xref: /openbmc/linux/mm/migrate.c (revision 6846d656)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/migrate.h>
58 
59 #include "internal.h"
60 
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 	struct address_space *mapping;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (unlikely(!get_page_unless_zero(page)))
75 		goto out;
76 
77 	/*
78 	 * Check PageMovable before holding a PG_lock because page's owner
79 	 * assumes anybody doesn't touch PG_lock of newly allocated page
80 	 * so unconditionally grabbing the lock ruins page's owner side.
81 	 */
82 	if (unlikely(!__PageMovable(page)))
83 		goto out_putpage;
84 	/*
85 	 * As movable pages are not isolated from LRU lists, concurrent
86 	 * compaction threads can race against page migration functions
87 	 * as well as race against the releasing a page.
88 	 *
89 	 * In order to avoid having an already isolated movable page
90 	 * being (wrongly) re-isolated while it is under migration,
91 	 * or to avoid attempting to isolate pages being released,
92 	 * lets be sure we have the page lock
93 	 * before proceeding with the movable page isolation steps.
94 	 */
95 	if (unlikely(!trylock_page(page)))
96 		goto out_putpage;
97 
98 	if (!PageMovable(page) || PageIsolated(page))
99 		goto out_no_isolated;
100 
101 	mapping = page_mapping(page);
102 	VM_BUG_ON_PAGE(!mapping, page);
103 
104 	if (!mapping->a_ops->isolate_page(page, mode))
105 		goto out_no_isolated;
106 
107 	/* Driver shouldn't use PG_isolated bit of page->flags */
108 	WARN_ON_ONCE(PageIsolated(page));
109 	SetPageIsolated(page);
110 	unlock_page(page);
111 
112 	return 0;
113 
114 out_no_isolated:
115 	unlock_page(page);
116 out_putpage:
117 	put_page(page);
118 out:
119 	return -EBUSY;
120 }
121 
122 static void putback_movable_page(struct page *page)
123 {
124 	struct address_space *mapping;
125 
126 	mapping = page_mapping(page);
127 	mapping->a_ops->putback_page(page);
128 	ClearPageIsolated(page);
129 }
130 
131 /*
132  * Put previously isolated pages back onto the appropriate lists
133  * from where they were once taken off for compaction/migration.
134  *
135  * This function shall be used whenever the isolated pageset has been
136  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
137  * and isolate_huge_page().
138  */
139 void putback_movable_pages(struct list_head *l)
140 {
141 	struct page *page;
142 	struct page *page2;
143 
144 	list_for_each_entry_safe(page, page2, l, lru) {
145 		if (unlikely(PageHuge(page))) {
146 			putback_active_hugepage(page);
147 			continue;
148 		}
149 		list_del(&page->lru);
150 		/*
151 		 * We isolated non-lru movable page so here we can use
152 		 * __PageMovable because LRU page's mapping cannot have
153 		 * PAGE_MAPPING_MOVABLE.
154 		 */
155 		if (unlikely(__PageMovable(page))) {
156 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 			lock_page(page);
158 			if (PageMovable(page))
159 				putback_movable_page(page);
160 			else
161 				ClearPageIsolated(page);
162 			unlock_page(page);
163 			put_page(page);
164 		} else {
165 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
166 					page_is_file_lru(page), -thp_nr_pages(page));
167 			putback_lru_page(page);
168 		}
169 	}
170 }
171 
172 /*
173  * Restore a potential migration pte to a working pte entry
174  */
175 static bool remove_migration_pte(struct folio *folio,
176 		struct vm_area_struct *vma, unsigned long addr, void *old)
177 {
178 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
179 
180 	while (page_vma_mapped_walk(&pvmw)) {
181 		pte_t pte;
182 		swp_entry_t entry;
183 		struct page *new;
184 		unsigned long idx = 0;
185 
186 		/* pgoff is invalid for ksm pages, but they are never large */
187 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
188 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
189 		new = folio_page(folio, idx);
190 
191 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
