xref: /openbmc/linux/mm/migrate.c (revision 69868c3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	__SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	__ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				__ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 				 unsigned long addr, void *old)
176 {
177 	struct page_vma_mapped_walk pvmw = {
178 		.page = old,
179 		.vma = vma,
180 		.address = addr,
181 		.flags = PVMW_SYNC | PVMW_MIGRATION,
182 	};
183 	struct page *new;
184 	pte_t pte;
185 	swp_entry_t entry;
186 
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		if (PageKsm(page))
190 			new = page;
191 		else
192 			new = page - pvmw.page->index +
193 				linear_page_index(vma, pvmw.address);
194 
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 		/* PMD-mapped THP migration entry */
197 		if (!pvmw.pte) {
198 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 			remove_migration_pmd(&pvmw, new);
200 			continue;
201 		}
202 #endif
203 
204 		get_page(new);
205 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 		if (pte_swp_soft_dirty(*pvmw.pte))
207 			pte = pte_mksoft_dirty(pte);
208 
209 		/*
210 		 * Recheck VMA as permissions can change since migration started
211 		 */
212 		entry = pte_to_swp_entry(*pvmw.pte);
213 		if (is_writable_migration_entry(entry))
214 			pte = maybe_mkwrite(pte, vma);
215 		else if (pte_swp_uffd_wp(*pvmw.pte))
216 			pte = pte_mkuffd_wp(pte);
217 
218 		if (unlikely(is_device_private_page(new))) {
219 			if (pte_write(pte))
220 				entry = make_writable_device_private_entry(
221 							page_to_pfn(new));
222 			else
223 				entry = make_readable_device_private_entry(
224 							page_to_pfn(new));
225 			pte = swp_entry_to_pte(entry);
226 			if (pte_swp_soft_dirty(*pvmw.pte))
227 				pte = pte_swp_mksoft_dirty(pte);
228 			if (pte_swp_uffd_wp(*pvmw.pte))
229 				pte = pte_swp_mkuffd_wp(pte);
230 		}
231 
232 #ifdef CONFIG_HUGETLB_PAGE
233 		if (PageHuge(new)) {
234 			unsigned int shift = huge_page_shift(hstate_vma(vma));
235 
236 			pte = pte_mkhuge(pte);
237 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239 			if (PageAnon(new))
240 				hugepage_add_anon_rmap(new, vma, pvmw.address);
241 			else
242 				page_dup_rmap(new, true);
243 		} else
244 #endif
245 		{
246 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247 
248 			if (PageAnon(new))
249 				page_add_anon_rmap(new, vma, pvmw.address, false);
250 			else
251 				page_add_file_rmap(new, false);
252 		}
253 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
254 			mlock_vma_page(new);
255 
256 		if (PageTransHuge(page) && PageMlocked(page))
257 			clear_page_mlock(page);
258 
259 		/* No need to invalidate - it was non-present before */
260 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
261 	}
262 
263 	return true;
264 }
265 
266 /*
267  * Get rid of all migration entries and replace them by
268  * references to the indicated page.
269  */
270 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
271 {
272 	struct rmap_walk_control rwc = {
273 		.rmap_one = remove_migration_pte,
274 		.arg = old,
275 	};
276 
277 	if (locked)
278 		rmap_walk_locked(new, &rwc);
279 	else
280 		rmap_walk(new, &rwc);
281 }
282 
283 /*
284  * Something used the pte of a page under migration. We need to
285  * get to the page and wait until migration is finished.
286  * When we return from this function the fault will be retried.
287  */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289 				spinlock_t *ptl)
290 {
291 	pte_t pte;
292 	swp_entry_t entry;
293 	struct page *page;
294 
295 	spin_lock(ptl);
296 	pte = *ptep;
297 	if (!is_swap_pte(pte))
298 		goto out;
299 
300 	entry = pte_to_swp_entry(pte);
301 	if (!is_migration_entry(entry))
302 		goto out;
303 
304 	page = pfn_swap_entry_to_page(entry);
305 	page = compound_head(page);
306 
307 	/*
308 	 * Once page cache replacement of page migration started, page_count
309 	 * is zero; but we must not call put_and_wait_on_page_locked() without
310 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
311 	 */
312 	if (!get_page_unless_zero(page))
313 		goto out;
314 	pte_unmap_unlock(ptep, ptl);
315 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
316 	return;
317 out:
318 	pte_unmap_unlock(ptep, ptl);
319 }
320 
321 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
322 				unsigned long address)
323 {
324 	spinlock_t *ptl = pte_lockptr(mm, pmd);
325 	pte_t *ptep = pte_offset_map(pmd, address);
326 	__migration_entry_wait(mm, ptep, ptl);
327 }
328 
329 void migration_entry_wait_huge(struct vm_area_struct *vma,
330 		struct mm_struct *mm, pte_t *pte)
331 {
332 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
333 	__migration_entry_wait(mm, pte, ptl);
334 }
335 
336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
337 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
338 {
339 	spinlock_t *ptl;
340 	struct page *page;
341 
342 	ptl = pmd_lock(mm, pmd);
343 	if (!is_pmd_migration_entry(*pmd))
344 		goto unlock;
345 	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
346 	if (!get_page_unless_zero(page))
347 		goto unlock;
348 	spin_unlock(ptl);
349 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
350 	return;
351 unlock:
352 	spin_unlock(ptl);
353 }
354 #endif
355 
356 static int expected_page_refs(struct address_space *mapping, struct page *page)
357 {
358 	int expected_count = 1;
359 
360 	/*
361 	 * Device private pages have an extra refcount as they are
362 	 * ZONE_DEVICE pages.
363 	 */
364 	expected_count += is_device_private_page(page);
365 	if (mapping)
366 		expected_count += thp_nr_pages(page) + page_has_private(page);
367 
368 	return expected_count;
369 }
370 
371 /*
372  * Replace the page in the mapping.
373  *
374  * The number of remaining references must be:
375  * 1 for anonymous pages without a mapping
376  * 2 for pages with a mapping
377  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
378  */
379 int migrate_page_move_mapping(struct address_space *mapping,
380 		struct page *newpage, struct page *page, int extra_count)
381 {
382 	XA_STATE(xas, &mapping->i_pages, page_index(page));
383 	struct zone *oldzone, *newzone;
384 	int dirty;
385 	int expected_count = expected_page_refs(mapping, page) + extra_count;
386 	int nr = thp_nr_pages(page);
387 
388 	if (!mapping) {
389 		/* Anonymous page without mapping */
390 		if (page_count(page) != expected_count)
391 			return -EAGAIN;
392 
393 		/* No turning back from here */
394 		newpage->index = page->index;
395 		newpage->mapping = page->mapping;
396 		if (PageSwapBacked(page))
397 			__SetPageSwapBacked(newpage);
398 
399 		return MIGRATEPAGE_SUCCESS;
400 	}
401 
402 	oldzone = page_zone(page);
403 	newzone = page_zone(newpage);
404 
405 	xas_lock_irq(&xas);
406 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
407 		xas_unlock_irq(&xas);
408 		return -EAGAIN;
409 	}
410 
411 	if (!page_ref_freeze(page, expected_count)) {
412 		xas_unlock_irq(&xas);
413 		return -EAGAIN;
414 	}
415 
416 	/*
417 	 * Now we know that no one else is looking at the page:
418 	 * no turning back from here.
419 	 */
420 	newpage->index = page->index;
421 	newpage->mapping = page->mapping;
422 	page_ref_add(newpage, nr); /* add cache reference */
423 	if (PageSwapBacked(page)) {
424 		__SetPageSwapBacked(newpage);
425 		if (PageSwapCache(page)) {
426 			SetPageSwapCache(newpage);
427 			set_page_private(newpage, page_private(page));
428 		}
429 	} else {
430 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
431 	}
432 
433 	/* Move dirty while page refs frozen and newpage not yet exposed */
434 	dirty = PageDirty(page);
435 	if (dirty) {
436 		ClearPageDirty(page);
437 		SetPageDirty(newpage);
438 	}
439 
440 	xas_store(&xas, newpage);
441 	if (PageTransHuge(page)) {
442 		int i;
443 
444 		for (i = 1; i < nr; i++) {
445 			xas_next(&xas);
446 			xas_store(&xas, newpage);
447 		}
448 	}
449 
450 	/*
451 	 * Drop cache reference from old page by unfreezing
452 	 * to one less reference.
453 	 * We know this isn't the last reference.
454 	 */
455 	page_ref_unfreeze(page, expected_count - nr);
456 
457 	xas_unlock(&xas);
458 	/* Leave irq disabled to prevent preemption while updating stats */
459 
460 	/*
461 	 * If moved to a different zone then also account
462 	 * the page for that zone. Other VM counters will be
463 	 * taken care of when we establish references to the
464 	 * new page and drop references to the old page.
465 	 *
466 	 * Note that anonymous pages are accounted for
467 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468 	 * are mapped to swap space.
469 	 */
470 	if (newzone != oldzone) {
471 		struct lruvec *old_lruvec, *new_lruvec;
472 		struct mem_cgroup *memcg;
473 
474 		memcg = page_memcg(page);
475 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477 
478 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
481 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483 		}
484 #ifdef CONFIG_SWAP
485 		if (PageSwapCache(page)) {
486 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488 		}
489 #endif
490 		if (dirty && mapping_can_writeback(mapping)) {
491 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495 		}
496 	}
497 	local_irq_enable();
498 
499 	return MIGRATEPAGE_SUCCESS;
500 }
501 EXPORT_SYMBOL(migrate_page_move_mapping);
502 
503 /*
504  * The expected number of remaining references is the same as that
505  * of migrate_page_move_mapping().
506  */
507 int migrate_huge_page_move_mapping(struct address_space *mapping,
508 				   struct page *newpage, struct page *page)
509 {
510 	XA_STATE(xas, &mapping->i_pages, page_index(page));
511 	int expected_count;
512 
513 	xas_lock_irq(&xas);
514 	expected_count = 2 + page_has_private(page);
515 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
516 		xas_unlock_irq(&xas);
517 		return -EAGAIN;
518 	}
519 
520 	if (!page_ref_freeze(page, expected_count)) {
521 		xas_unlock_irq(&xas);
522 		return -EAGAIN;
523 	}
524 
525 	newpage->index = page->index;
526 	newpage->mapping = page->mapping;
527 
528 	get_page(newpage);
529 
530 	xas_store(&xas, newpage);
531 
532 	page_ref_unfreeze(page, expected_count - 1);
533 
534 	xas_unlock_irq(&xas);
535 
536 	return MIGRATEPAGE_SUCCESS;
537 }
538 
539 /*
540  * Copy the page to its new location
541  */
542 void migrate_page_states(struct page *newpage, struct page *page)
543 {
544 	int cpupid;
545 
546 	if (PageError(page))
547 		SetPageError(newpage);
548 	if (PageReferenced(page))
549 		SetPageReferenced(newpage);
550 	if (PageUptodate(page))
551 		SetPageUptodate(newpage);
552 	if (TestClearPageActive(page)) {
553 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
554 		SetPageActive(newpage);
555 	} else if (TestClearPageUnevictable(page))
556 		SetPageUnevictable(newpage);
557 	if (PageWorkingset(page))
558 		SetPageWorkingset(newpage);
559 	if (PageChecked(page))
560 		SetPageChecked(newpage);
561 	if (PageMappedToDisk(page))
562 		SetPageMappedToDisk(newpage);
563 
564 	/* Move dirty on pages not done by migrate_page_move_mapping() */
565 	if (PageDirty(page))
566 		SetPageDirty(newpage);
567 
568 	if (page_is_young(page))
569 		set_page_young(newpage);
570 	if (page_is_idle(page))
571 		set_page_idle(newpage);
572 
573 	/*
574 	 * Copy NUMA information to the new page, to prevent over-eager
575 	 * future migrations of this same page.
