1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct address_space *mapping; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mapping = page_mapping(page); 101 VM_BUG_ON_PAGE(!mapping, page); 102 103 if (!mapping->a_ops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 __SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 struct address_space *mapping; 124 125 mapping = page_mapping(page); 126 mapping->a_ops->putback_page(page); 127 __ClearPageIsolated(page); 128 } 129 130 /* 131 * Put previously isolated pages back onto the appropriate lists 132 * from where they were once taken off for compaction/migration. 133 * 134 * This function shall be used whenever the isolated pageset has been 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 136 * and isolate_huge_page(). 137 */ 138 void putback_movable_pages(struct list_head *l) 139 { 140 struct page *page; 141 struct page *page2; 142 143 list_for_each_entry_safe(page, page2, l, lru) { 144 if (unlikely(PageHuge(page))) { 145 putback_active_hugepage(page); 146 continue; 147 } 148 list_del(&page->lru); 149 /* 150 * We isolated non-lru movable page so here we can use 151 * __PageMovable because LRU page's mapping cannot have 152 * PAGE_MAPPING_MOVABLE. 153 */ 154 if (unlikely(__PageMovable(page))) { 155 VM_BUG_ON_PAGE(!PageIsolated(page), page); 156 lock_page(page); 157 if (PageMovable(page)) 158 putback_movable_page(page); 159 else 160 __ClearPageIsolated(page); 161 unlock_page(page); 162 put_page(page); 163 } else { 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 165 page_is_file_lru(page), -thp_nr_pages(page)); 166 putback_lru_page(page); 167 } 168 } 169 } 170 171 /* 172 * Restore a potential migration pte to a working pte entry 173 */ 174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 175 unsigned long addr, void *old) 176 { 177 struct page_vma_mapped_walk pvmw = { 178 .page = old, 179 .vma = vma, 180 .address = addr, 181 .flags = PVMW_SYNC | PVMW_MIGRATION, 182 }; 183 struct page *new; 184 pte_t pte; 185 swp_entry_t entry; 186 187 VM_BUG_ON_PAGE(PageTail(page), page); 188 while (page_vma_mapped_walk(&pvmw)) { 189 if (PageKsm(page)) 190 new = page; 191 else 192 new = page - pvmw.page->index + 193 linear_page_index(vma, pvmw.address); 194 195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 196 /* PMD-mapped THP migration entry */ 197 if (!pvmw.pte) { 198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 199 remove_migration_pmd(&pvmw, new); 200 continue; 201 } 202 #endif 203 204 get_page(new); 205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 206 if (pte_swp_soft_dirty(*pvmw.pte)) 207 pte = pte_mksoft_dirty(pte); 208 209 /* 210 * Recheck VMA as permissions can change since migration started 211 */ 212 entry = pte_to_swp_entry(*pvmw.pte); 213 if (is_writable_migration_entry(entry)) 214 pte = maybe_mkwrite(pte, vma); 215 else if (pte_swp_uffd_wp(*pvmw.pte)) 216 pte = pte_mkuffd_wp(pte); 217 218 if (unlikely(is_device_private_page(new))) { 219 if (pte_write(pte)) 220 entry = make_writable_device_private_entry( 221 page_to_pfn(new)); 222 else 223 entry = make_readable_device_private_entry( 224 page_to_pfn(new)); 225 pte = swp_entry_to_pte(entry); 226 if (pte_swp_soft_dirty(*pvmw.pte)) 227 pte = pte_swp_mksoft_dirty(pte); 228 if (pte_swp_uffd_wp(*pvmw.pte)) 229 pte = pte_swp_mkuffd_wp(pte); 230 } 231 232 #ifdef CONFIG_HUGETLB_PAGE 233 if (PageHuge(new)) { 234 unsigned int shift = huge_page_shift(hstate_vma(vma)); 235 236 pte = pte_mkhuge(pte); 237 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 238 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 239 if (PageAnon(new)) 240 hugepage_add_anon_rmap(new, vma, pvmw.address); 241 else 242 page_dup_rmap(new, true); 243 } else 244 #endif 245 { 246 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 247 248 if (PageAnon(new)) 249 page_add_anon_rmap(new, vma, pvmw.address, false); 250 else 251 page_add_file_rmap(new, false); 252 } 253 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 254 mlock_vma_page(new); 255 256 if (PageTransHuge(page) && PageMlocked(page)) 257 clear_page_mlock(page); 258 259 /* No need to invalidate - it was non-present before */ 260 update_mmu_cache(vma, pvmw.address, pvmw.pte); 261 } 262 263 return true; 264 } 265 266 /* 267 * Get rid of all migration entries and replace them by 268 * references to the indicated page. 269 */ 270 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 271 { 272 struct rmap_walk_control rwc = { 273 .rmap_one = remove_migration_pte, 274 .arg = old, 275 }; 276 277 if (locked) 278 rmap_walk_locked(new, &rwc); 279 else 280 rmap_walk(new, &rwc); 281 } 282 283 /* 284 * Something used the pte of a page under migration. We need to 285 * get to the page and wait until migration is finished. 286 * When we return from this function the fault will be retried. 287 */ 288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 289 spinlock_t *ptl) 290 { 291 pte_t pte; 292 swp_entry_t entry; 293 struct page *page; 294 295 spin_lock(ptl); 296 pte = *ptep; 297 if (!is_swap_pte(pte)) 298 goto out; 299 300 entry = pte_to_swp_entry(pte); 301 if (!is_migration_entry(entry)) 302 goto out; 303 304 page = pfn_swap_entry_to_page(entry); 305 page = compound_head(page); 306 307 /* 308 * Once page cache replacement of page migration started, page_count 309 * is zero; but we must not call put_and_wait_on_page_locked() without 310 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 311 */ 312 if (!get_page_unless_zero(page)) 313 goto out; 314 pte_unmap_unlock(ptep, ptl); 315 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 316 return; 317 out: 318 pte_unmap_unlock(ptep, ptl); 319 } 320 321 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 322 unsigned long address) 323 { 324 spinlock_t *ptl = pte_lockptr(mm, pmd); 325 pte_t *ptep = pte_offset_map(pmd, address); 326 __migration_entry_wait(mm, ptep, ptl); 327 } 328 329 void migration_entry_wait_huge(struct vm_area_struct *vma, 330 struct mm_struct *mm, pte_t *pte) 331 { 332 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 333 __migration_entry_wait(mm, pte, ptl); 334 } 335 336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 337 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 338 { 339 spinlock_t *ptl; 340 struct page *page; 341 342 ptl = pmd_lock(mm, pmd); 343 if (!is_pmd_migration_entry(*pmd)) 344 goto unlock; 345 page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd)); 346 if (!get_page_unless_zero(page)) 347 goto unlock; 348 spin_unlock(ptl); 349 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 350 return; 351 unlock: 352 spin_unlock(ptl); 353 } 354 #endif 355 356 static int expected_page_refs(struct address_space *mapping, struct page *page) 357 { 358 int expected_count = 1; 359 360 /* 361 * Device private pages have an extra refcount as they are 362 * ZONE_DEVICE pages. 363 */ 364 expected_count += is_device_private_page(page); 365 if (mapping) 366 expected_count += thp_nr_pages(page) + page_has_private(page); 367 368 return expected_count; 369 } 370 371 /* 372 * Replace the page in the mapping. 373 * 374 * The number of remaining references must be: 375 * 1 for anonymous pages without a mapping 376 * 2 for pages with a mapping 377 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 378 */ 379 int migrate_page_move_mapping(struct address_space *mapping, 380 struct page *newpage, struct page *page, int extra_count) 381 { 382 XA_STATE(xas, &mapping->i_pages, page_index(page)); 383 struct zone *oldzone, *newzone; 384 int dirty; 385 int expected_count = expected_page_refs(mapping, page) + extra_count; 386 int nr = thp_nr_pages(page); 387 388 if (!mapping) { 389 /* Anonymous page without mapping */ 390 if (page_count(page) != expected_count) 391 return -EAGAIN; 392 393 /* No turning back from here */ 394 newpage->index = page->index; 395 newpage->mapping = page->mapping; 396 if (PageSwapBacked(page)) 397 __SetPageSwapBacked(newpage); 398 399 return MIGRATEPAGE_SUCCESS; 400 } 401 402 oldzone = page_zone(page); 403 newzone = page_zone(newpage); 404 405 xas_lock_irq(&xas); 406 if (page_count(page) != expected_count || xas_load(&xas) != page) { 407 xas_unlock_irq(&xas); 408 return -EAGAIN; 409 } 410 411 if (!page_ref_freeze(page, expected_count)) { 412 xas_unlock_irq(&xas); 413 return -EAGAIN; 414 } 415 416 /* 417 * Now we know that no one else is looking at the page: 418 * no turning back from here. 419 */ 420 newpage->index = page->index; 421 newpage->mapping = page->mapping; 422 page_ref_add(newpage, nr); /* add cache reference */ 423 if (PageSwapBacked(page)) { 424 __SetPageSwapBacked(newpage); 425 if (PageSwapCache(page)) { 426 SetPageSwapCache(newpage); 427 set_page_private(newpage, page_private(page)); 428 } 429 } else { 430 VM_BUG_ON_PAGE(PageSwapCache(page), page); 431 } 432 433 /* Move dirty while page refs frozen and newpage not yet exposed */ 434 dirty = PageDirty(page); 435 if (dirty) { 436 ClearPageDirty(page); 437 SetPageDirty(newpage); 438 } 439 440 xas_store(&xas, newpage); 441 if (PageTransHuge(page)) { 442 int i; 443 444 for (i = 1; i < nr; i++) { 445 xas_next(&xas); 446 xas_store(&xas, newpage); 447 } 448 } 449 450 /* 451 * Drop cache reference from old page by unfreezing 452 * to one less reference. 453 * We know this isn't the last reference. 454 */ 455 page_ref_unfreeze(page, expected_count - nr); 456 457 xas_unlock(&xas); 458 /* Leave irq disabled to prevent preemption while updating stats */ 459 460 /* 461 * If moved to a different zone then also account 462 * the page for that zone. Other VM counters will be 463 * taken care of when we establish references to the 464 * new page and drop references to the old page. 465 * 466 * Note that anonymous pages are accounted for 467 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 468 * are mapped to swap space. 