192 		/* PMD-mapped THP migration entry */
193 		if (!pvmw.pte) {
194 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
195 					!folio_test_pmd_mappable(folio), folio);
196 			remove_migration_pmd(&pvmw, new);
197 			continue;
198 		}
199 #endif
200 
201 		folio_get(folio);
202 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
203 		if (pte_swp_soft_dirty(*pvmw.pte))
204 			pte = pte_mksoft_dirty(pte);
205 
206 		/*
207 		 * Recheck VMA as permissions can change since migration started
208 		 */
209 		entry = pte_to_swp_entry(*pvmw.pte);
210 		if (is_writable_migration_entry(entry))
211 			pte = maybe_mkwrite(pte, vma);
212 		else if (pte_swp_uffd_wp(*pvmw.pte))
213 			pte = pte_mkuffd_wp(pte);
214 
215 		if (unlikely(is_device_private_page(new))) {
216 			if (pte_write(pte))
217 				entry = make_writable_device_private_entry(
218 							page_to_pfn(new));
219 			else
220 				entry = make_readable_device_private_entry(
221 							page_to_pfn(new));
222 			pte = swp_entry_to_pte(entry);
223 			if (pte_swp_soft_dirty(*pvmw.pte))
224 				pte = pte_swp_mksoft_dirty(pte);
225 			if (pte_swp_uffd_wp(*pvmw.pte))
226 				pte = pte_swp_mkuffd_wp(pte);
227 		}
228 
229 #ifdef CONFIG_HUGETLB_PAGE
230 		if (folio_test_hugetlb(folio)) {
231 			unsigned int shift = huge_page_shift(hstate_vma(vma));
232 
233 			pte = pte_mkhuge(pte);
234 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
235 			if (folio_test_anon(folio))
236 				hugepage_add_anon_rmap(new, vma, pvmw.address);
237 			else
238 				page_dup_rmap(new, true);
239 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 		} else
241 #endif
242 		{
243 			if (folio_test_anon(folio))
244 				page_add_anon_rmap(new, vma, pvmw.address, false);
245 			else
246 				page_add_file_rmap(new, vma, false);
247 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
248 		}
249 		if (vma->vm_flags & VM_LOCKED)
250 			mlock_page_drain(smp_processor_id());
251 
252 		/* No need to invalidate - it was non-present before */
253 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 	}
255 
256 	return true;
257 }
258 
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
264 {
265 	struct rmap_walk_control rwc = {
266 		.rmap_one = remove_migration_pte,
267 		.arg = src,
268 	};
269 
270 	if (locked)
271 		rmap_walk_locked(dst, &rwc);
272 	else
273 		rmap_walk(dst, &rwc);
274 }
275 
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282 				spinlock_t *ptl)
283 {
284 	pte_t pte;
285 	swp_entry_t entry;
286 
287 	spin_lock(ptl);
288 	pte = *ptep;
289 	if (!is_swap_pte(pte))
290 		goto out;
291 
292 	entry = pte_to_swp_entry(pte);
293 	if (!is_migration_entry(entry))
294 		goto out;
295 
296 	migration_entry_wait_on_locked(entry, ptep, ptl);
297 	return;
298 out:
299 	pte_unmap_unlock(ptep, ptl);
300 }
301 
302 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
303 				unsigned long address)
304 {
305 	spinlock_t *ptl = pte_lockptr(mm, pmd);
306 	pte_t *ptep = pte_offset_map(pmd, address);
307 	__migration_entry_wait(mm, ptep, ptl);
308 }
309 
310 void migration_entry_wait_huge(struct vm_area_struct *vma,
311 		struct mm_struct *mm, pte_t *pte)
312 {
313 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
314 	__migration_entry_wait(mm, pte, ptl);
315 }
316 
317 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
318 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
319 {
320 	spinlock_t *ptl;
321 
322 	ptl = pmd_lock(mm, pmd);
323 	if (!is_pmd_migration_entry(*pmd))
324 		goto unlock;
325 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
326 	return;
327 unlock:
328 	spin_unlock(ptl);
329 }
330 #endif
331 
332 static int expected_page_refs(struct address_space *mapping, struct page *page)
333 {
334 	int expected_count = 1;
335 
336 	if (mapping)
337 		expected_count += compound_nr(page) + page_has_private(page);
338 	return expected_count;
339 }
340 
341 /*
342  * Replace the page in the mapping.
