1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 void migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 void migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 } 81 82 int isolate_movable_page(struct page *page, isolate_mode_t mode) 83 { 84 struct address_space *mapping; 85 86 /* 87 * Avoid burning cycles with pages that are yet under __free_pages(), 88 * or just got freed under us. 89 * 90 * In case we 'win' a race for a movable page being freed under us and 91 * raise its refcount preventing __free_pages() from doing its job 92 * the put_page() at the end of this block will take care of 93 * release this page, thus avoiding a nasty leakage. 94 */ 95 if (unlikely(!get_page_unless_zero(page))) 96 goto out; 97 98 /* 99 * Check PageMovable before holding a PG_lock because page's owner 100 * assumes anybody doesn't touch PG_lock of newly allocated page 101 * so unconditionally grabbing the lock ruins page's owner side. 102 */ 103 if (unlikely(!__PageMovable(page))) 104 goto out_putpage; 105 /* 106 * As movable pages are not isolated from LRU lists, concurrent 107 * compaction threads can race against page migration functions 108 * as well as race against the releasing a page. 109 * 110 * In order to avoid having an already isolated movable page 111 * being (wrongly) re-isolated while it is under migration, 112 * or to avoid attempting to isolate pages being released, 113 * lets be sure we have the page lock 114 * before proceeding with the movable page isolation steps. 115 */ 116 if (unlikely(!trylock_page(page))) 117 goto out_putpage; 118 119 if (!PageMovable(page) || PageIsolated(page)) 120 goto out_no_isolated; 121 122 mapping = page_mapping(page); 123 VM_BUG_ON_PAGE(!mapping, page); 124 125 if (!mapping->a_ops->isolate_page(page, mode)) 126 goto out_no_isolated; 127 128 /* Driver shouldn't use PG_isolated bit of page->flags */ 129 WARN_ON_ONCE(PageIsolated(page)); 130 __SetPageIsolated(page); 131 unlock_page(page); 132 133 return 0; 134 135 out_no_isolated: 136 unlock_page(page); 137 out_putpage: 138 put_page(page); 139 out: 140 return -EBUSY; 141 } 142 143 /* It should be called on page which is PG_movable */ 144 void putback_movable_page(struct page *page) 145 { 146 struct address_space *mapping; 147 148 VM_BUG_ON_PAGE(!PageLocked(page), page); 149 VM_BUG_ON_PAGE(!PageMovable(page), page); 150 VM_BUG_ON_PAGE(!PageIsolated(page), page); 151 152 mapping = page_mapping(page); 153 mapping->a_ops->putback_page(page); 154 __ClearPageIsolated(page); 155 } 156 157 /* 158 * Put previously isolated pages back onto the appropriate lists 159 * from where they were once taken off for compaction/migration. 160 * 161 * This function shall be used whenever the isolated pageset has been 162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 163 * and isolate_huge_page(). 164 */ 165 void putback_movable_pages(struct list_head *l) 166 { 167 struct page *page; 168 struct page *page2; 169 170 list_for_each_entry_safe(page, page2, l, lru) { 171 if (unlikely(PageHuge(page))) { 172 putback_active_hugepage(page); 173 continue; 174 } 175 list_del(&page->lru); 176 /* 177 * We isolated non-lru movable page so here we can use 178 * __PageMovable because LRU page's mapping cannot have 179 * PAGE_MAPPING_MOVABLE. 180 */ 181 if (unlikely(__PageMovable(page))) { 182 VM_BUG_ON_PAGE(!PageIsolated(page), page); 183 lock_page(page); 184 if (PageMovable(page)) 185 putback_movable_page(page); 186 else 187 __ClearPageIsolated(page); 188 unlock_page(page); 189 put_page(page); 190 } else { 191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 192 page_is_file_lru(page), -thp_nr_pages(page)); 193 putback_lru_page(page); 194 } 195 } 196 } 197 198 /* 199 * Restore a potential migration pte to a working pte entry 200 */ 201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 202 unsigned long addr, void *old) 203 { 204 struct page_vma_mapped_walk pvmw = { 205 .page = old, 206 .vma = vma, 207 .address = addr, 208 .flags = PVMW_SYNC | PVMW_MIGRATION, 209 }; 210 struct page *new; 211 pte_t pte; 212 swp_entry_t entry; 213 214 VM_BUG_ON_PAGE(PageTail(page), page); 215 while (page_vma_mapped_walk(&pvmw)) { 216 if (PageKsm(page)) 217 new = page; 218 else 219 new = page - pvmw.page->index + 220 linear_page_index(vma, pvmw.address); 221 222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 223 /* PMD-mapped THP migration entry */ 224 if (!pvmw.pte) { 225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 226 remove_migration_pmd(&pvmw, new); 227 continue; 228 } 229 #endif 230 231 get_page(new); 232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 233 if (pte_swp_soft_dirty(*pvmw.pte)) 234 pte = pte_mksoft_dirty(pte); 235 236 /* 237 * Recheck VMA as permissions can change since migration started 238 */ 239 entry = pte_to_swp_entry(*pvmw.pte); 240 if (is_write_migration_entry(entry)) 241 pte = maybe_mkwrite(pte, vma); 242 else if (pte_swp_uffd_wp(*pvmw.pte)) 243 pte = pte_mkuffd_wp(pte); 244 245 if (unlikely(is_device_private_page(new))) { 246 entry = make_device_private_entry(new, pte_write(pte)); 247 pte = swp_entry_to_pte(entry); 248 if (pte_swp_soft_dirty(*pvmw.pte)) 249 pte = pte_swp_mksoft_dirty(pte); 250 if (pte_swp_uffd_wp(*pvmw.pte)) 251 pte = pte_swp_mkuffd_wp(pte); 252 } 253 254 #ifdef CONFIG_HUGETLB_PAGE 255 if (PageHuge(new)) { 256 pte = pte_mkhuge(pte); 257 pte = arch_make_huge_pte(pte, vma, new, 0); 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 259 if (PageAnon(new)) 260 hugepage_add_anon_rmap(new, vma, pvmw.address); 261 else 262 page_dup_rmap(new, true); 263 } else 264 #endif 265 { 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 268 if (PageAnon(new)) 269 page_add_anon_rmap(new, vma, pvmw.address, false); 270 else 271 page_add_file_rmap(new, false); 272 } 273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 274 mlock_vma_page(new); 275 276 if (PageTransHuge(page) && PageMlocked(page)) 277 clear_page_mlock(page); 278 279 /* No need to invalidate - it was non-present before */ 280 update_mmu_cache(vma, pvmw.address, pvmw.pte); 281 } 282 283 return true; 284 } 285 286 /* 287 * Get rid of all migration entries and replace them by 288 * references to the indicated page. 289 */ 290 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 291 { 292 struct rmap_walk_control rwc = { 293 .rmap_one = remove_migration_pte, 294 .arg = old, 295 }; 296 297 if (locked) 298 rmap_walk_locked(new, &rwc); 299 else 300 rmap_walk(new, &rwc); 301 } 302 303 /* 304 * Something used the pte of a page under migration. We need to 305 * get to the page and wait until migration is finished. 306 * When we return from this function the fault will be retried. 307 */ 308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 309 spinlock_t *ptl) 310 { 311 pte_t pte; 312 swp_entry_t entry; 313 struct page *page; 314 315 spin_lock(ptl); 316 pte = *ptep; 317 if (!is_swap_pte(pte)) 318 goto out; 319 320 entry = pte_to_swp_entry(pte); 321 if (!is_migration_entry(entry)) 322 goto out; 323 324 page = migration_entry_to_page(entry); 325 326 /* 327 * Once page cache replacement of page migration started, page_count 328 * is zero; but we must not call put_and_wait_on_page_locked() without 329 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 330 */ 331 if (!get_page_unless_zero(page)) 332 goto out; 333 pte_unmap_unlock(ptep, ptl); 334 put_and_wait_on_page_locked(page); 335 return; 336 out: 337 pte_unmap_unlock(ptep, ptl); 338 } 339 340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 341 unsigned long address) 342 { 343 spinlock_t *ptl = pte_lockptr(mm, pmd); 344 pte_t *ptep = pte_offset_map(pmd, address); 345 __migration_entry_wait(mm, ptep, ptl); 346 } 347 348 void migration_entry_wait_huge(struct vm_area_struct *vma, 349 struct mm_struct *mm, pte_t *pte) 350 { 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 352 __migration_entry_wait(mm, pte, ptl); 353 } 354 355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 357 { 358 spinlock_t *ptl; 359 struct page *page; 360 361 ptl = pmd_lock(mm, pmd); 362 if (!is_pmd_migration_entry(*pmd)) 363 goto unlock; 364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 365 if (!get_page_unless_zero(page)) 366 goto unlock; 367 spin_unlock(ptl); 368 put_and_wait_on_page_locked(page); 369 return; 370 unlock: 371 spin_unlock(ptl); 372 } 373 #endif 374 375 static int expected_page_refs(struct address_space *mapping, struct page *page) 376 { 377 int expected_count = 1; 378 379 /* 380 * Device private pages have an extra refcount as they are 381 * ZONE_DEVICE pages. 382 */ 383 expected_count += is_device_private_page(page); 384 if (mapping) 385 expected_count += thp_nr_pages(page) + page_has_private(page); 386 387 return expected_count; 388 } 389 390 /* 391 * Replace the page in the mapping. 392 * 393 * The number of remaining references must be: 394 * 1 for anonymous pages without a mapping 395 * 2 for pages with a mapping 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 397 */ 398 int migrate_page_move_mapping(struct address_space *mapping, 399 struct page *newpage, struct page *page, int extra_count) 400 { 401 XA_STATE(xas, &mapping->i_pages, page_index(page)); 402 struct zone *oldzone, *newzone; 403 int dirty; 404 int expected_count = expected_page_refs(mapping, page) + extra_count; 405 406 if (!mapping) { 407 /* Anonymous page without mapping */ 408 if (page_count(page) != expected_count) 409 return -EAGAIN; 410 411 /* No turning back from here */ 412 newpage->index = page->index; 413 newpage->mapping = page->mapping; 414 if (PageSwapBacked(page)) 415 __SetPageSwapBacked(newpage); 416 417 return MIGRATEPAGE_SUCCESS; 418 } 419 420 oldzone = page_zone(page); 421 newzone = page_zone(newpage); 422 423 xas_lock_irq(&xas); 424 if (page_count(page) != expected_count || xas_load(&xas) != page) { 425 xas_unlock_irq(&xas); 426 return -EAGAIN; 427 } 428 429 if (!page_ref_freeze(page, expected_count)) { 430 xas_unlock_irq(&xas); 431 return -EAGAIN; 432 } 433 434 /* 435 * Now we know that no one else is looking at the page: 436 * no turning back from here. 437 */ 438 newpage->index = page->index; 439 newpage->mapping = page->mapping; 440 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */ 441 if (PageSwapBacked(page)) { 442 __SetPageSwapBacked(newpage); 443 if (PageSwapCache(page)) { 444 SetPageSwapCache(newpage); 445 set_page_private(newpage, page_private(page)); 446 } 447 } else { 448 VM_BUG_ON_PAGE(PageSwapCache(page), page); 449 } 450 451 /* Move dirty while page refs frozen and newpage not yet exposed */ 452 dirty = PageDirty(page); 453 if (dirty) { 454 ClearPageDirty(page); 455 SetPageDirty(newpage); 456 } 457 458 xas_store(&xas, newpage); 459 if (PageTransHuge(page)) { 460 int i; 461 462 for (i = 1; i < HPAGE_PMD_NR; i++) { 463 xas_next(&xas); 464 xas_store(&xas, newpage); 465 } 466 } 467 468 /* 469 * Drop cache reference from old page by unfreezing 470 * to one less reference. 471 * We know this isn't the last reference. 