469 */ 470 if (newzone != oldzone) { 471 struct lruvec *old_lruvec, *new_lruvec; 472 struct mem_cgroup *memcg; 473 474 memcg = page_memcg(page); 475 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 476 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 477 478 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 479 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 480 if (PageSwapBacked(page) && !PageSwapCache(page)) { 481 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 482 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 483 } 484 #ifdef CONFIG_SWAP 485 if (PageSwapCache(page)) { 486 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 487 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 488 } 489 #endif 490 if (dirty && mapping_can_writeback(mapping)) { 491 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 492 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 493 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 494 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 495 } 496 } 497 local_irq_enable(); 498 499 return MIGRATEPAGE_SUCCESS; 500 } 501 EXPORT_SYMBOL(migrate_page_move_mapping); 502 503 /* 504 * The expected number of remaining references is the same as that 505 * of migrate_page_move_mapping(). 506 */ 507 int migrate_huge_page_move_mapping(struct address_space *mapping, 508 struct page *newpage, struct page *page) 509 { 510 XA_STATE(xas, &mapping->i_pages, page_index(page)); 511 int expected_count; 512 513 xas_lock_irq(&xas); 514 expected_count = 2 + page_has_private(page); 515 if (page_count(page) != expected_count || xas_load(&xas) != page) { 516 xas_unlock_irq(&xas); 517 return -EAGAIN; 518 } 519 520 if (!page_ref_freeze(page, expected_count)) { 521 xas_unlock_irq(&xas); 522 return -EAGAIN; 523 } 524 525 newpage->index = page->index; 526 newpage->mapping = page->mapping; 527 528 get_page(newpage); 529 530 xas_store(&xas, newpage); 531 532 page_ref_unfreeze(page, expected_count - 1); 533 534 xas_unlock_irq(&xas); 535 536 return MIGRATEPAGE_SUCCESS; 537 } 538 539 /* 540 * Copy the page to its new location 541 */ 542 void migrate_page_states(struct page *newpage, struct page *page) 543 { 544 int cpupid; 545 546 if (PageError(page)) 547 SetPageError(newpage); 548 if (PageReferenced(page)) 549 SetPageReferenced(newpage); 550 if (PageUptodate(page)) 551 SetPageUptodate(newpage); 552 if (TestClearPageActive(page)) { 553 VM_BUG_ON_PAGE(PageUnevictable(page), page); 554 SetPageActive(newpage); 555 } else if (TestClearPageUnevictable(page)) 556 SetPageUnevictable(newpage); 557 if (PageWorkingset(page)) 558 SetPageWorkingset(newpage); 559 if (PageChecked(page)) 560 SetPageChecked(newpage); 561 if (PageMappedToDisk(page)) 562 SetPageMappedToDisk(newpage); 563 564 /* Move dirty on pages not done by migrate_page_move_mapping() */ 565 if (PageDirty(page)) 566 SetPageDirty(newpage); 567 568 if (page_is_young(page)) 569 set_page_young(newpage); 570 if (page_is_idle(page)) 571 set_page_idle(newpage); 572 573 /* 574 * Copy NUMA information to the new page, to prevent over-eager 575 * future migrations of this same page. 576 */ 577 cpupid = page_cpupid_xchg_last(page, -1); 578 page_cpupid_xchg_last(newpage, cpupid); 579 580 ksm_migrate_page(newpage, page); 581 /* 582 * Please do not reorder this without considering how mm/ksm.c's 583 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 584 */ 585 if (PageSwapCache(page)) 586 ClearPageSwapCache(page); 587 ClearPagePrivate(page); 588 589 /* page->private contains hugetlb specific flags */ 590 if (!PageHuge(page)) 591 set_page_private(page, 0); 592 593 /* 594 * If any waiters have accumulated on the new page then 595 * wake them up. 596 */ 597 if (PageWriteback(newpage)) 598 end_page_writeback(newpage); 599 600 /* 601 * PG_readahead shares the same bit with PG_reclaim. The above 602 * end_page_writeback() may clear PG_readahead mistakenly, so set the 603 * bit after that. 604 */ 605 if (PageReadahead(page)) 606 SetPageReadahead(newpage); 607 608 copy_page_owner(page, newpage); 609 610 if (!PageHuge(page)) 611 mem_cgroup_migrate(page, newpage); 612 } 613 EXPORT_SYMBOL(migrate_page_states); 614 615 void migrate_page_copy(struct page *newpage, struct page *page) 616 { 617 if (PageHuge(page) || PageTransHuge(page)) 618 copy_huge_page(newpage, page); 619 else 620 copy_highpage(newpage, page); 621 622 migrate_page_states(newpage, page); 623 } 624 EXPORT_SYMBOL(migrate_page_copy); 625 626 /************************************************************ 627 * Migration functions 628 ***********************************************************/ 629 630 /* 631 * Common logic to directly migrate a single LRU page suitable for 632 * pages that do not use PagePrivate/PagePrivate2. 633 * 634 * Pages are locked upon entry and exit. 635 */ 636 int migrate_page(struct address_space *mapping, 637 struct page *newpage, struct page *page, 638 enum migrate_mode mode) 639 { 640 int rc; 641 642 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 643 644 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 645 646 if (rc != MIGRATEPAGE_SUCCESS) 647 return rc; 648 649 if (mode != MIGRATE_SYNC_NO_COPY) 650 migrate_page_copy(newpage, page); 651 else 652 migrate_page_states(newpage, page); 653 return MIGRATEPAGE_SUCCESS; 654 } 655 EXPORT_SYMBOL(migrate_page); 656 657 #ifdef CONFIG_BLOCK 658 /* Returns true if all buffers are successfully locked */ 659 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 660 enum migrate_mode mode) 661 { 662 struct buffer_head *bh = head; 663 664 /* Simple case, sync compaction */ 665 if (mode != MIGRATE_ASYNC) { 666 do { 667 lock_buffer(bh); 668 bh = bh->b_this_page; 669 670 } while (bh != head); 671 672 return true; 673 } 674 675 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 676 do { 677 if (!trylock_buffer(bh)) { 678 /* 679 * We failed to lock the buffer and cannot stall in 680 * async migration. Release the taken locks 681 */ 682 struct buffer_head *failed_bh = bh; 683 bh = head; 684 while (bh != failed_bh) { 685 unlock_buffer(bh); 686 bh = bh->b_this_page; 687 } 688 return false; 689 } 690 691 bh = bh->b_this_page; 692 } while (bh != head); 693 return true; 694 } 695 696 static int __buffer_migrate_page(struct address_space *mapping, 697 struct page *newpage, struct page *page, enum migrate_mode mode, 698 bool check_refs) 699 { 700 struct buffer_head *bh, *head; 701 int rc; 702 int expected_count; 703 704 if (!page_has_buffers(page)) 705 return migrate_page(mapping, newpage, page, mode); 706 707 /* Check whether page does not have extra refs before we do more work */ 708 expected_count = expected_page_refs(mapping, page); 709 if (page_count(page) != expected_count) 710 return -EAGAIN; 711 712 head = page_buffers(page); 713 if (!buffer_migrate_lock_buffers(head, mode)) 714 return -EAGAIN; 715 716 if (check_refs) { 717 bool busy; 718 bool invalidated = false; 719 720 recheck_buffers: 721 busy = false; 722 spin_lock(&mapping->private_lock); 723 bh = head; 724 do { 725 if (atomic_read(&bh->b_count)) { 726 busy = true; 727 break; 728 } 729 bh = bh->b_this_page; 730 } while (bh != head); 731 if (busy) { 732 if (invalidated) { 733 rc = -EAGAIN; 734 goto unlock_buffers; 735 } 736 spin_unlock(&mapping->private_lock); 737 invalidate_bh_lrus(); 738 invalidated = true; 739 goto recheck_buffers; 740 } 741 } 742 743 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 744 if (rc != MIGRATEPAGE_SUCCESS) 745 goto unlock_buffers; 746 747 attach_page_private(newpage, detach_page_private(page)); 748 749 bh = head; 750 do { 751 set_bh_page(bh, newpage, bh_offset(bh)); 752 bh = bh->b_this_page; 753 754 } while (bh != head); 755 756 if (mode != MIGRATE_SYNC_NO_COPY) 757 migrate_page_copy(newpage, page); 758 else 759 migrate_page_states(newpage, page); 760 761 rc = MIGRATEPAGE_SUCCESS; 762 unlock_buffers: 763 if (check_refs) 764 spin_unlock(&mapping->private_lock); 765 bh = head; 766 do { 767 unlock_buffer(bh); 768 bh = bh->b_this_page; 769 770 } while (bh != head); 771 772 return rc; 773 } 774 775 /* 776 * Migration function for pages with buffers. This function can only be used 777 * if the underlying filesystem guarantees that no other references to "page" 778 * exist. For example attached buffer heads are accessed only under page lock. 779 */ 780 int buffer_migrate_page(struct address_space *mapping, 781 struct page *newpage, struct page *page, enum migrate_mode mode) 782 { 783 return __buffer_migrate_page(mapping, newpage, page, mode, false); 784 } 785 EXPORT_SYMBOL(buffer_migrate_page); 786 787 /* 788 * Same as above except that this variant is more careful and checks that there 789 * are also no buffer head references. This function is the right one for 790 * mappings where buffer heads are directly looked up and referenced (such as 791 * block device mappings). 792 */ 793 int buffer_migrate_page_norefs(struct address_space *mapping, 794 struct page *newpage, struct page *page, enum migrate_mode mode) 795 { 796 return __buffer_migrate_page(mapping, newpage, page, mode, true); 797 } 798 #endif 799 800 /* 801 * Writeback a page to clean the dirty state 802 */ 803 static int writeout(struct address_space *mapping, struct page *page) 804 { 805 struct writeback_control wbc = { 806 .sync_mode = WB_SYNC_NONE, 807 .nr_to_write = 1, 808 .range_start = 0, 809 .range_end = LLONG_MAX, 810 .for_reclaim = 1 811 }; 812 int rc; 813 814 if (!mapping->a_ops->writepage) 815 /* No write method for the address space */ 816 return -EINVAL; 817 818 if (!clear_page_dirty_for_io(page)) 819 /* Someone else already triggered a write */ 820 return -EAGAIN; 821 822 /* 823 * A dirty page may imply that the underlying filesystem has 824 * the page on some queue. So the page must be clean for 825 * migration. Writeout may mean we loose the lock and the 826 * page state is no longer what we checked for earlier. 827 * At this point we know that the migration attempt cannot 828 * be successful. 829 */ 830 remove_migration_ptes(page, page, false); 831 832 rc = mapping->a_ops->writepage(page, &wbc); 833 834 if (rc != AOP_WRITEPAGE_ACTIVATE) 835 /* unlocked. Relock */ 836 lock_page(page); 837 838 return (rc < 0) ? -EIO : -EAGAIN; 839 } 840 841 /* 842 * Default handling if a filesystem does not provide a migration function. 843 */ 844 static int fallback_migrate_page(struct address_space *mapping, 845 struct page *newpage, struct page *page, enum migrate_mode mode) 846 { 847 if (PageDirty(page)) { 848 /* Only writeback pages in full synchronous migration */ 849 switch (mode) { 850 case MIGRATE_SYNC: 851 case MIGRATE_SYNC_NO_COPY: 852 break; 853 default: 854 return -EBUSY; 855 } 856 return writeout(mapping, page); 857 } 858 859 /* 860 * Buffers may be managed in a filesystem specific way. 861 * We must have no buffers or drop them. 862 */ 863 if (page_has_private(page) && 864 !try_to_release_page(page, GFP_KERNEL)) 865 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 866 867 return migrate_page(mapping, newpage, page, mode); 868 } 869 870 /* 871 * Move a page to a newly allocated page 872 * The page is locked and all ptes have been successfully removed. 