343  *
344  * The number of remaining references must be:
345  * 1 for anonymous pages without a mapping
346  * 2 for pages with a mapping
347  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
348  */
349 int folio_migrate_mapping(struct address_space *mapping,
350 		struct folio *newfolio, struct folio *folio, int extra_count)
351 {
352 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
353 	struct zone *oldzone, *newzone;
354 	int dirty;
355 	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
356 	long nr = folio_nr_pages(folio);
357 
358 	if (!mapping) {
359 		/* Anonymous page without mapping */
360 		if (folio_ref_count(folio) != expected_count)
361 			return -EAGAIN;
362 
363 		/* No turning back from here */
364 		newfolio->index = folio->index;
365 		newfolio->mapping = folio->mapping;
366 		if (folio_test_swapbacked(folio))
367 			__folio_set_swapbacked(newfolio);
368 
369 		return MIGRATEPAGE_SUCCESS;
370 	}
371 
372 	oldzone = folio_zone(folio);
373 	newzone = folio_zone(newfolio);
374 
375 	xas_lock_irq(&xas);
376 	if (!folio_ref_freeze(folio, expected_count)) {
377 		xas_unlock_irq(&xas);
378 		return -EAGAIN;
379 	}
380 
381 	/*
382 	 * Now we know that no one else is looking at the folio:
383 	 * no turning back from here.
384 	 */
385 	newfolio->index = folio->index;
386 	newfolio->mapping = folio->mapping;
387 	folio_ref_add(newfolio, nr); /* add cache reference */
388 	if (folio_test_swapbacked(folio)) {
389 		__folio_set_swapbacked(newfolio);
390 		if (folio_test_swapcache(folio)) {
391 			folio_set_swapcache(newfolio);
392 			newfolio->private = folio_get_private(folio);
393 		}
394 	} else {
395 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
396 	}
397 
398 	/* Move dirty while page refs frozen and newpage not yet exposed */
399 	dirty = folio_test_dirty(folio);
400 	if (dirty) {
401 		folio_clear_dirty(folio);
402 		folio_set_dirty(newfolio);
403 	}
404 
405 	xas_store(&xas, newfolio);
406 
407 	/*
408 	 * Drop cache reference from old page by unfreezing
409 	 * to one less reference.
410 	 * We know this isn't the last reference.
411 	 */
412 	folio_ref_unfreeze(folio, expected_count - nr);
413 
414 	xas_unlock(&xas);
415 	/* Leave irq disabled to prevent preemption while updating stats */
416 
417 	/*
418 	 * If moved to a different zone then also account
419 	 * the page for that zone. Other VM counters will be
420 	 * taken care of when we establish references to the
421 	 * new page and drop references to the old page.
422 	 *
423 	 * Note that anonymous pages are accounted for
424 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
425 	 * are mapped to swap space.
426 	 */
427 	if (newzone != oldzone) {
428 		struct lruvec *old_lruvec, *new_lruvec;
429 		struct mem_cgroup *memcg;
430 
431 		memcg = folio_memcg(folio);
432 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
433 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
434 
435 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
436 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
437 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
438 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
439 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
440 		}
441 #ifdef CONFIG_SWAP
442 		if (folio_test_swapcache(folio)) {
443 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
444 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
445 		}
446 #endif
447 		if (dirty && mapping_can_writeback(mapping)) {
448 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
449 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
450 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
451 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
452 		}
453 	}
454 	local_irq_enable();
455 
456 	return MIGRATEPAGE_SUCCESS;
457 }
458 EXPORT_SYMBOL(folio_migrate_mapping);
459 
460 /*
461  * The expected number of remaining references is the same as that
462  * of folio_migrate_mapping().
463  */
464 int migrate_huge_page_move_mapping(struct address_space *mapping,
465 				   struct page *newpage, struct page *page)
466 {
467 	XA_STATE(xas, &mapping->i_pages, page_index(page));
468 	int expected_count;
469 
470 	xas_lock_irq(&xas);
471 	expected_count = 2 + page_has_private(page);
472 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
473 		xas_unlock_irq(&xas);
474 		return -EAGAIN;
475 	}
476 
477 	if (!page_ref_freeze(page, expected_count)) {
478 		xas_unlock_irq(&xas);
479 		return -EAGAIN;
480 	}
481 
482 	newpage->index = page->index;
483 	newpage->mapping = page->mapping;
484 
485 	get_page(newpage);
486 
487 	xas_store(&xas, newpage);
488 
489 	page_ref_unfreeze(page, expected_count - 1);
490 
491 	xas_unlock_irq(&xas);
492 
493 	return MIGRATEPAGE_SUCCESS;
494 }
495 
496 /*
497  * Copy the flags and some other ancillary information
498  */
499 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
500 {
501 	int cpupid;
502 
503 	if (folio_test_error(folio))
504 		folio_set_error(newfolio);
505 	if (folio_test_referenced(folio))
506 		folio_set_referenced(newfolio);
507 	if (folio_test_uptodate(folio))
508 		folio_mark_uptodate(newfolio);
509 	if (folio_test_clear_active(folio)) {
510 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
511 		folio_set_active(newfolio);
512 	} else if (folio_test_clear_unevictable(folio))
513 		folio_set_unevictable(newfolio);
514 	if (folio_test_workingset(folio))
515 		folio_set_workingset(newfolio);
516 	if (folio_test_checked(folio))
517 		folio_set_checked(newfolio);
518 	if (folio_test_mappedtodisk(folio))
519 		folio_set_mappedtodisk(newfolio);
520 
521 	/* Move dirty on pages not done by folio_migrate_mapping() */
522 	if (folio_test_dirty(folio))
523 		folio_set_dirty(newfolio);
524 
525 	if (folio_test_young(folio))
526 		folio_set_young(newfolio);
527 	if (folio_test_idle(folio))
528 		folio_set_idle(newfolio);
529 
530 	/*
531 	 * Copy NUMA information to the new page, to prevent over-eager
532 	 * future migrations of this same page.
