_struct(task); 1687 1688 /* 1689 * Check if this process has the right to modify the specified 1690 * process. The right exists if the process has administrative 1691 * capabilities, superuser privileges or the same 1692 * userid as the target process. 1693 */ 1694 tcred = __task_cred(task); 1695 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1696 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1697 !capable(CAP_SYS_NICE)) { 1698 rcu_read_unlock(); 1699 err = -EPERM; 1700 goto out; 1701 } 1702 rcu_read_unlock(); 1703 1704 err = security_task_movememory(task); 1705 if (err) 1706 goto out; 1707 1708 task_nodes = cpuset_mems_allowed(task); 1709 mm = get_task_mm(task); 1710 put_task_struct(task); 1711 1712 if (!mm) 1713 return -EINVAL; 1714 1715 if (nodes) 1716 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1717 nodes, status, flags); 1718 else 1719 err = do_pages_stat(mm, nr_pages, pages, status); 1720 1721 mmput(mm); 1722 return err; 1723 1724 out: 1725 put_task_struct(task); 1726 return err; 1727 } 1728 1729 #ifdef CONFIG_NUMA_BALANCING 1730 /* 1731 * Returns true if this is a safe migration target node for misplaced NUMA 1732 * pages. Currently it only checks the watermarks which crude 1733 */ 1734 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1735 unsigned long nr_migrate_pages) 1736 { 1737 int z; 1738 1739 if (!pgdat_reclaimable(pgdat)) 1740 return false; 1741 1742 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1743 struct zone *zone = pgdat->node_zones + z; 1744 1745 if (!populated_zone(zone)) 1746 continue; 1747 1748 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1749 if (!zone_watermark_ok(zone, 0, 1750 high_wmark_pages(zone) + 1751 nr_migrate_pages, 1752 0, 0)) 1753 continue; 1754 return true; 1755 } 1756 return false; 1757 } 1758 1759 static struct page *alloc_misplaced_dst_page(struct page *page, 1760 unsigned long data, 1761 int **result) 1762 { 1763 int nid = (int) data; 1764 struct page *newpage; 1765 1766 newpage = __alloc_pages_node(nid, 1767 (GFP_HIGHUSER_MOVABLE | 1768 __GFP_THISNODE | __GFP_NOMEMALLOC | 1769 __GFP_NORETRY | __GFP_NOWARN) & 1770 ~__GFP_RECLAIM, 0); 1771 1772 return newpage; 1773 } 1774 1775 /* 1776 * page migration rate limiting control. 1777 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1778 * window of time. Default here says do not migrate more than 1280M per second. 1779 */ 1780 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1781 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1782 1783 /* Returns true if the node is migrate rate-limited after the update */ 1784 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1785 unsigned long nr_pages) 1786 { 1787 /* 1788 * Rate-limit the amount of data that is being migrated to a node. 1789 * Optimal placement is no good if the memory bus is saturated and 1790 * all the time is being spent migrating! 1791 */ 1792 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1793 spin_lock(&pgdat->numabalancing_migrate_lock); 1794 pgdat->numabalancing_migrate_nr_pages = 0; 1795 pgdat->numabalancing_migrate_next_window = jiffies + 1796 msecs_to_jiffies(migrate_interval_millisecs); 1797 spin_unlock(&pgdat->numabalancing_migrate_lock); 1798 } 1799 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1800 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1801 nr_pages); 1802 return true; 1803 } 1804 1805 /* 1806 * This is an unlocked non-atomic update so errors are possible. 1807 * The consequences are failing to migrate when we potentiall should 1808 * have which is not severe enough to warrant locking. If it is ever 1809 * a problem, it can be converted to a per-cpu counter. 