873 * 874 * The new page will have replaced the old page if this function 875 * is successful. 876 * 877 * Return value: 878 * < 0 - error code 879 * MIGRATEPAGE_SUCCESS - success 880 */ 881 static int move_to_new_page(struct page *newpage, struct page *page, 882 enum migrate_mode mode) 883 { 884 struct address_space *mapping; 885 int rc = -EAGAIN; 886 bool is_lru = !__PageMovable(page); 887 888 VM_BUG_ON_PAGE(!PageLocked(page), page); 889 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 890 891 mapping = page_mapping(page); 892 893 if (likely(is_lru)) { 894 if (!mapping) 895 rc = migrate_page(mapping, newpage, page, mode); 896 else if (mapping->a_ops->migratepage) 897 /* 898 * Most pages have a mapping and most filesystems 899 * provide a migratepage callback. Anonymous pages 900 * are part of swap space which also has its own 901 * migratepage callback. This is the most common path 902 * for page migration. 903 */ 904 rc = mapping->a_ops->migratepage(mapping, newpage, 905 page, mode); 906 else 907 rc = fallback_migrate_page(mapping, newpage, 908 page, mode); 909 } else { 910 /* 911 * In case of non-lru page, it could be released after 912 * isolation step. In that case, we shouldn't try migration. 913 */ 914 VM_BUG_ON_PAGE(!PageIsolated(page), page); 915 if (!PageMovable(page)) { 916 rc = MIGRATEPAGE_SUCCESS; 917 __ClearPageIsolated(page); 918 goto out; 919 } 920 921 rc = mapping->a_ops->migratepage(mapping, newpage, 922 page, mode); 923 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 924 !PageIsolated(page)); 925 } 926 927 /* 928 * When successful, old pagecache page->mapping must be cleared before 929 * page is freed; but stats require that PageAnon be left as PageAnon. 930 */ 931 if (rc == MIGRATEPAGE_SUCCESS) { 932 if (__PageMovable(page)) { 933 VM_BUG_ON_PAGE(!PageIsolated(page), page); 934 935 /* 936 * We clear PG_movable under page_lock so any compactor 937 * cannot try to migrate this page. 938 */ 939 __ClearPageIsolated(page); 940 } 941 942 /* 943 * Anonymous and movable page->mapping will be cleared by 944 * free_pages_prepare so don't reset it here for keeping 945 * the type to work PageAnon, for example. 946 */ 947 if (!PageMappingFlags(page)) 948 page->mapping = NULL; 949 950 if (likely(!is_zone_device_page(newpage))) 951 flush_dcache_page(newpage); 952 953 } 954 out: 955 return rc; 956 } 957 958 static int __unmap_and_move(struct page *page, struct page *newpage, 959 int force, enum migrate_mode mode) 960 { 961 int rc = -EAGAIN; 962 int page_was_mapped = 0; 963 struct anon_vma *anon_vma = NULL; 964 bool is_lru = !__PageMovable(page); 965 966 if (!trylock_page(page)) { 967 if (!force || mode == MIGRATE_ASYNC) 968 goto out; 969 970 /* 971 * It's not safe for direct compaction to call lock_page. 972 * For example, during page readahead pages are added locked 973 * to the LRU. Later, when the IO completes the pages are 974 * marked uptodate and unlocked. However, the queueing 975 * could be merging multiple pages for one bio (e.g. 976 * mpage_readahead). If an allocation happens for the 977 * second or third page, the process can end up locking 978 * the same page twice and deadlocking. Rather than 979 * trying to be clever about what pages can be locked, 980 * avoid the use of lock_page for direct compaction 981 * altogether. 982 */ 983 if (current->flags & PF_MEMALLOC) 984 goto out; 985 986 lock_page(page); 987 } 988 989 if (PageWriteback(page)) { 990 /* 991 * Only in the case of a full synchronous migration is it 992 * necessary to wait for PageWriteback. In the async case, 993 * the retry loop is too short and in the sync-light case, 994 * the overhead of stalling is too much 995 */ 996 switch (mode) { 997 case MIGRATE_SYNC: 998 case MIGRATE_SYNC_NO_COPY: 999 break; 1000 default: 1001 rc = -EBUSY; 1002 goto out_unlock; 1003 } 1004 if (!force) 1005 goto out_unlock; 1006 wait_on_page_writeback(page); 1007 } 1008 1009 /* 1010 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1011 * we cannot notice that anon_vma is freed while we migrates a page. 1012 * This get_anon_vma() delays freeing anon_vma pointer until the end 1013 * of migration. File cache pages are no problem because of page_lock() 1014 * File Caches may use write_page() or lock_page() in migration, then, 1015 * just care Anon page here. 1016 * 1017 * Only page_get_anon_vma() understands the subtleties of 1018 * getting a hold on an anon_vma from outside one of its mms. 1019 * But if we cannot get anon_vma, then we won't need it anyway, 1020 * because that implies that the anon page is no longer mapped 1021 * (and cannot be remapped so long as we hold the page lock). 1022 */ 1023 if (PageAnon(page) && !PageKsm(page)) 1024 anon_vma = page_get_anon_vma(page); 1025 1026 /* 1027 * Block others from accessing the new page when we get around to 1028 * establishing additional references. We are usually the only one 1029 * holding a reference to newpage at this point. We used to have a BUG 1030 * here if trylock_page(newpage) fails, but would like to allow for 1031 * cases where there might be a race with the previous use of newpage. 1032 * This is much like races on refcount of oldpage: just don't BUG(). 1033 */ 1034 if (unlikely(!trylock_page(newpage))) 1035 goto out_unlock; 1036 1037 if (unlikely(!is_lru)) { 1038 rc = move_to_new_page(newpage, page, mode); 1039 goto out_unlock_both; 1040 } 1041 1042 /* 1043 * Corner case handling: 1044 * 1. When a new swap-cache page is read into, it is added to the LRU 1045 * and treated as swapcache but it has no rmap yet. 1046 * Calling try_to_unmap() against a page->mapping==NULL page will 1047 * trigger a BUG. So handle it here. 1048 * 2. An orphaned page (see truncate_cleanup_page) might have 1049 * fs-private metadata. The page can be picked up due to memory 1050 * offlining. Everywhere else except page reclaim, the page is 1051 * invisible to the vm, so the page can not be migrated. So try to 1052 * free the metadata, so the page can be freed. 1053 */ 1054 if (!page->mapping) { 1055 VM_BUG_ON_PAGE(PageAnon(page), page); 1056 if (page_has_private(page)) { 1057 try_to_free_buffers(page); 1058 goto out_unlock_both; 1059 } 1060 } else if (page_mapped(page)) { 1061 /* Establish migration ptes */ 1062 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1063 page); 1064 try_to_migrate(page, 0); 1065 page_was_mapped = 1; 1066 } 1067 1068 if (!page_mapped(page)) 1069 rc = move_to_new_page(newpage, page, mode); 1070 1071 if (page_was_mapped) 1072 remove_migration_ptes(page, 1073 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1074 1075 out_unlock_both: 1076 unlock_page(newpage); 1077 out_unlock: 1078 /* Drop an anon_vma reference if we took one */ 1079 if (anon_vma) 1080 put_anon_vma(anon_vma); 1081 unlock_page(page); 1082 out: 1083 /* 1084 * If migration is successful, decrease refcount of the newpage 1085 * which will not free the page because new page owner increased 1086 * refcounter. As well, if it is LRU page, add the page to LRU 1087 * list in here. Use the old state of the isolated source page to 1088 * determine if we migrated a LRU page. newpage was already unlocked 1089 * and possibly modified by its owner - don't rely on the page 1090 * state. 1091 */ 1092 if (rc == MIGRATEPAGE_SUCCESS) { 1093 if (unlikely(!is_lru)) 1094 put_page(newpage); 1095 else 1096 putback_lru_page(newpage); 1097 } 1098 1099 return rc; 1100 } 1101 1102 /* 1103 * Obtain the lock on page, remove all ptes and migrate the page 1104 * to the newly allocated page in newpage. 1105 */ 1106 static int unmap_and_move(new_page_t get_new_page, 1107 free_page_t put_new_page, 1108 unsigned long private, struct page *page, 1109 int force, enum migrate_mode mode, 1110 enum migrate_reason reason, 1111 struct list_head *ret) 1112 { 1113 int rc = MIGRATEPAGE_SUCCESS; 1114 struct page *newpage = NULL; 1115 1116 if (!thp_migration_supported() && PageTransHuge(page)) 1117 return -ENOSYS; 1118 1119 if (page_count(page) == 1) { 1120 /* page was freed from under us. So we are done. */ 1121 ClearPageActive(page); 1122 ClearPageUnevictable(page); 1123 if (unlikely(__PageMovable(page))) { 1124 lock_page(page); 1125 if (!PageMovable(page)) 1126 __ClearPageIsolated(page); 1127 unlock_page(page); 1128 } 1129 goto out; 1130 } 1131 1132 newpage = get_new_page(page, private); 1133 if (!newpage) 1134 return -ENOMEM; 1135 1136 rc = __unmap_and_move(page, newpage, force, mode); 1137 if (rc == MIGRATEPAGE_SUCCESS) 1138 set_page_owner_migrate_reason(newpage, reason); 1139 1140 out: 1141 if (rc != -EAGAIN) { 1142 /* 1143 * A page that has been migrated has all references 1144 * removed and will be freed. A page that has not been 1145 * migrated will have kept its references and be restored. 1146 */ 1147 list_del(&page->lru); 1148 } 1149 1150 /* 1151 * If migration is successful, releases reference grabbed during 1152 * isolation. Otherwise, restore the page to right list unless 1153 * we want to retry. 1154 */ 1155 if (rc == MIGRATEPAGE_SUCCESS) { 1156 /* 1157 * Compaction can migrate also non-LRU pages which are 1158 * not accounted to NR_ISOLATED_*. They can be recognized 1159 * as __PageMovable 1160 */ 1161 if (likely(!__PageMovable(page))) 1162 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1163 page_is_file_lru(page), -thp_nr_pages(page)); 1164 1165 if (reason != MR_MEMORY_FAILURE) 1166 /* 1167 * We release the page in page_handle_poison. 1168 */ 1169 put_page(page); 1170 } else { 1171 if (rc != -EAGAIN) 1172 list_add_tail(&page->lru, ret); 1173 1174 if (put_new_page) 1175 put_new_page(newpage, private); 1176 else 1177 put_page(newpage); 1178 } 1179 1180 return rc; 1181 } 1182 1183 /* 1184 * Counterpart of unmap_and_move_page() for hugepage migration. 1185 * 1186 * This function doesn't wait the completion of hugepage I/O 1187 * because there is no race between I/O and migration for hugepage. 1188 * Note that currently hugepage I/O occurs only in direct I/O 1189 * where no lock is held and PG_writeback is irrelevant, 1190 * and writeback status of all subpages are counted in the reference 1191 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1192 * under direct I/O, the reference of the head page is 512 and a bit more.) 1193 * This means that when we try to migrate hugepage whose subpages are 1194 * doing direct I/O, some references remain after try_to_unmap() and 1195 * hugepage migration fails without data corruption. 