576 	 */
577 	cpupid = page_cpupid_xchg_last(page, -1);
578 	page_cpupid_xchg_last(newpage, cpupid);
579 
580 	ksm_migrate_page(newpage, page);
581 	/*
582 	 * Please do not reorder this without considering how mm/ksm.c's
583 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
584 	 */
585 	if (PageSwapCache(page))
586 		ClearPageSwapCache(page);
587 	ClearPagePrivate(page);
588 
589 	/* page->private contains hugetlb specific flags */
590 	if (!PageHuge(page))
591 		set_page_private(page, 0);
592 
593 	/*
594 	 * If any waiters have accumulated on the new page then
595 	 * wake them up.
596 	 */
597 	if (PageWriteback(newpage))
598 		end_page_writeback(newpage);
599 
600 	/*
601 	 * PG_readahead shares the same bit with PG_reclaim.  The above
602 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
603 	 * bit after that.
604 	 */
605 	if (PageReadahead(page))
606 		SetPageReadahead(newpage);
607 
608 	copy_page_owner(page, newpage);
609 
610 	if (!PageHuge(page))
611 		mem_cgroup_migrate(page, newpage);
612 }
613 EXPORT_SYMBOL(migrate_page_states);
614 
615 void migrate_page_copy(struct page *newpage, struct page *page)
616 {
617 	if (PageHuge(page) || PageTransHuge(page))
618 		copy_huge_page(newpage, page);
619 	else
620 		copy_highpage(newpage, page);
621 
622 	migrate_page_states(newpage, page);
623 }
624 EXPORT_SYMBOL(migrate_page_copy);
625 
626 /************************************************************
627  *                    Migration functions
628  ***********************************************************/
629 
630 /*
631  * Common logic to directly migrate a single LRU page suitable for
632  * pages that do not use PagePrivate/PagePrivate2.
633  *
634  * Pages are locked upon entry and exit.
635  */
636 int migrate_page(struct address_space *mapping,
637 		struct page *newpage, struct page *page,
638 		enum migrate_mode mode)
639 {
640 	int rc;
641 
642 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
643 
644 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
645 
646 	if (rc != MIGRATEPAGE_SUCCESS)
647 		return rc;
648 
649 	if (mode != MIGRATE_SYNC_NO_COPY)
650 		migrate_page_copy(newpage, page);
651 	else
652 		migrate_page_states(newpage, page);
653 	return MIGRATEPAGE_SUCCESS;
654 }
655 EXPORT_SYMBOL(migrate_page);
656 
657 #ifdef CONFIG_BLOCK
658 /* Returns true if all buffers are successfully locked */
659 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
660 							enum migrate_mode mode)
661 {
662 	struct buffer_head *bh = head;
663 
664 	/* Simple case, sync compaction */
665 	if (mode != MIGRATE_ASYNC) {
666 		do {
667 			lock_buffer(bh);
668 			bh = bh->b_this_page;
669 
670 		} while (bh != head);
671 
672 		return true;
673 	}
674 
675 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
676 	do {
677 		if (!trylock_buffer(bh)) {
678 			/*
679 			 * We failed to lock the buffer and cannot stall in
680 			 * async migration. Release the taken locks
681 			 */
682 			struct buffer_head *failed_bh = bh;
683 			bh = head;
684 			while (bh != failed_bh) {
685 				unlock_buffer(bh);
686 				bh = bh->b_this_page;
687 			}
688 			return false;
689 		}
690 
691 		bh = bh->b_this_page;
692 	} while (bh != head);
693 	return true;
694 }
695 
696 static int __buffer_migrate_page(struct address_space *mapping,
697 		struct page *newpage, struct page *page, enum migrate_mode mode,
698 		bool check_refs)
699 {
700 	struct buffer_head *bh, *head;
701 	int rc;
702 	int expected_count;
703 
704 	if (!page_has_buffers(page))
705 		return migrate_page(mapping, newpage, page, mode);
706 
707 	/* Check whether page does not have extra refs before we do more work */
708 	expected_count = expected_page_refs(mapping, page);
709 	if (page_count(page) != expected_count)
710 		return -EAGAIN;
711 
712 	head = page_buffers(page);
713 	if (!buffer_migrate_lock_buffers(head, mode))
714 		return -EAGAIN;
715 
716 	if (check_refs) {
717 		bool busy;
718 		bool invalidated = false;
719 
720 recheck_buffers:
721 		busy = false;
722 		spin_lock(&mapping->private_lock);
723 		bh = head;
724 		do {
725 			if (atomic_read(&bh->b_count)) {
726 				busy = true;
727 				break;
728 			}
729 			bh = bh->b_this_page;
730 		} while (bh != head);
731 		if (busy) {
732 			if (invalidated) {
733 				rc = -EAGAIN;
734 				goto unlock_buffers;
735 			}
736 			spin_unlock(&mapping->private_lock);
737 			invalidate_bh_lrus();
738 			invalidated = true;
739 			goto recheck_buffers;
740 		}
741 	}
742 
743 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
744 	if (rc != MIGRATEPAGE_SUCCESS)
745 		goto unlock_buffers;
746 
747 	attach_page_private(newpage, detach_page_private(page));
748 
749 	bh = head;
750 	do {
751 		set_bh_page(bh, newpage, bh_offset(bh));
752 		bh = bh->b_this_page;
753 
754 	} while (bh != head);
755 
756 	if (mode != MIGRATE_SYNC_NO_COPY)
757 		migrate_page_copy(newpage, page);
758 	else
759 		migrate_page_states(newpage, page);
760 
761 	rc = MIGRATEPAGE_SUCCESS;
762 unlock_buffers:
763 	if (check_refs)
764 		spin_unlock(&mapping->private_lock);
765 	bh = head;
766 	do {
767 		unlock_buffer(bh);
768 		bh = bh->b_this_page;
769 
770 	} while (bh != head);
771 
772 	return rc;
773 }
774 
775 /*
776  * Migration function for pages with buffers. This function can only be used
777  * if the underlying filesystem guarantees that no other references to "page"
778  * exist. For example attached buffer heads are accessed only under page lock.
779  */
780 int buffer_migrate_page(struct address_space *mapping,
781 		struct page *newpage, struct page *page, enum migrate_mode mode)
782 {
783 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
784 }
785 EXPORT_SYMBOL(buffer_migrate_page);
786 
787 /*
788  * Same as above except that this variant is more careful and checks that there
789  * are also no buffer head references. This function is the right one for
790  * mappings where buffer heads are directly looked up and referenced (such as
791  * block device mappings).
792  */
793 int buffer_migrate_page_norefs(struct address_space *mapping,
794 		struct page *newpage, struct page *page, enum migrate_mode mode)
795 {
796 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
797 }
798 #endif
799 
800 /*
801  * Writeback a page to clean the dirty state
802  */
803 static int writeout(struct address_space *mapping, struct page *page)
804 {
805 	struct writeback_control wbc = {
806 		.sync_mode = WB_SYNC_NONE,
807 		.nr_to_write = 1,
808 		.range_start = 0,
809 		.range_end = LLONG_MAX,
810 		.for_reclaim = 1
811 	};
812 	int rc;
813 
814 	if (!mapping->a_ops->writepage)
815 		/* No write method for the address space */
816 		return -EINVAL;
817 
818 	if (!clear_page_dirty_for_io(page))
819 		/* Someone else already triggered a write */
820 		return -EAGAIN;
821 
822 	/*
823 	 * A dirty page may imply that the underlying filesystem has
824 	 * the page on some queue. So the page must be clean for
825 	 * migration. Writeout may mean we loose the lock and the
826 	 * page state is no longer what we checked for earlier.
827 	 * At this point we know that the migration attempt cannot
828 	 * be successful.
829 	 */
830 	remove_migration_ptes(page, page, false);
831 
832 	rc = mapping->a_ops->writepage(page, &wbc);
833 
834 	if (rc != AOP_WRITEPAGE_ACTIVATE)
835 		/* unlocked. Relock */
836 		lock_page(page);
837 
838 	return (rc < 0) ? -EIO : -EAGAIN;
839 }
840 
841 /*
842  * Default handling if a filesystem does not provide a migration function.
843  */
844 static int fallback_migrate_page(struct address_space *mapping,
845 	struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847 	if (PageDirty(page)) {
848 		/* Only writeback pages in full synchronous migration */
849 		switch (mode) {
850 		case MIGRATE_SYNC:
851 		case MIGRATE_SYNC_NO_COPY:
852 			break;
853 		default:
854 			return -EBUSY;
855 		}
856 		return writeout(mapping, page);
857 	}
858 
859 	/*
860 	 * Buffers may be managed in a filesystem specific way.
861 	 * We must have no buffers or drop them.
862 	 */
863 	if (page_has_private(page) &&
864 	    !try_to_release_page(page, GFP_KERNEL))
865 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
866 
867 	return migrate_page(mapping, newpage, page, mode);
868 }
869 
870 /*
871  * Move a page to a newly allocated page
872  * The page is locked and all ptes have been successfully removed.
873  *
874  * The new page will have replaced the old page if this function
875  * is successful.
876  *
877  * Return value:
878  *   < 0 - error code
879  *  MIGRATEPAGE_SUCCESS - success
880  */
881 static int move_to_new_page(struct page *newpage, struct page *page,
882 				enum migrate_mode mode)
883 {
884 	struct address_space *mapping;
885 	int rc = -EAGAIN;
886 	bool is_lru = !__PageMovable(page);
887 
888 	VM_BUG_ON_PAGE(!PageLocked(page), page);
889 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
890 
891 	mapping = page_mapping(page);
892 
893 	if (likely(is_lru)) {
894 		if (!mapping)
895 			rc = migrate_page(mapping, newpage, page, mode);
896 		else if (mapping->a_ops->migratepage)
897 			/*
898 			 * Most pages have a mapping and most filesystems
899 			 * provide a migratepage callback. Anonymous pages
900 			 * are part of swap space which also has its own
901 			 * migratepage callback. This is the most common path
902 			 * for page migration.
903 			 */
904 			rc = mapping->a_ops->migratepage(mapping, newpage,
905 							page, mode);
906 		else
907 			rc = fallback_migrate_page(mapping, newpage,
908 							page, mode);
909 	} else {
910 		/*
911 		 * In case of non-lru page, it could be released after
912 		 * isolation step. In that case, we shouldn't try migration.
