xref: /openbmc/linux/mm/migrate.c (revision 6afcf8ef)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 
44 #include <asm/tlbflush.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
48 
49 #include "internal.h"
50 
51 /*
52  * migrate_prep() needs to be called before we start compiling a list of pages
53  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54  * undesirable, use migrate_prep_local()
55  */
56 int migrate_prep(void)
57 {
58 	/*
59 	 * Clear the LRU lists so pages can be isolated.
60 	 * Note that pages may be moved off the LRU after we have
61 	 * drained them. Those pages will fail to migrate like other
62 	 * pages that may be busy.
63 	 */
64 	lru_add_drain_all();
65 
66 	return 0;
67 }
68 
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
71 {
72 	lru_add_drain();
73 
74 	return 0;
75 }
76 
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78 {
79 	struct address_space *mapping;
80 
81 	/*
82 	 * Avoid burning cycles with pages that are yet under __free_pages(),
83 	 * or just got freed under us.
84 	 *
85 	 * In case we 'win' a race for a movable page being freed under us and
86 	 * raise its refcount preventing __free_pages() from doing its job
87 	 * the put_page() at the end of this block will take care of
88 	 * release this page, thus avoiding a nasty leakage.
89 	 */
90 	if (unlikely(!get_page_unless_zero(page)))
91 		goto out;
92 
93 	/*
94 	 * Check PageMovable before holding a PG_lock because page's owner
95 	 * assumes anybody doesn't touch PG_lock of newly allocated page
96 	 * so unconditionally grapping the lock ruins page's owner side.
97 	 */
98 	if (unlikely(!__PageMovable(page)))
99 		goto out_putpage;
100 	/*
101 	 * As movable pages are not isolated from LRU lists, concurrent
102 	 * compaction threads can race against page migration functions
103 	 * as well as race against the releasing a page.
104 	 *
105 	 * In order to avoid having an already isolated movable page
106 	 * being (wrongly) re-isolated while it is under migration,
107 	 * or to avoid attempting to isolate pages being released,
108 	 * lets be sure we have the page lock
109 	 * before proceeding with the movable page isolation steps.
110 	 */
111 	if (unlikely(!trylock_page(page)))
112 		goto out_putpage;
113 
114 	if (!PageMovable(page) || PageIsolated(page))
115 		goto out_no_isolated;
116 
117 	mapping = page_mapping(page);
118 	VM_BUG_ON_PAGE(!mapping, page);
119 
120 	if (!mapping->a_ops->isolate_page(page, mode))
121 		goto out_no_isolated;
122 
123 	/* Driver shouldn't use PG_isolated bit of page->flags */
124 	WARN_ON_ONCE(PageIsolated(page));
125 	__SetPageIsolated(page);
126 	unlock_page(page);
127 
128 	return true;
129 
130 out_no_isolated:
131 	unlock_page(page);
132 out_putpage:
133 	put_page(page);
134 out:
135 	return false;
136 }
137 
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
140 {
141 	struct address_space *mapping;
142 
143 	VM_BUG_ON_PAGE(!PageLocked(page), page);
144 	VM_BUG_ON_PAGE(!PageMovable(page), page);
145 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
146 
147 	mapping = page_mapping(page);
148 	mapping->a_ops->putback_page(page);
149 	__ClearPageIsolated(page);
150 }
151 
152 /*
153  * Put previously isolated pages back onto the appropriate lists
154  * from where they were once taken off for compaction/migration.
155  *
156  * This function shall be used whenever the isolated pageset has been
157  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158  * and isolate_huge_page().
159  */
160 void putback_movable_pages(struct list_head *l)
161 {
162 	struct page *page;
163 	struct page *page2;
164 
165 	list_for_each_entry_safe(page, page2, l, lru) {
166 		if (unlikely(PageHuge(page))) {
167 			putback_active_hugepage(page);
168 			continue;
169 		}
170 		list_del(&page->lru);
171 		/*
172 		 * We isolated non-lru movable page so here we can use
173 		 * __PageMovable because LRU page's mapping cannot have
174 		 * PAGE_MAPPING_MOVABLE.
175 		 */
176 		if (unlikely(__PageMovable(page))) {
177 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
178 			lock_page(page);
179 			if (PageMovable(page))
180 				putback_movable_page(page);
181 			else
182 				__ClearPageIsolated(page);
183 			unlock_page(page);
184 			put_page(page);
185 		} else {
186 			putback_lru_page(page);
187 			dec_node_page_state(page, NR_ISOLATED_ANON +
188 					page_is_file_cache(page));
189 		}
190 	}
191 }
192 
193 /*
194  * Restore a potential migration pte to a working pte entry
195  */
196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 				 unsigned long addr, void *old)
198 {
199 	struct mm_struct *mm = vma->vm_mm;
200 	swp_entry_t entry;
201  	pmd_t *pmd;
202 	pte_t *ptep, pte;
203  	spinlock_t *ptl;
204 
205 	if (unlikely(PageHuge(new))) {
206 		ptep = huge_pte_offset(mm, addr);
207 		if (!ptep)
208 			goto out;
209 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
210 	} else {
211 		pmd = mm_find_pmd(mm, addr);
212 		if (!pmd)
213 			goto out;
214 
215 		ptep = pte_offset_map(pmd, addr);
216 
217 		/*
218 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
219 		 * can race mremap's move_ptes(), which skips anon_vma lock.
220 		 */
221 
222 		ptl = pte_lockptr(mm, pmd);
223 	}
224 
225  	spin_lock(ptl);
226 	pte = *ptep;
227 	if (!is_swap_pte(pte))
228 		goto unlock;
229 
230 	entry = pte_to_swp_entry(pte);
231 
232 	if (!is_migration_entry(entry) ||
233 	    migration_entry_to_page(entry) != old)
234 		goto unlock;
235 
236 	get_page(new);
237 	pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
238 	if (pte_swp_soft_dirty(*ptep))
239 		pte = pte_mksoft_dirty(pte);
240 
241 	/* Recheck VMA as permissions can change since migration started  */
242 	if (is_write_migration_entry(entry))
243 		pte = maybe_mkwrite(pte, vma);
244 
245 #ifdef CONFIG_HUGETLB_PAGE
246 	if (PageHuge(new)) {
247 		pte = pte_mkhuge(pte);
248 		pte = arch_make_huge_pte(pte, vma, new, 0);
249 	}
250 #endif
251 	flush_dcache_page(new);
252 	set_pte_at(mm, addr, ptep, pte);
253 
254 	if (PageHuge(new)) {
255 		if (PageAnon(new))
256 			hugepage_add_anon_rmap(new, vma, addr);
257 		else
258 			page_dup_rmap(new, true);
259 	} else if (PageAnon(new))
260 		page_add_anon_rmap(new, vma, addr, false);
261 	else
262 		page_add_file_rmap(new, false);
263 
264 	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
265 		mlock_vma_page(new);
266 
267 	/* No need to invalidate - it was non-present before */
268 	update_mmu_cache(vma, addr, ptep);
269 unlock:
270 	pte_unmap_unlock(ptep, ptl);
271 out:
272 	return SWAP_AGAIN;
273 }
274 
275 /*
276  * Get rid of all migration entries and replace them by
277  * references to the indicated page.
278  */
279 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
280 {
281 	struct rmap_walk_control rwc = {
282 		.rmap_one = remove_migration_pte,
283 		.arg = old,
284 	};
285 
286 	if (locked)
287 		rmap_walk_locked(new, &rwc);
288 	else
289 		rmap_walk(new, &rwc);
290 }
291 
292 /*
293  * Something used the pte of a page under migration. We need to
294  * get to the page and wait until migration is finished.
295  * When we return from this function the fault will be retried.