472 */ 473 page_ref_unfreeze(page, expected_count - thp_nr_pages(page)); 474 475 xas_unlock(&xas); 476 /* Leave irq disabled to prevent preemption while updating stats */ 477 478 /* 479 * If moved to a different zone then also account 480 * the page for that zone. Other VM counters will be 481 * taken care of when we establish references to the 482 * new page and drop references to the old page. 483 * 484 * Note that anonymous pages are accounted for 485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 486 * are mapped to swap space. 487 */ 488 if (newzone != oldzone) { 489 struct lruvec *old_lruvec, *new_lruvec; 490 struct mem_cgroup *memcg; 491 492 memcg = page_memcg(page); 493 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 494 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 495 496 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES); 497 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES); 498 if (PageSwapBacked(page) && !PageSwapCache(page)) { 499 __dec_lruvec_state(old_lruvec, NR_SHMEM); 500 __inc_lruvec_state(new_lruvec, NR_SHMEM); 501 } 502 if (dirty && mapping_can_writeback(mapping)) { 503 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 504 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 505 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 506 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 507 } 508 } 509 local_irq_enable(); 510 511 return MIGRATEPAGE_SUCCESS; 512 } 513 EXPORT_SYMBOL(migrate_page_move_mapping); 514 515 /* 516 * The expected number of remaining references is the same as that 517 * of migrate_page_move_mapping(). 518 */ 519 int migrate_huge_page_move_mapping(struct address_space *mapping, 520 struct page *newpage, struct page *page) 521 { 522 XA_STATE(xas, &mapping->i_pages, page_index(page)); 523 int expected_count; 524 525 xas_lock_irq(&xas); 526 expected_count = 2 + page_has_private(page); 527 if (page_count(page) != expected_count || xas_load(&xas) != page) { 528 xas_unlock_irq(&xas); 529 return -EAGAIN; 530 } 531 532 if (!page_ref_freeze(page, expected_count)) { 533 xas_unlock_irq(&xas); 534 return -EAGAIN; 535 } 536 537 newpage->index = page->index; 538 newpage->mapping = page->mapping; 539 540 get_page(newpage); 541 542 xas_store(&xas, newpage); 543 544 page_ref_unfreeze(page, expected_count - 1); 545 546 xas_unlock_irq(&xas); 547 548 return MIGRATEPAGE_SUCCESS; 549 } 550 551 /* 552 * Gigantic pages are so large that we do not guarantee that page++ pointer 553 * arithmetic will work across the entire page. We need something more 554 * specialized. 555 */ 556 static void __copy_gigantic_page(struct page *dst, struct page *src, 557 int nr_pages) 558 { 559 int i; 560 struct page *dst_base = dst; 561 struct page *src_base = src; 562 563 for (i = 0; i < nr_pages; ) { 564 cond_resched(); 565 copy_highpage(dst, src); 566 567 i++; 568 dst = mem_map_next(dst, dst_base, i); 569 src = mem_map_next(src, src_base, i); 570 } 571 } 572 573 static void copy_huge_page(struct page *dst, struct page *src) 574 { 575 int i; 576 int nr_pages; 577 578 if (PageHuge(src)) { 579 /* hugetlbfs page */ 580 struct hstate *h = page_hstate(src); 581 nr_pages = pages_per_huge_page(h); 582 583 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 584 __copy_gigantic_page(dst, src, nr_pages); 585 return; 586 } 587 } else { 588 /* thp page */ 589 BUG_ON(!PageTransHuge(src)); 590 nr_pages = thp_nr_pages(src); 591 } 592 593 for (i = 0; i < nr_pages; i++) { 594 cond_resched(); 595 copy_highpage(dst + i, src + i); 596 } 597 } 598 599 /* 600 * Copy the page to its new location 601 */ 602 void migrate_page_states(struct page *newpage, struct page *page) 603 { 604 int cpupid; 605 606 if (PageError(page)) 607 SetPageError(newpage); 608 if (PageReferenced(page)) 609 SetPageReferenced(newpage); 610 if (PageUptodate(page)) 611 SetPageUptodate(newpage); 612 if (TestClearPageActive(page)) { 613 VM_BUG_ON_PAGE(PageUnevictable(page), page); 614 SetPageActive(newpage); 615 } else if (TestClearPageUnevictable(page)) 616 SetPageUnevictable(newpage); 617 if (PageWorkingset(page)) 618 SetPageWorkingset(newpage); 619 if (PageChecked(page)) 620 SetPageChecked(newpage); 621 if (PageMappedToDisk(page)) 622 SetPageMappedToDisk(newpage); 623 624 /* Move dirty on pages not done by migrate_page_move_mapping() */ 625 if (PageDirty(page)) 626 SetPageDirty(newpage); 627 628 if (page_is_young(page)) 629 set_page_young(newpage); 630 if (page_is_idle(page)) 631 set_page_idle(newpage); 632 633 /* 634 * Copy NUMA information to the new page, to prevent over-eager 635 * future migrations of this same page. 636 */ 637 cpupid = page_cpupid_xchg_last(page, -1); 638 page_cpupid_xchg_last(newpage, cpupid); 639 640 ksm_migrate_page(newpage, page); 641 /* 642 * Please do not reorder this without considering how mm/ksm.c's 643 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 644 */ 645 if (PageSwapCache(page)) 646 ClearPageSwapCache(page); 647 ClearPagePrivate(page); 648 set_page_private(page, 0); 649 650 /* 651 * If any waiters have accumulated on the new page then 652 * wake them up. 653 */ 654 if (PageWriteback(newpage)) 655 end_page_writeback(newpage); 656 657 /* 658 * PG_readahead shares the same bit with PG_reclaim. The above 659 * end_page_writeback() may clear PG_readahead mistakenly, so set the 660 * bit after that. 661 */ 662 if (PageReadahead(page)) 663 SetPageReadahead(newpage); 664 665 copy_page_owner(page, newpage); 666 667 if (!PageHuge(page)) 668 mem_cgroup_migrate(page, newpage); 669 } 670 EXPORT_SYMBOL(migrate_page_states); 671 672 void migrate_page_copy(struct page *newpage, struct page *page) 673 { 674 if (PageHuge(page) || PageTransHuge(page)) 675 copy_huge_page(newpage, page); 676 else 677 copy_highpage(newpage, page); 678 679 migrate_page_states(newpage, page); 680 } 681 EXPORT_SYMBOL(migrate_page_copy); 682 683 /************************************************************ 684 * Migration functions 685 ***********************************************************/ 686 687 /* 688 * Common logic to directly migrate a single LRU page suitable for 689 * pages that do not use PagePrivate/PagePrivate2. 690 * 691 * Pages are locked upon entry and exit. 692 */ 693 int migrate_page(struct address_space *mapping, 694 struct page *newpage, struct page *page, 695 enum migrate_mode mode) 696 { 697 int rc; 698 699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 700 701 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 702 703 if (rc != MIGRATEPAGE_SUCCESS) 704 return rc; 705 706 if (mode != MIGRATE_SYNC_NO_COPY) 707 migrate_page_copy(newpage, page); 708 else 709 migrate_page_states(newpage, page); 710 return MIGRATEPAGE_SUCCESS; 711 } 712 EXPORT_SYMBOL(migrate_page); 713 714 #ifdef CONFIG_BLOCK 715 /* Returns true if all buffers are successfully locked */ 716 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 717 enum migrate_mode mode) 718 { 719 struct buffer_head *bh = head; 720 721 /* Simple case, sync compaction */ 722 if (mode != MIGRATE_ASYNC) { 723 do { 724 lock_buffer(bh); 725 bh = bh->b_this_page; 726 727 } while (bh != head); 728 729 return true; 730 } 731 732 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 733 do { 734 if (!trylock_buffer(bh)) { 735 /* 736 * We failed to lock the buffer and cannot stall in 737 * async migration. Release the taken locks 738 */ 739 struct buffer_head *failed_bh = bh; 740 bh = head; 741 while (bh != failed_bh) { 742 unlock_buffer(bh); 743 bh = bh->b_this_page; 744 } 745 return false; 746 } 747 748 bh = bh->b_this_page; 749 } while (bh != head); 750 return true; 751 } 752 753 static int __buffer_migrate_page(struct address_space *mapping, 754 struct page *newpage, struct page *page, enum migrate_mode mode, 755 bool check_refs) 756 { 757 struct buffer_head *bh, *head; 758 int rc; 759 int expected_count; 760 761 if (!page_has_buffers(page)) 762 return migrate_page(mapping, newpage, page, mode); 763 764 /* Check whether page does not have extra refs before we do more work */ 765 expected_count = expected_page_refs(mapping, page); 766 if (page_count(page) != expected_count) 767 return -EAGAIN; 768 769 head = page_buffers(page); 770 if (!buffer_migrate_lock_buffers(head, mode)) 771 return -EAGAIN; 772 773 if (check_refs) { 774 bool busy; 775 bool invalidated = false; 776 777 recheck_buffers: 778 busy = false; 779 spin_lock(&mapping->private_lock); 780 bh = head; 781 do { 782 if (atomic_read(&bh->b_count)) { 783 busy = true; 784 break; 785 } 786 bh = bh->b_this_page; 787 } while (bh != head); 788 if (busy) { 789 if (invalidated) { 790 rc = -EAGAIN; 791 goto unlock_buffers; 792 } 793 spin_unlock(&mapping->private_lock); 794 invalidate_bh_lrus(); 795 invalidated = true; 796 goto recheck_buffers; 797 } 798 } 799 800 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 801 if (rc != MIGRATEPAGE_SUCCESS) 802 goto unlock_buffers; 803 804 attach_page_private(newpage, detach_page_private(page)); 805 806 bh = head; 807 do { 808 set_bh_page(bh, newpage, bh_offset(bh)); 809 bh = bh->b_this_page; 810 811 } while (bh != head); 812 813 if (mode != MIGRATE_SYNC_NO_COPY) 814 migrate_page_copy(newpage, page); 815 else 816 migrate_page_states(newpage, page); 817 818 rc = MIGRATEPAGE_SUCCESS; 819 unlock_buffers: 820 if (check_refs) 821 spin_unlock(&mapping->private_lock); 822 bh = head; 823 do { 824 unlock_buffer(bh); 825 bh = bh->b_this_page; 826 827 } while (bh != head); 828 829 return rc; 830 } 831 832 /* 833 * Migration function for pages with buffers. This function can only be used 834 * if the underlying filesystem guarantees that no other references to "page" 835 * exist. For example attached buffer heads are accessed only under page lock. 836 */ 837 int buffer_migrate_page(struct address_space *mapping, 838 struct page *newpage, struct page *page, enum migrate_mode mode) 839 { 840 return __buffer_migrate_page(mapping, newpage, page, mode, false); 841 } 842 EXPORT_SYMBOL(buffer_migrate_page); 843 844 /* 845 * Same as above except that this variant is more careful and checks that there 846 * are also no buffer head references. This function is the right one for 847 * mappings where buffer heads are directly looked up and referenced (such as 848 * block device mappings). 849 */ 850 int buffer_migrate_page_norefs(struct address_space *mapping, 851 struct page *newpage, struct page *page, enum migrate_mode mode) 852 { 853 return __buffer_migrate_page(mapping, newpage, page, mode, true); 854 } 855 #endif 856 857 /* 858 * Writeback a page to clean the dirty state 859 */ 860 static int writeout(struct address_space *mapping, struct page *page) 861 { 862 struct writeback_control wbc = { 863 .sync_mode = WB_SYNC_NONE, 864 .nr_to_write = 1, 865 .range_start = 0, 866 .range_end = LLONG_MAX, 867 .for_reclaim = 1 868 }; 869 int rc; 870 871 if (!mapping->a_ops->writepage) 872 /* No write method for the address space */ 873 return -EINVAL; 874 875 if (!clear_page_dirty_for_io(page)) 876 /* Someone else already triggered a write */ 877 return -EAGAIN; 878 879 /* 880 * A dirty page may imply that the underlying filesystem has 881 * the page on some queue. So the page must be clean for 882 * migration. Writeout may mean we loose the lock and the 883 * page state is no longer what we checked for earlier. 884 * At this point we know that the migration attempt cannot 885 * be successful. 