1810 */ 1811 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1812 return false; 1813 } 1814 1815 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1816 { 1817 int page_lru; 1818 1819 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1820 1821 /* Avoid migrating to a node that is nearly full */ 1822 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1823 return 0; 1824 1825 if (isolate_lru_page(page)) 1826 return 0; 1827 1828 /* 1829 * migrate_misplaced_transhuge_page() skips page migration's usual 1830 * check on page_count(), so we must do it here, now that the page 1831 * has been isolated: a GUP pin, or any other pin, prevents migration. 1832 * The expected page count is 3: 1 for page's mapcount and 1 for the 1833 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1834 */ 1835 if (PageTransHuge(page) && page_count(page) != 3) { 1836 putback_lru_page(page); 1837 return 0; 1838 } 1839 1840 page_lru = page_is_file_cache(page); 1841 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1842 hpage_nr_pages(page)); 1843 1844 /* 1845 * Isolating the page has taken another reference, so the 1846 * caller's reference can be safely dropped without the page 1847 * disappearing underneath us during migration. 1848 */ 1849 put_page(page); 1850 return 1; 1851 } 1852 1853 bool pmd_trans_migrating(pmd_t pmd) 1854 { 1855 struct page *page = pmd_page(pmd); 1856 return PageLocked(page); 1857 } 1858 1859 /* 1860 * Attempt to migrate a misplaced page to the specified destination 1861 * node. Caller is expected to have an elevated reference count on 1862 * the page that will be dropped by this function before returning. 1863 */ 1864 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1865 int node) 1866 { 1867 pg_data_t *pgdat = NODE_DATA(node); 1868 int isolated; 1869 int nr_remaining; 1870 LIST_HEAD(migratepages); 1871 1872 /* 1873 * Don't migrate file pages that are mapped in multiple processes 1874 * with execute permissions as they are probably shared libraries. 1875 */ 1876 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1877 (vma->vm_flags & VM_EXEC)) 1878 goto out; 1879 1880 /* 1881 * Rate-limit the amount of data that is being migrated to a node. 1882 * Optimal placement is no good if the memory bus is saturated and 1883 * all the time is being spent migrating! 1884 */ 1885 if (numamigrate_update_ratelimit(pgdat, 1)) 1886 goto out; 1887 1888 isolated = numamigrate_isolate_page(pgdat, page); 1889 if (!isolated) 1890 goto out; 1891 1892 list_add(&page->lru, &migratepages); 1893 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1894 NULL, node, MIGRATE_ASYNC, 1895 MR_NUMA_MISPLACED); 1896 if (nr_remaining) { 1897 if (!list_empty(&migratepages)) { 1898 list_del(&page->lru); 1899 dec_node_page_state(page, NR_ISOLATED_ANON + 1900 page_is_file_cache(page)); 1901 putback_lru_page(page); 1902 } 1903 isolated = 0; 1904 } else 1905 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1906 BUG_ON(!list_empty(&migratepages)); 1907 return isolated; 1908 1909 out: 1910 put_page(page); 1911 return 0; 1912 } 1913 #endif /* CONFIG_NUMA_BALANCING */ 1914 1915 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1916 /* 1917 * Migrates a THP to a given target node. page must be locked and is unlocked 1918 * before returning. 1919 */ 1920 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1921 struct vm_area_struct *vma, 1922 pmd_t *pmd, pmd_t entry, 1923 unsigned long address, 1924 struct page *page, int node) 1925 { 1926 spinlock_t *ptl; 1927 pg_data_t *pgdat = NODE_DATA(node); 1928 int isolated = 0; 1929 struct page *new_page = NULL; 1930 int page_lru = page_is_file_cache(page); 1931 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1932 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1933 pmd_t orig_entry; 1934 1935 /* 1936 * Rate-limit the amount of data that is being migrated to a node. 1937 * Optimal placement is no good if the memory bus is saturated and 1938 * all the time is being spent migrating! 