913 		 */
914 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
915 		if (!PageMovable(page)) {
916 			rc = MIGRATEPAGE_SUCCESS;
917 			__ClearPageIsolated(page);
918 			goto out;
919 		}
920 
921 		rc = mapping->a_ops->migratepage(mapping, newpage,
922 						page, mode);
923 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
924 			!PageIsolated(page));
925 	}
926 
927 	/*
928 	 * When successful, old pagecache page->mapping must be cleared before
929 	 * page is freed; but stats require that PageAnon be left as PageAnon.
930 	 */
931 	if (rc == MIGRATEPAGE_SUCCESS) {
932 		if (__PageMovable(page)) {
933 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
934 
935 			/*
936 			 * We clear PG_movable under page_lock so any compactor
937 			 * cannot try to migrate this page.
938 			 */
939 			__ClearPageIsolated(page);
940 		}
941 
942 		/*
943 		 * Anonymous and movable page->mapping will be cleared by
944 		 * free_pages_prepare so don't reset it here for keeping
945 		 * the type to work PageAnon, for example.
946 		 */
947 		if (!PageMappingFlags(page))
948 			page->mapping = NULL;
949 
950 		if (likely(!is_zone_device_page(newpage)))
951 			flush_dcache_page(newpage);
952 
953 	}
954 out:
955 	return rc;
956 }
957 
958 static int __unmap_and_move(struct page *page, struct page *newpage,
959 				int force, enum migrate_mode mode)
960 {
961 	int rc = -EAGAIN;
962 	int page_was_mapped = 0;
963 	struct anon_vma *anon_vma = NULL;
964 	bool is_lru = !__PageMovable(page);
965 
966 	if (!trylock_page(page)) {
967 		if (!force || mode == MIGRATE_ASYNC)
968 			goto out;
969 
970 		/*
971 		 * It's not safe for direct compaction to call lock_page.
972 		 * For example, during page readahead pages are added locked
973 		 * to the LRU. Later, when the IO completes the pages are
974 		 * marked uptodate and unlocked. However, the queueing
975 		 * could be merging multiple pages for one bio (e.g.
976 		 * mpage_readahead). If an allocation happens for the
977 		 * second or third page, the process can end up locking
978 		 * the same page twice and deadlocking. Rather than
979 		 * trying to be clever about what pages can be locked,
980 		 * avoid the use of lock_page for direct compaction
981 		 * altogether.
982 		 */
983 		if (current->flags & PF_MEMALLOC)
984 			goto out;
985 
986 		lock_page(page);
987 	}
988 
989 	if (PageWriteback(page)) {
990 		/*
991 		 * Only in the case of a full synchronous migration is it
992 		 * necessary to wait for PageWriteback. In the async case,
993 		 * the retry loop is too short and in the sync-light case,
994 		 * the overhead of stalling is too much
995 		 */
996 		switch (mode) {
997 		case MIGRATE_SYNC:
998 		case MIGRATE_SYNC_NO_COPY:
999 			break;
1000 		default:
1001 			rc = -EBUSY;
1002 			goto out_unlock;
1003 		}
1004 		if (!force)
1005 			goto out_unlock;
1006 		wait_on_page_writeback(page);
1007 	}
1008 
1009 	/*
1010 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1011 	 * we cannot notice that anon_vma is freed while we migrates a page.
1012 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1013 	 * of migration. File cache pages are no problem because of page_lock()
1014 	 * File Caches may use write_page() or lock_page() in migration, then,
1015 	 * just care Anon page here.
1016 	 *
1017 	 * Only page_get_anon_vma() understands the subtleties of
1018 	 * getting a hold on an anon_vma from outside one of its mms.
1019 	 * But if we cannot get anon_vma, then we won't need it anyway,
1020 	 * because that implies that the anon page is no longer mapped
1021 	 * (and cannot be remapped so long as we hold the page lock).
1022 	 */
1023 	if (PageAnon(page) && !PageKsm(page))
1024 		anon_vma = page_get_anon_vma(page);
1025 
1026 	/*
1027 	 * Block others from accessing the new page when we get around to
1028 	 * establishing additional references. We are usually the only one
1029 	 * holding a reference to newpage at this point. We used to have a BUG
1030 	 * here if trylock_page(newpage) fails, but would like to allow for
1031 	 * cases where there might be a race with the previous use of newpage.
1032 	 * This is much like races on refcount of oldpage: just don't BUG().
1033 	 */
1034 	if (unlikely(!trylock_page(newpage)))
1035 		goto out_unlock;
1036 
1037 	if (unlikely(!is_lru)) {
1038 		rc = move_to_new_page(newpage, page, mode);
1039 		goto out_unlock_both;
1040 	}
1041 
1042 	/*
1043 	 * Corner case handling:
1044 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1045 	 * and treated as swapcache but it has no rmap yet.
1046 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1047 	 * trigger a BUG.  So handle it here.
1048 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1049 	 * fs-private metadata. The page can be picked up due to memory
1050 	 * offlining.  Everywhere else except page reclaim, the page is
1051 	 * invisible to the vm, so the page can not be migrated.  So try to
1052 	 * free the metadata, so the page can be freed.
1053 	 */
1054 	if (!page->mapping) {
1055 		VM_BUG_ON_PAGE(PageAnon(page), page);
1056 		if (page_has_private(page)) {
1057 			try_to_free_buffers(page);
1058 			goto out_unlock_both;
1059 		}
1060 	} else if (page_mapped(page)) {
1061 		/* Establish migration ptes */
1062 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1063 				page);
1064 		try_to_migrate(page, 0);
1065 		page_was_mapped = 1;
1066 	}
1067 
1068 	if (!page_mapped(page))
1069 		rc = move_to_new_page(newpage, page, mode);
1070 
1071 	if (page_was_mapped)
1072 		remove_migration_ptes(page,
1073 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1074 
1075 out_unlock_both:
1076 	unlock_page(newpage);
1077 out_unlock:
1078 	/* Drop an anon_vma reference if we took one */
1079 	if (anon_vma)
1080 		put_anon_vma(anon_vma);
1081 	unlock_page(page);
1082 out:
1083 	/*
1084 	 * If migration is successful, decrease refcount of the newpage
1085 	 * which will not free the page because new page owner increased
1086 	 * refcounter. As well, if it is LRU page, add the page to LRU
1087 	 * list in here. Use the old state of the isolated source page to
1088 	 * determine if we migrated a LRU page. newpage was already unlocked
1089 	 * and possibly modified by its owner - don't rely on the page
1090 	 * state.
1091 	 */
1092 	if (rc == MIGRATEPAGE_SUCCESS) {
1093 		if (unlikely(!is_lru))
1094 			put_page(newpage);
1095 		else
1096 			putback_lru_page(newpage);
1097 	}
1098 
1099 	return rc;
1100 }
1101 
1102 /*
1103  * Obtain the lock on page, remove all ptes and migrate the page
1104  * to the newly allocated page in newpage.
1105  */
1106 static int unmap_and_move(new_page_t get_new_page,
1107 				   free_page_t put_new_page,
1108 				   unsigned long private, struct page *page,
1109 				   int force, enum migrate_mode mode,
1110 				   enum migrate_reason reason,
1111 				   struct list_head *ret)
1112 {
1113 	int rc = MIGRATEPAGE_SUCCESS;
1114 	struct page *newpage = NULL;
1115 
1116 	if (!thp_migration_supported() && PageTransHuge(page))
1117 		return -ENOSYS;
1118 
1119 	if (page_count(page) == 1) {
1120 		/* page was freed from under us. So we are done. */
1121 		ClearPageActive(page);
1122 		ClearPageUnevictable(page);
1123 		if (unlikely(__PageMovable(page))) {
1124 			lock_page(page);
1125 			if (!PageMovable(page))
1126 				__ClearPageIsolated(page);
1127 			unlock_page(page);
1128 		}
1129 		goto out;
1130 	}
1131 
1132 	newpage = get_new_page(page, private);
1133 	if (!newpage)
1134 		return -ENOMEM;
1135 
1136 	rc = __unmap_and_move(page, newpage, force, mode);
1137 	if (rc == MIGRATEPAGE_SUCCESS)
1138 		set_page_owner_migrate_reason(newpage, reason);
1139 
1140 out:
1141 	if (rc != -EAGAIN) {
1142 		/*
1143 		 * A page that has been migrated has all references
1144 		 * removed and will be freed. A page that has not been
1145 		 * migrated will have kept its references and be restored.
1146 		 */
1147 		list_del(&page->lru);
1148 	}
1149 
1150 	/*
1151 	 * If migration is successful, releases reference grabbed during
1152 	 * isolation. Otherwise, restore the page to right list unless
1153 	 * we want to retry.
1154 	 */
1155 	if (rc == MIGRATEPAGE_SUCCESS) {
1156 		/*
1157 		 * Compaction can migrate also non-LRU pages which are
1158 		 * not accounted to NR_ISOLATED_*. They can be recognized
1159 		 * as __PageMovable
1160 		 */
1161 		if (likely(!__PageMovable(page)))
1162 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1163 					page_is_file_lru(page), -thp_nr_pages(page));
1164 
1165 		if (reason != MR_MEMORY_FAILURE)
1166 			/*
1167 			 * We release the page in page_handle_poison.
1168 			 */
1169 			put_page(page);
1170 	} else {
1171 		if (rc != -EAGAIN)
1172 			list_add_tail(&page->lru, ret);
1173 
1174 		if (put_new_page)
1175 			put_new_page(newpage, private);
1176 		else
1177 			put_page(newpage);
1178 	}
1179 
1180 	return rc;
1181 }
1182 
1183 /*
1184  * Counterpart of unmap_and_move_page() for hugepage migration.
1185  *
1186  * This function doesn't wait the completion of hugepage I/O
1187  * because there is no race between I/O and migration for hugepage.
1188  * Note that currently hugepage I/O occurs only in direct I/O
1189  * where no lock is held and PG_writeback is irrelevant,
1190  * and writeback status of all subpages are counted in the reference
1191  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1192  * under direct I/O, the reference of the head page is 512 and a bit more.)
1193  * This means that when we try to migrate hugepage whose subpages are
1194  * doing direct I/O, some references remain after try_to_unmap() and
1195  * hugepage migration fails without data corruption.
1196  *
1197  * There is also no race when direct I/O is issued on the page under migration,
1198  * because then pte is replaced with migration swap entry and direct I/O code
1199  * will wait in the page fault for migration to complete.
1200  */
1201 static int unmap_and_move_huge_page(new_page_t get_new_page,
1202 				free_page_t put_new_page, unsigned long private,
1203 				struct page *hpage, int force,
1204 				enum migrate_mode mode, int reason,
1205 				struct list_head *ret)
1206 {
1207 	int rc = -EAGAIN;
1208 	int page_was_mapped = 0;
1209 	struct page *new_hpage;
1210 	struct anon_vma *anon_vma = NULL;
1211 	struct address_space *mapping = NULL;
1212 
1213 	/*
1214 	 * Migratability of hugepages depends on architectures and their size.