1196 * 1197 * There is also no race when direct I/O is issued on the page under migration, 1198 * because then pte is replaced with migration swap entry and direct I/O code 1199 * will wait in the page fault for migration to complete. 1200 */ 1201 static int unmap_and_move_huge_page(new_page_t get_new_page, 1202 free_page_t put_new_page, unsigned long private, 1203 struct page *hpage, int force, 1204 enum migrate_mode mode, int reason, 1205 struct list_head *ret) 1206 { 1207 int rc = -EAGAIN; 1208 int page_was_mapped = 0; 1209 struct page *new_hpage; 1210 struct anon_vma *anon_vma = NULL; 1211 struct address_space *mapping = NULL; 1212 1213 /* 1214 * Migratability of hugepages depends on architectures and their size. 1215 * This check is necessary because some callers of hugepage migration 1216 * like soft offline and memory hotremove don't walk through page 1217 * tables or check whether the hugepage is pmd-based or not before 1218 * kicking migration. 1219 */ 1220 if (!hugepage_migration_supported(page_hstate(hpage))) { 1221 list_move_tail(&hpage->lru, ret); 1222 return -ENOSYS; 1223 } 1224 1225 if (page_count(hpage) == 1) { 1226 /* page was freed from under us. So we are done. */ 1227 putback_active_hugepage(hpage); 1228 return MIGRATEPAGE_SUCCESS; 1229 } 1230 1231 new_hpage = get_new_page(hpage, private); 1232 if (!new_hpage) 1233 return -ENOMEM; 1234 1235 if (!trylock_page(hpage)) { 1236 if (!force) 1237 goto out; 1238 switch (mode) { 1239 case MIGRATE_SYNC: 1240 case MIGRATE_SYNC_NO_COPY: 1241 break; 1242 default: 1243 goto out; 1244 } 1245 lock_page(hpage); 1246 } 1247 1248 /* 1249 * Check for pages which are in the process of being freed. Without 1250 * page_mapping() set, hugetlbfs specific move page routine will not 1251 * be called and we could leak usage counts for subpools. 1252 */ 1253 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1254 rc = -EBUSY; 1255 goto out_unlock; 1256 } 1257 1258 if (PageAnon(hpage)) 1259 anon_vma = page_get_anon_vma(hpage); 1260 1261 if (unlikely(!trylock_page(new_hpage))) 1262 goto put_anon; 1263 1264 if (page_mapped(hpage)) { 1265 bool mapping_locked = false; 1266 enum ttu_flags ttu = 0; 1267 1268 if (!PageAnon(hpage)) { 1269 /* 1270 * In shared mappings, try_to_unmap could potentially 1271 * call huge_pmd_unshare. Because of this, take 1272 * semaphore in write mode here and set TTU_RMAP_LOCKED 1273 * to let lower levels know we have taken the lock. 1274 */ 1275 mapping = hugetlb_page_mapping_lock_write(hpage); 1276 if (unlikely(!mapping)) 1277 goto unlock_put_anon; 1278 1279 mapping_locked = true; 1280 ttu |= TTU_RMAP_LOCKED; 1281 } 1282 1283 try_to_migrate(hpage, ttu); 1284 page_was_mapped = 1; 1285 1286 if (mapping_locked) 1287 i_mmap_unlock_write(mapping); 1288 } 1289 1290 if (!page_mapped(hpage)) 1291 rc = move_to_new_page(new_hpage, hpage, mode); 1292 1293 if (page_was_mapped) 1294 remove_migration_ptes(hpage, 1295 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1296 1297 unlock_put_anon: 1298 unlock_page(new_hpage); 1299 1300 put_anon: 1301 if (anon_vma) 1302 put_anon_vma(anon_vma); 1303 1304 if (rc == MIGRATEPAGE_SUCCESS) { 1305 move_hugetlb_state(hpage, new_hpage, reason); 1306 put_new_page = NULL; 1307 } 1308 1309 out_unlock: 1310 unlock_page(hpage); 1311 out: 1312 if (rc == MIGRATEPAGE_SUCCESS) 1313 putback_active_hugepage(hpage); 1314 else if (rc != -EAGAIN) 1315 list_move_tail(&hpage->lru, ret); 1316 1317 /* 1318 * If migration was not successful and there's a freeing callback, use 1319 * it. Otherwise, put_page() will drop the reference grabbed during 1320 * isolation. 1321 */ 1322 if (put_new_page) 1323 put_new_page(new_hpage, private); 1324 else 1325 putback_active_hugepage(new_hpage); 1326 1327 return rc; 1328 } 1329 1330 static inline int try_split_thp(struct page *page, struct page **page2, 1331 struct list_head *from) 1332 { 1333 int rc = 0; 1334 1335 lock_page(page); 1336 rc = split_huge_page_to_list(page, from); 1337 unlock_page(page); 1338 if (!rc) 1339 list_safe_reset_next(page, *page2, lru); 1340 1341 return rc; 1342 } 1343 1344 /* 1345 * migrate_pages - migrate the pages specified in a list, to the free pages 1346 * supplied as the target for the page migration 1347 * 1348 * @from: The list of pages to be migrated. 1349 * @get_new_page: The function used to allocate free pages to be used 1350 * as the target of the page migration. 1351 * @put_new_page: The function used to free target pages if migration 1352 * fails, or NULL if no special handling is necessary. 1353 * @private: Private data to be passed on to get_new_page() 1354 * @mode: The migration mode that specifies the constraints for 1355 * page migration, if any. 1356 * @reason: The reason for page migration. 1357 * 1358 * The function returns after 10 attempts or if no pages are movable any more 1359 * because the list has become empty or no retryable pages exist any more. 1360 * It is caller's responsibility to call putback_movable_pages() to return pages 1361 * to the LRU or free list only if ret != 0. 1362 * 1363 * Returns the number of pages that were not migrated, or an error code. 1364 */ 1365 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1366 free_page_t put_new_page, unsigned long private, 1367 enum migrate_mode mode, int reason) 1368 { 1369 int retry = 1; 1370 int thp_retry = 1; 1371 int nr_failed = 0; 1372 int nr_succeeded = 0; 1373 int nr_thp_succeeded = 0; 1374 int nr_thp_failed = 0; 1375 int nr_thp_split = 0; 1376 int pass = 0; 1377 bool is_thp = false; 1378 struct page *page; 1379 struct page *page2; 1380 int swapwrite = current->flags & PF_SWAPWRITE; 1381 int rc, nr_subpages; 1382 LIST_HEAD(ret_pages); 1383 bool nosplit = (reason == MR_NUMA_MISPLACED); 1384 1385 trace_mm_migrate_pages_start(mode, reason); 1386 1387 if (!swapwrite) 1388 current->flags |= PF_SWAPWRITE; 1389 1390 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1391 retry = 0; 1392 thp_retry = 0; 1393 1394 list_for_each_entry_safe(page, page2, from, lru) { 1395 retry: 1396 /* 1397 * THP statistics is based on the source huge page. 1398 * Capture required information that might get lost 1399 * during migration. 1400 */ 1401 is_thp = PageTransHuge(page) && !PageHuge(page); 1402 nr_subpages = thp_nr_pages(page); 1403 cond_resched(); 1404 1405 if (PageHuge(page)) 1406 rc = unmap_and_move_huge_page(get_new_page, 1407 put_new_page, private, page, 1408 pass > 2, mode, reason, 1409 &ret_pages); 1410 else 1411 rc = unmap_and_move(get_new_page, put_new_page, 1412 private, page, pass > 2, mode, 1413 reason, &ret_pages); 1414 /* 1415 * The rules are: 1416 * Success: non hugetlb page will be freed, hugetlb 1417 * page will be put back 1418 * -EAGAIN: stay on the from list 1419 * -ENOMEM: stay on the from list 1420 * Other errno: put on ret_pages list then splice to 1421 * from list 1422 */ 1423 switch(rc) { 1424 /* 1425 * THP migration might be unsupported or the 1426 * allocation could've failed so we should 1427 * retry on the same page with the THP split 1428 * to base pages. 1429 * 1430 * Head page is retried immediately and tail 1431 * pages are added to the tail of the list so 1432 * we encounter them after the rest of the list 1433 * is processed. 1434 */ 1435 case -ENOSYS: 1436 /* THP migration is unsupported */ 1437 if (is_thp) { 1438 if (!try_split_thp(page, &page2, from)) { 1439 nr_thp_split++; 1440 goto retry; 1441 } 1442 1443 nr_thp_failed++; 1444 nr_failed += nr_subpages; 1445 break; 1446 } 1447 1448 /* Hugetlb migration is unsupported */ 1449 nr_failed++; 1450 break; 1451 case -ENOMEM: 1452 /* 1453 * When memory is low, don't bother to try to migrate 1454 * other pages, just exit. 1455 * THP NUMA faulting doesn't split THP to retry. 1456 */ 1457 if (is_thp && !nosplit) { 1458 if (!try_split_thp(page, &page2, from)) { 1459 nr_thp_split++; 1460 goto retry; 1461 } 1462 1463 nr_thp_failed++; 1464 nr_failed += nr_subpages; 1465 goto out; 1466 } 1467 nr_failed++; 1468 goto out; 1469 case -EAGAIN: 1470 if (is_thp) { 1471 thp_retry++; 1472 break; 1473 } 1474 retry++; 1475 break; 1476 case MIGRATEPAGE_SUCCESS: 1477 if (is_thp) { 1478 nr_thp_succeeded++; 1479 nr_succeeded += nr_subpages; 1480 break; 1481 } 1482 nr_succeeded++; 1483 break; 1484 default: 1485 /* 1486 * Permanent failure (-EBUSY, etc.): 1487 * unlike -EAGAIN case, the failed page is 1488 * removed from migration page list and not 1489 * retried in the next outer loop. 1490 */ 1491 if (is_thp) { 1492 nr_thp_failed++; 1493 nr_failed += nr_subpages; 1494 break; 1495 } 1496 nr_failed++; 1497 break; 1498 } 1499 } 1500 } 1501 nr_failed += retry + thp_retry; 1502 nr_thp_failed += thp_retry; 1503 rc = nr_failed; 1504 out: 1505 /* 1506 * Put the permanent failure page back to migration list, they 1507 * will be put back to the right list by the caller. 1508 */ 1509 list_splice(&ret_pages, from); 1510 1511 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1512 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1513 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1514 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1515 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1516 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1517 nr_thp_failed, nr_thp_split, mode, reason); 1518 1519 if (!swapwrite) 1520 current->flags &= ~PF_SWAPWRITE; 1521 1522 return rc; 1523 } 1524 1525 struct page *alloc_migration_target(struct page *page, unsigned long private) 1526 { 1527 struct migration_target_control *mtc; 1528 gfp_t gfp_mask; 1529 unsigned int order = 0; 1530 struct page *new_page = NULL; 1531 int nid; 1532 int zidx; 1533 1534 mtc = (struct migration_target_control *)private; 1535 gfp_mask = mtc->gfp_mask; 1536 nid = mtc->nid; 1537 if (nid == NUMA_NO_NODE) 1538 nid = page_to_nid(page); 1539 1540 if (PageHuge(page)) { 1541 struct hstate *h = page_hstate(compound_head(page)); 1542 1543 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1544 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1545 } 1546 1547 if (PageTransHuge(page)) { 1548 /* 1549 * clear __GFP_RECLAIM to make the migration callback 1550 * consistent with regular THP allocations. 