296  */
297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
298 				spinlock_t *ptl)
299 {
300 	pte_t pte;
301 	swp_entry_t entry;
302 	struct page *page;
303 
304 	spin_lock(ptl);
305 	pte = *ptep;
306 	if (!is_swap_pte(pte))
307 		goto out;
308 
309 	entry = pte_to_swp_entry(pte);
310 	if (!is_migration_entry(entry))
311 		goto out;
312 
313 	page = migration_entry_to_page(entry);
314 
315 	/*
316 	 * Once radix-tree replacement of page migration started, page_count
317 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
318 	 * against a page without get_page().
319 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
320 	 * will occur again.
321 	 */
322 	if (!get_page_unless_zero(page))
323 		goto out;
324 	pte_unmap_unlock(ptep, ptl);
325 	wait_on_page_locked(page);
326 	put_page(page);
327 	return;
328 out:
329 	pte_unmap_unlock(ptep, ptl);
330 }
331 
332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333 				unsigned long address)
334 {
335 	spinlock_t *ptl = pte_lockptr(mm, pmd);
336 	pte_t *ptep = pte_offset_map(pmd, address);
337 	__migration_entry_wait(mm, ptep, ptl);
338 }
339 
340 void migration_entry_wait_huge(struct vm_area_struct *vma,
341 		struct mm_struct *mm, pte_t *pte)
342 {
343 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344 	__migration_entry_wait(mm, pte, ptl);
345 }
346 
347 #ifdef CONFIG_BLOCK
348 /* Returns true if all buffers are successfully locked */
349 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350 							enum migrate_mode mode)
351 {
352 	struct buffer_head *bh = head;
353 
354 	/* Simple case, sync compaction */
355 	if (mode != MIGRATE_ASYNC) {
356 		do {
357 			get_bh(bh);
358 			lock_buffer(bh);
359 			bh = bh->b_this_page;
360 
361 		} while (bh != head);
362 
363 		return true;
364 	}
365 
366 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
367 	do {
368 		get_bh(bh);
369 		if (!trylock_buffer(bh)) {
370 			/*
371 			 * We failed to lock the buffer and cannot stall in
372 			 * async migration. Release the taken locks
373 			 */
374 			struct buffer_head *failed_bh = bh;
375 			put_bh(failed_bh);
376 			bh = head;
377 			while (bh != failed_bh) {
378 				unlock_buffer(bh);
379 				put_bh(bh);
380 				bh = bh->b_this_page;
381 			}
382 			return false;
383 		}
384 
385 		bh = bh->b_this_page;
386 	} while (bh != head);
387 	return true;
388 }
389 #else
390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391 							enum migrate_mode mode)
392 {
393 	return true;
394 }
395 #endif /* CONFIG_BLOCK */
396 
397 /*
398  * Replace the page in the mapping.
399  *
400  * The number of remaining references must be:
401  * 1 for anonymous pages without a mapping
402  * 2 for pages with a mapping
403  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
404  */
405 int migrate_page_move_mapping(struct address_space *mapping,
406 		struct page *newpage, struct page *page,
407 		struct buffer_head *head, enum migrate_mode mode,
408 		int extra_count)
409 {
410 	struct zone *oldzone, *newzone;
411 	int dirty;
412 	int expected_count = 1 + extra_count;
413 	void **pslot;
414 
415 	if (!mapping) {
416 		/* Anonymous page without mapping */
417 		if (page_count(page) != expected_count)
418 			return -EAGAIN;
419 
420 		/* No turning back from here */
421 		newpage->index = page->index;
422 		newpage->mapping = page->mapping;
423 		if (PageSwapBacked(page))
424 			__SetPageSwapBacked(newpage);
425 
426 		return MIGRATEPAGE_SUCCESS;
427 	}
428 
429 	oldzone = page_zone(page);
430 	newzone = page_zone(newpage);
431 
432 	spin_lock_irq(&mapping->tree_lock);
433 
434 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
435  					page_index(page));
436 
437 	expected_count += 1 + page_has_private(page);
438 	if (page_count(page) != expected_count ||
439 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440 		spin_unlock_irq(&mapping->tree_lock);
441 		return -EAGAIN;
442 	}
443 
444 	if (!page_ref_freeze(page, expected_count)) {
445 		spin_unlock_irq(&mapping->tree_lock);
446 		return -EAGAIN;
447 	}
448 
449 	/*
450 	 * In the async migration case of moving a page with buffers, lock the
451 	 * buffers using trylock before the mapping is moved. If the mapping
452 	 * was moved, we later failed to lock the buffers and could not move
453 	 * the mapping back due to an elevated page count, we would have to
454 	 * block waiting on other references to be dropped.
455 	 */
456 	if (mode == MIGRATE_ASYNC && head &&
457 			!buffer_migrate_lock_buffers(head, mode)) {
458 		page_ref_unfreeze(page, expected_count);
459 		spin_unlock_irq(&mapping->tree_lock);
460 		return -EAGAIN;
461 	}
462 
463 	/*
464 	 * Now we know that no one else is looking at the page:
465 	 * no turning back from here.
466 	 */
467 	newpage->index = page->index;
468 	newpage->mapping = page->mapping;
469 	if (PageSwapBacked(page))
470 		__SetPageSwapBacked(newpage);
471 
472 	get_page(newpage);	/* add cache reference */
473 	if (PageSwapCache(page)) {
474 		SetPageSwapCache(newpage);
475 		set_page_private(newpage, page_private(page));
476 	}
477 
478 	/* Move dirty while page refs frozen and newpage not yet exposed */
479 	dirty = PageDirty(page);
480 	if (dirty) {
481 		ClearPageDirty(page);
482 		SetPageDirty(newpage);
483 	}
484 
485 	radix_tree_replace_slot(pslot, newpage);
486 
487 	/*
488 	 * Drop cache reference from old page by unfreezing
489 	 * to one less reference.
490 	 * We know this isn't the last reference.
491 	 */
492 	page_ref_unfreeze(page, expected_count - 1);
493 
494 	spin_unlock(&mapping->tree_lock);
495 	/* Leave irq disabled to prevent preemption while updating stats */
496 
497 	/*
498 	 * If moved to a different zone then also account
499 	 * the page for that zone. Other VM counters will be
500 	 * taken care of when we establish references to the
501 	 * new page and drop references to the old page.
502 	 *
503 	 * Note that anonymous pages are accounted for
504 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
505 	 * are mapped to swap space.
506 	 */
507 	if (newzone != oldzone) {
508 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
509 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
510 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
511 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
512 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
513 		}
514 		if (dirty && mapping_cap_account_dirty(mapping)) {
515 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
516 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
517 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
518 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
519 		}
520 	}
521 	local_irq_enable();
522 
523 	return MIGRATEPAGE_SUCCESS;
524 }
525 EXPORT_SYMBOL(migrate_page_move_mapping);
526 
527 /*
528  * The expected number of remaining references is the same as that
529  * of migrate_page_move_mapping().
530  */
531 int migrate_huge_page_move_mapping(struct address_space *mapping,
532 				   struct page *newpage, struct page *page)
533 {
534 	int expected_count;
535 	void **pslot;
536 
537 	spin_lock_irq(&mapping->tree_lock);
538 
539 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
540 					page_index(page));
541 
542 	expected_count = 2 + page_has_private(page);
543 	if (page_count(page) != expected_count ||
544 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
545 		spin_unlock_irq(&mapping->tree_lock);
546 		return -EAGAIN;
547 	}
548 
549 	if (!page_ref_freeze(page, expected_count)) {
550 		spin_unlock_irq(&mapping->tree_lock);
551 		return -EAGAIN;
552 	}
553 
554 	newpage->index = page->index;
555 	newpage->mapping = page->mapping;
556 
557 	get_page(newpage);
558 
559 	radix_tree_replace_slot(pslot, newpage);
560 
561 	page_ref_unfreeze(page, expected_count - 1);
562 
563 	spin_unlock_irq(&mapping->tree_lock);
564 
565 	return MIGRATEPAGE_SUCCESS;
566 }
567 
568 /*
569  * Gigantic pages are so large that we do not guarantee that page++ pointer
570  * arithmetic will work across the entire page.  We need something more
571  * specialized.