886 */ 887 remove_migration_ptes(page, page, false); 888 889 rc = mapping->a_ops->writepage(page, &wbc); 890 891 if (rc != AOP_WRITEPAGE_ACTIVATE) 892 /* unlocked. Relock */ 893 lock_page(page); 894 895 return (rc < 0) ? -EIO : -EAGAIN; 896 } 897 898 /* 899 * Default handling if a filesystem does not provide a migration function. 900 */ 901 static int fallback_migrate_page(struct address_space *mapping, 902 struct page *newpage, struct page *page, enum migrate_mode mode) 903 { 904 if (PageDirty(page)) { 905 /* Only writeback pages in full synchronous migration */ 906 switch (mode) { 907 case MIGRATE_SYNC: 908 case MIGRATE_SYNC_NO_COPY: 909 break; 910 default: 911 return -EBUSY; 912 } 913 return writeout(mapping, page); 914 } 915 916 /* 917 * Buffers may be managed in a filesystem specific way. 918 * We must have no buffers or drop them. 919 */ 920 if (page_has_private(page) && 921 !try_to_release_page(page, GFP_KERNEL)) 922 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 923 924 return migrate_page(mapping, newpage, page, mode); 925 } 926 927 /* 928 * Move a page to a newly allocated page 929 * The page is locked and all ptes have been successfully removed. 930 * 931 * The new page will have replaced the old page if this function 932 * is successful. 933 * 934 * Return value: 935 * < 0 - error code 936 * MIGRATEPAGE_SUCCESS - success 937 */ 938 static int move_to_new_page(struct page *newpage, struct page *page, 939 enum migrate_mode mode) 940 { 941 struct address_space *mapping; 942 int rc = -EAGAIN; 943 bool is_lru = !__PageMovable(page); 944 945 VM_BUG_ON_PAGE(!PageLocked(page), page); 946 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 947 948 mapping = page_mapping(page); 949 950 if (likely(is_lru)) { 951 if (!mapping) 952 rc = migrate_page(mapping, newpage, page, mode); 953 else if (mapping->a_ops->migratepage) 954 /* 955 * Most pages have a mapping and most filesystems 956 * provide a migratepage callback. Anonymous pages 957 * are part of swap space which also has its own 958 * migratepage callback. This is the most common path 959 * for page migration. 960 */ 961 rc = mapping->a_ops->migratepage(mapping, newpage, 962 page, mode); 963 else 964 rc = fallback_migrate_page(mapping, newpage, 965 page, mode); 966 } else { 967 /* 968 * In case of non-lru page, it could be released after 969 * isolation step. In that case, we shouldn't try migration. 970 */ 971 VM_BUG_ON_PAGE(!PageIsolated(page), page); 972 if (!PageMovable(page)) { 973 rc = MIGRATEPAGE_SUCCESS; 974 __ClearPageIsolated(page); 975 goto out; 976 } 977 978 rc = mapping->a_ops->migratepage(mapping, newpage, 979 page, mode); 980 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 981 !PageIsolated(page)); 982 } 983 984 /* 985 * When successful, old pagecache page->mapping must be cleared before 986 * page is freed; but stats require that PageAnon be left as PageAnon. 987 */ 988 if (rc == MIGRATEPAGE_SUCCESS) { 989 if (__PageMovable(page)) { 990 VM_BUG_ON_PAGE(!PageIsolated(page), page); 991 992 /* 993 * We clear PG_movable under page_lock so any compactor 994 * cannot try to migrate this page. 995 */ 996 __ClearPageIsolated(page); 997 } 998 999 /* 1000 * Anonymous and movable page->mapping will be cleared by 1001 * free_pages_prepare so don't reset it here for keeping 1002 * the type to work PageAnon, for example. 1003 */ 1004 if (!PageMappingFlags(page)) 1005 page->mapping = NULL; 1006 1007 if (likely(!is_zone_device_page(newpage))) 1008 flush_dcache_page(newpage); 1009 1010 } 1011 out: 1012 return rc; 1013 } 1014 1015 static int __unmap_and_move(struct page *page, struct page *newpage, 1016 int force, enum migrate_mode mode) 1017 { 1018 int rc = -EAGAIN; 1019 int page_was_mapped = 0; 1020 struct anon_vma *anon_vma = NULL; 1021 bool is_lru = !__PageMovable(page); 1022 1023 if (!trylock_page(page)) { 1024 if (!force || mode == MIGRATE_ASYNC) 1025 goto out; 1026 1027 /* 1028 * It's not safe for direct compaction to call lock_page. 1029 * For example, during page readahead pages are added locked 1030 * to the LRU. Later, when the IO completes the pages are 1031 * marked uptodate and unlocked. However, the queueing 1032 * could be merging multiple pages for one bio (e.g. 1033 * mpage_readahead). If an allocation happens for the 1034 * second or third page, the process can end up locking 1035 * the same page twice and deadlocking. Rather than 1036 * trying to be clever about what pages can be locked, 1037 * avoid the use of lock_page for direct compaction 1038 * altogether. 1039 */ 1040 if (current->flags & PF_MEMALLOC) 1041 goto out; 1042 1043 lock_page(page); 1044 } 1045 1046 if (PageWriteback(page)) { 1047 /* 1048 * Only in the case of a full synchronous migration is it 1049 * necessary to wait for PageWriteback. In the async case, 1050 * the retry loop is too short and in the sync-light case, 1051 * the overhead of stalling is too much 1052 */ 1053 switch (mode) { 1054 case MIGRATE_SYNC: 1055 case MIGRATE_SYNC_NO_COPY: 1056 break; 1057 default: 1058 rc = -EBUSY; 1059 goto out_unlock; 1060 } 1061 if (!force) 1062 goto out_unlock; 1063 wait_on_page_writeback(page); 1064 } 1065 1066 /* 1067 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1068 * we cannot notice that anon_vma is freed while we migrates a page. 1069 * This get_anon_vma() delays freeing anon_vma pointer until the end 1070 * of migration. File cache pages are no problem because of page_lock() 1071 * File Caches may use write_page() or lock_page() in migration, then, 1072 * just care Anon page here. 1073 * 1074 * Only page_get_anon_vma() understands the subtleties of 1075 * getting a hold on an anon_vma from outside one of its mms. 1076 * But if we cannot get anon_vma, then we won't need it anyway, 1077 * because that implies that the anon page is no longer mapped 1078 * (and cannot be remapped so long as we hold the page lock). 1079 */ 1080 if (PageAnon(page) && !PageKsm(page)) 1081 anon_vma = page_get_anon_vma(page); 1082 1083 /* 1084 * Block others from accessing the new page when we get around to 1085 * establishing additional references. We are usually the only one 1086 * holding a reference to newpage at this point. We used to have a BUG 1087 * here if trylock_page(newpage) fails, but would like to allow for 1088 * cases where there might be a race with the previous use of newpage. 1089 * This is much like races on refcount of oldpage: just don't BUG(). 1090 */ 1091 if (unlikely(!trylock_page(newpage))) 1092 goto out_unlock; 1093 1094 if (unlikely(!is_lru)) { 1095 rc = move_to_new_page(newpage, page, mode); 1096 goto out_unlock_both; 1097 } 1098 1099 /* 1100 * Corner case handling: 1101 * 1. When a new swap-cache page is read into, it is added to the LRU 1102 * and treated as swapcache but it has no rmap yet. 1103 * Calling try_to_unmap() against a page->mapping==NULL page will 1104 * trigger a BUG. So handle it here. 1105 * 2. An orphaned page (see truncate_cleanup_page) might have 1106 * fs-private metadata. The page can be picked up due to memory 1107 * offlining. Everywhere else except page reclaim, the page is 1108 * invisible to the vm, so the page can not be migrated. So try to 1109 * free the metadata, so the page can be freed. 1110 */ 1111 if (!page->mapping) { 1112 VM_BUG_ON_PAGE(PageAnon(page), page); 1113 if (page_has_private(page)) { 1114 try_to_free_buffers(page); 1115 goto out_unlock_both; 1116 } 1117 } else if (page_mapped(page)) { 1118 /* Establish migration ptes */ 1119 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1120 page); 1121 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK); 1122 page_was_mapped = 1; 1123 } 1124 1125 if (!page_mapped(page)) 1126 rc = move_to_new_page(newpage, page, mode); 1127 1128 if (page_was_mapped) 1129 remove_migration_ptes(page, 1130 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1131 1132 out_unlock_both: 1133 unlock_page(newpage); 1134 out_unlock: 1135 /* Drop an anon_vma reference if we took one */ 1136 if (anon_vma) 1137 put_anon_vma(anon_vma); 1138 unlock_page(page); 1139 out: 1140 /* 1141 * If migration is successful, decrease refcount of the newpage 1142 * which will not free the page because new page owner increased 1143 * refcounter. As well, if it is LRU page, add the page to LRU 1144 * list in here. Use the old state of the isolated source page to 1145 * determine if we migrated a LRU page. newpage was already unlocked 1146 * and possibly modified by its owner - don't rely on the page 1147 * state. 1148 */ 1149 if (rc == MIGRATEPAGE_SUCCESS) { 1150 if (unlikely(!is_lru)) 1151 put_page(newpage); 1152 else 1153 putback_lru_page(newpage); 1154 } 1155 1156 return rc; 1157 } 1158 1159 /* 1160 * Obtain the lock on page, remove all ptes and migrate the page 1161 * to the newly allocated page in newpage. 1162 */ 1163 static int unmap_and_move(new_page_t get_new_page, 1164 free_page_t put_new_page, 1165 unsigned long private, struct page *page, 1166 int force, enum migrate_mode mode, 1167 enum migrate_reason reason, 1168 struct list_head *ret) 1169 { 1170 int rc = MIGRATEPAGE_SUCCESS; 1171 struct page *newpage = NULL; 1172 1173 if (!thp_migration_supported() && PageTransHuge(page)) 1174 return -ENOSYS; 1175 1176 if (page_count(page) == 1) { 1177 /* page was freed from under us. So we are done. */ 1178 ClearPageActive(page); 1179 ClearPageUnevictable(page); 1180 if (unlikely(__PageMovable(page))) { 1181 lock_page(page); 1182 if (!PageMovable(page)) 1183 __ClearPageIsolated(page); 1184 unlock_page(page); 1185 } 1186 goto out; 1187 } 1188 1189 newpage = get_new_page(page, private); 1190 if (!newpage) 1191 return -ENOMEM; 1192 1193 rc = __unmap_and_move(page, newpage, force, mode); 1194 if (rc == MIGRATEPAGE_SUCCESS) 1195 set_page_owner_migrate_reason(newpage, reason); 1196 1197 out: 1198 if (rc != -EAGAIN) { 1199 /* 1200 * A page that has been migrated has all references 1201 * removed and will be freed. A page that has not been 1202 * migrated will have kept its references and be restored. 1203 */ 1204 list_del(&page->lru); 1205 } 1206 1207 /* 1208 * If migration is successful, releases reference grabbed during 1209 * isolation. Otherwise, restore the page to right list unless 1210 * we want to retry. 1211 */ 1212 if (rc == MIGRATEPAGE_SUCCESS) { 1213 /* 1214 * Compaction can migrate also non-LRU pages which are 1215 * not accounted to NR_ISOLATED_*. They can be recognized 1216 * as __PageMovable 1217 */ 1218 if (likely(!__PageMovable(page))) 1219 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1220 page_is_file_lru(page), -thp_nr_pages(page)); 1221 1222 if (reason != MR_MEMORY_FAILURE) 1223 /* 1224 * We release the page in page_handle_poison. 1225 */ 1226 put_page(page); 1227 } else { 1228 if (rc != -EAGAIN) 1229 list_add_tail(&page->lru, ret); 1230 1231 if (put_new_page) 1232 put_new_page(newpage, private); 1233 else 1234 put_page(newpage); 1235 } 1236 1237 return rc; 1238 } 1239 1240 /* 1241 * Counterpart of unmap_and_move_page() for hugepage migration. 1242 * 1243 * This function doesn't wait the completion of hugepage I/O 1244 * because there is no race between I/O and migration for hugepage. 