1551 */ 1552 gfp_mask &= ~__GFP_RECLAIM; 1553 gfp_mask |= GFP_TRANSHUGE; 1554 order = HPAGE_PMD_ORDER; 1555 } 1556 zidx = zone_idx(page_zone(page)); 1557 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1558 gfp_mask |= __GFP_HIGHMEM; 1559 1560 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1561 1562 if (new_page && PageTransHuge(new_page)) 1563 prep_transhuge_page(new_page); 1564 1565 return new_page; 1566 } 1567 1568 #ifdef CONFIG_NUMA 1569 1570 static int store_status(int __user *status, int start, int value, int nr) 1571 { 1572 while (nr-- > 0) { 1573 if (put_user(value, status + start)) 1574 return -EFAULT; 1575 start++; 1576 } 1577 1578 return 0; 1579 } 1580 1581 static int do_move_pages_to_node(struct mm_struct *mm, 1582 struct list_head *pagelist, int node) 1583 { 1584 int err; 1585 struct migration_target_control mtc = { 1586 .nid = node, 1587 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1588 }; 1589 1590 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1591 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1592 if (err) 1593 putback_movable_pages(pagelist); 1594 return err; 1595 } 1596 1597 /* 1598 * Resolves the given address to a struct page, isolates it from the LRU and 1599 * puts it to the given pagelist. 1600 * Returns: 1601 * errno - if the page cannot be found/isolated 1602 * 0 - when it doesn't have to be migrated because it is already on the 1603 * target node 1604 * 1 - when it has been queued 1605 */ 1606 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1607 int node, struct list_head *pagelist, bool migrate_all) 1608 { 1609 struct vm_area_struct *vma; 1610 struct page *page; 1611 unsigned int follflags; 1612 int err; 1613 1614 mmap_read_lock(mm); 1615 err = -EFAULT; 1616 vma = find_vma(mm, addr); 1617 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1618 goto out; 1619 1620 /* FOLL_DUMP to ignore special (like zero) pages */ 1621 follflags = FOLL_GET | FOLL_DUMP; 1622 page = follow_page(vma, addr, follflags); 1623 1624 err = PTR_ERR(page); 1625 if (IS_ERR(page)) 1626 goto out; 1627 1628 err = -ENOENT; 1629 if (!page) 1630 goto out; 1631 1632 err = 0; 1633 if (page_to_nid(page) == node) 1634 goto out_putpage; 1635 1636 err = -EACCES; 1637 if (page_mapcount(page) > 1 && !migrate_all) 1638 goto out_putpage; 1639 1640 if (PageHuge(page)) { 1641 if (PageHead(page)) { 1642 isolate_huge_page(page, pagelist); 1643 err = 1; 1644 } 1645 } else { 1646 struct page *head; 1647 1648 head = compound_head(page); 1649 err = isolate_lru_page(head); 1650 if (err) 1651 goto out_putpage; 1652 1653 err = 1; 1654 list_add_tail(&head->lru, pagelist); 1655 mod_node_page_state(page_pgdat(head), 1656 NR_ISOLATED_ANON + page_is_file_lru(head), 1657 thp_nr_pages(head)); 1658 } 1659 out_putpage: 1660 /* 1661 * Either remove the duplicate refcount from 1662 * isolate_lru_page() or drop the page ref if it was 1663 * not isolated. 1664 */ 1665 put_page(page); 1666 out: 1667 mmap_read_unlock(mm); 1668 return err; 1669 } 1670 1671 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1672 struct list_head *pagelist, int __user *status, 1673 int start, int i, unsigned long nr_pages) 1674 { 1675 int err; 1676 1677 if (list_empty(pagelist)) 1678 return 0; 1679 1680 err = do_move_pages_to_node(mm, pagelist, node); 1681 if (err) { 1682 /* 1683 * Positive err means the number of failed 1684 * pages to migrate. Since we are going to 1685 * abort and return the number of non-migrated 1686 * pages, so need to include the rest of the 1687 * nr_pages that have not been attempted as 1688 * well. 1689 */ 1690 if (err > 0) 1691 err += nr_pages - i - 1; 1692 return err; 1693 } 1694 return store_status(status, start, node, i - start); 1695 } 1696 1697 /* 1698 * Migrate an array of page address onto an array of nodes and fill 1699 * the corresponding array of status. 1700 */ 1701 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1702 unsigned long nr_pages, 1703 const void __user * __user *pages, 1704 const int __user *nodes, 1705 int __user *status, int flags) 1706 { 1707 int current_node = NUMA_NO_NODE; 1708 LIST_HEAD(pagelist); 1709 int start, i; 1710 int err = 0, err1; 1711 1712 lru_cache_disable(); 1713 1714 for (i = start = 0; i < nr_pages; i++) { 1715 const void __user *p; 1716 unsigned long addr; 1717 int node; 1718 1719 err = -EFAULT; 1720 if (get_user(p, pages + i)) 1721 goto out_flush; 1722 if (get_user(node, nodes + i)) 1723 goto out_flush; 1724 addr = (unsigned long)untagged_addr(p); 1725 1726 err = -ENODEV; 1727 if (node < 0 || node >= MAX_NUMNODES) 1728 goto out_flush; 1729 if (!node_state(node, N_MEMORY)) 1730 goto out_flush; 1731 1732 err = -EACCES; 1733 if (!node_isset(node, task_nodes)) 1734 goto out_flush; 1735 1736 if (current_node == NUMA_NO_NODE) { 1737 current_node = node; 1738 start = i; 1739 } else if (node != current_node) { 1740 err = move_pages_and_store_status(mm, current_node, 1741 &pagelist, status, start, i, nr_pages); 1742 if (err) 1743 goto out; 1744 start = i; 1745 current_node = node; 1746 } 1747 1748 /* 1749 * Errors in the page lookup or isolation are not fatal and we simply 1750 * report them via status 1751 */ 1752 err = add_page_for_migration(mm, addr, current_node, 1753 &pagelist, flags & MPOL_MF_MOVE_ALL); 1754 1755 if (err > 0) { 1756 /* The page is successfully queued for migration */ 1757 continue; 1758 } 1759 1760 /* 1761 * If the page is already on the target node (!err), store the 1762 * node, otherwise, store the err. 1763 */ 1764 err = store_status(status, i, err ? : current_node, 1); 1765 if (err) 1766 goto out_flush; 1767 1768 err = move_pages_and_store_status(mm, current_node, &pagelist, 1769 status, start, i, nr_pages); 1770 if (err) 1771 goto out; 1772 current_node = NUMA_NO_NODE; 1773 } 1774 out_flush: 1775 /* Make sure we do not overwrite the existing error */ 1776 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1777 status, start, i, nr_pages); 1778 if (err >= 0) 1779 err = err1; 1780 out: 1781 lru_cache_enable(); 1782 return err; 1783 } 1784 1785 /* 1786 * Determine the nodes of an array of pages and store it in an array of status. 1787 */ 1788 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1789 const void __user **pages, int *status) 1790 { 1791 unsigned long i; 1792 1793 mmap_read_lock(mm); 1794 1795 for (i = 0; i < nr_pages; i++) { 1796 unsigned long addr = (unsigned long)(*pages); 1797 struct vm_area_struct *vma; 1798 struct page *page; 1799 int err = -EFAULT; 1800 1801 vma = vma_lookup(mm, addr); 1802 if (!vma) 1803 goto set_status; 1804 1805 /* FOLL_DUMP to ignore special (like zero) pages */ 1806 page = follow_page(vma, addr, FOLL_DUMP); 1807 1808 err = PTR_ERR(page); 1809 if (IS_ERR(page)) 1810 goto set_status; 1811 1812 err = page ? page_to_nid(page) : -ENOENT; 1813 set_status: 1814 *status = err; 1815 1816 pages++; 1817 status++; 1818 } 1819 1820 mmap_read_unlock(mm); 1821 } 1822 1823 /* 1824 * Determine the nodes of a user array of pages and store it in 1825 * a user array of status. 1826 */ 1827 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1828 const void __user * __user *pages, 1829 int __user *status) 1830 { 1831 #define DO_PAGES_STAT_CHUNK_NR 16 1832 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1833 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1834 1835 while (nr_pages) { 1836 unsigned long chunk_nr; 1837 1838 chunk_nr = nr_pages; 1839 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1840 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1841 1842 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1843 break; 1844 1845 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1846 1847 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1848 break; 1849 1850 pages += chunk_nr; 1851 status += chunk_nr; 1852 nr_pages -= chunk_nr; 1853 } 1854 return nr_pages ? -EFAULT : 0; 1855 } 1856 1857 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1858 { 1859 struct task_struct *task; 1860 struct mm_struct *mm; 1861 1862 /* 1863 * There is no need to check if current process has the right to modify 1864 * the specified process when they are same. 1865 */ 1866 if (!pid) { 1867 mmget(current->mm); 1868 *mem_nodes = cpuset_mems_allowed(current); 1869 return current->mm; 1870 } 1871 1872 /* Find the mm_struct */ 1873 rcu_read_lock(); 1874 task = find_task_by_vpid(pid); 1875 if (!task) { 1876 rcu_read_unlock(); 1877 return ERR_PTR(-ESRCH); 1878 } 1879 get_task_struct(task); 1880 1881 /* 1882 * Check if this process has the right to modify the specified 1883 * process. Use the regular "ptrace_may_access()" checks. 1884 */ 1885 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1886 rcu_read_unlock(); 1887 mm = ERR_PTR(-EPERM); 1888 goto out; 1889 } 1890 rcu_read_unlock(); 1891 1892 mm = ERR_PTR(security_task_movememory(task)); 1893 if (IS_ERR(mm)) 1894 goto out; 1895 *mem_nodes = cpuset_mems_allowed(task); 1896 mm = get_task_mm(task); 1897 out: 1898 put_task_struct(task); 1899 if (!mm) 1900 mm = ERR_PTR(-EINVAL); 1901 return mm; 1902 } 1903 1904 /* 1905 * Move a list of pages in the address space of the currently executing 1906 * process. 