533 	 */
534 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
535 	page_cpupid_xchg_last(&newfolio->page, cpupid);
536 
537 	folio_migrate_ksm(newfolio, folio);
538 	/*
539 	 * Please do not reorder this without considering how mm/ksm.c's
540 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
541 	 */
542 	if (folio_test_swapcache(folio))
543 		folio_clear_swapcache(folio);
544 	folio_clear_private(folio);
545 
546 	/* page->private contains hugetlb specific flags */
547 	if (!folio_test_hugetlb(folio))
548 		folio->private = NULL;
549 
550 	/*
551 	 * If any waiters have accumulated on the new page then
552 	 * wake them up.
553 	 */
554 	if (folio_test_writeback(newfolio))
555 		folio_end_writeback(newfolio);
556 
557 	/*
558 	 * PG_readahead shares the same bit with PG_reclaim.  The above
559 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
560 	 * bit after that.
561 	 */
562 	if (folio_test_readahead(folio))
563 		folio_set_readahead(newfolio);
564 
565 	folio_copy_owner(newfolio, folio);
566 
567 	if (!folio_test_hugetlb(folio))
568 		mem_cgroup_migrate(folio, newfolio);
569 }
570 EXPORT_SYMBOL(folio_migrate_flags);
571 
572 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
573 {
574 	folio_copy(newfolio, folio);
575 	folio_migrate_flags(newfolio, folio);
576 }
577 EXPORT_SYMBOL(folio_migrate_copy);
578 
579 /************************************************************
580  *                    Migration functions
581  ***********************************************************/
582 
583 /*
584  * Common logic to directly migrate a single LRU page suitable for
585  * pages that do not use PagePrivate/PagePrivate2.
586  *
587  * Pages are locked upon entry and exit.
588  */
589 int migrate_page(struct address_space *mapping,
590 		struct page *newpage, struct page *page,
591 		enum migrate_mode mode)
592 {
593 	struct folio *newfolio = page_folio(newpage);
594 	struct folio *folio = page_folio(page);
595 	int rc;
596 
597 	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
598 
599 	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
600 
601 	if (rc != MIGRATEPAGE_SUCCESS)
602 		return rc;
603 
604 	if (mode != MIGRATE_SYNC_NO_COPY)
605 		folio_migrate_copy(newfolio, folio);
606 	else
607 		folio_migrate_flags(newfolio, folio);
608 	return MIGRATEPAGE_SUCCESS;
609 }
610 EXPORT_SYMBOL(migrate_page);
611 
612 #ifdef CONFIG_BLOCK
613 /* Returns true if all buffers are successfully locked */
614 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
615 							enum migrate_mode mode)
616 {
617 	struct buffer_head *bh = head;
618 
619 	/* Simple case, sync compaction */
620 	if (mode != MIGRATE_ASYNC) {
621 		do {
622 			lock_buffer(bh);
623 			bh = bh->b_this_page;
624 
625 		} while (bh != head);
626 
627 		return true;
628 	}
629 
630 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
631 	do {
632 		if (!trylock_buffer(bh)) {
633 			/*
634 			 * We failed to lock the buffer and cannot stall in
635 			 * async migration. Release the taken locks
636 			 */
637 			struct buffer_head *failed_bh = bh;
638 			bh = head;
639 			while (bh != failed_bh) {
640 				unlock_buffer(bh);
641 				bh = bh->b_this_page;
642 			}
643 			return false;
644 		}
645 
646 		bh = bh->b_this_page;
647 	} while (bh != head);
648 	return true;
649 }
650 
651 static int __buffer_migrate_page(struct address_space *mapping,
652 		struct page *newpage, struct page *page, enum migrate_mode mode,
653 		bool check_refs)
654 {
655 	struct buffer_head *bh, *head;
656 	int rc;
657 	int expected_count;
658 
659 	if (!page_has_buffers(page))