1215 	 * This check is necessary because some callers of hugepage migration
1216 	 * like soft offline and memory hotremove don't walk through page
1217 	 * tables or check whether the hugepage is pmd-based or not before
1218 	 * kicking migration.
1219 	 */
1220 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1221 		list_move_tail(&hpage->lru, ret);
1222 		return -ENOSYS;
1223 	}
1224 
1225 	if (page_count(hpage) == 1) {
1226 		/* page was freed from under us. So we are done. */
1227 		putback_active_hugepage(hpage);
1228 		return MIGRATEPAGE_SUCCESS;
1229 	}
1230 
1231 	new_hpage = get_new_page(hpage, private);
1232 	if (!new_hpage)
1233 		return -ENOMEM;
1234 
1235 	if (!trylock_page(hpage)) {
1236 		if (!force)
1237 			goto out;
1238 		switch (mode) {
1239 		case MIGRATE_SYNC:
1240 		case MIGRATE_SYNC_NO_COPY:
1241 			break;
1242 		default:
1243 			goto out;
1244 		}
1245 		lock_page(hpage);
1246 	}
1247 
1248 	/*
1249 	 * Check for pages which are in the process of being freed.  Without
1250 	 * page_mapping() set, hugetlbfs specific move page routine will not
1251 	 * be called and we could leak usage counts for subpools.
1252 	 */
1253 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1254 		rc = -EBUSY;
1255 		goto out_unlock;
1256 	}
1257 
1258 	if (PageAnon(hpage))
1259 		anon_vma = page_get_anon_vma(hpage);
1260 
1261 	if (unlikely(!trylock_page(new_hpage)))
1262 		goto put_anon;
1263 
1264 	if (page_mapped(hpage)) {
1265 		bool mapping_locked = false;
1266 		enum ttu_flags ttu = 0;
1267 
1268 		if (!PageAnon(hpage)) {
1269 			/*
1270 			 * In shared mappings, try_to_unmap could potentially
1271 			 * call huge_pmd_unshare.  Because of this, take
1272 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1273 			 * to let lower levels know we have taken the lock.
1274 			 */
1275 			mapping = hugetlb_page_mapping_lock_write(hpage);
1276 			if (unlikely(!mapping))
1277 				goto unlock_put_anon;
1278 
1279 			mapping_locked = true;
1280 			ttu |= TTU_RMAP_LOCKED;
1281 		}
1282 
1283 		try_to_migrate(hpage, ttu);
1284 		page_was_mapped = 1;
1285 
1286 		if (mapping_locked)
1287 			i_mmap_unlock_write(mapping);
1288 	}
1289 
1290 	if (!page_mapped(hpage))
1291 		rc = move_to_new_page(new_hpage, hpage, mode);
1292 
1293 	if (page_was_mapped)
1294 		remove_migration_ptes(hpage,
1295 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1296 
1297 unlock_put_anon:
1298 	unlock_page(new_hpage);
1299 
1300 put_anon:
1301 	if (anon_vma)
1302 		put_anon_vma(anon_vma);
1303 
1304 	if (rc == MIGRATEPAGE_SUCCESS) {
1305 		move_hugetlb_state(hpage, new_hpage, reason);
1306 		put_new_page = NULL;
1307 	}
1308 
1309 out_unlock:
1310 	unlock_page(hpage);
1311 out:
1312 	if (rc == MIGRATEPAGE_SUCCESS)
1313 		putback_active_hugepage(hpage);
1314 	else if (rc != -EAGAIN)
1315 		list_move_tail(&hpage->lru, ret);
1316 
1317 	/*
1318 	 * If migration was not successful and there's a freeing callback, use
1319 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1320 	 * isolation.
1321 	 */
1322 	if (put_new_page)
1323 		put_new_page(new_hpage, private);
1324 	else
1325 		putback_active_hugepage(new_hpage);
1326 
1327 	return rc;
1328 }
1329 
1330 static inline int try_split_thp(struct page *page, struct page **page2,
1331 				struct list_head *from)
1332 {
1333 	int rc = 0;
1334 
1335 	lock_page(page);
1336 	rc = split_huge_page_to_list(page, from);
1337 	unlock_page(page);
1338 	if (!rc)
1339 		list_safe_reset_next(page, *page2, lru);
1340 
1341 	return rc;
1342 }
1343 
1344 /*
1345  * migrate_pages - migrate the pages specified in a list, to the free pages
1346  *		   supplied as the target for the page migration
1347  *
1348  * @from:		The list of pages to be migrated.
1349  * @get_new_page:	The function used to allocate free pages to be used
1350  *			as the target of the page migration.
1351  * @put_new_page:	The function used to free target pages if migration
1352  *			fails, or NULL if no special handling is necessary.
1353  * @private:		Private data to be passed on to get_new_page()
1354  * @mode:		The migration mode that specifies the constraints for
1355  *			page migration, if any.
1356  * @reason:		The reason for page migration.
1357  *
1358  * The function returns after 10 attempts or if no pages are movable any more
1359  * because the list has become empty or no retryable pages exist any more.
1360  * It is caller's responsibility to call putback_movable_pages() to return pages
1361  * to the LRU or free list only if ret != 0.
1362  *
1363  * Returns the number of pages that were not migrated, or an error code.
1364  */
1365 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1366 		free_page_t put_new_page, unsigned long private,
1367 		enum migrate_mode mode, int reason)
1368 {
1369 	int retry = 1;
1370 	int thp_retry = 1;
1371 	int nr_failed = 0;
1372 	int nr_succeeded = 0;
1373 	int nr_thp_succeeded = 0;
1374 	int nr_thp_failed = 0;
1375 	int nr_thp_split = 0;
1376 	int pass = 0;
1377 	bool is_thp = false;
1378 	struct page *page;
1379 	struct page *page2;
1380 	int swapwrite = current->flags & PF_SWAPWRITE;
1381 	int rc, nr_subpages;
1382 	LIST_HEAD(ret_pages);
1383 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1384 
1385 	trace_mm_migrate_pages_start(mode, reason);
1386 
1387 	if (!swapwrite)
1388 		current->flags |= PF_SWAPWRITE;
1389 
1390 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1391 		retry = 0;
1392 		thp_retry = 0;
1393 
1394 		list_for_each_entry_safe(page, page2, from, lru) {
1395 retry:
1396 			/*
1397 			 * THP statistics is based on the source huge page.
1398 			 * Capture required information that might get lost
1399 			 * during migration.
1400 			 */
1401 			is_thp = PageTransHuge(page) && !PageHuge(page);
1402 			nr_subpages = thp_nr_pages(page);
1403 			cond_resched();
1404 
1405 			if (PageHuge(page))
1406 				rc = unmap_and_move_huge_page(get_new_page,
1407 						put_new_page, private, page,
1408 						pass > 2, mode, reason,
1409 						&ret_pages);
1410 			else
1411 				rc = unmap_and_move(get_new_page, put_new_page,
1412 						private, page, pass > 2, mode,
1413 						reason, &ret_pages);
1414 			/*
1415 			 * The rules are:
1416 			 *	Success: non hugetlb page will be freed, hugetlb
1417 			 *		 page will be put back
1418 			 *	-EAGAIN: stay on the from list
1419 			 *	-ENOMEM: stay on the from list
1420 			 *	Other errno: put on ret_pages list then splice to
1421 			 *		     from list
1422 			 */
1423 			switch(rc) {
1424 			/*
1425 			 * THP migration might be unsupported or the
1426 			 * allocation could've failed so we should
1427 			 * retry on the same page with the THP split
1428 			 * to base pages.
1429 			 *
1430 			 * Head page is retried immediately and tail
1431 			 * pages are added to the tail of the list so
1432 			 * we encounter them after the rest of the list
1433 			 * is processed.
1434 			 */
1435 			case -ENOSYS:
1436 				/* THP migration is unsupported */
1437 				if (is_thp) {
1438 					if (!try_split_thp(page, &page2, from)) {
1439 						nr_thp_split++;
1440 						goto retry;
1441 					}
1442 
1443 					nr_thp_failed++;
1444 					nr_failed += nr_subpages;
1445 					break;
1446 				}
1447 
1448 				/* Hugetlb migration is unsupported */
1449 				nr_failed++;
1450 				break;
1451 			case -ENOMEM:
1452 				/*
1453 				 * When memory is low, don't bother to try to migrate
1454 				 * other pages, just exit.
1455 				 * THP NUMA faulting doesn't split THP to retry.
1456 				 */
1457 				if (is_thp && !nosplit) {
1458 					if (!try_split_thp(page, &page2, from)) {
1459 						nr_thp_split++;
1460 						goto retry;
1461 					}
1462 
1463 					nr_thp_failed++;
1464 					nr_failed += nr_subpages;
1465 					goto out;
1466 				}
1467 				nr_failed++;
1468 				goto out;
1469 			case -EAGAIN:
1470 				if (is_thp) {
1471 					thp_retry++;
1472 					break;
1473 				}
1474 				retry++;
1475 				break;
1476 			case MIGRATEPAGE_SUCCESS:
1477 				if (is_thp) {
1478 					nr_thp_succeeded++;
1479 					nr_succeeded += nr_subpages;
1480 					break;
1481 				}
1482 				nr_succeeded++;
1483 				break;
1484 			default:
1485 				/*
1486 				 * Permanent failure (-EBUSY, etc.):
1487 				 * unlike -EAGAIN case, the failed page is
1488 				 * removed from migration page list and not
1489 				 * retried in the next outer loop.
1490 				 */
1491 				if (is_thp) {
1492 					nr_thp_failed++;
1493 					nr_failed += nr_subpages;
1494 					break;
1495 				}
1496 				nr_failed++;
1497 				break;
1498 			}
1499 		}
1500 	}
1501 	nr_failed += retry + thp_retry;
1502 	nr_thp_failed += thp_retry;
1503 	rc = nr_failed;
1504 out:
1505 	/*
1506 	 * Put the permanent failure page back to migration list, they
1507 	 * will be put back to the right list by the caller.
1508 	 */
1509 	list_splice(&ret_pages, from);
1510 
1511 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1512 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1513 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1514 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1515 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1516 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1517 			       nr_thp_failed, nr_thp_split, mode, reason);
1518 
1519 	if (!swapwrite)
1520 		current->flags &= ~PF_SWAPWRITE;
1521 
1522 	return rc;
1523 }
1524 
1525 struct page *alloc_migration_target(struct page *page, unsigned long private)
1526 {
1527 	struct migration_target_control *mtc;
1528 	gfp_t gfp_mask;
1529 	unsigned int order = 0;
1530 	struct page *new_page = NULL;
1531 	int nid;
1532 	int zidx;
1533 
1534 	mtc = (struct migration_target_control *)private;
1535 	gfp_mask = mtc->gfp_mask;
1536 	nid = mtc->nid;
1537 	if (nid == NUMA_NO_NODE)
1538 		nid = page_to_nid(page);
1539 
1540 	if (PageHuge(page)) {
1541 		struct hstate *h = page_hstate(compound_head(page));
1542 
1543 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1544 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1545 	}
1546 
1547 	if (PageTransHuge(page)) {
1548 		/*
1549 		 * clear __GFP_RECLAIM to make the migration callback
1550 		 * consistent with regular THP allocations.