572  */
573 static void __copy_gigantic_page(struct page *dst, struct page *src,
574 				int nr_pages)
575 {
576 	int i;
577 	struct page *dst_base = dst;
578 	struct page *src_base = src;
579 
580 	for (i = 0; i < nr_pages; ) {
581 		cond_resched();
582 		copy_highpage(dst, src);
583 
584 		i++;
585 		dst = mem_map_next(dst, dst_base, i);
586 		src = mem_map_next(src, src_base, i);
587 	}
588 }
589 
590 static void copy_huge_page(struct page *dst, struct page *src)
591 {
592 	int i;
593 	int nr_pages;
594 
595 	if (PageHuge(src)) {
596 		/* hugetlbfs page */
597 		struct hstate *h = page_hstate(src);
598 		nr_pages = pages_per_huge_page(h);
599 
600 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
601 			__copy_gigantic_page(dst, src, nr_pages);
602 			return;
603 		}
604 	} else {
605 		/* thp page */
606 		BUG_ON(!PageTransHuge(src));
607 		nr_pages = hpage_nr_pages(src);
608 	}
609 
610 	for (i = 0; i < nr_pages; i++) {
611 		cond_resched();
612 		copy_highpage(dst + i, src + i);
613 	}
614 }
615 
616 /*
617  * Copy the page to its new location
618  */
619 void migrate_page_copy(struct page *newpage, struct page *page)
620 {
621 	int cpupid;
622 
623 	if (PageHuge(page) || PageTransHuge(page))
624 		copy_huge_page(newpage, page);
625 	else
626 		copy_highpage(newpage, page);
627 
628 	if (PageError(page))
629 		SetPageError(newpage);
630 	if (PageReferenced(page))
631 		SetPageReferenced(newpage);
632 	if (PageUptodate(page))
633 		SetPageUptodate(newpage);
634 	if (TestClearPageActive(page)) {
635 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
636 		SetPageActive(newpage);
637 	} else if (TestClearPageUnevictable(page))
638 		SetPageUnevictable(newpage);
639 	if (PageChecked(page))
640 		SetPageChecked(newpage);
641 	if (PageMappedToDisk(page))
642 		SetPageMappedToDisk(newpage);
643 
644 	/* Move dirty on pages not done by migrate_page_move_mapping() */
645 	if (PageDirty(page))
646 		SetPageDirty(newpage);
647 
648 	if (page_is_young(page))
649 		set_page_young(newpage);
650 	if (page_is_idle(page))
651 		set_page_idle(newpage);
652 
653 	/*
654 	 * Copy NUMA information to the new page, to prevent over-eager
655 	 * future migrations of this same page.
656 	 */
657 	cpupid = page_cpupid_xchg_last(page, -1);
658 	page_cpupid_xchg_last(newpage, cpupid);
659 
660 	ksm_migrate_page(newpage, page);
661 	/*
662 	 * Please do not reorder this without considering how mm/ksm.c's
663 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
664 	 */
665 	if (PageSwapCache(page))
666 		ClearPageSwapCache(page);
667 	ClearPagePrivate(page);
668 	set_page_private(page, 0);
669 
670 	/*
671 	 * If any waiters have accumulated on the new page then
672 	 * wake them up.
673 	 */
674 	if (PageWriteback(newpage))
675 		end_page_writeback(newpage);
676 
677 	copy_page_owner(page, newpage);
678 
679 	mem_cgroup_migrate(page, newpage);
680 }
681 EXPORT_SYMBOL(migrate_page_copy);
682 
683 /************************************************************
684  *                    Migration functions
685  ***********************************************************/
686 
687 /*
688  * Common logic to directly migrate a single LRU page suitable for
689  * pages that do not use PagePrivate/PagePrivate2.
690  *
691  * Pages are locked upon entry and exit.
692  */
693 int migrate_page(struct address_space *mapping,
694 		struct page *newpage, struct page *page,
695 		enum migrate_mode mode)
696 {
697 	int rc;
698 
699 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
700 
701 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
702 
703 	if (rc != MIGRATEPAGE_SUCCESS)
704 		return rc;
705 
706 	migrate_page_copy(newpage, page);
707 	return MIGRATEPAGE_SUCCESS;
708 }
709 EXPORT_SYMBOL(migrate_page);
710 
711 #ifdef CONFIG_BLOCK
712 /*
713  * Migration function for pages with buffers. This function can only be used
714  * if the underlying filesystem guarantees that no other references to "page"
715  * exist.
716  */
717 int buffer_migrate_page(struct address_space *mapping,
718 		struct page *newpage, struct page *page, enum migrate_mode mode)
719 {
720 	struct buffer_head *bh, *head;
721 	int rc;
722 
723 	if (!page_has_buffers(page))
724 		return migrate_page(mapping, newpage, page, mode);
725 
726 	head = page_buffers(page);
727 
728 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
729 
730 	if (rc != MIGRATEPAGE_SUCCESS)
731 		return rc;
732 
733 	/*
734 	 * In the async case, migrate_page_move_mapping locked the buffers
735 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
736 	 * need to be locked now
737 	 */
738 	if (mode != MIGRATE_ASYNC)
739 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
740 
741 	ClearPagePrivate(page);
742 	set_page_private(newpage, page_private(page));
743 	set_page_private(page, 0);
744 	put_page(page);
745 	get_page(newpage);
746 
747 	bh = head;
748 	do {
749 		set_bh_page(bh, newpage, bh_offset(bh));
750 		bh = bh->b_this_page;
751 
752 	} while (bh != head);
753 
754 	SetPagePrivate(newpage);
755 
756 	migrate_page_copy(newpage, page);
757 
758 	bh = head;
759 	do {
760 		unlock_buffer(bh);
761  		put_bh(bh);
762 		bh = bh->b_this_page;
763 
764 	} while (bh != head);
765 
766 	return MIGRATEPAGE_SUCCESS;
767 }
768 EXPORT_SYMBOL(buffer_migrate_page);
769 #endif
770 
771 /*
772  * Writeback a page to clean the dirty state
773  */
774 static int writeout(struct address_space *mapping, struct page *page)
775 {
776 	struct writeback_control wbc = {
777 		.sync_mode = WB_SYNC_NONE,
778 		.nr_to_write = 1,
779 		.range_start = 0,
780 		.range_end = LLONG_MAX,
781 		.for_reclaim = 1
782 	};
783 	int rc;
784 
785 	if (!mapping->a_ops->writepage)
786 		/* No write method for the address space */
787 		return -EINVAL;
788 
789 	if (!clear_page_dirty_for_io(page))
790 		/* Someone else already triggered a write */
791 		return -EAGAIN;
792 
793 	/*
794 	 * A dirty page may imply that the underlying filesystem has
795 	 * the page on some queue. So the page must be clean for
796 	 * migration. Writeout may mean we loose the lock and the
797 	 * page state is no longer what we checked for earlier.
798 	 * At this point we know that the migration attempt cannot
799 	 * be successful.
800 	 */
801 	remove_migration_ptes(page, page, false);
802 
803 	rc = mapping->a_ops->writepage(page, &wbc);
804 
805 	if (rc != AOP_WRITEPAGE_ACTIVATE)
806 		/* unlocked. Relock */
807 		lock_page(page);
808 
809 	return (rc < 0) ? -EIO : -EAGAIN;
810 }
811 
812 /*
813  * Default handling if a filesystem does not provide a migration function.
814  */
815 static int fallback_migrate_page(struct address_space *mapping,
816 	struct page *newpage, struct page *page, enum migrate_mode mode)
817 {
818 	if (PageDirty(page)) {
819 		/* Only writeback pages in full synchronous migration */
820 		if (mode != MIGRATE_SYNC)
821 			return -EBUSY;
822 		return writeout(mapping, page);
823 	}
824 
825 	/*
826 	 * Buffers may be managed in a filesystem specific way.
827 	 * We must have no buffers or drop them.