660 		return migrate_page(mapping, newpage, page, mode);
661 
662 	/* Check whether page does not have extra refs before we do more work */
663 	expected_count = expected_page_refs(mapping, page);
664 	if (page_count(page) != expected_count)
665 		return -EAGAIN;
666 
667 	head = page_buffers(page);
668 	if (!buffer_migrate_lock_buffers(head, mode))
669 		return -EAGAIN;
670 
671 	if (check_refs) {
672 		bool busy;
673 		bool invalidated = false;
674 
675 recheck_buffers:
676 		busy = false;
677 		spin_lock(&mapping->private_lock);
678 		bh = head;
679 		do {
680 			if (atomic_read(&bh->b_count)) {
681 				busy = true;
682 				break;
683 			}
684 			bh = bh->b_this_page;
685 		} while (bh != head);
686 		if (busy) {
687 			if (invalidated) {
688 				rc = -EAGAIN;
689 				goto unlock_buffers;
690 			}
691 			spin_unlock(&mapping->private_lock);
692 			invalidate_bh_lrus();
693 			invalidated = true;
694 			goto recheck_buffers;
695 		}
696 	}
697 
698 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
699 	if (rc != MIGRATEPAGE_SUCCESS)
700 		goto unlock_buffers;
701 
702 	attach_page_private(newpage, detach_page_private(page));
703 
704 	bh = head;
705 	do {
706 		set_bh_page(bh, newpage, bh_offset(bh));
707 		bh = bh->b_this_page;
708 
709 	} while (bh != head);
710 
711 	if (mode != MIGRATE_SYNC_NO_COPY)
712 		migrate_page_copy(newpage, page);
713 	else
714 		migrate_page_states(newpage, page);
715 
716 	rc = MIGRATEPAGE_SUCCESS;
717 unlock_buffers:
718 	if (check_refs)
719 		spin_unlock(&mapping->private_lock);
720 	bh = head;
721 	do {
722 		unlock_buffer(bh);
723 		bh = bh->b_this_page;
724 
725 	} while (bh != head);
726 
727 	return rc;
728 }
729 
730 /*
731  * Migration function for pages with buffers. This function can only be used
732  * if the underlying filesystem guarantees that no other references to "page"
733  * exist. For example attached buffer heads are accessed only under page lock.
734  */
735 int buffer_migrate_page(struct address_space *mapping,
736 		struct page *newpage, struct page *page, enum migrate_mode mode)
737 {
738 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
739 }
740 EXPORT_SYMBOL(buffer_migrate_page);
741 
742 /*
743  * Same as above except that this variant is more careful and checks that there
744  * are also no buffer head references. This function is the right one for
745  * mappings where buffer heads are directly looked up and referenced (such as
746  * block device mappings).
747  */
748 int buffer_migrate_page_norefs(struct address_space *mapping,
749 		struct page *newpage, struct page *page, enum migrate_mode mode)
750 {
751 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
752 }
753 #endif
754 
755 /*
756  * Writeback a page to clean the dirty state
757  */
758 static int writeout(struct address_space *mapping, struct page *page)
759 {
760 	struct folio *folio = page_folio(page);
761 	struct writeback_control wbc = {
762 		.sync_mode = WB_SYNC_NONE,
763 		.nr_to_write = 1,
764 		.range_start = 0,
765 		.range_end = LLONG_MAX,
766 		.for_reclaim = 1
767 	};
768 	int rc;
769 
770 	if (!mapping->a_ops->writepage)
771 		/* No write method for the address space */
772 		return -EINVAL;
773 
774 	if (!clear_page_dirty_for_io(page))
775 		/* Someone else already triggered a write */
776 		return -EAGAIN;
777 
778 	/*
779 	 * A dirty page may imply that the underlying filesystem has
780 	 * the page on some queue. So the page must be clean for
781 	 * migration. Writeout may mean we loose the lock and the
782 	 * page state is no longer what we checked for earlier.