1551 		 */
1552 		gfp_mask &= ~__GFP_RECLAIM;
1553 		gfp_mask |= GFP_TRANSHUGE;
1554 		order = HPAGE_PMD_ORDER;
1555 	}
1556 	zidx = zone_idx(page_zone(page));
1557 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1558 		gfp_mask |= __GFP_HIGHMEM;
1559 
1560 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1561 
1562 	if (new_page && PageTransHuge(new_page))
1563 		prep_transhuge_page(new_page);
1564 
1565 	return new_page;
1566 }
1567 
1568 #ifdef CONFIG_NUMA
1569 
1570 static int store_status(int __user *status, int start, int value, int nr)
1571 {
1572 	while (nr-- > 0) {
1573 		if (put_user(value, status + start))
1574 			return -EFAULT;
1575 		start++;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static int do_move_pages_to_node(struct mm_struct *mm,
1582 		struct list_head *pagelist, int node)
1583 {
1584 	int err;
1585 	struct migration_target_control mtc = {
1586 		.nid = node,
1587 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1588 	};
1589 
1590 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1591 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1592 	if (err)
1593 		putback_movable_pages(pagelist);
1594 	return err;
1595 }
1596 
1597 /*
1598  * Resolves the given address to a struct page, isolates it from the LRU and
1599  * puts it to the given pagelist.
1600  * Returns:
1601  *     errno - if the page cannot be found/isolated
1602  *     0 - when it doesn't have to be migrated because it is already on the
1603  *         target node
1604  *     1 - when it has been queued
1605  */
1606 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1607 		int node, struct list_head *pagelist, bool migrate_all)
1608 {
1609 	struct vm_area_struct *vma;
1610 	struct page *page;
1611 	unsigned int follflags;
1612 	int err;
1613 
1614 	mmap_read_lock(mm);
1615 	err = -EFAULT;
1616 	vma = find_vma(mm, addr);
1617 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1618 		goto out;
1619 
1620 	/* FOLL_DUMP to ignore special (like zero) pages */
1621 	follflags = FOLL_GET | FOLL_DUMP;
1622 	page = follow_page(vma, addr, follflags);
1623 
1624 	err = PTR_ERR(page);
1625 	if (IS_ERR(page))
1626 		goto out;
1627 
1628 	err = -ENOENT;
1629 	if (!page)
1630 		goto out;
1631 
1632 	err = 0;
1633 	if (page_to_nid(page) == node)
1634 		goto out_putpage;
1635 
1636 	err = -EACCES;
1637 	if (page_mapcount(page) > 1 && !migrate_all)
1638 		goto out_putpage;
1639 
1640 	if (PageHuge(page)) {
1641 		if (PageHead(page)) {
1642 			isolate_huge_page(page, pagelist);
1643 			err = 1;
1644 		}
1645 	} else {
1646 		struct page *head;
1647 
1648 		head = compound_head(page);
1649 		err = isolate_lru_page(head);
1650 		if (err)
1651 			goto out_putpage;
1652 
1653 		err = 1;
1654 		list_add_tail(&head->lru, pagelist);
1655 		mod_node_page_state(page_pgdat(head),
1656 			NR_ISOLATED_ANON + page_is_file_lru(head),
1657 			thp_nr_pages(head));
1658 	}
1659 out_putpage:
1660 	/*
1661 	 * Either remove the duplicate refcount from
1662 	 * isolate_lru_page() or drop the page ref if it was
1663 	 * not isolated.
1664 	 */
1665 	put_page(page);
1666 out:
1667 	mmap_read_unlock(mm);
1668 	return err;
1669 }
1670 
1671 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1672 		struct list_head *pagelist, int __user *status,
1673 		int start, int i, unsigned long nr_pages)
1674 {
1675 	int err;
1676 
1677 	if (list_empty(pagelist))
1678 		return 0;
1679 
1680 	err = do_move_pages_to_node(mm, pagelist, node);
1681 	if (err) {
1682 		/*
1683 		 * Positive err means the number of failed
1684 		 * pages to migrate.  Since we are going to
1685 		 * abort and return the number of non-migrated
1686 		 * pages, so need to include the rest of the
1687 		 * nr_pages that have not been attempted as
1688 		 * well.
1689 		 */
1690 		if (err > 0)
1691 			err += nr_pages - i - 1;
1692 		return err;
1693 	}
1694 	return store_status(status, start, node, i - start);
1695 }
1696 
1697 /*
1698  * Migrate an array of page address onto an array of nodes and fill
1699  * the corresponding array of status.
1700  */
1701 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1702 			 unsigned long nr_pages,
1703 			 const void __user * __user *pages,
1704 			 const int __user *nodes,
1705 			 int __user *status, int flags)
1706 {
1707 	int current_node = NUMA_NO_NODE;
1708 	LIST_HEAD(pagelist);
1709 	int start, i;
1710 	int err = 0, err1;
1711 
1712 	lru_cache_disable();
1713 
1714 	for (i = start = 0; i < nr_pages; i++) {
1715 		const void __user *p;
1716 		unsigned long addr;
1717 		int node;
1718 
1719 		err = -EFAULT;
1720 		if (get_user(p, pages + i))
1721 			goto out_flush;
1722 		if (get_user(node, nodes + i))
1723 			goto out_flush;
1724 		addr = (unsigned long)untagged_addr(p);
1725 
1726 		err = -ENODEV;
1727 		if (node < 0 || node >= MAX_NUMNODES)
1728 			goto out_flush;
1729 		if (!node_state(node, N_MEMORY))
1730 			goto out_flush;
1731 
1732 		err = -EACCES;
1733 		if (!node_isset(node, task_nodes))
1734 			goto out_flush;
1735 
1736 		if (current_node == NUMA_NO_NODE) {
1737 			current_node = node;
1738 			start = i;
1739 		} else if (node != current_node) {
1740 			err = move_pages_and_store_status(mm, current_node,
1741 					&pagelist, status, start, i, nr_pages);
1742 			if (err)
1743 				goto out;
1744 			start = i;
1745 			current_node = node;
1746 		}
1747 
1748 		/*
1749 		 * Errors in the page lookup or isolation are not fatal and we simply
1750 		 * report them via status
1751 		 */
1752 		err = add_page_for_migration(mm, addr, current_node,
1753 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1754 
1755 		if (err > 0) {
1756 			/* The page is successfully queued for migration */
1757 			continue;
1758 		}
1759 
1760 		/*
1761 		 * If the page is already on the target node (!err), store the
1762 		 * node, otherwise, store the err.
1763 		 */
1764 		err = store_status(status, i, err ? : current_node, 1);
1765 		if (err)
1766 			goto out_flush;
1767 
1768 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1769 				status, start, i, nr_pages);
1770 		if (err)
1771 			goto out;
1772 		current_node = NUMA_NO_NODE;
1773 	}
1774 out_flush:
1775 	/* Make sure we do not overwrite the existing error */
1776 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1777 				status, start, i, nr_pages);
1778 	if (err >= 0)
1779 		err = err1;
1780 out:
1781 	lru_cache_enable();
1782 	return err;
1783 }
1784 
1785 /*
1786  * Determine the nodes of an array of pages and store it in an array of status.
1787  */
1788 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1789 				const void __user **pages, int *status)
1790 {
1791 	unsigned long i;
1792 
1793 	mmap_read_lock(mm);
1794 
1795 	for (i = 0; i < nr_pages; i++) {
1796 		unsigned long addr = (unsigned long)(*pages);
1797 		struct vm_area_struct *vma;
1798 		struct page *page;
1799 		int err = -EFAULT;
1800 
1801 		vma = vma_lookup(mm, addr);
1802 		if (!vma)
1803 			goto set_status;
1804 
1805 		/* FOLL_DUMP to ignore special (like zero) pages */
1806 		page = follow_page(vma, addr, FOLL_DUMP);
1807 
1808 		err = PTR_ERR(page);
1809 		if (IS_ERR(page))
1810 			goto set_status;
1811 
1812 		err = page ? page_to_nid(page) : -ENOENT;
1813 set_status:
1814 		*status = err;
1815 
1816 		pages++;
1817 		status++;
1818 	}
1819 
1820 	mmap_read_unlock(mm);
1821 }
1822 
1823 /*
1824  * Determine the nodes of a user array of pages and store it in
1825  * a user array of status.
1826  */
1827 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1828 			 const void __user * __user *pages,
1829 			 int __user *status)
1830 {
1831 #define DO_PAGES_STAT_CHUNK_NR 16
1832 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1833 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1834 
1835 	while (nr_pages) {
1836 		unsigned long chunk_nr;
1837 
1838 		chunk_nr = nr_pages;
1839 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1840 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1841 
1842 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1843 			break;
1844 
1845 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1846 
1847 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1848 			break;
1849 
1850 		pages += chunk_nr;
1851 		status += chunk_nr;
1852 		nr_pages -= chunk_nr;
1853 	}
1854 	return nr_pages ? -EFAULT : 0;
1855 }
1856 
1857 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1858 {
1859 	struct task_struct *task;
1860 	struct mm_struct *mm;
1861 
1862 	/*
1863 	 * There is no need to check if current process has the right to modify
1864 	 * the specified process when they are same.
1865 	 */
1866 	if (!pid) {
1867 		mmget(current->mm);
1868 		*mem_nodes = cpuset_mems_allowed(current);
1869 		return current->mm;
1870 	}
1871 
1872 	/* Find the mm_struct */
1873 	rcu_read_lock();
1874 	task = find_task_by_vpid(pid);
1875 	if (!task) {
1876 		rcu_read_unlock();
1877 		return ERR_PTR(-ESRCH);
1878 	}
1879 	get_task_struct(task);
1880 
1881 	/*
1882 	 * Check if this process has the right to modify the specified
1883 	 * process. Use the regular "ptrace_may_access()" checks.
1884 	 */
1885 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1886 		rcu_read_unlock();
1887 		mm = ERR_PTR(-EPERM);
1888 		goto out;
1889 	}
1890 	rcu_read_unlock();
1891 
1892 	mm = ERR_PTR(security_task_movememory(task));
1893 	if (IS_ERR(mm))
1894 		goto out;
1895 	*mem_nodes = cpuset_mems_allowed(task);
1896 	mm = get_task_mm(task);
1897 out:
1898 	put_task_struct(task);
1899 	if (!mm)
1900 		mm = ERR_PTR(-EINVAL);
1901 	return mm;
1902 }
1903 
1904 /*
1905  * Move a list of pages in the address space of the currently executing
1906  * process.