828 	 */
829 	if (page_has_private(page) &&
830 	    !try_to_release_page(page, GFP_KERNEL))
831 		return -EAGAIN;
832 
833 	return migrate_page(mapping, newpage, page, mode);
834 }
835 
836 /*
837  * Move a page to a newly allocated page
838  * The page is locked and all ptes have been successfully removed.
839  *
840  * The new page will have replaced the old page if this function
841  * is successful.
842  *
843  * Return value:
844  *   < 0 - error code
845  *  MIGRATEPAGE_SUCCESS - success
846  */
847 static int move_to_new_page(struct page *newpage, struct page *page,
848 				enum migrate_mode mode)
849 {
850 	struct address_space *mapping;
851 	int rc = -EAGAIN;
852 	bool is_lru = !__PageMovable(page);
853 
854 	VM_BUG_ON_PAGE(!PageLocked(page), page);
855 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
856 
857 	mapping = page_mapping(page);
858 
859 	if (likely(is_lru)) {
860 		if (!mapping)
861 			rc = migrate_page(mapping, newpage, page, mode);
862 		else if (mapping->a_ops->migratepage)
863 			/*
864 			 * Most pages have a mapping and most filesystems
865 			 * provide a migratepage callback. Anonymous pages
866 			 * are part of swap space which also has its own
867 			 * migratepage callback. This is the most common path
868 			 * for page migration.
869 			 */
870 			rc = mapping->a_ops->migratepage(mapping, newpage,
871 							page, mode);
872 		else
873 			rc = fallback_migrate_page(mapping, newpage,
874 							page, mode);
875 	} else {
876 		/*
877 		 * In case of non-lru page, it could be released after
878 		 * isolation step. In that case, we shouldn't try migration.
879 		 */
880 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
881 		if (!PageMovable(page)) {
882 			rc = MIGRATEPAGE_SUCCESS;
883 			__ClearPageIsolated(page);
884 			goto out;
885 		}
886 
887 		rc = mapping->a_ops->migratepage(mapping, newpage,
888 						page, mode);
889 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
890 			!PageIsolated(page));
891 	}
892 
893 	/*
894 	 * When successful, old pagecache page->mapping must be cleared before
895 	 * page is freed; but stats require that PageAnon be left as PageAnon.
896 	 */
897 	if (rc == MIGRATEPAGE_SUCCESS) {
898 		if (__PageMovable(page)) {
899 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
900 
901 			/*
902 			 * We clear PG_movable under page_lock so any compactor
903 			 * cannot try to migrate this page.
904 			 */
905 			__ClearPageIsolated(page);
906 		}
907 
908 		/*
909 		 * Anonymous and movable page->mapping will be cleard by
910 		 * free_pages_prepare so don't reset it here for keeping
911 		 * the type to work PageAnon, for example.
912 		 */
913 		if (!PageMappingFlags(page))
914 			page->mapping = NULL;
915 	}
916 out:
917 	return rc;
918 }
919 
920 static int __unmap_and_move(struct page *page, struct page *newpage,
921 				int force, enum migrate_mode mode)
922 {
923 	int rc = -EAGAIN;
924 	int page_was_mapped = 0;
925 	struct anon_vma *anon_vma = NULL;
926 	bool is_lru = !__PageMovable(page);
927 
928 	if (!trylock_page(page)) {
929 		if (!force || mode == MIGRATE_ASYNC)
930 			goto out;
931 
932 		/*
933 		 * It's not safe for direct compaction to call lock_page.
934 		 * For example, during page readahead pages are added locked
935 		 * to the LRU. Later, when the IO completes the pages are
936 		 * marked uptodate and unlocked. However, the queueing
937 		 * could be merging multiple pages for one bio (e.g.
938 		 * mpage_readpages). If an allocation happens for the
939 		 * second or third page, the process can end up locking
940 		 * the same page twice and deadlocking. Rather than
941 		 * trying to be clever about what pages can be locked,
942 		 * avoid the use of lock_page for direct compaction
943 		 * altogether.
944 		 */
945 		if (current->flags & PF_MEMALLOC)
946 			goto out;
947 
948 		lock_page(page);
949 	}
950 
951 	if (PageWriteback(page)) {
952 		/*
953 		 * Only in the case of a full synchronous migration is it
954 		 * necessary to wait for PageWriteback. In the async case,
955 		 * the retry loop is too short and in the sync-light case,
956 		 * the overhead of stalling is too much
957 		 */
958 		if (mode != MIGRATE_SYNC) {
959 			rc = -EBUSY;
960 			goto out_unlock;
961 		}
962 		if (!force)
963 			goto out_unlock;
964 		wait_on_page_writeback(page);
965 	}
966 
967 	/*
968 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
969 	 * we cannot notice that anon_vma is freed while we migrates a page.
970 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
971 	 * of migration. File cache pages are no problem because of page_lock()
972 	 * File Caches may use write_page() or lock_page() in migration, then,
973 	 * just care Anon page here.
974 	 *
975 	 * Only page_get_anon_vma() understands the subtleties of
976 	 * getting a hold on an anon_vma from outside one of its mms.
977 	 * But if we cannot get anon_vma, then we won't need it anyway,
978 	 * because that implies that the anon page is no longer mapped
979 	 * (and cannot be remapped so long as we hold the page lock).
980 	 */
981 	if (PageAnon(page) && !PageKsm(page))
982 		anon_vma = page_get_anon_vma(page);
983 
984 	/*
985 	 * Block others from accessing the new page when we get around to
986 	 * establishing additional references. We are usually the only one
987 	 * holding a reference to newpage at this point. We used to have a BUG
988 	 * here if trylock_page(newpage) fails, but would like to allow for
989 	 * cases where there might be a race with the previous use of newpage.
990 	 * This is much like races on refcount of oldpage: just don't BUG().
991 	 */
992 	if (unlikely(!trylock_page(newpage)))
993 		goto out_unlock;
994 
995 	if (unlikely(!is_lru)) {
996 		rc = move_to_new_page(newpage, page, mode);
997 		goto out_unlock_both;
998 	}
999 
1000 	/*
1001 	 * Corner case handling:
1002 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1003 	 * and treated as swapcache but it has no rmap yet.
1004 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1005 	 * trigger a BUG.  So handle it here.
1006 	 * 2. An orphaned page (see truncate_complete_page) might have
1007 	 * fs-private metadata. The page can be picked up due to memory
1008 	 * offlining.  Everywhere else except page reclaim, the page is
1009 	 * invisible to the vm, so the page can not be migrated.  So try to
1010 	 * free the metadata, so the page can be freed.
1011 	 */
1012 	if (!page->mapping) {
1013 		VM_BUG_ON_PAGE(PageAnon(page), page);
1014 		if (page_has_private(page)) {
1015 			try_to_free_buffers(page);
1016 			goto out_unlock_both;
1017 		}
1018 	} else if (page_mapped(page)) {
1019 		/* Establish migration ptes */
1020 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1021 				page);
1022 		try_to_unmap(page,
1023 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1024 		page_was_mapped = 1;
1025 	}
1026 
1027 	if (!page_mapped(page))
1028 		rc = move_to_new_page(newpage, page, mode);
1029 
1030 	if (page_was_mapped)
1031 		remove_migration_ptes(page,
1032 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1033 
1034 out_unlock_both:
1035 	unlock_page(newpage);
1036 out_unlock:
1037 	/* Drop an anon_vma reference if we took one */
1038 	if (anon_vma)
1039 		put_anon_vma(anon_vma);
1040 	unlock_page(page);
1041 out:
1042 	/*
1043 	 * If migration is successful, decrease refcount of the newpage
1044 	 * which will not free the page because new page owner increased
1045 	 * refcounter. As well, if it is LRU page, add the page to LRU
1046 	 * list in here.
1047 	 */
1048 	if (rc == MIGRATEPAGE_SUCCESS) {
1049 		if (unlikely(__PageMovable(newpage)))
1050 			put_page(newpage);
1051 		else
1052 			putback_lru_page(newpage);
1053 	}
1054 
1055 	return rc;
1056 }
1057 
1058 /*
1059  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1060  * around it.