1245 * Note that currently hugepage I/O occurs only in direct I/O 1246 * where no lock is held and PG_writeback is irrelevant, 1247 * and writeback status of all subpages are counted in the reference 1248 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1249 * under direct I/O, the reference of the head page is 512 and a bit more.) 1250 * This means that when we try to migrate hugepage whose subpages are 1251 * doing direct I/O, some references remain after try_to_unmap() and 1252 * hugepage migration fails without data corruption. 1253 * 1254 * There is also no race when direct I/O is issued on the page under migration, 1255 * because then pte is replaced with migration swap entry and direct I/O code 1256 * will wait in the page fault for migration to complete. 1257 */ 1258 static int unmap_and_move_huge_page(new_page_t get_new_page, 1259 free_page_t put_new_page, unsigned long private, 1260 struct page *hpage, int force, 1261 enum migrate_mode mode, int reason, 1262 struct list_head *ret) 1263 { 1264 int rc = -EAGAIN; 1265 int page_was_mapped = 0; 1266 struct page *new_hpage; 1267 struct anon_vma *anon_vma = NULL; 1268 struct address_space *mapping = NULL; 1269 1270 /* 1271 * Migratability of hugepages depends on architectures and their size. 1272 * This check is necessary because some callers of hugepage migration 1273 * like soft offline and memory hotremove don't walk through page 1274 * tables or check whether the hugepage is pmd-based or not before 1275 * kicking migration. 1276 */ 1277 if (!hugepage_migration_supported(page_hstate(hpage))) { 1278 list_move_tail(&hpage->lru, ret); 1279 return -ENOSYS; 1280 } 1281 1282 new_hpage = get_new_page(hpage, private); 1283 if (!new_hpage) 1284 return -ENOMEM; 1285 1286 if (!trylock_page(hpage)) { 1287 if (!force) 1288 goto out; 1289 switch (mode) { 1290 case MIGRATE_SYNC: 1291 case MIGRATE_SYNC_NO_COPY: 1292 break; 1293 default: 1294 goto out; 1295 } 1296 lock_page(hpage); 1297 } 1298 1299 /* 1300 * Check for pages which are in the process of being freed. Without 1301 * page_mapping() set, hugetlbfs specific move page routine will not 1302 * be called and we could leak usage counts for subpools. 1303 */ 1304 if (page_private(hpage) && !page_mapping(hpage)) { 1305 rc = -EBUSY; 1306 goto out_unlock; 1307 } 1308 1309 if (PageAnon(hpage)) 1310 anon_vma = page_get_anon_vma(hpage); 1311 1312 if (unlikely(!trylock_page(new_hpage))) 1313 goto put_anon; 1314 1315 if (page_mapped(hpage)) { 1316 bool mapping_locked = false; 1317 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK; 1318 1319 if (!PageAnon(hpage)) { 1320 /* 1321 * In shared mappings, try_to_unmap could potentially 1322 * call huge_pmd_unshare. Because of this, take 1323 * semaphore in write mode here and set TTU_RMAP_LOCKED 1324 * to let lower levels know we have taken the lock. 1325 */ 1326 mapping = hugetlb_page_mapping_lock_write(hpage); 1327 if (unlikely(!mapping)) 1328 goto unlock_put_anon; 1329 1330 mapping_locked = true; 1331 ttu |= TTU_RMAP_LOCKED; 1332 } 1333 1334 try_to_unmap(hpage, ttu); 1335 page_was_mapped = 1; 1336 1337 if (mapping_locked) 1338 i_mmap_unlock_write(mapping); 1339 } 1340 1341 if (!page_mapped(hpage)) 1342 rc = move_to_new_page(new_hpage, hpage, mode); 1343 1344 if (page_was_mapped) 1345 remove_migration_ptes(hpage, 1346 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1347 1348 unlock_put_anon: 1349 unlock_page(new_hpage); 1350 1351 put_anon: 1352 if (anon_vma) 1353 put_anon_vma(anon_vma); 1354 1355 if (rc == MIGRATEPAGE_SUCCESS) { 1356 move_hugetlb_state(hpage, new_hpage, reason); 1357 put_new_page = NULL; 1358 } 1359 1360 out_unlock: 1361 unlock_page(hpage); 1362 out: 1363 if (rc == MIGRATEPAGE_SUCCESS) 1364 putback_active_hugepage(hpage); 1365 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS) 1366 list_move_tail(&hpage->lru, ret); 1367 1368 /* 1369 * If migration was not successful and there's a freeing callback, use 1370 * it. Otherwise, put_page() will drop the reference grabbed during 1371 * isolation. 1372 */ 1373 if (put_new_page) 1374 put_new_page(new_hpage, private); 1375 else 1376 putback_active_hugepage(new_hpage); 1377 1378 return rc; 1379 } 1380 1381 static inline int try_split_thp(struct page *page, struct page **page2, 1382 struct list_head *from) 1383 { 1384 int rc = 0; 1385 1386 lock_page(page); 1387 rc = split_huge_page_to_list(page, from); 1388 unlock_page(page); 1389 if (!rc) 1390 list_safe_reset_next(page, *page2, lru); 1391 1392 return rc; 1393 } 1394 1395 /* 1396 * migrate_pages - migrate the pages specified in a list, to the free pages 1397 * supplied as the target for the page migration 1398 * 1399 * @from: The list of pages to be migrated. 1400 * @get_new_page: The function used to allocate free pages to be used 1401 * as the target of the page migration. 1402 * @put_new_page: The function used to free target pages if migration 1403 * fails, or NULL if no special handling is necessary. 1404 * @private: Private data to be passed on to get_new_page() 1405 * @mode: The migration mode that specifies the constraints for 1406 * page migration, if any. 1407 * @reason: The reason for page migration. 1408 * 1409 * The function returns after 10 attempts or if no pages are movable any more 1410 * because the list has become empty or no retryable pages exist any more. 1411 * It is caller's responsibility to call putback_movable_pages() to return pages 1412 * to the LRU or free list only if ret != 0. 1413 * 1414 * Returns the number of pages that were not migrated, or an error code. 1415 */ 1416 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1417 free_page_t put_new_page, unsigned long private, 1418 enum migrate_mode mode, int reason) 1419 { 1420 int retry = 1; 1421 int thp_retry = 1; 1422 int nr_failed = 0; 1423 int nr_succeeded = 0; 1424 int nr_thp_succeeded = 0; 1425 int nr_thp_failed = 0; 1426 int nr_thp_split = 0; 1427 int pass = 0; 1428 bool is_thp = false; 1429 struct page *page; 1430 struct page *page2; 1431 int swapwrite = current->flags & PF_SWAPWRITE; 1432 int rc, nr_subpages; 1433 LIST_HEAD(ret_pages); 1434 1435 if (!swapwrite) 1436 current->flags |= PF_SWAPWRITE; 1437 1438 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1439 retry = 0; 1440 thp_retry = 0; 1441 1442 list_for_each_entry_safe(page, page2, from, lru) { 1443 retry: 1444 /* 1445 * THP statistics is based on the source huge page. 1446 * Capture required information that might get lost 1447 * during migration. 1448 */ 1449 is_thp = PageTransHuge(page) && !PageHuge(page); 1450 nr_subpages = thp_nr_pages(page); 1451 cond_resched(); 1452 1453 if (PageHuge(page)) 1454 rc = unmap_and_move_huge_page(get_new_page, 1455 put_new_page, private, page, 1456 pass > 2, mode, reason, 1457 &ret_pages); 1458 else 1459 rc = unmap_and_move(get_new_page, put_new_page, 1460 private, page, pass > 2, mode, 1461 reason, &ret_pages); 1462 /* 1463 * The rules are: 1464 * Success: non hugetlb page will be freed, hugetlb 1465 * page will be put back 1466 * -EAGAIN: stay on the from list 1467 * -ENOMEM: stay on the from list 1468 * Other errno: put on ret_pages list then splice to 1469 * from list 1470 */ 1471 switch(rc) { 1472 /* 1473 * THP migration might be unsupported or the 1474 * allocation could've failed so we should 1475 * retry on the same page with the THP split 1476 * to base pages. 1477 * 1478 * Head page is retried immediately and tail 1479 * pages are added to the tail of the list so 1480 * we encounter them after the rest of the list 1481 * is processed. 1482 */ 1483 case -ENOSYS: 1484 /* THP migration is unsupported */ 1485 if (is_thp) { 1486 if (!try_split_thp(page, &page2, from)) { 1487 nr_thp_split++; 1488 goto retry; 1489 } 1490 1491 nr_thp_failed++; 1492 nr_failed += nr_subpages; 1493 break; 1494 } 1495 1496 /* Hugetlb migration is unsupported */ 1497 nr_failed++; 1498 break; 1499 case -ENOMEM: 1500 /* 1501 * When memory is low, don't bother to try to migrate 1502 * other pages, just exit. 1503 */ 1504 if (is_thp) { 1505 if (!try_split_thp(page, &page2, from)) { 1506 nr_thp_split++; 1507 goto retry; 1508 } 1509 1510 nr_thp_failed++; 1511 nr_failed += nr_subpages; 1512 goto out; 1513 } 1514 nr_failed++; 1515 goto out; 1516 case -EAGAIN: 1517 if (is_thp) { 1518 thp_retry++; 1519 break; 1520 } 1521 retry++; 1522 break; 1523 case MIGRATEPAGE_SUCCESS: 1524 if (is_thp) { 1525 nr_thp_succeeded++; 1526 nr_succeeded += nr_subpages; 1527 break; 1528 } 1529 nr_succeeded++; 1530 break; 1531 default: 1532 /* 1533 * Permanent failure (-EBUSY, etc.): 1534 * unlike -EAGAIN case, the failed page is 1535 * removed from migration page list and not 1536 * retried in the next outer loop. 1537 */ 1538 if (is_thp) { 1539 nr_thp_failed++; 1540 nr_failed += nr_subpages; 1541 break; 1542 } 1543 nr_failed++; 1544 break; 1545 } 1546 } 1547 } 1548 nr_failed += retry + thp_retry; 1549 nr_thp_failed += thp_retry; 1550 rc = nr_failed; 1551 out: 1552 /* 1553 * Put the permanent failure page back to migration list, they 1554 * will be put back to the right list by the caller. 1555 */ 1556 list_splice(&ret_pages, from); 1557 1558 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1559 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1560 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1561 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1562 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1563 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1564 nr_thp_failed, nr_thp_split, mode, reason); 1565 1566 if (!swapwrite) 1567 current->flags &= ~PF_SWAPWRITE; 1568 1569 return rc; 1570 } 1571 1572 struct page *alloc_migration_target(struct page *page, unsigned long private) 1573 { 1574 struct migration_target_control *mtc; 1575 gfp_t gfp_mask; 1576 unsigned int order = 0; 1577 struct page *new_page = NULL; 1578 int nid; 1579 int zidx; 1580 1581 mtc = (struct migration_target_control *)private; 1582 gfp_mask = mtc->gfp_mask; 1583 nid = mtc->nid; 1584 if (nid == NUMA_NO_NODE) 1585 nid = page_to_nid(page); 1586 1587 if (PageHuge(page)) { 1588 struct hstate *h = page_hstate(compound_head(page)); 1589 1590 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1591 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1592 } 1593 1594 if (PageTransHuge(page)) { 1595 /* 1596 * clear __GFP_RECLAIM to make the migration callback 1597 * consistent with regular THP allocations. 1598 */ 1599 gfp_mask &= ~__GFP_RECLAIM; 1600 gfp_mask |= GFP_TRANSHUGE; 1601 order = HPAGE_PMD_ORDER; 1602 } 1603 zidx = zone_idx(page_zone(page)); 1604 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1605 gfp_mask |= __GFP_HIGHMEM; 1606 1607 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); 1608 1609 if (new_page && PageTransHuge(new_page)) 1610 prep_transhuge_page(new_page); 1611 1612 return new_page; 1613 } 1614 1615 #ifdef CONFIG_NUMA 1616 1617 static int store_status(int __user *status, int start, int value, int nr) 1618 { 1619 while (nr-- > 0) { 1620 if (put_user(value, status + start)) 1621 return -EFAULT; 1622 start++; 1623 } 1624 1625 return 0; 1626 } 1627 1628 static int do_move_pages_to_node(struct mm_struct *mm, 1629 struct list_head *pagelist, int node) 1630 { 1631 int err; 1632 struct migration_target_control mtc = { 1633 .nid = node, 1634 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1635 }; 1636 1637 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1638 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1639 if (err) 1640 putback_movable_pages(pagelist); 1641 return err; 1642 } 1643 1644 /* 1645 * Resolves the given address to a struct page, isolates it from the LRU and 1646 * puts it to the given pagelist. 