1907  */
1908 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1909 			     const void __user * __user *pages,
1910 			     const int __user *nodes,
1911 			     int __user *status, int flags)
1912 {
1913 	struct mm_struct *mm;
1914 	int err;
1915 	nodemask_t task_nodes;
1916 
1917 	/* Check flags */
1918 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1919 		return -EINVAL;
1920 
1921 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1922 		return -EPERM;
1923 
1924 	mm = find_mm_struct(pid, &task_nodes);
1925 	if (IS_ERR(mm))
1926 		return PTR_ERR(mm);
1927 
1928 	if (nodes)
1929 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1930 				    nodes, status, flags);
1931 	else
1932 		err = do_pages_stat(mm, nr_pages, pages, status);
1933 
1934 	mmput(mm);
1935 	return err;
1936 }
1937 
1938 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939 		const void __user * __user *, pages,
1940 		const int __user *, nodes,
1941 		int __user *, status, int, flags)
1942 {
1943 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944 }
1945 
1946 #ifdef CONFIG_COMPAT
1947 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948 		       compat_uptr_t __user *, pages32,
1949 		       const int __user *, nodes,
1950 		       int __user *, status,
1951 		       int, flags)
1952 {
1953 	const void __user * __user *pages;
1954 	int i;
1955 
1956 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957 	for (i = 0; i < nr_pages; i++) {
1958 		compat_uptr_t p;
1959 
1960 		if (get_user(p, pages32 + i) ||
1961 			put_user(compat_ptr(p), pages + i))
1962 			return -EFAULT;
1963 	}
1964 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965 }
1966 #endif /* CONFIG_COMPAT */
1967 
1968 #ifdef CONFIG_NUMA_BALANCING
1969 /*
1970  * Returns true if this is a safe migration target node for misplaced NUMA
1971  * pages. Currently it only checks the watermarks which crude
1972  */
1973 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974 				   unsigned long nr_migrate_pages)
1975 {
1976 	int z;
1977 
1978 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979 		struct zone *zone = pgdat->node_zones + z;
1980 
1981 		if (!populated_zone(zone))
1982 			continue;
1983 
1984 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985 		if (!zone_watermark_ok(zone, 0,
1986 				       high_wmark_pages(zone) +
1987 				       nr_migrate_pages,
1988 				       ZONE_MOVABLE, 0))
1989 			continue;
1990 		return true;
1991 	}
1992 	return false;
1993 }
1994 
1995 static struct page *alloc_misplaced_dst_page(struct page *page,
1996 					   unsigned long data)
1997 {
1998 	int nid = (int) data;
1999 	struct page *newpage;
2000 
2001 	newpage = __alloc_pages_node(nid,
2002 					 (GFP_HIGHUSER_MOVABLE |
2003 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2004 					  __GFP_NORETRY | __GFP_NOWARN) &
2005 					 ~__GFP_RECLAIM, 0);
2006 
2007 	return newpage;
2008 }
2009 
2010 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2011 						 unsigned long data)
2012 {
2013 	int nid = (int) data;
2014 	struct page *newpage;
2015 
2016 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2017 				   HPAGE_PMD_ORDER);
2018 	if (!newpage)
2019 		goto out;
2020 
2021 	prep_transhuge_page(newpage);
2022 
2023 out:
2024 	return newpage;
2025 }
2026 
2027 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2028 {
2029 	int page_lru;
2030 
2031 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2032 
2033 	/* Do not migrate THP mapped by multiple processes */
2034 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2035 		return 0;
2036 
2037 	/* Avoid migrating to a node that is nearly full */
2038 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2039 		return 0;
2040 
2041 	if (isolate_lru_page(page))
2042 		return 0;
2043 
2044 	page_lru = page_is_file_lru(page);
2045 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2046 				thp_nr_pages(page));
2047 
2048 	/*
2049 	 * Isolating the page has taken another reference, so the
2050 	 * caller's reference can be safely dropped without the page
2051 	 * disappearing underneath us during migration.
2052 	 */
2053 	put_page(page);
2054 	return 1;
2055 }
2056 
2057 /*
2058  * Attempt to migrate a misplaced page to the specified destination
2059  * node. Caller is expected to have an elevated reference count on
2060  * the page that will be dropped by this function before returning.
2061  */
2062 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2063 			   int node)
2064 {
2065 	pg_data_t *pgdat = NODE_DATA(node);
2066 	int isolated;
2067 	int nr_remaining;
2068 	LIST_HEAD(migratepages);
2069 	new_page_t *new;
2070 	bool compound;
2071 	unsigned int nr_pages = thp_nr_pages(page);
2072 
2073 	/*
2074 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2075 	 * be either base page or THP.  And it must be head page if it is
2076 	 * THP.
2077 	 */
2078 	compound = PageTransHuge(page);
2079 
2080 	if (compound)
2081 		new = alloc_misplaced_dst_page_thp;
2082 	else
2083 		new = alloc_misplaced_dst_page;
2084 
2085 	/*
2086 	 * Don't migrate file pages that are mapped in multiple processes
2087 	 * with execute permissions as they are probably shared libraries.
2088 	 */
2089 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2090 	    (vma->vm_flags & VM_EXEC))
2091 		goto out;
2092 
2093 	/*
2094 	 * Also do not migrate dirty pages as not all filesystems can move
2095 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2096 	 */
2097 	if (page_is_file_lru(page) && PageDirty(page))
2098 		goto out;
2099 
2100 	isolated = numamigrate_isolate_page(pgdat, page);
2101 	if (!isolated)
2102 		goto out;
2103 
2104 	list_add(&page->lru, &migratepages);
2105 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2106 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2107 	if (nr_remaining) {
2108 		if (!list_empty(&migratepages)) {
2109 			list_del(&page->lru);
2110 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2111 					page_is_file_lru(page), -nr_pages);
2112 			putback_lru_page(page);
2113 		}
2114 		isolated = 0;
2115 	} else
2116 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2117 	BUG_ON(!list_empty(&migratepages));
2118 	return isolated;
2119 
2120 out:
2121 	put_page(page);
2122 	return 0;
2123 }
2124 #endif /* CONFIG_NUMA_BALANCING */
2125 #endif /* CONFIG_NUMA */
2126 
2127 #ifdef CONFIG_DEVICE_PRIVATE
2128 static int migrate_vma_collect_skip(unsigned long start,
2129 				    unsigned long end,
2130 				    struct mm_walk *walk)
2131 {
2132 	struct migrate_vma *migrate = walk->private;
2133 	unsigned long addr;
2134 
2135 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2136 		migrate->dst[migrate->npages] = 0;
2137 		migrate->src[migrate->npages++] = 0;
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 static int migrate_vma_collect_hole(unsigned long start,
2144 				    unsigned long end,
2145 				    __always_unused int depth,
2146 				    struct mm_walk *walk)
2147 {
2148 	struct migrate_vma *migrate = walk->private;
2149 	unsigned long addr;
2150 
2151 	/* Only allow populating anonymous memory. */
2152 	if (!vma_is_anonymous(walk->vma))
2153 		return migrate_vma_collect_skip(start, end, walk);
2154 
2155 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2156 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2157 		migrate->dst[migrate->npages] = 0;
2158 		migrate->npages++;
2159 		migrate->cpages++;
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2166 				   unsigned long start,
2167 				   unsigned long end,
2168 				   struct mm_walk *walk)
2169 {
2170 	struct migrate_vma *migrate = walk->private;
2171 	struct vm_area_struct *vma = walk->vma;
2172 	struct mm_struct *mm = vma->vm_mm;
2173 	unsigned long addr = start, unmapped = 0;
2174 	spinlock_t *ptl;
2175 	pte_t *ptep;
2176 
2177 again:
2178 	if (pmd_none(*pmdp))
2179 		return migrate_vma_collect_hole(start, end, -1, walk);
2180 
2181 	if (pmd_trans_huge(*pmdp)) {
2182 		struct page *page;
2183 
2184 		ptl = pmd_lock(mm, pmdp);
2185 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2186 			spin_unlock(ptl);
2187 			goto again;
2188 		}
2189 
2190 		page = pmd_page(*pmdp);
2191 		if (is_huge_zero_page(page)) {
2192 			spin_unlock(ptl);
2193 			split_huge_pmd(vma, pmdp, addr);
2194 			if (pmd_trans_unstable(pmdp))
2195 				return migrate_vma_collect_skip(start, end,
2196 								walk);
2197 		} else {
2198 			int ret;
2199 
2200 			get_page(page);
2201 			spin_unlock(ptl);
2202 			if (unlikely(!trylock_page(page)))
2203 				return migrate_vma_collect_skip(start, end,
2204 								walk);
2205 			ret = split_huge_page(page);
2206 			unlock_page(page);
2207 			put_page(page);
2208 			if (ret)
2209 				return migrate_vma_collect_skip(start, end,
2210 								walk);
2211 			if (pmd_none(*pmdp))
2212 				return migrate_vma_collect_hole(start, end, -1,
2213 								walk);
2214 		}
2215 	}
2216 
2217 	if (unlikely(pmd_bad(*pmdp)))
2218 		return migrate_vma_collect_skip(start, end, walk);
2219 
2220 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2221 	arch_enter_lazy_mmu_mode();
2222 
2223 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2224 		unsigned long mpfn = 0, pfn;
2225 		struct page *page;
2226 		swp_entry_t entry;
2227 		pte_t pte;
2228 
2229 		pte = *ptep;
2230 
2231 		if (pte_none(pte)) {
2232 			if (vma_is_anonymous(vma)) {
2233 				mpfn = MIGRATE_PFN_MIGRATE;
2234 				migrate->cpages++;
2235 			}
2236 			goto next;
2237 		}
2238 
2239 		if (!pte_present(pte)) {
2240 			/*
2241 			 * Only care about unaddressable device page special
2242 			 * page table entry. Other special swap entries are not
2243 			 * migratable, and we ignore regular swapped page.
2244 			 */
2245 			entry = pte_to_swp_entry(pte);
2246 			if (!is_device_private_entry(entry))
2247 				goto next;
2248 
2249 			page = pfn_swap_entry_to_page(entry);
2250 			if (!(migrate->flags &
2251 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2252 			    page->pgmap->owner != migrate->pgmap_owner)
2253 				goto next;
2254 
2255 			mpfn = migrate_pfn(page_to_pfn(page)) |
2256 					MIGRATE_PFN_MIGRATE;
2257 			if (is_writable_device_private_entry(entry))
2258 				mpfn |= MIGRATE_PFN_WRITE;
2259 		} else {
2260 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2261 				goto next;
2262 			pfn = pte_pfn(pte);
2263 			if (is_zero_pfn(pfn)) {
2264 				mpfn = MIGRATE_PFN_MIGRATE;
2265 				migrate->cpages++;
2266 				goto next;
2267 			}
2268 			page = vm_normal_page(migrate->vma, addr, pte);
2269 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2270 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2271 		}
2272 
2273 		/* FIXME support THP */
2274 		if (!page || !page->mapping || PageTransCompound(page)) {
2275 			mpfn = 0;
2276 			goto next;
2277 		}
2278 
2279 		/*
2280 		 * By getting a reference on the page we pin it and that blocks
2281 		 * any kind of migration. Side effect is that it "freezes" the
2282 		 * pte.
2283 		 *
2284 		 * We drop this reference after isolating the page from the lru
2285 		 * for non device page (device page are not on the lru and thus
2286 		 * can't be dropped from it).
2287 		 */
2288 		get_page(page);
2289 		migrate->cpages++;
2290 
2291 		/*
2292 		 * Optimize for the common case where page is only mapped once
2293 		 * in one process. If we can lock the page, then we can safely
2294 		 * set up a special migration page table entry now.