1061  */
1062 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1063 #define ICE_noinline noinline
1064 #else
1065 #define ICE_noinline
1066 #endif
1067 
1068 /*
1069  * Obtain the lock on page, remove all ptes and migrate the page
1070  * to the newly allocated page in newpage.
1071  */
1072 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1073 				   free_page_t put_new_page,
1074 				   unsigned long private, struct page *page,
1075 				   int force, enum migrate_mode mode,
1076 				   enum migrate_reason reason)
1077 {
1078 	int rc = MIGRATEPAGE_SUCCESS;
1079 	int *result = NULL;
1080 	struct page *newpage;
1081 
1082 	newpage = get_new_page(page, private, &result);
1083 	if (!newpage)
1084 		return -ENOMEM;
1085 
1086 	if (page_count(page) == 1) {
1087 		/* page was freed from under us. So we are done. */
1088 		ClearPageActive(page);
1089 		ClearPageUnevictable(page);
1090 		if (unlikely(__PageMovable(page))) {
1091 			lock_page(page);
1092 			if (!PageMovable(page))
1093 				__ClearPageIsolated(page);
1094 			unlock_page(page);
1095 		}
1096 		if (put_new_page)
1097 			put_new_page(newpage, private);
1098 		else
1099 			put_page(newpage);
1100 		goto out;
1101 	}
1102 
1103 	if (unlikely(PageTransHuge(page))) {
1104 		lock_page(page);
1105 		rc = split_huge_page(page);
1106 		unlock_page(page);
1107 		if (rc)
1108 			goto out;
1109 	}
1110 
1111 	rc = __unmap_and_move(page, newpage, force, mode);
1112 	if (rc == MIGRATEPAGE_SUCCESS)
1113 		set_page_owner_migrate_reason(newpage, reason);
1114 
1115 out:
1116 	if (rc != -EAGAIN) {
1117 		/*
1118 		 * A page that has been migrated has all references
1119 		 * removed and will be freed. A page that has not been
1120 		 * migrated will have kepts its references and be
1121 		 * restored.
1122 		 */
1123 		list_del(&page->lru);
1124 
1125 		/*
1126 		 * Compaction can migrate also non-LRU pages which are
1127 		 * not accounted to NR_ISOLATED_*. They can be recognized
1128 		 * as __PageMovable
1129 		 */
1130 		if (likely(!__PageMovable(page)))
1131 			dec_node_page_state(page, NR_ISOLATED_ANON +
1132 					page_is_file_cache(page));
1133 	}
1134 
1135 	/*
1136 	 * If migration is successful, releases reference grabbed during
1137 	 * isolation. Otherwise, restore the page to right list unless
1138 	 * we want to retry.
1139 	 */
1140 	if (rc == MIGRATEPAGE_SUCCESS) {
1141 		put_page(page);
1142 		if (reason == MR_MEMORY_FAILURE) {
1143 			/*
1144 			 * Set PG_HWPoison on just freed page
1145 			 * intentionally. Although it's rather weird,
1146 			 * it's how HWPoison flag works at the moment.
1147 			 */
1148 			if (!test_set_page_hwpoison(page))
1149 				num_poisoned_pages_inc();
1150 		}
1151 	} else {
1152 		if (rc != -EAGAIN) {
1153 			if (likely(!__PageMovable(page))) {
1154 				putback_lru_page(page);
1155 				goto put_new;
1156 			}
1157 
1158 			lock_page(page);
1159 			if (PageMovable(page))
1160 				putback_movable_page(page);
1161 			else
1162 				__ClearPageIsolated(page);
1163 			unlock_page(page);
1164 			put_page(page);
1165 		}
1166 put_new:
1167 		if (put_new_page)
1168 			put_new_page(newpage, private);
1169 		else
1170 			put_page(newpage);
1171 	}
1172 
1173 	if (result) {
1174 		if (rc)
1175 			*result = rc;
1176 		else
1177 			*result = page_to_nid(newpage);
1178 	}
1179 	return rc;
1180 }
1181 
1182 /*
1183  * Counterpart of unmap_and_move_page() for hugepage migration.
1184  *
1185  * This function doesn't wait the completion of hugepage I/O
1186  * because there is no race between I/O and migration for hugepage.
1187  * Note that currently hugepage I/O occurs only in direct I/O
1188  * where no lock is held and PG_writeback is irrelevant,
1189  * and writeback status of all subpages are counted in the reference
1190  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1191  * under direct I/O, the reference of the head page is 512 and a bit more.)
1192  * This means that when we try to migrate hugepage whose subpages are
1193  * doing direct I/O, some references remain after try_to_unmap() and
1194  * hugepage migration fails without data corruption.
1195  *
1196  * There is also no race when direct I/O is issued on the page under migration,
1197  * because then pte is replaced with migration swap entry and direct I/O code
1198  * will wait in the page fault for migration to complete.
1199  */
1200 static int unmap_and_move_huge_page(new_page_t get_new_page,
1201 				free_page_t put_new_page, unsigned long private,
1202 				struct page *hpage, int force,
1203 				enum migrate_mode mode, int reason)
1204 {
1205 	int rc = -EAGAIN;
1206 	int *result = NULL;
1207 	int page_was_mapped = 0;
1208 	struct page *new_hpage;
1209 	struct anon_vma *anon_vma = NULL;
1210 
1211 	/*
1212 	 * Movability of hugepages depends on architectures and hugepage size.
1213 	 * This check is necessary because some callers of hugepage migration
1214 	 * like soft offline and memory hotremove don't walk through page
1215 	 * tables or check whether the hugepage is pmd-based or not before
1216 	 * kicking migration.
1217 	 */
1218 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1219 		putback_active_hugepage(hpage);
1220 		return -ENOSYS;
1221 	}
1222 
1223 	new_hpage = get_new_page(hpage, private, &result);
1224 	if (!new_hpage)
1225 		return -ENOMEM;
1226 
1227 	if (!trylock_page(hpage)) {
1228 		if (!force || mode != MIGRATE_SYNC)
1229 			goto out;
1230 		lock_page(hpage);
1231 	}
1232 
1233 	if (PageAnon(hpage))
1234 		anon_vma = page_get_anon_vma(hpage);
1235 
1236 	if (unlikely(!trylock_page(new_hpage)))
1237 		goto put_anon;
1238 
1239 	if (page_mapped(hpage)) {
1240 		try_to_unmap(hpage,
1241 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1242 		page_was_mapped = 1;
1243 	}
1244 
1245 	if (!page_mapped(hpage))
1246 		rc = move_to_new_page(new_hpage, hpage, mode);
1247 
1248 	if (page_was_mapped)
1249 		remove_migration_ptes(hpage,
1250 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1251 
1252 	unlock_page(new_hpage);
1253 
1254 put_anon:
1255 	if (anon_vma)
1256 		put_anon_vma(anon_vma);
1257 
1258 	if (rc == MIGRATEPAGE_SUCCESS) {
1259 		hugetlb_cgroup_migrate(hpage, new_hpage);
1260 		put_new_page = NULL;
1261 		set_page_owner_migrate_reason(new_hpage, reason);
1262 	}
1263 
1264 	unlock_page(hpage);
1265 out:
1266 	if (rc != -EAGAIN)
1267 		putback_active_hugepage(hpage);
1268 
1269 	/*
1270 	 * If migration was not successful and there's a freeing callback, use
1271 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1272 	 * isolation.
1273 	 */
1274 	if (put_new_page)
1275 		put_new_page(new_hpage, private);
1276 	else
1277 		putback_active_hugepage(new_hpage);
1278 
1279 	if (result) {
1280 		if (rc)
1281 			*result = rc;
1282 		else
1283 			*result = page_to_nid(new_hpage);
1284 	}
1285 	return rc;
1286 }
1287 
1288 /*
1289  * migrate_pages - migrate the pages specified in a list, to the free pages
1290  *		   supplied as the target for the page migration
1291  *
1292  * @from:		The list of pages to be migrated.