1647 * Returns: 1648 * errno - if the page cannot be found/isolated 1649 * 0 - when it doesn't have to be migrated because it is already on the 1650 * target node 1651 * 1 - when it has been queued 1652 */ 1653 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1654 int node, struct list_head *pagelist, bool migrate_all) 1655 { 1656 struct vm_area_struct *vma; 1657 struct page *page; 1658 unsigned int follflags; 1659 int err; 1660 1661 mmap_read_lock(mm); 1662 err = -EFAULT; 1663 vma = find_vma(mm, addr); 1664 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1665 goto out; 1666 1667 /* FOLL_DUMP to ignore special (like zero) pages */ 1668 follflags = FOLL_GET | FOLL_DUMP; 1669 page = follow_page(vma, addr, follflags); 1670 1671 err = PTR_ERR(page); 1672 if (IS_ERR(page)) 1673 goto out; 1674 1675 err = -ENOENT; 1676 if (!page) 1677 goto out; 1678 1679 err = 0; 1680 if (page_to_nid(page) == node) 1681 goto out_putpage; 1682 1683 err = -EACCES; 1684 if (page_mapcount(page) > 1 && !migrate_all) 1685 goto out_putpage; 1686 1687 if (PageHuge(page)) { 1688 if (PageHead(page)) { 1689 isolate_huge_page(page, pagelist); 1690 err = 1; 1691 } 1692 } else { 1693 struct page *head; 1694 1695 head = compound_head(page); 1696 err = isolate_lru_page(head); 1697 if (err) 1698 goto out_putpage; 1699 1700 err = 1; 1701 list_add_tail(&head->lru, pagelist); 1702 mod_node_page_state(page_pgdat(head), 1703 NR_ISOLATED_ANON + page_is_file_lru(head), 1704 thp_nr_pages(head)); 1705 } 1706 out_putpage: 1707 /* 1708 * Either remove the duplicate refcount from 1709 * isolate_lru_page() or drop the page ref if it was 1710 * not isolated. 1711 */ 1712 put_page(page); 1713 out: 1714 mmap_read_unlock(mm); 1715 return err; 1716 } 1717 1718 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1719 struct list_head *pagelist, int __user *status, 1720 int start, int i, unsigned long nr_pages) 1721 { 1722 int err; 1723 1724 if (list_empty(pagelist)) 1725 return 0; 1726 1727 err = do_move_pages_to_node(mm, pagelist, node); 1728 if (err) { 1729 /* 1730 * Positive err means the number of failed 1731 * pages to migrate. Since we are going to 1732 * abort and return the number of non-migrated 1733 * pages, so need to include the rest of the 1734 * nr_pages that have not been attempted as 1735 * well. 1736 */ 1737 if (err > 0) 1738 err += nr_pages - i - 1; 1739 return err; 1740 } 1741 return store_status(status, start, node, i - start); 1742 } 1743 1744 /* 1745 * Migrate an array of page address onto an array of nodes and fill 1746 * the corresponding array of status. 1747 */ 1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1749 unsigned long nr_pages, 1750 const void __user * __user *pages, 1751 const int __user *nodes, 1752 int __user *status, int flags) 1753 { 1754 int current_node = NUMA_NO_NODE; 1755 LIST_HEAD(pagelist); 1756 int start, i; 1757 int err = 0, err1; 1758 1759 migrate_prep(); 1760 1761 for (i = start = 0; i < nr_pages; i++) { 1762 const void __user *p; 1763 unsigned long addr; 1764 int node; 1765 1766 err = -EFAULT; 1767 if (get_user(p, pages + i)) 1768 goto out_flush; 1769 if (get_user(node, nodes + i)) 1770 goto out_flush; 1771 addr = (unsigned long)untagged_addr(p); 1772 1773 err = -ENODEV; 1774 if (node < 0 || node >= MAX_NUMNODES) 1775 goto out_flush; 1776 if (!node_state(node, N_MEMORY)) 1777 goto out_flush; 1778 1779 err = -EACCES; 1780 if (!node_isset(node, task_nodes)) 1781 goto out_flush; 1782 1783 if (current_node == NUMA_NO_NODE) { 1784 current_node = node; 1785 start = i; 1786 } else if (node != current_node) { 1787 err = move_pages_and_store_status(mm, current_node, 1788 &pagelist, status, start, i, nr_pages); 1789 if (err) 1790 goto out; 1791 start = i; 1792 current_node = node; 1793 } 1794 1795 /* 1796 * Errors in the page lookup or isolation are not fatal and we simply 1797 * report them via status 1798 */ 1799 err = add_page_for_migration(mm, addr, current_node, 1800 &pagelist, flags & MPOL_MF_MOVE_ALL); 1801 1802 if (err > 0) { 1803 /* The page is successfully queued for migration */ 1804 continue; 1805 } 1806 1807 /* 1808 * If the page is already on the target node (!err), store the 1809 * node, otherwise, store the err. 1810 */ 1811 err = store_status(status, i, err ? : current_node, 1); 1812 if (err) 1813 goto out_flush; 1814 1815 err = move_pages_and_store_status(mm, current_node, &pagelist, 1816 status, start, i, nr_pages); 1817 if (err) 1818 goto out; 1819 current_node = NUMA_NO_NODE; 1820 } 1821 out_flush: 1822 /* Make sure we do not overwrite the existing error */ 1823 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1824 status, start, i, nr_pages); 1825 if (err >= 0) 1826 err = err1; 1827 out: 1828 return err; 1829 } 1830 1831 /* 1832 * Determine the nodes of an array of pages and store it in an array of status. 1833 */ 1834 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1835 const void __user **pages, int *status) 1836 { 1837 unsigned long i; 1838 1839 mmap_read_lock(mm); 1840 1841 for (i = 0; i < nr_pages; i++) { 1842 unsigned long addr = (unsigned long)(*pages); 1843 struct vm_area_struct *vma; 1844 struct page *page; 1845 int err = -EFAULT; 1846 1847 vma = find_vma(mm, addr); 1848 if (!vma || addr < vma->vm_start) 1849 goto set_status; 1850 1851 /* FOLL_DUMP to ignore special (like zero) pages */ 1852 page = follow_page(vma, addr, FOLL_DUMP); 1853 1854 err = PTR_ERR(page); 1855 if (IS_ERR(page)) 1856 goto set_status; 1857 1858 err = page ? page_to_nid(page) : -ENOENT; 1859 set_status: 1860 *status = err; 1861 1862 pages++; 1863 status++; 1864 } 1865 1866 mmap_read_unlock(mm); 1867 } 1868 1869 /* 1870 * Determine the nodes of a user array of pages and store it in 1871 * a user array of status. 1872 */ 1873 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1874 const void __user * __user *pages, 1875 int __user *status) 1876 { 1877 #define DO_PAGES_STAT_CHUNK_NR 16 1878 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1879 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1880 1881 while (nr_pages) { 1882 unsigned long chunk_nr; 1883 1884 chunk_nr = nr_pages; 1885 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1886 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1887 1888 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1889 break; 1890 1891 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1892 1893 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1894 break; 1895 1896 pages += chunk_nr; 1897 status += chunk_nr; 1898 nr_pages -= chunk_nr; 1899 } 1900 return nr_pages ? -EFAULT : 0; 1901 } 1902 1903 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1904 { 1905 struct task_struct *task; 1906 struct mm_struct *mm; 1907 1908 /* 1909 * There is no need to check if current process has the right to modify 1910 * the specified process when they are same. 1911 */ 1912 if (!pid) { 1913 mmget(current->mm); 1914 *mem_nodes = cpuset_mems_allowed(current); 1915 return current->mm; 1916 } 1917 1918 /* Find the mm_struct */ 1919 rcu_read_lock(); 1920 task = find_task_by_vpid(pid); 1921 if (!task) { 1922 rcu_read_unlock(); 1923 return ERR_PTR(-ESRCH); 1924 } 1925 get_task_struct(task); 1926 1927 /* 1928 * Check if this process has the right to modify the specified 1929 * process. Use the regular "ptrace_may_access()" checks. 1930 */ 1931 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1932 rcu_read_unlock(); 1933 mm = ERR_PTR(-EPERM); 1934 goto out; 1935 } 1936 rcu_read_unlock(); 1937 1938 mm = ERR_PTR(security_task_movememory(task)); 1939 if (IS_ERR(mm)) 1940 goto out; 1941 *mem_nodes = cpuset_mems_allowed(task); 1942 mm = get_task_mm(task); 1943 out: 1944 put_task_struct(task); 1945 if (!mm) 1946 mm = ERR_PTR(-EINVAL); 1947 return mm; 1948 } 1949 1950 /* 1951 * Move a list of pages in the address space of the currently executing 1952 * process. 1953 */ 1954 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1955 const void __user * __user *pages, 1956 const int __user *nodes, 1957 int __user *status, int flags) 1958 { 1959 struct mm_struct *mm; 1960 int err; 1961 nodemask_t task_nodes; 1962 1963 /* Check flags */ 1964 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1965 return -EINVAL; 1966 1967 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1968 return -EPERM; 1969 1970 mm = find_mm_struct(pid, &task_nodes); 1971 if (IS_ERR(mm)) 1972 return PTR_ERR(mm); 1973 1974 if (nodes) 1975 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1976 nodes, status, flags); 1977 else 1978 err = do_pages_stat(mm, nr_pages, pages, status); 1979 1980 mmput(mm); 1981 return err; 1982 } 1983 1984 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1985 const void __user * __user *, pages, 1986 const int __user *, nodes, 1987 int __user *, status, int, flags) 1988 { 1989 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1990 } 1991 1992 #ifdef CONFIG_COMPAT 1993 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1994 compat_uptr_t __user *, pages32, 1995 const int __user *, nodes, 1996 int __user *, status, 1997 int, flags) 1998 { 1999 const void __user * __user *pages; 2000 int i; 2001 2002 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 2003 for (i = 0; i < nr_pages; i++) { 2004 compat_uptr_t p; 2005 2006 if (get_user(p, pages32 + i) || 2007 put_user(compat_ptr(p), pages + i)) 2008 return -EFAULT; 2009 } 2010 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2011 } 2012 #endif /* CONFIG_COMPAT */ 2013 2014 #ifdef CONFIG_NUMA_BALANCING 2015 /* 2016 * Returns true if this is a safe migration target node for misplaced NUMA 2017 * pages. Currently it only checks the watermarks which crude 2018 */ 2019 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2020 unsigned long nr_migrate_pages) 2021 { 2022 int z; 2023 2024 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2025 struct zone *zone = pgdat->node_zones + z; 2026 2027 if (!populated_zone(zone)) 2028 continue; 2029 2030 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2031 if (!zone_watermark_ok(zone, 0, 2032 high_wmark_pages(zone) + 2033 nr_migrate_pages, 2034 ZONE_MOVABLE, 0)) 2035 continue; 2036 return true; 2037 } 2038 return false; 2039 } 2040 2041 static struct page *alloc_misplaced_dst_page(struct page *page, 2042 unsigned long data) 2043 { 2044 int nid = (int) data; 2045 struct page *newpage; 2046 2047 newpage = __alloc_pages_node(nid, 2048 (GFP_HIGHUSER_MOVABLE | 2049 __GFP_THISNODE | __GFP_NOMEMALLOC | 2050 __GFP_NORETRY | __GFP_NOWARN) & 2051 ~__GFP_RECLAIM, 0); 2052 2053 return newpage; 2054 } 2055 2056 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2057 { 2058 int page_lru; 2059 2060 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2061 2062 /* Avoid migrating to a node that is nearly full */ 2063 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2064 return 0; 2065 2066 if (isolate_lru_page(page)) 2067 return 0; 2068 2069 /* 2070 * migrate_misplaced_transhuge_page() skips page migration's usual 2071 * check on page_count(), so we must do it here, now that the page 2072 * has been isolated: a GUP pin, or any other pin, prevents migration. 