2295 		 */
2296 		if (trylock_page(page)) {
2297 			pte_t swp_pte;
2298 
2299 			mpfn |= MIGRATE_PFN_LOCKED;
2300 			ptep_get_and_clear(mm, addr, ptep);
2301 
2302 			/* Setup special migration page table entry */
2303 			if (mpfn & MIGRATE_PFN_WRITE)
2304 				entry = make_writable_migration_entry(
2305 							page_to_pfn(page));
2306 			else
2307 				entry = make_readable_migration_entry(
2308 							page_to_pfn(page));
2309 			swp_pte = swp_entry_to_pte(entry);
2310 			if (pte_present(pte)) {
2311 				if (pte_soft_dirty(pte))
2312 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2313 				if (pte_uffd_wp(pte))
2314 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2315 			} else {
2316 				if (pte_swp_soft_dirty(pte))
2317 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2318 				if (pte_swp_uffd_wp(pte))
2319 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2320 			}
2321 			set_pte_at(mm, addr, ptep, swp_pte);
2322 
2323 			/*
2324 			 * This is like regular unmap: we remove the rmap and
2325 			 * drop page refcount. Page won't be freed, as we took
2326 			 * a reference just above.
2327 			 */
2328 			page_remove_rmap(page, false);
2329 			put_page(page);
2330 
2331 			if (pte_present(pte))
2332 				unmapped++;
2333 		}
2334 
2335 next:
2336 		migrate->dst[migrate->npages] = 0;
2337 		migrate->src[migrate->npages++] = mpfn;
2338 	}
2339 	arch_leave_lazy_mmu_mode();
2340 	pte_unmap_unlock(ptep - 1, ptl);
2341 
2342 	/* Only flush the TLB if we actually modified any entries */
2343 	if (unmapped)
2344 		flush_tlb_range(walk->vma, start, end);
2345 
2346 	return 0;
2347 }
2348 
2349 static const struct mm_walk_ops migrate_vma_walk_ops = {
2350 	.pmd_entry		= migrate_vma_collect_pmd,
2351 	.pte_hole		= migrate_vma_collect_hole,
2352 };
2353 
2354 /*
2355  * migrate_vma_collect() - collect pages over a range of virtual addresses
2356  * @migrate: migrate struct containing all migration information
2357  *
2358  * This will walk the CPU page table. For each virtual address backed by a
2359  * valid page, it updates the src array and takes a reference on the page, in
2360  * order to pin the page until we lock it and unmap it.
2361  */
2362 static void migrate_vma_collect(struct migrate_vma *migrate)
2363 {
2364 	struct mmu_notifier_range range;
2365 
2366 	/*
2367 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2368 	 * that the registered device driver can skip invalidating device
2369 	 * private page mappings that won't be migrated.
2370 	 */
2371 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2372 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2373 		migrate->pgmap_owner);
2374 	mmu_notifier_invalidate_range_start(&range);
2375 
2376 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2377 			&migrate_vma_walk_ops, migrate);
2378 
2379 	mmu_notifier_invalidate_range_end(&range);
2380 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2381 }
2382 
2383 /*
2384  * migrate_vma_check_page() - check if page is pinned or not
2385  * @page: struct page to check
2386  *
2387  * Pinned pages cannot be migrated. This is the same test as in
2388  * migrate_page_move_mapping(), except that here we allow migration of a
2389  * ZONE_DEVICE page.
2390  */
2391 static bool migrate_vma_check_page(struct page *page)
2392 {
2393 	/*
2394 	 * One extra ref because caller holds an extra reference, either from
2395 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2396 	 * a device page.
2397 	 */
2398 	int extra = 1;
2399 
2400 	/*
2401 	 * FIXME support THP (transparent huge page), it is bit more complex to
2402 	 * check them than regular pages, because they can be mapped with a pmd
2403 	 * or with a pte (split pte mapping).
2404 	 */
2405 	if (PageCompound(page))
2406 		return false;
2407 
2408 	/* Page from ZONE_DEVICE have one extra reference */
2409 	if (is_zone_device_page(page)) {
2410 		/*
2411 		 * Private page can never be pin as they have no valid pte and
2412 		 * GUP will fail for those. Yet if there is a pending migration
2413 		 * a thread might try to wait on the pte migration entry and
2414 		 * will bump the page reference count. Sadly there is no way to
2415 		 * differentiate a regular pin from migration wait. Hence to
2416 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2417 		 * infinite loop (one stopping migration because the other is
2418 		 * waiting on pte migration entry). We always return true here.
2419 		 *
2420 		 * FIXME proper solution is to rework migration_entry_wait() so
2421 		 * it does not need to take a reference on page.
2422 		 */
2423 		return is_device_private_page(page);
2424 	}
2425 
2426 	/* For file back page */
2427 	if (page_mapping(page))
2428 		extra += 1 + page_has_private(page);
2429 
2430 	if ((page_count(page) - extra) > page_mapcount(page))
2431 		return false;
2432 
2433 	return true;
2434 }
2435 
2436 /*
2437  * migrate_vma_prepare() - lock pages and isolate them from the lru
2438  * @migrate: migrate struct containing all migration information
2439  *
2440  * This locks pages that have been collected by migrate_vma_collect(). Once each
2441  * page is locked it is isolated from the lru (for non-device pages). Finally,
2442  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2443  * migrated by concurrent kernel threads.
2444  */
2445 static void migrate_vma_prepare(struct migrate_vma *migrate)
2446 {
2447 	const unsigned long npages = migrate->npages;
2448 	const unsigned long start = migrate->start;
2449 	unsigned long addr, i, restore = 0;
2450 	bool allow_drain = true;
2451 
2452 	lru_add_drain();
2453 
2454 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2455 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2456 		bool remap = true;
2457 
2458 		if (!page)
2459 			continue;
2460 
2461 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2462 			/*
2463 			 * Because we are migrating several pages there can be
2464 			 * a deadlock between 2 concurrent migration where each
2465 			 * are waiting on each other page lock.
2466 			 *
2467 			 * Make migrate_vma() a best effort thing and backoff
2468 			 * for any page we can not lock right away.
2469 			 */
2470 			if (!trylock_page(page)) {
2471 				migrate->src[i] = 0;
2472 				migrate->cpages--;
2473 				put_page(page);
2474 				continue;
2475 			}
2476 			remap = false;
2477 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2478 		}
2479 
2480 		/* ZONE_DEVICE pages are not on LRU */
2481 		if (!is_zone_device_page(page)) {
2482 			if (!PageLRU(page) && allow_drain) {
2483 				/* Drain CPU's pagevec */
2484 				lru_add_drain_all();
2485 				allow_drain = false;
2486 			}
2487 
2488 			if (isolate_lru_page(page)) {
2489 				if (remap) {
2490 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2491 					migrate->cpages--;
2492 					restore++;
2493 				} else {
2494 					migrate->src[i] = 0;
2495 					unlock_page(page);
2496 					migrate->cpages--;
2497 					put_page(page);
2498 				}
2499 				continue;
2500 			}
2501 
2502 			/* Drop the reference we took in collect */
2503 			put_page(page);
2504 		}
2505 
2506 		if (!migrate_vma_check_page(page)) {
2507 			if (remap) {
2508 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2509 				migrate->cpages--;
2510 				restore++;
2511 
2512 				if (!is_zone_device_page(page)) {
2513 					get_page(page);
2514 					putback_lru_page(page);
2515 				}
2516 			} else {
2517 				migrate->src[i] = 0;
2518 				unlock_page(page);
2519 				migrate->cpages--;
2520 
2521 				if (!is_zone_device_page(page))
2522 					putback_lru_page(page);
2523 				else
2524 					put_page(page);
2525 			}
2526 		}
2527 	}
2528 
2529 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2530 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2531 
2532 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2533 			continue;
2534 
2535 		remove_migration_pte(page, migrate->vma, addr, page);
2536 
2537 		migrate->src[i] = 0;
2538 		unlock_page(page);
2539 		put_page(page);
2540 		restore--;
2541 	}
2542 }
2543 
2544 /*
2545  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2546  * @migrate: migrate struct containing all migration information
2547  *
2548  * Replace page mapping (CPU page table pte) with a special migration pte entry
2549  * and check again if it has been pinned. Pinned pages are restored because we
2550  * cannot migrate them.
2551  *
2552  * This is the last step before we call the device driver callback to allocate
2553  * destination memory and copy contents of original page over to new page.
2554  */
2555 static void migrate_vma_unmap(struct migrate_vma *migrate)
2556 {
2557 	const unsigned long npages = migrate->npages;
2558 	const unsigned long start = migrate->start;
2559 	unsigned long addr, i, restore = 0;
2560 
2561 	for (i = 0; i < npages; i++) {
2562 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563 
2564 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565 			continue;
2566 
2567 		if (page_mapped(page)) {
2568 			try_to_migrate(page, 0);
2569 			if (page_mapped(page))
2570 				goto restore;
2571 		}
2572 
2573 		if (migrate_vma_check_page(page))
2574 			continue;
2575 
2576 restore:
2577 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2578 		migrate->cpages--;
2579 		restore++;
2580 	}
2581 
2582 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2583 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584 
2585 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586 			continue;
2587 
2588 		remove_migration_ptes(page, page, false);
2589 
2590 		migrate->src[i] = 0;
2591 		unlock_page(page);
2592 		restore--;
2593 
2594 		if (is_zone_device_page(page))
2595 			put_page(page);
2596 		else
2597 			putback_lru_page(page);
2598 	}
2599 }
2600 
2601 /**
2602  * migrate_vma_setup() - prepare to migrate a range of memory
2603  * @args: contains the vma, start, and pfns arrays for the migration
2604  *
2605  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2606  * without an error.
2607  *
2608  * Prepare to migrate a range of memory virtual address range by collecting all
2609  * the pages backing each virtual address in the range, saving them inside the
2610  * src array.  Then lock those pages and unmap them. Once the pages are locked
2611  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2612  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2613  * corresponding src array entry.  Then restores any pages that are pinned, by
2614  * remapping and unlocking those pages.
2615  *
2616  * The caller should then allocate destination memory and copy source memory to
2617  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2618  * flag set).  Once these are allocated and copied, the caller must update each
2619  * corresponding entry in the dst array with the pfn value of the destination
2620  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2621  * (destination pages must have their struct pages locked, via lock_page()).
2622  *
2623  * Note that the caller does not have to migrate all the pages that are marked
2624  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2625  * device memory to system memory.  If the caller cannot migrate a device page
2626  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2627  * consequences for the userspace process, so it must be avoided if at all
2628  * possible.
2629  *
2630  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2631  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2632  * allowing the caller to allocate device memory for those unbacked virtual
2633  * addresses.  For this the caller simply has to allocate device memory and
2634  * properly set the destination entry like for regular migration.  Note that
2635  * this can still fail, and thus inside the device driver you must check if the
2636  * migration was successful for those entries after calling migrate_vma_pages(),
2637  * just like for regular migration.