1293  * @get_new_page:	The function used to allocate free pages to be used
1294  *			as the target of the page migration.
1295  * @put_new_page:	The function used to free target pages if migration
1296  *			fails, or NULL if no special handling is necessary.
1297  * @private:		Private data to be passed on to get_new_page()
1298  * @mode:		The migration mode that specifies the constraints for
1299  *			page migration, if any.
1300  * @reason:		The reason for page migration.
1301  *
1302  * The function returns after 10 attempts or if no pages are movable any more
1303  * because the list has become empty or no retryable pages exist any more.
1304  * The caller should call putback_movable_pages() to return pages to the LRU
1305  * or free list only if ret != 0.
1306  *
1307  * Returns the number of pages that were not migrated, or an error code.
1308  */
1309 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1310 		free_page_t put_new_page, unsigned long private,
1311 		enum migrate_mode mode, int reason)
1312 {
1313 	int retry = 1;
1314 	int nr_failed = 0;
1315 	int nr_succeeded = 0;
1316 	int pass = 0;
1317 	struct page *page;
1318 	struct page *page2;
1319 	int swapwrite = current->flags & PF_SWAPWRITE;
1320 	int rc;
1321 
1322 	if (!swapwrite)
1323 		current->flags |= PF_SWAPWRITE;
1324 
1325 	for(pass = 0; pass < 10 && retry; pass++) {
1326 		retry = 0;
1327 
1328 		list_for_each_entry_safe(page, page2, from, lru) {
1329 			cond_resched();
1330 
1331 			if (PageHuge(page))
1332 				rc = unmap_and_move_huge_page(get_new_page,
1333 						put_new_page, private, page,
1334 						pass > 2, mode, reason);
1335 			else
1336 				rc = unmap_and_move(get_new_page, put_new_page,
1337 						private, page, pass > 2, mode,
1338 						reason);
1339 
1340 			switch(rc) {
1341 			case -ENOMEM:
1342 				nr_failed++;
1343 				goto out;
1344 			case -EAGAIN:
1345 				retry++;
1346 				break;
1347 			case MIGRATEPAGE_SUCCESS:
1348 				nr_succeeded++;
1349 				break;
1350 			default:
1351 				/*
1352 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1353 				 * unlike -EAGAIN case, the failed page is
1354 				 * removed from migration page list and not
1355 				 * retried in the next outer loop.
1356 				 */
1357 				nr_failed++;
1358 				break;
1359 			}
1360 		}
1361 	}
1362 	nr_failed += retry;
1363 	rc = nr_failed;
1364 out:
1365 	if (nr_succeeded)
1366 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1367 	if (nr_failed)
1368 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1369 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1370 
1371 	if (!swapwrite)
1372 		current->flags &= ~PF_SWAPWRITE;
1373 
1374 	return rc;
1375 }
1376 
1377 #ifdef CONFIG_NUMA
1378 /*
1379  * Move a list of individual pages
1380  */
1381 struct page_to_node {
1382 	unsigned long addr;
1383 	struct page *page;
1384 	int node;
1385 	int status;
1386 };
1387 
1388 static struct page *new_page_node(struct page *p, unsigned long private,
1389 		int **result)
1390 {
1391 	struct page_to_node *pm = (struct page_to_node *)private;
1392 
1393 	while (pm->node != MAX_NUMNODES && pm->page != p)
1394 		pm++;
1395 
1396 	if (pm->node == MAX_NUMNODES)
1397 		return NULL;
1398 
1399 	*result = &pm->status;
1400 
1401 	if (PageHuge(p))
1402 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1403 					pm->node);
1404 	else
1405 		return __alloc_pages_node(pm->node,
1406 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1407 }
1408 
1409 /*
1410  * Move a set of pages as indicated in the pm array. The addr
1411  * field must be set to the virtual address of the page to be moved
1412  * and the node number must contain a valid target node.
1413  * The pm array ends with node = MAX_NUMNODES.
1414  */
1415 static int do_move_page_to_node_array(struct mm_struct *mm,
1416 				      struct page_to_node *pm,
1417 				      int migrate_all)
1418 {
1419 	int err;
1420 	struct page_to_node *pp;
1421 	LIST_HEAD(pagelist);
1422 
1423 	down_read(&mm->mmap_sem);
1424 
1425 	/*
1426 	 * Build a list of pages to migrate
1427 	 */
1428 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1429 		struct vm_area_struct *vma;
1430 		struct page *page;
1431 
1432 		err = -EFAULT;
1433 		vma = find_vma(mm, pp->addr);
1434 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1435 			goto set_status;
1436 
1437 		/* FOLL_DUMP to ignore special (like zero) pages */
1438 		page = follow_page(vma, pp->addr,
1439 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1440 
1441 		err = PTR_ERR(page);
1442 		if (IS_ERR(page))
1443 			goto set_status;
1444 
1445 		err = -ENOENT;
1446 		if (!page)
1447 			goto set_status;
1448 
1449 		pp->page = page;
1450 		err = page_to_nid(page);
1451 
1452 		if (err == pp->node)
1453 			/*
1454 			 * Node already in the right place
1455 			 */
1456 			goto put_and_set;
1457 
1458 		err = -EACCES;
1459 		if (page_mapcount(page) > 1 &&
1460 				!migrate_all)
1461 			goto put_and_set;
1462 
1463 		if (PageHuge(page)) {
1464 			if (PageHead(page))
1465 				isolate_huge_page(page, &pagelist);
1466 			goto put_and_set;
1467 		}
1468 
1469 		err = isolate_lru_page(page);
1470 		if (!err) {
1471 			list_add_tail(&page->lru, &pagelist);
1472 			inc_node_page_state(page, NR_ISOLATED_ANON +
1473 					    page_is_file_cache(page));
1474 		}
1475 put_and_set:
1476 		/*
1477 		 * Either remove the duplicate refcount from
1478 		 * isolate_lru_page() or drop the page ref if it was
1479 		 * not isolated.
1480 		 */
1481 		put_page(page);
1482 set_status:
1483 		pp->status = err;
1484 	}
1485 
1486 	err = 0;
1487 	if (!list_empty(&pagelist)) {
1488 		err = migrate_pages(&pagelist, new_page_node, NULL,
1489 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1490 		if (err)
1491 			putback_movable_pages(&pagelist);
1492 	}
1493 
1494 	up_read(&mm->mmap_sem);
1495 	return err;
1496 }
1497 
1498 /*
1499  * Migrate an array of page address onto an array of nodes and fill
1500  * the corresponding array of status.
1501  */
1502 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1503 			 unsigned long nr_pages,
1504 			 const void __user * __user *pages,
1505 			 const int __user *nodes,
1506 			 int __user *status, int flags)
1507 {
1508 	struct page_to_node *pm;
1509 	unsigned long chunk_nr_pages;
1510 	unsigned long chunk_start;
1511 	int err;
1512 
1513 	err = -ENOMEM;
1514 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1515 	if (!pm)
1516 		goto out;
1517 
1518 	migrate_prep();
1519 
1520 	/*
1521 	 * Store a chunk of page_to_node array in a page,
1522 	 * but keep the last one as a marker
1523 	 */
1524 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1525 
1526 	for (chunk_start = 0;
1527 	     chunk_start < nr_pages;
1528 	     chunk_start += chunk_nr_pages) {
1529 		int j;
1530 
1531 		if (chunk_start + chunk_nr_pages > nr_pages)
1532 			chunk_nr_pages = nr_pages - chunk_start;
1533 
1534 		/* fill the chunk pm with addrs and nodes from user-space */
1535 		for (j = 0; j < chunk_nr_pages; j++) {
1536 			const void __user *p;
1537 			int node;
1538 
1539 			err = -EFAULT;
1540 			if (get_user(p, pages + j + chunk_start))
1541 				goto out_pm;
1542 			pm[j].addr = (unsigned long) p;
1543 
1544 			if (get_user(node, nodes + j + chunk_start))
1545 				goto out_pm;
1546 
1547 			err = -ENODEV;
1548 			if (node < 0 || node >= MAX_NUMNODES)
1549 				goto out_pm;
1550 
1551 			if (!node_state(node, N_MEMORY))
1552 				goto out_pm;
1553 
1554 			err = -EACCES;
1555 			if (!node_isset(node, task_nodes))
1556 				goto out_pm;
1557 
1558 			pm[j].node = node;
1559 		}
1560 
1561 		/* End marker for this chunk */
1562 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1563 
1564 		/* Migrate this chunk */
1565 		err = do_move_page_to_node_array(mm, pm,
1566 						 flags & MPOL_MF_MOVE_ALL);
1567 		if (err < 0)
1568 			goto out_pm;
1569 
1570 		/* Return status information */
1571 		for (j = 0; j < chunk_nr_pages; j++)
1572 			if (put_user(pm[j].status, status + j + chunk_start)) {
1573 				err = -EFAULT;
1574 				goto out_pm;
1575 			}
1576 	}
1577 	err = 0;
1578 
1579 out_pm:
1580 	free_page((unsigned long)pm);
1581 out:
1582 	return err;
1583 }
1584 
1585 /*
1586  * Determine the nodes of an array of pages and store it in an array of status.