1939 */ 1940 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1941 goto out_dropref; 1942 1943 new_page = alloc_pages_node(node, 1944 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1945 HPAGE_PMD_ORDER); 1946 if (!new_page) 1947 goto out_fail; 1948 prep_transhuge_page(new_page); 1949 1950 isolated = numamigrate_isolate_page(pgdat, page); 1951 if (!isolated) { 1952 put_page(new_page); 1953 goto out_fail; 1954 } 1955 /* 1956 * We are not sure a pending tlb flush here is for a huge page 1957 * mapping or not. Hence use the tlb range variant 1958 */ 1959 if (mm_tlb_flush_pending(mm)) 1960 flush_tlb_range(vma, mmun_start, mmun_end); 1961 1962 /* Prepare a page as a migration target */ 1963 __SetPageLocked(new_page); 1964 __SetPageSwapBacked(new_page); 1965 1966 /* anon mapping, we can simply copy page->mapping to the new page: */ 1967 new_page->mapping = page->mapping; 1968 new_page->index = page->index; 1969 migrate_page_copy(new_page, page); 1970 WARN_ON(PageLRU(new_page)); 1971 1972 /* Recheck the target PMD */ 1973 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1974 ptl = pmd_lock(mm, pmd); 1975 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1976 fail_putback: 1977 spin_unlock(ptl); 1978 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1979 1980 /* Reverse changes made by migrate_page_copy() */ 1981 if (TestClearPageActive(new_page)) 1982 SetPageActive(page); 1983 if (TestClearPageUnevictable(new_page)) 1984 SetPageUnevictable(page); 1985 1986 unlock_page(new_page); 1987 put_page(new_page); /* Free it */ 1988 1989 /* Retake the callers reference and putback on LRU */ 1990 get_page(page); 1991 putback_lru_page(page); 1992 mod_node_page_state(page_pgdat(page), 1993 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1994 1995 goto out_unlock; 1996 } 1997 1998 orig_entry = *pmd; 1999 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2000 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2001 2002 /* 2003 * Clear the old entry under pagetable lock and establish the new PTE. 2004 * Any parallel GUP will either observe the old page blocking on the 2005 * page lock, block on the page table lock or observe the new page. 2006 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2007 * guarantee the copy is visible before the pagetable update. 2008 */ 2009 flush_cache_range(vma, mmun_start, mmun_end); 2010 page_add_anon_rmap(new_page, vma, mmun_start, true); 2011 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2012 set_pmd_at(mm, mmun_start, pmd, entry); 2013 update_mmu_cache_pmd(vma, address, &entry); 2014 2015 if (page_count(page) != 2) { 2016 set_pmd_at(mm, mmun_start, pmd, orig_entry); 2017 flush_pmd_tlb_range(vma, mmun_start, mmun_end); 2018 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 2019 update_mmu_cache_pmd(vma, address, &entry); 2020 page_remove_rmap(new_page, true); 2021 goto fail_putback; 2022 } 2023 2024 mlock_migrate_page(new_page, page); 2025 page_remove_rmap(page, true); 2026 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2027 2028 spin_unlock(ptl); 2029 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2030 2031 /* Take an "isolate" reference and put new page on the LRU. */ 2032 get_page(new_page); 2033 putback_lru_page(new_page); 2034 2035 unlock_page(new_page); 2036 unlock_page(page); 2037 put_page(page); /* Drop the rmap reference */ 2038 put_page(page); /* Drop the LRU isolation reference */ 2039 2040 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2041 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2042 2043 mod_node_page_state(page_pgdat(page), 2044 NR_ISOLATED_ANON + page_lru, 2045 -HPAGE_PMD_NR); 2046 return isolated; 2047 2048 out_fail: 2049 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2050 out_dropref: 2051 ptl = pmd_lock(mm, pmd); 2052 if (pmd_same(*pmd, entry)) { 2053 entry = pmd_modify(entry, vma->vm_page_prot); 2054 set_pmd_at(mm, mmun_start, pmd, entry); 2055 update_mmu_cache_pmd(vma, address, &entry); 2056 } 2057 spin_unlock(ptl); 2058 2059 out_unlock: 2060 unlock_page(page); 2061 put_page(page); 2062 return 0; 2063 } 2064 #endif /* CONFIG_NUMA_BALANCING */ 2065 2066 #endif /* CONFIG_NUMA */ 2067