2638  *
2639  * After that, the callers must call migrate_vma_pages() to go over each entry
2640  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2641  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2642  * then migrate_vma_pages() to migrate struct page information from the source
2643  * struct page to the destination struct page.  If it fails to migrate the
2644  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2645  * src array.
2646  *
2647  * At this point all successfully migrated pages have an entry in the src
2648  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2649  * array entry with MIGRATE_PFN_VALID flag set.
2650  *
2651  * Once migrate_vma_pages() returns the caller may inspect which pages were
2652  * successfully migrated, and which were not.  Successfully migrated pages will
2653  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2654  *
2655  * It is safe to update device page table after migrate_vma_pages() because
2656  * both destination and source page are still locked, and the mmap_lock is held
2657  * in read mode (hence no one can unmap the range being migrated).
2658  *
2659  * Once the caller is done cleaning up things and updating its page table (if it
2660  * chose to do so, this is not an obligation) it finally calls
2661  * migrate_vma_finalize() to update the CPU page table to point to new pages
2662  * for successfully migrated pages or otherwise restore the CPU page table to
2663  * point to the original source pages.
2664  */
2665 int migrate_vma_setup(struct migrate_vma *args)
2666 {
2667 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2668 
2669 	args->start &= PAGE_MASK;
2670 	args->end &= PAGE_MASK;
2671 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2672 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2673 		return -EINVAL;
2674 	if (nr_pages <= 0)
2675 		return -EINVAL;
2676 	if (args->start < args->vma->vm_start ||
2677 	    args->start >= args->vma->vm_end)
2678 		return -EINVAL;
2679 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2680 		return -EINVAL;
2681 	if (!args->src || !args->dst)
2682 		return -EINVAL;
2683 
2684 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2685 	args->cpages = 0;
2686 	args->npages = 0;
2687 
2688 	migrate_vma_collect(args);
2689 
2690 	if (args->cpages)
2691 		migrate_vma_prepare(args);
2692 	if (args->cpages)
2693 		migrate_vma_unmap(args);
2694 
2695 	/*
2696 	 * At this point pages are locked and unmapped, and thus they have
2697 	 * stable content and can safely be copied to destination memory that
2698 	 * is allocated by the drivers.
2699 	 */
2700 	return 0;
2701 
2702 }
2703 EXPORT_SYMBOL(migrate_vma_setup);
2704 
2705 /*
2706  * This code closely matches the code in:
2707  *   __handle_mm_fault()
2708  *     handle_pte_fault()
2709  *       do_anonymous_page()
2710  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2711  * private page.
2712  */
2713 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2714 				    unsigned long addr,
2715 				    struct page *page,
2716 				    unsigned long *src)
2717 {
2718 	struct vm_area_struct *vma = migrate->vma;
2719 	struct mm_struct *mm = vma->vm_mm;
2720 	bool flush = false;
2721 	spinlock_t *ptl;
2722 	pte_t entry;
2723 	pgd_t *pgdp;
2724 	p4d_t *p4dp;
2725 	pud_t *pudp;
2726 	pmd_t *pmdp;
2727 	pte_t *ptep;
2728 
2729 	/* Only allow populating anonymous memory */
2730 	if (!vma_is_anonymous(vma))
2731 		goto abort;
2732 
2733 	pgdp = pgd_offset(mm, addr);
2734 	p4dp = p4d_alloc(mm, pgdp, addr);
2735 	if (!p4dp)
2736 		goto abort;
2737 	pudp = pud_alloc(mm, p4dp, addr);
2738 	if (!pudp)
2739 		goto abort;
2740 	pmdp = pmd_alloc(mm, pudp, addr);
2741 	if (!pmdp)
2742 		goto abort;
2743 
2744 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2745 		goto abort;
2746 
2747 	/*
2748 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2749 	 * pte_offset_map() on pmds where a huge pmd might be created
2750 	 * from a different thread.
2751 	 *
2752 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2753 	 * parallel threads are excluded by other means.
2754 	 *
2755 	 * Here we only have mmap_read_lock(mm).
2756 	 */
2757 	if (pte_alloc(mm, pmdp))
2758 		goto abort;
2759 
2760 	/* See the comment in pte_alloc_one_map() */
2761 	if (unlikely(pmd_trans_unstable(pmdp)))
2762 		goto abort;
2763 
2764 	if (unlikely(anon_vma_prepare(vma)))
2765 		goto abort;
2766 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2767 		goto abort;
2768 
2769 	/*
2770 	 * The memory barrier inside __SetPageUptodate makes sure that
2771 	 * preceding stores to the page contents become visible before
2772 	 * the set_pte_at() write.
2773 	 */
2774 	__SetPageUptodate(page);
2775 
2776 	if (is_zone_device_page(page)) {
2777 		if (is_device_private_page(page)) {
2778 			swp_entry_t swp_entry;
2779 
2780 			if (vma->vm_flags & VM_WRITE)
2781 				swp_entry = make_writable_device_private_entry(
2782 							page_to_pfn(page));
2783 			else
2784 				swp_entry = make_readable_device_private_entry(
2785 							page_to_pfn(page));
2786 			entry = swp_entry_to_pte(swp_entry);
2787 		} else {
2788 			/*
2789 			 * For now we only support migrating to un-addressable
2790 			 * device memory.
2791 			 */
2792 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2793 			goto abort;
2794 		}
2795 	} else {
2796 		entry = mk_pte(page, vma->vm_page_prot);
2797 		if (vma->vm_flags & VM_WRITE)
2798 			entry = pte_mkwrite(pte_mkdirty(entry));
2799 	}
2800 
2801 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802 
2803 	if (check_stable_address_space(mm))
2804 		goto unlock_abort;
2805 
2806 	if (pte_present(*ptep)) {
2807 		unsigned long pfn = pte_pfn(*ptep);
2808 
2809 		if (!is_zero_pfn(pfn))
2810 			goto unlock_abort;
2811 		flush = true;
2812 	} else if (!pte_none(*ptep))
2813 		goto unlock_abort;
2814 
2815 	/*
2816 	 * Check for userfaultfd but do not deliver the fault. Instead,
2817 	 * just back off.
2818 	 */
2819 	if (userfaultfd_missing(vma))
2820 		goto unlock_abort;
2821 
2822 	inc_mm_counter(mm, MM_ANONPAGES);
2823 	page_add_new_anon_rmap(page, vma, addr, false);
2824 	if (!is_zone_device_page(page))
2825 		lru_cache_add_inactive_or_unevictable(page, vma);
2826 	get_page(page);
2827 
2828 	if (flush) {
2829 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2830 		ptep_clear_flush_notify(vma, addr, ptep);
2831 		set_pte_at_notify(mm, addr, ptep, entry);
2832 		update_mmu_cache(vma, addr, ptep);
2833 	} else {
2834 		/* No need to invalidate - it was non-present before */
2835 		set_pte_at(mm, addr, ptep, entry);
2836 		update_mmu_cache(vma, addr, ptep);
2837 	}
2838 
2839 	pte_unmap_unlock(ptep, ptl);
2840 	*src = MIGRATE_PFN_MIGRATE;
2841 	return;
2842 
2843 unlock_abort:
2844 	pte_unmap_unlock(ptep, ptl);
2845 abort:
2846 	*src &= ~MIGRATE_PFN_MIGRATE;
2847 }
2848 
2849 /**
2850  * migrate_vma_pages() - migrate meta-data from src page to dst page
2851  * @migrate: migrate struct containing all migration information
2852  *
2853  * This migrates struct page meta-data from source struct page to destination
2854  * struct page. This effectively finishes the migration from source page to the
2855  * destination page.
2856  */
2857 void migrate_vma_pages(struct migrate_vma *migrate)
2858 {
2859 	const unsigned long npages = migrate->npages;
2860 	const unsigned long start = migrate->start;
2861 	struct mmu_notifier_range range;
2862 	unsigned long addr, i;
2863 	bool notified = false;
2864 
2865 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868 		struct address_space *mapping;
2869 		int r;
2870 
2871 		if (!newpage) {
2872 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2873 			continue;
2874 		}
2875 
2876 		if (!page) {
2877 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2878 				continue;
2879 			if (!notified) {
2880 				notified = true;
2881 
2882 				mmu_notifier_range_init_owner(&range,
2883 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2884 					migrate->vma->vm_mm, addr, migrate->end,
2885 					migrate->pgmap_owner);
2886 				mmu_notifier_invalidate_range_start(&range);
2887 			}
2888 			migrate_vma_insert_page(migrate, addr, newpage,
2889 						&migrate->src[i]);
2890 			continue;
2891 		}
2892 
2893 		mapping = page_mapping(page);
2894 
2895 		if (is_zone_device_page(newpage)) {
2896 			if (is_device_private_page(newpage)) {
2897 				/*
2898 				 * For now only support private anonymous when
2899 				 * migrating to un-addressable device memory.
2900 				 */
2901 				if (mapping) {
2902 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2903 					continue;
2904 				}
2905 			} else {
2906 				/*
2907 				 * Other types of ZONE_DEVICE page are not
2908 				 * supported.
2909 				 */
2910 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2911 				continue;
2912 			}
2913 		}
2914 
2915 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2916 		if (r != MIGRATEPAGE_SUCCESS)
2917 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918 	}
2919 
2920 	/*
2921 	 * No need to double call mmu_notifier->invalidate_range() callback as
2922 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2923 	 * did already call it.
2924 	 */
2925 	if (notified)
2926 		mmu_notifier_invalidate_range_only_end(&range);
2927 }
2928 EXPORT_SYMBOL(migrate_vma_pages);
2929 
2930 /**
2931  * migrate_vma_finalize() - restore CPU page table entry
2932  * @migrate: migrate struct containing all migration information
2933  *
2934  * This replaces the special migration pte entry with either a mapping to the
2935  * new page if migration was successful for that page, or to the original page
2936  * otherwise.
2937  *
2938  * This also unlocks the pages and puts them back on the lru, or drops the extra
2939  * refcount, for device pages.
2940  */
2941 void migrate_vma_finalize(struct migrate_vma *migrate)
2942 {
2943 	const unsigned long npages = migrate->npages;
2944 	unsigned long i;
2945 
2946 	for (i = 0; i < npages; i++) {
2947 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2948 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2949 
2950 		if (!page) {
2951 			if (newpage) {
2952 				unlock_page(newpage);
2953 				put_page(newpage);
2954 			}
2955 			continue;
2956 		}
2957 
2958 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2959 			if (newpage) {
2960 				unlock_page(newpage);
2961 				put_page(newpage);
2962 			}
2963 			newpage = page;
2964 		}
2965 
2966 		remove_migration_ptes(page, newpage, false);
2967 		unlock_page(page);
2968 
2969 		if (is_zone_device_page(page))
2970 			put_page(page);
2971 		else
2972 			putback_lru_page(page);
2973 
2974 		if (newpage != page) {
2975 			unlock_page(newpage);
2976 			if (is_zone_device_page(newpage))
2977 				put_page(newpage);
2978 			else
2979 				putback_lru_page(newpage);
2980 		}
2981 	}
2982 }
2983 EXPORT_SYMBOL(migrate_vma_finalize);
2984 #endif /* CONFIG_DEVICE_PRIVATE */
2985