1907 */ 1908 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1909 const void __user * __user *pages, 1910 const int __user *nodes, 1911 int __user *status, int flags) 1912 { 1913 struct mm_struct *mm; 1914 int err; 1915 nodemask_t task_nodes; 1916 1917 /* Check flags */ 1918 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1919 return -EINVAL; 1920 1921 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1922 return -EPERM; 1923 1924 mm = find_mm_struct(pid, &task_nodes); 1925 if (IS_ERR(mm)) 1926 return PTR_ERR(mm); 1927 1928 if (nodes) 1929 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1930 nodes, status, flags); 1931 else 1932 err = do_pages_stat(mm, nr_pages, pages, status); 1933 1934 mmput(mm); 1935 return err; 1936 } 1937 1938 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1939 const void __user * __user *, pages, 1940 const int __user *, nodes, 1941 int __user *, status, int, flags) 1942 { 1943 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1944 } 1945 1946 #ifdef CONFIG_COMPAT 1947 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1948 compat_uptr_t __user *, pages32, 1949 const int __user *, nodes, 1950 int __user *, status, 1951 int, flags) 1952 { 1953 const void __user * __user *pages; 1954 int i; 1955 1956 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1957 for (i = 0; i < nr_pages; i++) { 1958 compat_uptr_t p; 1959 1960 if (get_user(p, pages32 + i) || 1961 put_user(compat_ptr(p), pages + i)) 1962 return -EFAULT; 1963 } 1964 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1965 } 1966 #endif /* CONFIG_COMPAT */ 1967 1968 #ifdef CONFIG_NUMA_BALANCING 1969 /* 1970 * Returns true if this is a safe migration target node for misplaced NUMA 1971 * pages. Currently it only checks the watermarks which crude 1972 */ 1973 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1974 unsigned long nr_migrate_pages) 1975 { 1976 int z; 1977 1978 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1979 struct zone *zone = pgdat->node_zones + z; 1980 1981 if (!populated_zone(zone)) 1982 continue; 1983 1984 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1985 if (!zone_watermark_ok(zone, 0, 1986 high_wmark_pages(zone) + 1987 nr_migrate_pages, 1988 ZONE_MOVABLE, 0)) 1989 continue; 1990 return true; 1991 } 1992 return false; 1993 } 1994 1995 static struct page *alloc_misplaced_dst_page(struct page *page, 1996 unsigned long data) 1997 { 1998 int nid = (int) data; 1999 struct page *newpage; 2000 2001 newpage = __alloc_pages_node(nid, 2002 (GFP_HIGHUSER_MOVABLE | 2003 __GFP_THISNODE | __GFP_NOMEMALLOC | 2004 __GFP_NORETRY | __GFP_NOWARN) & 2005 ~__GFP_RECLAIM, 0); 2006 2007 return newpage; 2008 } 2009 2010 static struct page *alloc_misplaced_dst_page_thp(struct page *page, 2011 unsigned long data) 2012 { 2013 int nid = (int) data; 2014 struct page *newpage; 2015 2016 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2017 HPAGE_PMD_ORDER); 2018 if (!newpage) 2019 goto out; 2020 2021 prep_transhuge_page(newpage); 2022 2023 out: 2024 return newpage; 2025 } 2026 2027 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2028 { 2029 int page_lru; 2030 2031 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2032 2033 /* Do not migrate THP mapped by multiple processes */ 2034 if (PageTransHuge(page) && total_mapcount(page) > 1) 2035 return 0; 2036 2037 /* Avoid migrating to a node that is nearly full */ 2038 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2039 return 0; 2040 2041 if (isolate_lru_page(page)) 2042 return 0; 2043 2044 page_lru = page_is_file_lru(page); 2045 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2046 thp_nr_pages(page)); 2047 2048 /* 2049 * Isolating the page has taken another reference, so the 2050 * caller's reference can be safely dropped without the page 2051 * disappearing underneath us during migration. 2052 */ 2053 put_page(page); 2054 return 1; 2055 } 2056 2057 /* 2058 * Attempt to migrate a misplaced page to the specified destination 2059 * node. Caller is expected to have an elevated reference count on 2060 * the page that will be dropped by this function before returning. 2061 */ 2062 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2063 int node) 2064 { 2065 pg_data_t *pgdat = NODE_DATA(node); 2066 int isolated; 2067 int nr_remaining; 2068 LIST_HEAD(migratepages); 2069 new_page_t *new; 2070 bool compound; 2071 unsigned int nr_pages = thp_nr_pages(page); 2072 2073 /* 2074 * PTE mapped THP or HugeTLB page can't reach here so the page could 2075 * be either base page or THP. And it must be head page if it is 2076 * THP. 2077 */ 2078 compound = PageTransHuge(page); 2079 2080 if (compound) 2081 new = alloc_misplaced_dst_page_thp; 2082 else 2083 new = alloc_misplaced_dst_page; 2084 2085 /* 2086 * Don't migrate file pages that are mapped in multiple processes 2087 * with execute permissions as they are probably shared libraries. 2088 */ 2089 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2090 (vma->vm_flags & VM_EXEC)) 2091 goto out; 2092 2093 /* 2094 * Also do not migrate dirty pages as not all filesystems can move 2095 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2096 */ 2097 if (page_is_file_lru(page) && PageDirty(page)) 2098 goto out; 2099 2100 isolated = numamigrate_isolate_page(pgdat, page); 2101 if (!isolated) 2102 goto out; 2103 2104 list_add(&page->lru, &migratepages); 2105 nr_remaining = migrate_pages(&migratepages, *new, NULL, node, 2106 MIGRATE_ASYNC, MR_NUMA_MISPLACED); 2107 if (nr_remaining) { 2108 if (!list_empty(&migratepages)) { 2109 list_del(&page->lru); 2110 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2111 page_is_file_lru(page), -nr_pages); 2112 putback_lru_page(page); 2113 } 2114 isolated = 0; 2115 } else 2116 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages); 2117 BUG_ON(!list_empty(&migratepages)); 2118 return isolated; 2119 2120 out: 2121 put_page(page); 2122 return 0; 2123 } 2124 #endif /* CONFIG_NUMA_BALANCING */ 2125 #endif /* CONFIG_NUMA */ 2126 2127 #ifdef CONFIG_DEVICE_PRIVATE 2128 static int migrate_vma_collect_skip(unsigned long start, 2129 unsigned long end, 2130 struct mm_walk *walk) 2131 { 2132 struct migrate_vma *migrate = walk->private; 2133 unsigned long addr; 2134 2135 for (addr = start; addr < end; addr += PAGE_SIZE) { 2136 migrate->dst[migrate->npages] = 0; 2137 migrate->src[migrate->npages++] = 0; 2138 } 2139 2140 return 0; 2141 } 2142 2143 static int migrate_vma_collect_hole(unsigned long start, 2144 unsigned long end, 2145 __always_unused int depth, 2146 struct mm_walk *walk) 2147 { 2148 struct migrate_vma *migrate = walk->private; 2149 unsigned long addr; 2150 2151 /* Only allow populating anonymous memory. */ 2152 if (!vma_is_anonymous(walk->vma)) 2153 return migrate_vma_collect_skip(start, end, walk); 2154 2155 for (addr = start; addr < end; addr += PAGE_SIZE) { 2156 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2157 migrate->dst[migrate->npages] = 0; 2158 migrate->npages++; 2159 migrate->cpages++; 2160 } 2161 2162 return 0; 2163 } 2164 2165 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2166 unsigned long start, 2167 unsigned long end, 2168 struct mm_walk *walk) 2169 { 2170 struct migrate_vma *migrate = walk->private; 2171 struct vm_area_struct *vma = walk->vma; 2172 struct mm_struct *mm = vma->vm_mm; 2173 unsigned long addr = start, unmapped = 0; 2174 spinlock_t *ptl; 2175 pte_t *ptep; 2176 2177 again: 2178 if (pmd_none(*pmdp)) 2179 return migrate_vma_collect_hole(start, end, -1, walk); 2180 2181 if (pmd_trans_huge(*pmdp)) { 2182 struct page *page; 2183 2184 ptl = pmd_lock(mm, pmdp); 2185 if (unlikely(!pmd_trans_huge(*pmdp))) { 2186 spin_unlock(ptl); 2187 goto again; 2188 } 2189 2190 page = pmd_page(*pmdp); 2191 if (is_huge_zero_page(page)) { 2192 spin_unlock(ptl); 2193 split_huge_pmd(vma, pmdp, addr); 2194 if (pmd_trans_unstable(pmdp)) 2195 return migrate_vma_collect_skip(start, end, 2196 walk); 2197 } else { 2198 int ret; 2199 2200 get_page(page); 2201 spin_unlock(ptl); 2202 if (unlikely(!trylock_page(page))) 2203 return migrate_vma_collect_skip(start, end, 2204 walk); 2205 ret = split_huge_page(page); 2206 unlock_page(page); 2207 put_page(page); 2208 if (ret) 2209 return migrate_vma_collect_skip(start, end, 2210 walk); 2211 if (pmd_none(*pmdp)) 2212 return migrate_vma_collect_hole(start, end, -1, 2213 walk); 2214 } 2215 } 2216 2217 if (unlikely(pmd_bad(*pmdp))) 2218 return migrate_vma_collect_skip(start, end, walk); 2219 2220 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2221 arch_enter_lazy_mmu_mode(); 2222 2223 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2224 unsigned long mpfn = 0, pfn; 2225 struct page *page; 2226 swp_entry_t entry; 2227 pte_t pte; 2228 2229 pte = *ptep; 2230 2231 if (pte_none(pte)) { 2232 if (vma_is_anonymous(vma)) { 2233 mpfn = MIGRATE_PFN_MIGRATE; 2234 migrate->cpages++; 2235 } 2236 goto next; 2237 } 2238 2239 if (!pte_present(pte)) { 2240 /* 2241 * Only care about unaddressable device page special 2242 * page table entry. Other special swap entries are not 2243 * migratable, and we ignore regular swapped page. 2244 */ 2245 entry = pte_to_swp_entry(pte); 2246 if (!is_device_private_entry(entry)) 2247 goto next; 2248 2249 page = pfn_swap_entry_to_page(entry); 2250 if (!(migrate->flags & 2251 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2252 page->pgmap->owner != migrate->pgmap_owner) 2253 goto next; 2254 2255 mpfn = migrate_pfn(page_to_pfn(page)) | 2256 MIGRATE_PFN_MIGRATE; 2257 if (is_writable_device_private_entry(entry)) 2258 mpfn |= MIGRATE_PFN_WRITE; 2259 } else { 2260 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2261 goto next; 2262 pfn = pte_pfn(pte); 2263 if (is_zero_pfn(pfn)) { 2264 mpfn = MIGRATE_PFN_MIGRATE; 2265 migrate->cpages++; 2266 goto next; 2267 } 2268 page = vm_normal_page(migrate->vma, addr, pte); 2269 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2270 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2271 } 2272 2273 /* FIXME support THP */ 2274 if (!page || !page->mapping || PageTransCompound(page)) { 2275 mpfn = 0; 2276 goto next; 2277 } 2278 2279 /* 2280 * By getting a reference on the page we pin it and that blocks 2281 * any kind of migration. Side effect is that it "freezes" the 2282 * pte. 2283 * 2284 * We drop this reference after isolating the page from the lru 2285 * for non device page (device page are not on the lru and thus 2286 * can't be dropped from it). 2287 */ 2288 get_page(page); 2289 migrate->cpages++; 2290 2291 /* 2292 * Optimize for the common case where page is only mapped once 2293 * in one process. If we can lock the page, then we can safely 2294 * set up a special migration page table entry now. 2295 */ 2296 if (trylock_page(page)) { 2297 pte_t swp_pte; 2298 2299 mpfn |= MIGRATE_PFN_LOCKED; 2300 ptep_get_and_clear(mm, addr, ptep); 2301 2302 /* Setup special migration page table entry */ 2303 if (mpfn & MIGRATE_PFN_WRITE) 2304 entry = make_writable_migration_entry( 2305 page_to_pfn(page)); 2306 else 2307 entry = make_readable_migration_entry( 2308 page_to_pfn(page)); 2309 swp_pte = swp_entry_to_pte(entry); 2310 if (pte_present(pte)) { 2311 if (pte_soft_dirty(pte)) 2312 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2313 if (pte_uffd_wp(pte)) 2314 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2315 } else { 2316 if (pte_swp_soft_dirty(pte)) 2317 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2318 if (pte_swp_uffd_wp(pte)) 2319 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2320 } 2321 set_pte_at(mm, addr, ptep, swp_pte); 2322 2323 /* 2324 * This is like regular unmap: we remove the rmap and 2325 * drop page refcount. Page won't be freed, as we took 2326 * a reference just above. 