1587  */
1588 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1589 				const void __user **pages, int *status)
1590 {
1591 	unsigned long i;
1592 
1593 	down_read(&mm->mmap_sem);
1594 
1595 	for (i = 0; i < nr_pages; i++) {
1596 		unsigned long addr = (unsigned long)(*pages);
1597 		struct vm_area_struct *vma;
1598 		struct page *page;
1599 		int err = -EFAULT;
1600 
1601 		vma = find_vma(mm, addr);
1602 		if (!vma || addr < vma->vm_start)
1603 			goto set_status;
1604 
1605 		/* FOLL_DUMP to ignore special (like zero) pages */
1606 		page = follow_page(vma, addr, FOLL_DUMP);
1607 
1608 		err = PTR_ERR(page);
1609 		if (IS_ERR(page))
1610 			goto set_status;
1611 
1612 		err = page ? page_to_nid(page) : -ENOENT;
1613 set_status:
1614 		*status = err;
1615 
1616 		pages++;
1617 		status++;
1618 	}
1619 
1620 	up_read(&mm->mmap_sem);
1621 }
1622 
1623 /*
1624  * Determine the nodes of a user array of pages and store it in
1625  * a user array of status.
1626  */
1627 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1628 			 const void __user * __user *pages,
1629 			 int __user *status)
1630 {
1631 #define DO_PAGES_STAT_CHUNK_NR 16
1632 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1633 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1634 
1635 	while (nr_pages) {
1636 		unsigned long chunk_nr;
1637 
1638 		chunk_nr = nr_pages;
1639 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1640 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1641 
1642 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1643 			break;
1644 
1645 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1646 
1647 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1648 			break;
1649 
1650 		pages += chunk_nr;
1651 		status += chunk_nr;
1652 		nr_pages -= chunk_nr;
1653 	}
1654 	return nr_pages ? -EFAULT : 0;
1655 }
1656 
1657 /*
1658  * Move a list of pages in the address space of the currently executing
1659  * process.
1660  */
1661 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1662 		const void __user * __user *, pages,
1663 		const int __user *, nodes,
1664 		int __user *, status, int, flags)
1665 {
1666 	const struct cred *cred = current_cred(), *tcred;
1667 	struct task_struct *task;
1668 	struct mm_struct *mm;
1669 	int err;
1670 	nodemask_t task_nodes;
1671 
1672 	/* Check flags */
1673 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1674 		return -EINVAL;
1675 
1676 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1677 		return -EPERM;
1678 
1679 	/* Find the mm_struct */
1680 	rcu_read_lock();
1681 	task = pid ? find_task_by_vpid(pid) : current;
1682 	if (!task) {
1683 		rcu_read_unlock();
1684 		return -ESRCH;
1685 	}
1686 	get_task_struct(task);
1687 
1688 	/*
1689 	 * Check if this process has the right to modify the specified
1690 	 * process. The right exists if the process has administrative
1691 	 * capabilities, superuser privileges or the same
1692 	 * userid as the target process.
1693 	 */
1694 	tcred = __task_cred(task);
1695 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1696 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1697 	    !capable(CAP_SYS_NICE)) {
1698 		rcu_read_unlock();
1699 		err = -EPERM;
1700 		goto out;
1701 	}
1702 	rcu_read_unlock();
1703 
1704  	err = security_task_movememory(task);
1705  	if (err)
1706 		goto out;
1707 
1708 	task_nodes = cpuset_mems_allowed(task);
1709 	mm = get_task_mm(task);
1710 	put_task_struct(task);
1711 
1712 	if (!mm)
1713 		return -EINVAL;
1714 
1715 	if (nodes)
1716 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1717 				    nodes, status, flags);
1718 	else
1719 		err = do_pages_stat(mm, nr_pages, pages, status);
1720 
1721 	mmput(mm);
1722 	return err;
1723 
1724 out:
1725 	put_task_struct(task);
1726 	return err;
1727 }
1728 
1729 #ifdef CONFIG_NUMA_BALANCING
1730 /*
1731  * Returns true if this is a safe migration target node for misplaced NUMA
1732  * pages. Currently it only checks the watermarks which crude
1733  */
1734 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1735 				   unsigned long nr_migrate_pages)
1736 {
1737 	int z;
1738 
1739 	if (!pgdat_reclaimable(pgdat))
1740 		return false;
1741 
1742 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1743 		struct zone *zone = pgdat->node_zones + z;
1744 
1745 		if (!populated_zone(zone))
1746 			continue;
1747 
1748 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1749 		if (!zone_watermark_ok(zone, 0,
1750 				       high_wmark_pages(zone) +
1751 				       nr_migrate_pages,
1752 				       0, 0))
1753 			continue;
1754 		return true;
1755 	}
1756 	return false;
1757 }
1758 
1759 static struct page *alloc_misplaced_dst_page(struct page *page,
1760 					   unsigned long data,
1761 					   int **result)
1762 {
1763 	int nid = (int) data;
1764 	struct page *newpage;
1765 
1766 	newpage = __alloc_pages_node(nid,
1767 					 (GFP_HIGHUSER_MOVABLE |
1768 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1769 					  __GFP_NORETRY | __GFP_NOWARN) &
1770 					 ~__GFP_RECLAIM, 0);
1771 
1772 	return newpage;
1773 }
1774 
1775 /*
1776  * page migration rate limiting control.
1777  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1778  * window of time. Default here says do not migrate more than 1280M per second.
1779  */
1780 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1781 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1782 
1783 /* Returns true if the node is migrate rate-limited after the update */
1784 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1785 					unsigned long nr_pages)
1786 {
1787 	/*
1788 	 * Rate-limit the amount of data that is being migrated to a node.
1789 	 * Optimal placement is no good if the memory bus is saturated and
1790 	 * all the time is being spent migrating!
1791 	 */
1792 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1793 		spin_lock(&pgdat->numabalancing_migrate_lock);
1794 		pgdat->numabalancing_migrate_nr_pages = 0;
1795 		pgdat->numabalancing_migrate_next_window = jiffies +
1796 			msecs_to_jiffies(migrate_interval_millisecs);
1797 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1798 	}
1799 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1800 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1801 								nr_pages);
1802 		return true;
1803 	}
1804 
1805 	/*
1806 	 * This is an unlocked non-atomic update so errors are possible.
1807 	 * The consequences are failing to migrate when we potentiall should
1808 	 * have which is not severe enough to warrant locking. If it is ever
1809 	 * a problem, it can be converted to a per-cpu counter.