2073 * The expected page count is 3: 1 for page's mapcount and 1 for the 2074 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2075 */ 2076 if (PageTransHuge(page) && page_count(page) != 3) { 2077 putback_lru_page(page); 2078 return 0; 2079 } 2080 2081 page_lru = page_is_file_lru(page); 2082 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2083 thp_nr_pages(page)); 2084 2085 /* 2086 * Isolating the page has taken another reference, so the 2087 * caller's reference can be safely dropped without the page 2088 * disappearing underneath us during migration. 2089 */ 2090 put_page(page); 2091 return 1; 2092 } 2093 2094 bool pmd_trans_migrating(pmd_t pmd) 2095 { 2096 struct page *page = pmd_page(pmd); 2097 return PageLocked(page); 2098 } 2099 2100 static inline bool is_shared_exec_page(struct vm_area_struct *vma, 2101 struct page *page) 2102 { 2103 if (page_mapcount(page) != 1 && 2104 (page_is_file_lru(page) || vma_is_shmem(vma)) && 2105 (vma->vm_flags & VM_EXEC)) 2106 return true; 2107 2108 return false; 2109 } 2110 2111 /* 2112 * Attempt to migrate a misplaced page to the specified destination 2113 * node. Caller is expected to have an elevated reference count on 2114 * the page that will be dropped by this function before returning. 2115 */ 2116 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2117 int node) 2118 { 2119 pg_data_t *pgdat = NODE_DATA(node); 2120 int isolated; 2121 int nr_remaining; 2122 LIST_HEAD(migratepages); 2123 2124 /* 2125 * Don't migrate file pages that are mapped in multiple processes 2126 * with execute permissions as they are probably shared libraries. 2127 */ 2128 if (is_shared_exec_page(vma, page)) 2129 goto out; 2130 2131 /* 2132 * Also do not migrate dirty pages as not all filesystems can move 2133 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2134 */ 2135 if (page_is_file_lru(page) && PageDirty(page)) 2136 goto out; 2137 2138 isolated = numamigrate_isolate_page(pgdat, page); 2139 if (!isolated) 2140 goto out; 2141 2142 list_add(&page->lru, &migratepages); 2143 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2144 NULL, node, MIGRATE_ASYNC, 2145 MR_NUMA_MISPLACED); 2146 if (nr_remaining) { 2147 if (!list_empty(&migratepages)) { 2148 list_del(&page->lru); 2149 dec_node_page_state(page, NR_ISOLATED_ANON + 2150 page_is_file_lru(page)); 2151 putback_lru_page(page); 2152 } 2153 isolated = 0; 2154 } else 2155 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2156 BUG_ON(!list_empty(&migratepages)); 2157 return isolated; 2158 2159 out: 2160 put_page(page); 2161 return 0; 2162 } 2163 #endif /* CONFIG_NUMA_BALANCING */ 2164 2165 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2166 /* 2167 * Migrates a THP to a given target node. page must be locked and is unlocked 2168 * before returning. 2169 */ 2170 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2171 struct vm_area_struct *vma, 2172 pmd_t *pmd, pmd_t entry, 2173 unsigned long address, 2174 struct page *page, int node) 2175 { 2176 spinlock_t *ptl; 2177 pg_data_t *pgdat = NODE_DATA(node); 2178 int isolated = 0; 2179 struct page *new_page = NULL; 2180 int page_lru = page_is_file_lru(page); 2181 unsigned long start = address & HPAGE_PMD_MASK; 2182 2183 if (is_shared_exec_page(vma, page)) 2184 goto out; 2185 2186 new_page = alloc_pages_node(node, 2187 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2188 HPAGE_PMD_ORDER); 2189 if (!new_page) 2190 goto out_fail; 2191 prep_transhuge_page(new_page); 2192 2193 isolated = numamigrate_isolate_page(pgdat, page); 2194 if (!isolated) { 2195 put_page(new_page); 2196 goto out_fail; 2197 } 2198 2199 /* Prepare a page as a migration target */ 2200 __SetPageLocked(new_page); 2201 if (PageSwapBacked(page)) 2202 __SetPageSwapBacked(new_page); 2203 2204 /* anon mapping, we can simply copy page->mapping to the new page: */ 2205 new_page->mapping = page->mapping; 2206 new_page->index = page->index; 2207 /* flush the cache before copying using the kernel virtual address */ 2208 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2209 migrate_page_copy(new_page, page); 2210 WARN_ON(PageLRU(new_page)); 2211 2212 /* Recheck the target PMD */ 2213 ptl = pmd_lock(mm, pmd); 2214 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2215 spin_unlock(ptl); 2216 2217 /* Reverse changes made by migrate_page_copy() */ 2218 if (TestClearPageActive(new_page)) 2219 SetPageActive(page); 2220 if (TestClearPageUnevictable(new_page)) 2221 SetPageUnevictable(page); 2222 2223 unlock_page(new_page); 2224 put_page(new_page); /* Free it */ 2225 2226 /* Retake the callers reference and putback on LRU */ 2227 get_page(page); 2228 putback_lru_page(page); 2229 mod_node_page_state(page_pgdat(page), 2230 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2231 2232 goto out_unlock; 2233 } 2234 2235 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2236 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2237 2238 /* 2239 * Overwrite the old entry under pagetable lock and establish 2240 * the new PTE. Any parallel GUP will either observe the old 2241 * page blocking on the page lock, block on the page table 2242 * lock or observe the new page. The SetPageUptodate on the 2243 * new page and page_add_new_anon_rmap guarantee the copy is 2244 * visible before the pagetable update. 2245 */ 2246 page_add_anon_rmap(new_page, vma, start, true); 2247 /* 2248 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2249 * has already been flushed globally. So no TLB can be currently 2250 * caching this non present pmd mapping. There's no need to clear the 2251 * pmd before doing set_pmd_at(), nor to flush the TLB after 2252 * set_pmd_at(). Clearing the pmd here would introduce a race 2253 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2254 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2255 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2256 * pmd. 2257 */ 2258 set_pmd_at(mm, start, pmd, entry); 2259 update_mmu_cache_pmd(vma, address, &entry); 2260 2261 page_ref_unfreeze(page, 2); 2262 mlock_migrate_page(new_page, page); 2263 page_remove_rmap(page, true); 2264 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2265 2266 spin_unlock(ptl); 2267 2268 /* Take an "isolate" reference and put new page on the LRU. */ 2269 get_page(new_page); 2270 putback_lru_page(new_page); 2271 2272 unlock_page(new_page); 2273 unlock_page(page); 2274 put_page(page); /* Drop the rmap reference */ 2275 put_page(page); /* Drop the LRU isolation reference */ 2276 2277 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2278 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2279 2280 mod_node_page_state(page_pgdat(page), 2281 NR_ISOLATED_ANON + page_lru, 2282 -HPAGE_PMD_NR); 2283 return isolated; 2284 2285 out_fail: 2286 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2287 ptl = pmd_lock(mm, pmd); 2288 if (pmd_same(*pmd, entry)) { 2289 entry = pmd_modify(entry, vma->vm_page_prot); 2290 set_pmd_at(mm, start, pmd, entry); 2291 update_mmu_cache_pmd(vma, address, &entry); 2292 } 2293 spin_unlock(ptl); 2294 2295 out_unlock: 2296 unlock_page(page); 2297 out: 2298 put_page(page); 2299 return 0; 2300 } 2301 #endif /* CONFIG_NUMA_BALANCING */ 2302 2303 #endif /* CONFIG_NUMA */ 2304 2305 #ifdef CONFIG_DEVICE_PRIVATE 2306 static int migrate_vma_collect_hole(unsigned long start, 2307 unsigned long end, 2308 __always_unused int depth, 2309 struct mm_walk *walk) 2310 { 2311 struct migrate_vma *migrate = walk->private; 2312 unsigned long addr; 2313 2314 /* Only allow populating anonymous memory. */ 2315 if (!vma_is_anonymous(walk->vma)) { 2316 for (addr = start; addr < end; addr += PAGE_SIZE) { 2317 migrate->src[migrate->npages] = 0; 2318 migrate->dst[migrate->npages] = 0; 2319 migrate->npages++; 2320 } 2321 return 0; 2322 } 2323 2324 for (addr = start; addr < end; addr += PAGE_SIZE) { 2325 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2326 migrate->dst[migrate->npages] = 0; 2327 migrate->npages++; 2328 migrate->cpages++; 2329 } 2330 2331 return 0; 2332 } 2333 2334 static int migrate_vma_collect_skip(unsigned long start, 2335 unsigned long end, 2336 struct mm_walk *walk) 2337 { 2338 struct migrate_vma *migrate = walk->private; 2339 unsigned long addr; 2340 2341 for (addr = start; addr < end; addr += PAGE_SIZE) { 2342 migrate->dst[migrate->npages] = 0; 2343 migrate->src[migrate->npages++] = 0; 2344 } 2345 2346 return 0; 2347 } 2348 2349 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2350 unsigned long start, 2351 unsigned long end, 2352 struct mm_walk *walk) 2353 { 2354 struct migrate_vma *migrate = walk->private; 2355 struct vm_area_struct *vma = walk->vma; 2356 struct mm_struct *mm = vma->vm_mm; 2357 unsigned long addr = start, unmapped = 0; 2358 spinlock_t *ptl; 2359 pte_t *ptep; 2360 2361 again: 2362 if (pmd_none(*pmdp)) 2363 return migrate_vma_collect_hole(start, end, -1, walk); 2364 2365 if (pmd_trans_huge(*pmdp)) { 2366 struct page *page; 2367 2368 ptl = pmd_lock(mm, pmdp); 2369 if (unlikely(!pmd_trans_huge(*pmdp))) { 2370 spin_unlock(ptl); 2371 goto again; 2372 } 2373 2374 page = pmd_page(*pmdp); 2375 if (is_huge_zero_page(page)) { 2376 spin_unlock(ptl); 2377 split_huge_pmd(vma, pmdp, addr); 2378 if (pmd_trans_unstable(pmdp)) 2379 return migrate_vma_collect_skip(start, end, 2380 walk); 2381 } else { 2382 int ret; 2383 2384 get_page(page); 2385 spin_unlock(ptl); 2386 if (unlikely(!trylock_page(page))) 2387 return migrate_vma_collect_skip(start, end, 2388 walk); 2389 ret = split_huge_page(page); 2390 unlock_page(page); 2391 put_page(page); 2392 if (ret) 2393 return migrate_vma_collect_skip(start, end, 2394 walk); 2395 if (pmd_none(*pmdp)) 2396 return migrate_vma_collect_hole(start, end, -1, 2397 walk); 2398 } 2399 } 2400 2401 if (unlikely(pmd_bad(*pmdp))) 2402 return migrate_vma_collect_skip(start, end, walk); 2403 2404 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2405 arch_enter_lazy_mmu_mode(); 2406 2407 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2408 unsigned long mpfn = 0, pfn; 2409 struct page *page; 2410 swp_entry_t entry; 2411 pte_t pte; 2412 2413 pte = *ptep; 2414 2415 if (pte_none(pte)) { 2416 if (vma_is_anonymous(vma)) { 2417 mpfn = MIGRATE_PFN_MIGRATE; 2418 migrate->cpages++; 2419 } 2420 goto next; 2421 } 2422 2423 if (!pte_present(pte)) { 2424 /* 2425 * Only care about unaddressable device page special 2426 * page table entry. Other special swap entries are not 2427 * migratable, and we ignore regular swapped page. 2428 */ 2429 entry = pte_to_swp_entry(pte); 2430 if (!is_device_private_entry(entry)) 2431 goto next; 2432 2433 page = device_private_entry_to_page(entry); 2434 if (!