2327 */ 2328 page_remove_rmap(page, false); 2329 put_page(page); 2330 2331 if (pte_present(pte)) 2332 unmapped++; 2333 } 2334 2335 next: 2336 migrate->dst[migrate->npages] = 0; 2337 migrate->src[migrate->npages++] = mpfn; 2338 } 2339 arch_leave_lazy_mmu_mode(); 2340 pte_unmap_unlock(ptep - 1, ptl); 2341 2342 /* Only flush the TLB if we actually modified any entries */ 2343 if (unmapped) 2344 flush_tlb_range(walk->vma, start, end); 2345 2346 return 0; 2347 } 2348 2349 static const struct mm_walk_ops migrate_vma_walk_ops = { 2350 .pmd_entry = migrate_vma_collect_pmd, 2351 .pte_hole = migrate_vma_collect_hole, 2352 }; 2353 2354 /* 2355 * migrate_vma_collect() - collect pages over a range of virtual addresses 2356 * @migrate: migrate struct containing all migration information 2357 * 2358 * This will walk the CPU page table. For each virtual address backed by a 2359 * valid page, it updates the src array and takes a reference on the page, in 2360 * order to pin the page until we lock it and unmap it. 2361 */ 2362 static void migrate_vma_collect(struct migrate_vma *migrate) 2363 { 2364 struct mmu_notifier_range range; 2365 2366 /* 2367 * Note that the pgmap_owner is passed to the mmu notifier callback so 2368 * that the registered device driver can skip invalidating device 2369 * private page mappings that won't be migrated. 2370 */ 2371 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 2372 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 2373 migrate->pgmap_owner); 2374 mmu_notifier_invalidate_range_start(&range); 2375 2376 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2377 &migrate_vma_walk_ops, migrate); 2378 2379 mmu_notifier_invalidate_range_end(&range); 2380 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2381 } 2382 2383 /* 2384 * migrate_vma_check_page() - check if page is pinned or not 2385 * @page: struct page to check 2386 * 2387 * Pinned pages cannot be migrated. This is the same test as in 2388 * migrate_page_move_mapping(), except that here we allow migration of a 2389 * ZONE_DEVICE page. 2390 */ 2391 static bool migrate_vma_check_page(struct page *page) 2392 { 2393 /* 2394 * One extra ref because caller holds an extra reference, either from 2395 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2396 * a device page. 2397 */ 2398 int extra = 1; 2399 2400 /* 2401 * FIXME support THP (transparent huge page), it is bit more complex to 2402 * check them than regular pages, because they can be mapped with a pmd 2403 * or with a pte (split pte mapping). 2404 */ 2405 if (PageCompound(page)) 2406 return false; 2407 2408 /* Page from ZONE_DEVICE have one extra reference */ 2409 if (is_zone_device_page(page)) { 2410 /* 2411 * Private page can never be pin as they have no valid pte and 2412 * GUP will fail for those. Yet if there is a pending migration 2413 * a thread might try to wait on the pte migration entry and 2414 * will bump the page reference count. Sadly there is no way to 2415 * differentiate a regular pin from migration wait. Hence to 2416 * avoid 2 racing thread trying to migrate back to CPU to enter 2417 * infinite loop (one stopping migration because the other is 2418 * waiting on pte migration entry). We always return true here. 2419 * 2420 * FIXME proper solution is to rework migration_entry_wait() so 2421 * it does not need to take a reference on page. 2422 */ 2423 return is_device_private_page(page); 2424 } 2425 2426 /* For file back page */ 2427 if (page_mapping(page)) 2428 extra += 1 + page_has_private(page); 2429 2430 if ((page_count(page) - extra) > page_mapcount(page)) 2431 return false; 2432 2433 return true; 2434 } 2435 2436 /* 2437 * migrate_vma_prepare() - lock pages and isolate them from the lru 2438 * @migrate: migrate struct containing all migration information 2439 * 2440 * This locks pages that have been collected by migrate_vma_collect(). Once each 2441 * page is locked it is isolated from the lru (for non-device pages). Finally, 2442 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2443 * migrated by concurrent kernel threads. 2444 */ 2445 static void migrate_vma_prepare(struct migrate_vma *migrate) 2446 { 2447 const unsigned long npages = migrate->npages; 2448 const unsigned long start = migrate->start; 2449 unsigned long addr, i, restore = 0; 2450 bool allow_drain = true; 2451 2452 lru_add_drain(); 2453 2454 for (i = 0; (i < npages) && migrate->cpages; i++) { 2455 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2456 bool remap = true; 2457 2458 if (!page) 2459 continue; 2460 2461 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2462 /* 2463 * Because we are migrating several pages there can be 2464 * a deadlock between 2 concurrent migration where each 2465 * are waiting on each other page lock. 2466 * 2467 * Make migrate_vma() a best effort thing and backoff 2468 * for any page we can not lock right away. 2469 */ 2470 if (!trylock_page(page)) { 2471 migrate->src[i] = 0; 2472 migrate->cpages--; 2473 put_page(page); 2474 continue; 2475 } 2476 remap = false; 2477 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2478 } 2479 2480 /* ZONE_DEVICE pages are not on LRU */ 2481 if (!is_zone_device_page(page)) { 2482 if (!PageLRU(page) && allow_drain) { 2483 /* Drain CPU's pagevec */ 2484 lru_add_drain_all(); 2485 allow_drain = false; 2486 } 2487 2488 if (isolate_lru_page(page)) { 2489 if (remap) { 2490 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2491 migrate->cpages--; 2492 restore++; 2493 } else { 2494 migrate->src[i] = 0; 2495 unlock_page(page); 2496 migrate->cpages--; 2497 put_page(page); 2498 } 2499 continue; 2500 } 2501 2502 /* Drop the reference we took in collect */ 2503 put_page(page); 2504 } 2505 2506 if (!migrate_vma_check_page(page)) { 2507 if (remap) { 2508 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2509 migrate->cpages--; 2510 restore++; 2511 2512 if (!is_zone_device_page(page)) { 2513 get_page(page); 2514 putback_lru_page(page); 2515 } 2516 } else { 2517 migrate->src[i] = 0; 2518 unlock_page(page); 2519 migrate->cpages--; 2520 2521 if (!is_zone_device_page(page)) 2522 putback_lru_page(page); 2523 else 2524 put_page(page); 2525 } 2526 } 2527 } 2528 2529 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2530 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2531 2532 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2533 continue; 2534 2535 remove_migration_pte(page, migrate->vma, addr, page); 2536 2537 migrate->src[i] = 0; 2538 unlock_page(page); 2539 put_page(page); 2540 restore--; 2541 } 2542 } 2543 2544 /* 2545 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2546 * @migrate: migrate struct containing all migration information 2547 * 2548 * Replace page mapping (CPU page table pte) with a special migration pte entry 2549 * and check again if it has been pinned. Pinned pages are restored because we 2550 * cannot migrate them. 2551 * 2552 * This is the last step before we call the device driver callback to allocate 2553 * destination memory and copy contents of original page over to new page. 2554 */ 2555 static void migrate_vma_unmap(struct migrate_vma *migrate) 2556 { 2557 const unsigned long npages = migrate->npages; 2558 const unsigned long start = migrate->start; 2559 unsigned long addr, i, restore = 0; 2560 2561 for (i = 0; i < npages; i++) { 2562 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2563 2564 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2565 continue; 2566 2567 if (page_mapped(page)) { 2568 try_to_migrate(page, 0); 2569 if (page_mapped(page)) 2570 goto restore; 2571 } 2572 2573 if (migrate_vma_check_page(page)) 2574 continue; 2575 2576 restore: 2577 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2578 migrate->cpages--; 2579 restore++; 2580 } 2581 2582 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2583 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2584 2585 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2586 continue; 2587 2588 remove_migration_ptes(page, page, false); 2589 2590 migrate->src[i] = 0; 2591 unlock_page(page); 2592 restore--; 2593 2594 if (is_zone_device_page(page)) 2595 put_page(page); 2596 else 2597 putback_lru_page(page); 2598 } 2599 } 2600 2601 /** 2602 * migrate_vma_setup() - prepare to migrate a range of memory 2603 * @args: contains the vma, start, and pfns arrays for the migration 2604 * 2605 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2606 * without an error. 2607 * 2608 * Prepare to migrate a range of memory virtual address range by collecting all 2609 * the pages backing each virtual address in the range, saving them inside the 2610 * src array. Then lock those pages and unmap them. Once the pages are locked 2611 * and unmapped, check whether each page is pinned or not. Pages that aren't 2612 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2613 * corresponding src array entry. Then restores any pages that are pinned, by 2614 * remapping and unlocking those pages. 2615 * 2616 * The caller should then allocate destination memory and copy source memory to 2617 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2618 * flag set). Once these are allocated and copied, the caller must update each 2619 * corresponding entry in the dst array with the pfn value of the destination 2620 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2621 * (destination pages must have their struct pages locked, via lock_page()). 2622 * 2623 * Note that the caller does not have to migrate all the pages that are marked 2624 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2625 * device memory to system memory. If the caller cannot migrate a device page 2626 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2627 * consequences for the userspace process, so it must be avoided if at all 2628 * possible. 2629 * 2630 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2631 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2632 * allowing the caller to allocate device memory for those unbacked virtual 2633 * addresses. For this the caller simply has to allocate device memory and 2634 * properly set the destination entry like for regular migration. Note that 2635 * this can still fail, and thus inside the device driver you must check if the 2636 * migration was successful for those entries after calling migrate_vma_pages(), 2637 * just like for regular migration. 