1810 	 */
1811 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1812 	return false;
1813 }
1814 
1815 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1816 {
1817 	int page_lru;
1818 
1819 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1820 
1821 	/* Avoid migrating to a node that is nearly full */
1822 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1823 		return 0;
1824 
1825 	if (isolate_lru_page(page))
1826 		return 0;
1827 
1828 	/*
1829 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1830 	 * check on page_count(), so we must do it here, now that the page
1831 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1832 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1833 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1834 	 */
1835 	if (PageTransHuge(page) && page_count(page) != 3) {
1836 		putback_lru_page(page);
1837 		return 0;
1838 	}
1839 
1840 	page_lru = page_is_file_cache(page);
1841 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1842 				hpage_nr_pages(page));
1843 
1844 	/*
1845 	 * Isolating the page has taken another reference, so the
1846 	 * caller's reference can be safely dropped without the page
1847 	 * disappearing underneath us during migration.
1848 	 */
1849 	put_page(page);
1850 	return 1;
1851 }
1852 
1853 bool pmd_trans_migrating(pmd_t pmd)
1854 {
1855 	struct page *page = pmd_page(pmd);
1856 	return PageLocked(page);
1857 }
1858 
1859 /*
1860  * Attempt to migrate a misplaced page to the specified destination
1861  * node. Caller is expected to have an elevated reference count on
1862  * the page that will be dropped by this function before returning.
1863  */
1864 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1865 			   int node)
1866 {
1867 	pg_data_t *pgdat = NODE_DATA(node);
1868 	int isolated;
1869 	int nr_remaining;
1870 	LIST_HEAD(migratepages);
1871 
1872 	/*
1873 	 * Don't migrate file pages that are mapped in multiple processes
1874 	 * with execute permissions as they are probably shared libraries.
1875 	 */
1876 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1877 	    (vma->vm_flags & VM_EXEC))
1878 		goto out;
1879 
1880 	/*
1881 	 * Rate-limit the amount of data that is being migrated to a node.
1882 	 * Optimal placement is no good if the memory bus is saturated and
1883 	 * all the time is being spent migrating!
1884 	 */
1885 	if (numamigrate_update_ratelimit(pgdat, 1))
1886 		goto out;
1887 
1888 	isolated = numamigrate_isolate_page(pgdat, page);
1889 	if (!isolated)
1890 		goto out;
1891 
1892 	list_add(&page->lru, &migratepages);
1893 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1894 				     NULL, node, MIGRATE_ASYNC,
1895 				     MR_NUMA_MISPLACED);
1896 	if (nr_remaining) {
1897 		if (!list_empty(&migratepages)) {
1898 			list_del(&page->lru);
1899 			dec_node_page_state(page, NR_ISOLATED_ANON +
1900 					page_is_file_cache(page));
1901 			putback_lru_page(page);
1902 		}
1903 		isolated = 0;
1904 	} else
1905 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1906 	BUG_ON(!list_empty(&migratepages));
1907 	return isolated;
1908 
1909 out:
1910 	put_page(page);
1911 	return 0;
1912 }
1913 #endif /* CONFIG_NUMA_BALANCING */
1914 
1915 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1916 /*
1917  * Migrates a THP to a given target node. page must be locked and is unlocked
1918  * before returning.
1919  */
1920 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1921 				struct vm_area_struct *vma,
1922 				pmd_t *pmd, pmd_t entry,
1923 				unsigned long address,
1924 				struct page *page, int node)
1925 {
1926 	spinlock_t *ptl;
1927 	pg_data_t *pgdat = NODE_DATA(node);
1928 	int isolated = 0;
1929 	struct page *new_page = NULL;
1930 	int page_lru = page_is_file_cache(page);
1931 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1932 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1933 	pmd_t orig_entry;
1934 
1935 	/*
1936 	 * Rate-limit the amount of data that is being migrated to a node.
1937 	 * Optimal placement is no good if the memory bus is saturated and
1938 	 * all the time is being spent migrating!
1939 	 */
1940 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1941 		goto out_dropref;
1942 
1943 	new_page = alloc_pages_node(node,
1944 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1945 		HPAGE_PMD_ORDER);
1946 	if (!new_page)
1947 		goto out_fail;
1948 	prep_transhuge_page(new_page);
1949 
1950 	isolated = numamigrate_isolate_page(pgdat, page);
1951 	if (!isolated) {
1952 		put_page(new_page);
1953 		goto out_fail;
1954 	}
1955 	/*
1956 	 * We are not sure a pending tlb flush here is for a huge page
1957 	 * mapping or not. Hence use the tlb range variant
1958 	 */
1959 	if (mm_tlb_flush_pending(mm))
1960 		flush_tlb_range(vma, mmun_start, mmun_end);
1961 
1962 	/* Prepare a page as a migration target */
1963 	__SetPageLocked(new_page);
1964 	__SetPageSwapBacked(new_page);
1965 
1966 	/* anon mapping, we can simply copy page->mapping to the new page: */
1967 	new_page->mapping = page->mapping;
1968 	new_page->index = page->index;
1969 	migrate_page_copy(new_page, page);
1970 	WARN_ON(PageLRU(new_page));
1971 
1972 	/* Recheck the target PMD */
1973 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1974 	ptl = pmd_lock(mm, pmd);
1975 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1976 fail_putback:
1977 		spin_unlock(ptl);
1978 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1979 
1980 		/* Reverse changes made by migrate_page_copy() */
1981 		if (TestClearPageActive(new_page))
1982 			SetPageActive(page);
1983 		if (TestClearPageUnevictable(new_page))
1984 			SetPageUnevictable(page);
1985 
1986 		unlock_page(new_page);
1987 		put_page(new_page);		/* Free it */
1988 
1989 		/* Retake the callers reference and putback on LRU */
1990 		get_page(page);
1991 		putback_lru_page(page);
1992 		mod_node_page_state(page_pgdat(page),
1993 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1994 
1995 		goto out_unlock;
1996 	}
1997 
1998 	orig_entry = *pmd;
1999 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2000 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2001 
2002 	/*
2003 	 * Clear the old entry under pagetable lock and establish the new PTE.
2004 	 * Any parallel GUP will either observe the old page blocking on the
2005 	 * page lock, block on the page table lock or observe the new page.
2006 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2007 	 * guarantee the copy is visible before the pagetable update.
2008 	 */
2009 	flush_cache_range(vma, mmun_start, mmun_end);
2010 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2011 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2012 	set_pmd_at(mm, mmun_start, pmd, entry);
2013 	update_mmu_cache_pmd(vma, address, &entry);
2014 
2015 	if (page_count(page) != 2) {
2016 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2017 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2018 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2019 		update_mmu_cache_pmd(vma, address, &entry);
2020 		page_remove_rmap(new_page, true);
2021 		goto fail_putback;
2022 	}
2023 
2024 	mlock_migrate_page(new_page, page);
2025 	page_remove_rmap(page, true);
2026 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2027 
2028 	spin_unlock(ptl);
2029 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2030 
2031 	/* Take an "isolate" reference and put new page on the LRU. */
2032 	get_page(new_page);
2033 	putback_lru_page(new_page);
2034 
2035 	unlock_page(new_page);
2036 	unlock_page(page);
2037 	put_page(page);			/* Drop the rmap reference */
2038 	put_page(page);			/* Drop the LRU isolation reference */
2039 
2040 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2041 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2042 
2043 	mod_node_page_state(page_pgdat(page),
2044 			NR_ISOLATED_ANON + page_lru,
2045 			-HPAGE_PMD_NR);
2046 	return isolated;
2047 
2048 out_fail:
2049 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2050 out_dropref:
2051 	ptl = pmd_lock(mm, pmd);
2052 	if (pmd_same(*pmd, entry)) {
2053 		entry = pmd_modify(entry, vma->vm_page_prot);
2054 		set_pmd_at(mm, mmun_start, pmd, entry);
2055 		update_mmu_cache_pmd(vma, address, &entry);
2056 	}
2057 	spin_unlock(ptl);
2058 
2059 out_unlock:
2060 	unlock_page(page);
2061 	put_page(page);
2062 	return 0;
2063 }
2064 #endif /* CONFIG_NUMA_BALANCING */
2065 
2066 #endif /* CONFIG_NUMA */
2067