(migrate->flags & 2435 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2436 page->pgmap->owner != migrate->pgmap_owner) 2437 goto next; 2438 2439 mpfn = migrate_pfn(page_to_pfn(page)) | 2440 MIGRATE_PFN_MIGRATE; 2441 if (is_write_device_private_entry(entry)) 2442 mpfn |= MIGRATE_PFN_WRITE; 2443 } else { 2444 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2445 goto next; 2446 pfn = pte_pfn(pte); 2447 if (is_zero_pfn(pfn)) { 2448 mpfn = MIGRATE_PFN_MIGRATE; 2449 migrate->cpages++; 2450 goto next; 2451 } 2452 page = vm_normal_page(migrate->vma, addr, pte); 2453 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2454 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2455 } 2456 2457 /* FIXME support THP */ 2458 if (!page || !page->mapping || PageTransCompound(page)) { 2459 mpfn = 0; 2460 goto next; 2461 } 2462 2463 /* 2464 * By getting a reference on the page we pin it and that blocks 2465 * any kind of migration. Side effect is that it "freezes" the 2466 * pte. 2467 * 2468 * We drop this reference after isolating the page from the lru 2469 * for non device page (device page are not on the lru and thus 2470 * can't be dropped from it). 2471 */ 2472 get_page(page); 2473 migrate->cpages++; 2474 2475 /* 2476 * Optimize for the common case where page is only mapped once 2477 * in one process. If we can lock the page, then we can safely 2478 * set up a special migration page table entry now. 2479 */ 2480 if (trylock_page(page)) { 2481 pte_t swp_pte; 2482 2483 mpfn |= MIGRATE_PFN_LOCKED; 2484 ptep_get_and_clear(mm, addr, ptep); 2485 2486 /* Setup special migration page table entry */ 2487 entry = make_migration_entry(page, mpfn & 2488 MIGRATE_PFN_WRITE); 2489 swp_pte = swp_entry_to_pte(entry); 2490 if (pte_present(pte)) { 2491 if (pte_soft_dirty(pte)) 2492 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2493 if (pte_uffd_wp(pte)) 2494 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2495 } else { 2496 if (pte_swp_soft_dirty(pte)) 2497 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2498 if (pte_swp_uffd_wp(pte)) 2499 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2500 } 2501 set_pte_at(mm, addr, ptep, swp_pte); 2502 2503 /* 2504 * This is like regular unmap: we remove the rmap and 2505 * drop page refcount. Page won't be freed, as we took 2506 * a reference just above. 2507 */ 2508 page_remove_rmap(page, false); 2509 put_page(page); 2510 2511 if (pte_present(pte)) 2512 unmapped++; 2513 } 2514 2515 next: 2516 migrate->dst[migrate->npages] = 0; 2517 migrate->src[migrate->npages++] = mpfn; 2518 } 2519 arch_leave_lazy_mmu_mode(); 2520 pte_unmap_unlock(ptep - 1, ptl); 2521 2522 /* Only flush the TLB if we actually modified any entries */ 2523 if (unmapped) 2524 flush_tlb_range(walk->vma, start, end); 2525 2526 return 0; 2527 } 2528 2529 static const struct mm_walk_ops migrate_vma_walk_ops = { 2530 .pmd_entry = migrate_vma_collect_pmd, 2531 .pte_hole = migrate_vma_collect_hole, 2532 }; 2533 2534 /* 2535 * migrate_vma_collect() - collect pages over a range of virtual addresses 2536 * @migrate: migrate struct containing all migration information 2537 * 2538 * This will walk the CPU page table. For each virtual address backed by a 2539 * valid page, it updates the src array and takes a reference on the page, in 2540 * order to pin the page until we lock it and unmap it. 2541 */ 2542 static void migrate_vma_collect(struct migrate_vma *migrate) 2543 { 2544 struct mmu_notifier_range range; 2545 2546 /* 2547 * Note that the pgmap_owner is passed to the mmu notifier callback so 2548 * that the registered device driver can skip invalidating device 2549 * private page mappings that won't be migrated. 2550 */ 2551 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2552 migrate->vma->vm_mm, migrate->start, migrate->end, 2553 migrate->pgmap_owner); 2554 mmu_notifier_invalidate_range_start(&range); 2555 2556 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2557 &migrate_vma_walk_ops, migrate); 2558 2559 mmu_notifier_invalidate_range_end(&range); 2560 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2561 } 2562 2563 /* 2564 * migrate_vma_check_page() - check if page is pinned or not 2565 * @page: struct page to check 2566 * 2567 * Pinned pages cannot be migrated. This is the same test as in 2568 * migrate_page_move_mapping(), except that here we allow migration of a 2569 * ZONE_DEVICE page. 2570 */ 2571 static bool migrate_vma_check_page(struct page *page) 2572 { 2573 /* 2574 * One extra ref because caller holds an extra reference, either from 2575 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2576 * a device page. 2577 */ 2578 int extra = 1; 2579 2580 /* 2581 * FIXME support THP (transparent huge page), it is bit more complex to 2582 * check them than regular pages, because they can be mapped with a pmd 2583 * or with a pte (split pte mapping). 2584 */ 2585 if (PageCompound(page)) 2586 return false; 2587 2588 /* Page from ZONE_DEVICE have one extra reference */ 2589 if (is_zone_device_page(page)) { 2590 /* 2591 * Private page can never be pin as they have no valid pte and 2592 * GUP will fail for those. Yet if there is a pending migration 2593 * a thread might try to wait on the pte migration entry and 2594 * will bump the page reference count. Sadly there is no way to 2595 * differentiate a regular pin from migration wait. Hence to 2596 * avoid 2 racing thread trying to migrate back to CPU to enter 2597 * infinite loop (one stopping migration because the other is 2598 * waiting on pte migration entry). We always return true here. 2599 * 2600 * FIXME proper solution is to rework migration_entry_wait() so 2601 * it does not need to take a reference on page. 2602 */ 2603 return is_device_private_page(page); 2604 } 2605 2606 /* For file back page */ 2607 if (page_mapping(page)) 2608 extra += 1 + page_has_private(page); 2609 2610 if ((page_count(page) - extra) > page_mapcount(page)) 2611 return false; 2612 2613 return true; 2614 } 2615 2616 /* 2617 * migrate_vma_prepare() - lock pages and isolate them from the lru 2618 * @migrate: migrate struct containing all migration information 2619 * 2620 * This locks pages that have been collected by migrate_vma_collect(). Once each 2621 * page is locked it is isolated from the lru (for non-device pages). Finally, 2622 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2623 * migrated by concurrent kernel threads. 2624 */ 2625 static void migrate_vma_prepare(struct migrate_vma *migrate) 2626 { 2627 const unsigned long npages = migrate->npages; 2628 const unsigned long start = migrate->start; 2629 unsigned long addr, i, restore = 0; 2630 bool allow_drain = true; 2631 2632 lru_add_drain(); 2633 2634 for (i = 0; (i < npages) && migrate->cpages; i++) { 2635 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2636 bool remap = true; 2637 2638 if (!page) 2639 continue; 2640 2641 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2642 /* 2643 * Because we are migrating several pages there can be 2644 * a deadlock between 2 concurrent migration where each 2645 * are waiting on each other page lock. 2646 * 2647 * Make migrate_vma() a best effort thing and backoff 2648 * for any page we can not lock right away. 2649 */ 2650 if (!trylock_page(page)) { 2651 migrate->src[i] = 0; 2652 migrate->cpages--; 2653 put_page(page); 2654 continue; 2655 } 2656 remap = false; 2657 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2658 } 2659 2660 /* ZONE_DEVICE pages are not on LRU */ 2661 if (!is_zone_device_page(page)) { 2662 if (!PageLRU(page) && allow_drain) { 2663 /* Drain CPU's pagevec */ 2664 lru_add_drain_all(); 2665 allow_drain = false; 2666 } 2667 2668 if (isolate_lru_page(page)) { 2669 if (remap) { 2670 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2671 migrate->cpages--; 2672 restore++; 2673 } else { 2674 migrate->src[i] = 0; 2675 unlock_page(page); 2676 migrate->cpages--; 2677 put_page(page); 2678 } 2679 continue; 2680 } 2681 2682 /* Drop the reference we took in collect */ 2683 put_page(page); 2684 } 2685 2686 if (!migrate_vma_check_page(page)) { 2687 if (remap) { 2688 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2689 migrate->cpages--; 2690 restore++; 2691 2692 if (!is_zone_device_page(page)) { 2693 get_page(page); 2694 putback_lru_page(page); 2695 } 2696 } else { 2697 migrate->src[i] = 0; 2698 unlock_page(page); 2699 migrate->cpages--; 2700 2701 if (!is_zone_device_page(page)) 2702 putback_lru_page(page); 2703 else 2704 put_page(page); 2705 } 2706 } 2707 } 2708 2709 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2710 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2711 2712 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2713 continue; 2714 2715 remove_migration_pte(page, migrate->vma, addr, page); 2716 2717 migrate->src[i] = 0; 2718 unlock_page(page); 2719 put_page(page); 2720 restore--; 2721 } 2722 } 2723 2724 /* 2725 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2726 * @migrate: migrate struct containing all migration information 2727 * 2728 * Replace page mapping (CPU page table pte) with a special migration pte entry 2729 * and check again if it has been pinned. Pinned pages are restored because we 2730 * cannot migrate them. 2731 * 2732 * This is the last step before we call the device driver callback to allocate 2733 * destination memory and copy contents of original page over to new page. 2734 */ 2735 static void migrate_vma_unmap(struct migrate_vma *migrate) 2736 { 2737 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK; 2738 const unsigned long npages = migrate->npages; 2739 const unsigned long start = migrate->start; 2740 unsigned long addr, i, restore = 0; 2741 2742 for (i = 0; i < npages; i++) { 2743 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2744 2745 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2746 continue; 2747 2748 if (page_mapped(page)) { 2749 try_to_unmap(page, flags); 2750 if (page_mapped(page)) 2751 goto restore; 2752 } 2753 2754 if (migrate_vma_check_page(page)) 2755 continue; 2756 2757 restore: 2758 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2759 migrate->cpages--; 2760 restore++; 2761 } 2762 2763 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2764 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2765 2766 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2767 continue; 2768 2769 remove_migration_ptes(page, page, false); 2770 2771 migrate->src[i] = 0; 2772 unlock_page(page); 2773 restore--; 2774 2775 if (is_zone_device_page(page)) 2776 put_page(page); 2777 else 2778 putback_lru_page(page); 2779 } 2780 } 2781 2782 /** 2783 * migrate_vma_setup() - prepare to migrate a range of memory 2784 * @args: contains the vma, start, and pfns arrays for the migration 2785 * 2786 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2787 * without an error. 2788 * 2789 * Prepare to migrate a range of memory virtual address range by collecting all 2790 * the pages backing each virtual address in the range, saving them inside the 2791 * src array. Then lock those pages and unmap them. Once the pages are locked 2792 * and unmapped, check whether each page is pinned or not. Pages that aren't 2793 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2794 * corresponding src array entry. Then restores any pages that are pinned, by 2795 * remapping and unlocking those pages. 2796 * 2797 * The caller should then allocate destination memory and copy source memory to 2798 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2799 * flag set). Once these are allocated and copied, the caller must update each 2800 * corresponding entry in the dst array with the pfn value of the destination 2801 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2802 * (destination pages must have their struct pages locked, via lock_page()). 