2638 * 2639 * After that, the callers must call migrate_vma_pages() to go over each entry 2640 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2641 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2642 * then migrate_vma_pages() to migrate struct page information from the source 2643 * struct page to the destination struct page. If it fails to migrate the 2644 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2645 * src array. 2646 * 2647 * At this point all successfully migrated pages have an entry in the src 2648 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2649 * array entry with MIGRATE_PFN_VALID flag set. 2650 * 2651 * Once migrate_vma_pages() returns the caller may inspect which pages were 2652 * successfully migrated, and which were not. Successfully migrated pages will 2653 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2654 * 2655 * It is safe to update device page table after migrate_vma_pages() because 2656 * both destination and source page are still locked, and the mmap_lock is held 2657 * in read mode (hence no one can unmap the range being migrated). 2658 * 2659 * Once the caller is done cleaning up things and updating its page table (if it 2660 * chose to do so, this is not an obligation) it finally calls 2661 * migrate_vma_finalize() to update the CPU page table to point to new pages 2662 * for successfully migrated pages or otherwise restore the CPU page table to 2663 * point to the original source pages. 2664 */ 2665 int migrate_vma_setup(struct migrate_vma *args) 2666 { 2667 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2668 2669 args->start &= PAGE_MASK; 2670 args->end &= PAGE_MASK; 2671 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2672 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2673 return -EINVAL; 2674 if (nr_pages <= 0) 2675 return -EINVAL; 2676 if (args->start < args->vma->vm_start || 2677 args->start >= args->vma->vm_end) 2678 return -EINVAL; 2679 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2680 return -EINVAL; 2681 if (!args->src || !args->dst) 2682 return -EINVAL; 2683 2684 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2685 args->cpages = 0; 2686 args->npages = 0; 2687 2688 migrate_vma_collect(args); 2689 2690 if (args->cpages) 2691 migrate_vma_prepare(args); 2692 if (args->cpages) 2693 migrate_vma_unmap(args); 2694 2695 /* 2696 * At this point pages are locked and unmapped, and thus they have 2697 * stable content and can safely be copied to destination memory that 2698 * is allocated by the drivers. 2699 */ 2700 return 0; 2701 2702 } 2703 EXPORT_SYMBOL(migrate_vma_setup); 2704 2705 /* 2706 * This code closely matches the code in: 2707 * __handle_mm_fault() 2708 * handle_pte_fault() 2709 * do_anonymous_page() 2710 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2711 * private page. 2712 */ 2713 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2714 unsigned long addr, 2715 struct page *page, 2716 unsigned long *src) 2717 { 2718 struct vm_area_struct *vma = migrate->vma; 2719 struct mm_struct *mm = vma->vm_mm; 2720 bool flush = false; 2721 spinlock_t *ptl; 2722 pte_t entry; 2723 pgd_t *pgdp; 2724 p4d_t *p4dp; 2725 pud_t *pudp; 2726 pmd_t *pmdp; 2727 pte_t *ptep; 2728 2729 /* Only allow populating anonymous memory */ 2730 if (!vma_is_anonymous(vma)) 2731 goto abort; 2732 2733 pgdp = pgd_offset(mm, addr); 2734 p4dp = p4d_alloc(mm, pgdp, addr); 2735 if (!p4dp) 2736 goto abort; 2737 pudp = pud_alloc(mm, p4dp, addr); 2738 if (!pudp) 2739 goto abort; 2740 pmdp = pmd_alloc(mm, pudp, addr); 2741 if (!pmdp) 2742 goto abort; 2743 2744 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2745 goto abort; 2746 2747 /* 2748 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2749 * pte_offset_map() on pmds where a huge pmd might be created 2750 * from a different thread. 2751 * 2752 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2753 * parallel threads are excluded by other means. 2754 * 2755 * Here we only have mmap_read_lock(mm). 2756 */ 2757 if (pte_alloc(mm, pmdp)) 2758 goto abort; 2759 2760 /* See the comment in pte_alloc_one_map() */ 2761 if (unlikely(pmd_trans_unstable(pmdp))) 2762 goto abort; 2763 2764 if (unlikely(anon_vma_prepare(vma))) 2765 goto abort; 2766 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2767 goto abort; 2768 2769 /* 2770 * The memory barrier inside __SetPageUptodate makes sure that 2771 * preceding stores to the page contents become visible before 2772 * the set_pte_at() write. 2773 */ 2774 __SetPageUptodate(page); 2775 2776 if (is_zone_device_page(page)) { 2777 if (is_device_private_page(page)) { 2778 swp_entry_t swp_entry; 2779 2780 if (vma->vm_flags & VM_WRITE) 2781 swp_entry = make_writable_device_private_entry( 2782 page_to_pfn(page)); 2783 else 2784 swp_entry = make_readable_device_private_entry( 2785 page_to_pfn(page)); 2786 entry = swp_entry_to_pte(swp_entry); 2787 } else { 2788 /* 2789 * For now we only support migrating to un-addressable 2790 * device memory. 2791 */ 2792 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 2793 goto abort; 2794 } 2795 } else { 2796 entry = mk_pte(page, vma->vm_page_prot); 2797 if (vma->vm_flags & VM_WRITE) 2798 entry = pte_mkwrite(pte_mkdirty(entry)); 2799 } 2800 2801 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2802 2803 if (check_stable_address_space(mm)) 2804 goto unlock_abort; 2805 2806 if (pte_present(*ptep)) { 2807 unsigned long pfn = pte_pfn(*ptep); 2808 2809 if (!is_zero_pfn(pfn)) 2810 goto unlock_abort; 2811 flush = true; 2812 } else if (!pte_none(*ptep)) 2813 goto unlock_abort; 2814 2815 /* 2816 * Check for userfaultfd but do not deliver the fault. Instead, 2817 * just back off. 2818 */ 2819 if (userfaultfd_missing(vma)) 2820 goto unlock_abort; 2821 2822 inc_mm_counter(mm, MM_ANONPAGES); 2823 page_add_new_anon_rmap(page, vma, addr, false); 2824 if (!is_zone_device_page(page)) 2825 lru_cache_add_inactive_or_unevictable(page, vma); 2826 get_page(page); 2827 2828 if (flush) { 2829 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2830 ptep_clear_flush_notify(vma, addr, ptep); 2831 set_pte_at_notify(mm, addr, ptep, entry); 2832 update_mmu_cache(vma, addr, ptep); 2833 } else { 2834 /* No need to invalidate - it was non-present before */ 2835 set_pte_at(mm, addr, ptep, entry); 2836 update_mmu_cache(vma, addr, ptep); 2837 } 2838 2839 pte_unmap_unlock(ptep, ptl); 2840 *src = MIGRATE_PFN_MIGRATE; 2841 return; 2842 2843 unlock_abort: 2844 pte_unmap_unlock(ptep, ptl); 2845 abort: 2846 *src &= ~MIGRATE_PFN_MIGRATE; 2847 } 2848 2849 /** 2850 * migrate_vma_pages() - migrate meta-data from src page to dst page 2851 * @migrate: migrate struct containing all migration information 2852 * 2853 * This migrates struct page meta-data from source struct page to destination 2854 * struct page. This effectively finishes the migration from source page to the 2855 * destination page. 2856 */ 2857 void migrate_vma_pages(struct migrate_vma *migrate) 2858 { 2859 const unsigned long npages = migrate->npages; 2860 const unsigned long start = migrate->start; 2861 struct mmu_notifier_range range; 2862 unsigned long addr, i; 2863 bool notified = false; 2864 2865 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2866 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2867 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2868 struct address_space *mapping; 2869 int r; 2870 2871 if (!newpage) { 2872 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2873 continue; 2874 } 2875 2876 if (!page) { 2877 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2878 continue; 2879 if (!notified) { 2880 notified = true; 2881 2882 mmu_notifier_range_init_owner(&range, 2883 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 2884 migrate->vma->vm_mm, addr, migrate->end, 2885 migrate->pgmap_owner); 2886 mmu_notifier_invalidate_range_start(&range); 2887 } 2888 migrate_vma_insert_page(migrate, addr, newpage, 2889 &migrate->src[i]); 2890 continue; 2891 } 2892 2893 mapping = page_mapping(page); 2894 2895 if (is_zone_device_page(newpage)) { 2896 if (is_device_private_page(newpage)) { 2897 /* 2898 * For now only support private anonymous when 2899 * migrating to un-addressable device memory. 2900 */ 2901 if (mapping) { 2902 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2903 continue; 2904 } 2905 } else { 2906 /* 2907 * Other types of ZONE_DEVICE page are not 2908 * supported. 2909 */ 2910 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2911 continue; 2912 } 2913 } 2914 2915 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2916 if (r != MIGRATEPAGE_SUCCESS) 2917 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2918 } 2919 2920 /* 2921 * No need to double call mmu_notifier->invalidate_range() callback as 2922 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2923 * did already call it. 2924 */ 2925 if (notified) 2926 mmu_notifier_invalidate_range_only_end(&range); 2927 } 2928 EXPORT_SYMBOL(migrate_vma_pages); 2929 2930 /** 2931 * migrate_vma_finalize() - restore CPU page table entry 2932 * @migrate: migrate struct containing all migration information 2933 * 2934 * This replaces the special migration pte entry with either a mapping to the 2935 * new page if migration was successful for that page, or to the original page 2936 * otherwise. 2937 * 2938 * This also unlocks the pages and puts them back on the lru, or drops the extra 2939 * refcount, for device pages. 2940 */ 2941 void migrate_vma_finalize(struct migrate_vma *migrate) 2942 { 2943 const unsigned long npages = migrate->npages; 2944 unsigned long i; 2945 2946 for (i = 0; i < npages; i++) { 2947 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2948 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2949 2950 if (!page) { 2951 if (newpage) { 2952 unlock_page(newpage); 2953 put_page(newpage); 2954 } 2955 continue; 2956 } 2957 2958 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2959 if (newpage) { 2960 unlock_page(newpage); 2961 put_page(newpage); 2962 } 2963 newpage = page; 2964 } 2965 2966 remove_migration_ptes(page, newpage, false); 2967 unlock_page(page); 2968 2969 if (is_zone_device_page(page)) 2970 put_page(page); 2971 else 2972 putback_lru_page(page); 2973 2974 if (newpage != page) { 2975 unlock_page(newpage); 2976 if (is_zone_device_page(newpage)) 2977 put_page(newpage); 2978 else 2979 putback_lru_page(newpage); 2980 } 2981 } 2982 } 2983 EXPORT_SYMBOL(migrate_vma_finalize); 2984 #endif /* CONFIG_DEVICE_PRIVATE */ 2985