2803 * 2804 * Note that the caller does not have to migrate all the pages that are marked 2805 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2806 * device memory to system memory. If the caller cannot migrate a device page 2807 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2808 * consequences for the userspace process, so it must be avoided if at all 2809 * possible. 2810 * 2811 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2812 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2813 * allowing the caller to allocate device memory for those unback virtual 2814 * address. For this the caller simply has to allocate device memory and 2815 * properly set the destination entry like for regular migration. Note that 2816 * this can still fails and thus inside the device driver must check if the 2817 * migration was successful for those entries after calling migrate_vma_pages() 2818 * just like for regular migration. 2819 * 2820 * After that, the callers must call migrate_vma_pages() to go over each entry 2821 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2822 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2823 * then migrate_vma_pages() to migrate struct page information from the source 2824 * struct page to the destination struct page. If it fails to migrate the 2825 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2826 * src array. 2827 * 2828 * At this point all successfully migrated pages have an entry in the src 2829 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2830 * array entry with MIGRATE_PFN_VALID flag set. 2831 * 2832 * Once migrate_vma_pages() returns the caller may inspect which pages were 2833 * successfully migrated, and which were not. Successfully migrated pages will 2834 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2835 * 2836 * It is safe to update device page table after migrate_vma_pages() because 2837 * both destination and source page are still locked, and the mmap_lock is held 2838 * in read mode (hence no one can unmap the range being migrated). 2839 * 2840 * Once the caller is done cleaning up things and updating its page table (if it 2841 * chose to do so, this is not an obligation) it finally calls 2842 * migrate_vma_finalize() to update the CPU page table to point to new pages 2843 * for successfully migrated pages or otherwise restore the CPU page table to 2844 * point to the original source pages. 2845 */ 2846 int migrate_vma_setup(struct migrate_vma *args) 2847 { 2848 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2849 2850 args->start &= PAGE_MASK; 2851 args->end &= PAGE_MASK; 2852 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2853 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2854 return -EINVAL; 2855 if (nr_pages <= 0) 2856 return -EINVAL; 2857 if (args->start < args->vma->vm_start || 2858 args->start >= args->vma->vm_end) 2859 return -EINVAL; 2860 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2861 return -EINVAL; 2862 if (!args->src || !args->dst) 2863 return -EINVAL; 2864 2865 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2866 args->cpages = 0; 2867 args->npages = 0; 2868 2869 migrate_vma_collect(args); 2870 2871 if (args->cpages) 2872 migrate_vma_prepare(args); 2873 if (args->cpages) 2874 migrate_vma_unmap(args); 2875 2876 /* 2877 * At this point pages are locked and unmapped, and thus they have 2878 * stable content and can safely be copied to destination memory that 2879 * is allocated by the drivers. 2880 */ 2881 return 0; 2882 2883 } 2884 EXPORT_SYMBOL(migrate_vma_setup); 2885 2886 /* 2887 * This code closely matches the code in: 2888 * __handle_mm_fault() 2889 * handle_pte_fault() 2890 * do_anonymous_page() 2891 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2892 * private page. 2893 */ 2894 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2895 unsigned long addr, 2896 struct page *page, 2897 unsigned long *src) 2898 { 2899 struct vm_area_struct *vma = migrate->vma; 2900 struct mm_struct *mm = vma->vm_mm; 2901 bool flush = false; 2902 spinlock_t *ptl; 2903 pte_t entry; 2904 pgd_t *pgdp; 2905 p4d_t *p4dp; 2906 pud_t *pudp; 2907 pmd_t *pmdp; 2908 pte_t *ptep; 2909 2910 /* Only allow populating anonymous memory */ 2911 if (!vma_is_anonymous(vma)) 2912 goto abort; 2913 2914 pgdp = pgd_offset(mm, addr); 2915 p4dp = p4d_alloc(mm, pgdp, addr); 2916 if (!p4dp) 2917 goto abort; 2918 pudp = pud_alloc(mm, p4dp, addr); 2919 if (!pudp) 2920 goto abort; 2921 pmdp = pmd_alloc(mm, pudp, addr); 2922 if (!pmdp) 2923 goto abort; 2924 2925 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2926 goto abort; 2927 2928 /* 2929 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2930 * pte_offset_map() on pmds where a huge pmd might be created 2931 * from a different thread. 2932 * 2933 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2934 * parallel threads are excluded by other means. 2935 * 2936 * Here we only have mmap_read_lock(mm). 2937 */ 2938 if (pte_alloc(mm, pmdp)) 2939 goto abort; 2940 2941 /* See the comment in pte_alloc_one_map() */ 2942 if (unlikely(pmd_trans_unstable(pmdp))) 2943 goto abort; 2944 2945 if (unlikely(anon_vma_prepare(vma))) 2946 goto abort; 2947 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2948 goto abort; 2949 2950 /* 2951 * The memory barrier inside __SetPageUptodate makes sure that 2952 * preceding stores to the page contents become visible before 2953 * the set_pte_at() write. 2954 */ 2955 __SetPageUptodate(page); 2956 2957 if (is_zone_device_page(page)) { 2958 if (is_device_private_page(page)) { 2959 swp_entry_t swp_entry; 2960 2961 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2962 entry = swp_entry_to_pte(swp_entry); 2963 } 2964 } else { 2965 entry = mk_pte(page, vma->vm_page_prot); 2966 if (vma->vm_flags & VM_WRITE) 2967 entry = pte_mkwrite(pte_mkdirty(entry)); 2968 } 2969 2970 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2971 2972 if (check_stable_address_space(mm)) 2973 goto unlock_abort; 2974 2975 if (pte_present(*ptep)) { 2976 unsigned long pfn = pte_pfn(*ptep); 2977 2978 if (!is_zero_pfn(pfn)) 2979 goto unlock_abort; 2980 flush = true; 2981 } else if (!pte_none(*ptep)) 2982 goto unlock_abort; 2983 2984 /* 2985 * Check for userfaultfd but do not deliver the fault. Instead, 2986 * just back off. 2987 */ 2988 if (userfaultfd_missing(vma)) 2989 goto unlock_abort; 2990 2991 inc_mm_counter(mm, MM_ANONPAGES); 2992 page_add_new_anon_rmap(page, vma, addr, false); 2993 if (!is_zone_device_page(page)) 2994 lru_cache_add_inactive_or_unevictable(page, vma); 2995 get_page(page); 2996 2997 if (flush) { 2998 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2999 ptep_clear_flush_notify(vma, addr, ptep); 3000 set_pte_at_notify(mm, addr, ptep, entry); 3001 update_mmu_cache(vma, addr, ptep); 3002 } else { 3003 /* No need to invalidate - it was non-present before */ 3004 set_pte_at(mm, addr, ptep, entry); 3005 update_mmu_cache(vma, addr, ptep); 3006 } 3007 3008 pte_unmap_unlock(ptep, ptl); 3009 *src = MIGRATE_PFN_MIGRATE; 3010 return; 3011 3012 unlock_abort: 3013 pte_unmap_unlock(ptep, ptl); 3014 abort: 3015 *src &= ~MIGRATE_PFN_MIGRATE; 3016 } 3017 3018 /** 3019 * migrate_vma_pages() - migrate meta-data from src page to dst page 3020 * @migrate: migrate struct containing all migration information 3021 * 3022 * This migrates struct page meta-data from source struct page to destination 3023 * struct page. This effectively finishes the migration from source page to the 3024 * destination page. 3025 */ 3026 void migrate_vma_pages(struct migrate_vma *migrate) 3027 { 3028 const unsigned long npages = migrate->npages; 3029 const unsigned long start = migrate->start; 3030 struct mmu_notifier_range range; 3031 unsigned long addr, i; 3032 bool notified = false; 3033 3034 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 3035 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3036 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3037 struct address_space *mapping; 3038 int r; 3039 3040 if (!newpage) { 3041 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3042 continue; 3043 } 3044 3045 if (!page) { 3046 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 3047 continue; 3048 if (!notified) { 3049 notified = true; 3050 3051 mmu_notifier_range_init_migrate(&range, 0, 3052 migrate->vma, migrate->vma->vm_mm, 3053 addr, migrate->end, 3054 migrate->pgmap_owner); 3055 mmu_notifier_invalidate_range_start(&range); 3056 } 3057 migrate_vma_insert_page(migrate, addr, newpage, 3058 &migrate->src[i]); 3059 continue; 3060 } 3061 3062 mapping = page_mapping(page); 3063 3064 if (is_zone_device_page(newpage)) { 3065 if (is_device_private_page(newpage)) { 3066 /* 3067 * For now only support private anonymous when 3068 * migrating to un-addressable device memory. 3069 */ 3070 if (mapping) { 3071 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3072 continue; 3073 } 3074 } else { 3075 /* 3076 * Other types of ZONE_DEVICE page are not 3077 * supported. 3078 */ 3079 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3080 continue; 3081 } 3082 } 3083 3084 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3085 if (r != MIGRATEPAGE_SUCCESS) 3086 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3087 } 3088 3089 /* 3090 * No need to double call mmu_notifier->invalidate_range() callback as 3091 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3092 * did already call it. 3093 */ 3094 if (notified) 3095 mmu_notifier_invalidate_range_only_end(&range); 3096 } 3097 EXPORT_SYMBOL(migrate_vma_pages); 3098 3099 /** 3100 * migrate_vma_finalize() - restore CPU page table entry 3101 * @migrate: migrate struct containing all migration information 3102 * 3103 * This replaces the special migration pte entry with either a mapping to the 3104 * new page if migration was successful for that page, or to the original page 3105 * otherwise. 3106 * 3107 * This also unlocks the pages and puts them back on the lru, or drops the extra 3108 * refcount, for device pages. 3109 */ 3110 void migrate_vma_finalize(struct migrate_vma *migrate) 3111 { 3112 const unsigned long npages = migrate->npages; 3113 unsigned long i; 3114 3115 for (i = 0; i < npages; i++) { 3116 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3117 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3118 3119 if (!page) { 3120 if (newpage) { 3121 unlock_page(newpage); 3122 put_page(newpage); 3123 } 3124 continue; 3125 } 3126 3127 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3128 if (newpage) { 3129 unlock_page(newpage); 3130 put_page(newpage); 3131 } 3132 newpage = page; 3133 } 3134 3135 remove_migration_ptes(page, newpage, false); 3136 unlock_page(page); 3137 3138 if (is_zone_device_page(page)) 3139 put_page(page); 3140 else 3141 putback_lru_page(page); 3142 3143 if (newpage != page) { 3144 unlock_page(newpage); 3145 if (is_zone_device_page(newpage)) 3146 put_page(newpage); 3147 else 3148 putback_lru_page(newpage); 3149 } 3150 } 3151 } 3152 EXPORT_SYMBOL(migrate_vma_finalize); 3153 #endif /* CONFIG_DEVICE_PRIVATE */ 3154