783 	 * At this point we know that the migration attempt cannot
784 	 * be successful.
785 	 */
786 	remove_migration_ptes(folio, folio, false);
787 
788 	rc = mapping->a_ops->writepage(page, &wbc);
789 
790 	if (rc != AOP_WRITEPAGE_ACTIVATE)
791 		/* unlocked. Relock */
792 		lock_page(page);
793 
794 	return (rc < 0) ? -EIO : -EAGAIN;
795 }
796 
797 /*
798  * Default handling if a filesystem does not provide a migration function.
799  */
800 static int fallback_migrate_page(struct address_space *mapping,
801 	struct page *newpage, struct page *page, enum migrate_mode mode)
802 {
803 	if (PageDirty(page)) {
804 		/* Only writeback pages in full synchronous migration */
805 		switch (mode) {
806 		case MIGRATE_SYNC:
807 		case MIGRATE_SYNC_NO_COPY:
808 			break;
809 		default:
810 			return -EBUSY;
811 		}
812 		return writeout(mapping, page);
813 	}
814 
815 	/*
816 	 * Buffers may be managed in a filesystem specific way.
817 	 * We must have no buffers or drop them.
818 	 */
819 	if (page_has_private(page) &&
820 	    !try_to_release_page(page, GFP_KERNEL))
821 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
822 
823 	return migrate_page(mapping, newpage, page, mode);
824 }
825 
826 /*
827  * Move a page to a newly allocated page
828  * The page is locked and all ptes have been successfully removed.
829  *
830  * The new page will have replaced the old page if this function
831  * is successful.
832  *
833  * Return value:
834  *   < 0 - error code
835  *  MIGRATEPAGE_SUCCESS - success
836  */
837 static int move_to_new_page(struct page *newpage, struct page *page,
838 				enum migrate_mode mode)
839 {
840 	struct address_space *mapping;
841 	int rc = -EAGAIN;
842 	bool is_lru = !__PageMovable(page);
843 
844 	VM_BUG_ON_PAGE(!PageLocked(page), page);
845 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
846 
847 	mapping = page_mapping(page);
848 
849 	if (likely(is_lru)) {
850 		if (!mapping)
851 			rc = migrate_page(mapping, newpage, page, mode);
852 		else if (mapping->a_ops->migratepage)
853 			/*
854 			 * Most pages have a mapping and most filesystems
855 			 * provide a migratepage callback. Anonymous pages
856 			 * are part of swap space which also has its own
857 			 * migratepage callback. This is the most common path
858 			 * for page migration.
859 			 */
860 			rc = mapping->a_ops->migratepage(mapping, newpage,
861 							page, mode);
862 		else
863 			rc = fallback_migrate_page(mapping, newpage,
864 							page, mode);
865 	} else {
866 		/*
867 		 * In case of non-lru page, it could be released after
868 		 * isolation step. In that case, we shouldn't try migration.
869 		 */
870 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
871 		if (!PageMovable(page)) {
872 			rc = MIGRATEPAGE_SUCCESS;
873 			ClearPageIsolated(page);
874 			goto out;
875 		}
876 
877 		rc = mapping->a_ops->migratepage(mapping, newpage,
878 						page, mode);
879 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
880 			!PageIsolated(page));
881 	}
882 
883 	/*
884 	 * When successful, old pagecache page->mapping must be cleared before
885 	 * page is freed; but stats require that PageAnon be left as PageAnon.
886 	 */
887 	if (rc == MIGRATEPAGE_SUCCESS) {
888 		if (__PageMovable(page)) {
889 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
890 
891 			/*
892 			 * We clear PG_movable under page_lock so any compactor
893 			 * cannot try to migrate this page.
894 			 */
895 			ClearPageIsolated(page);
896 		}
897 
898 		/*
899 		 * Anonymous and movable page->mapping will be cleared by
900 		 * free_pages_prepare so don't reset it here for keeping
901 		 * the type to work PageAnon, for example.
902 		 */
903 		if (!PageMappingFlags(page))
904 			page->mapping = NULL;
905 
906 		if (likely(!is_zone_device_page(newpage)))
907 			flush_dcache_folio(page_folio(newpage));
908 	}
909 out:
910 	return rc;
911 }
912 
913 static int __unmap_and_move(struct page *page, struct page *newpage,
914 				int force, enum migrate_mode mode)
915 {
916 	struct folio *folio = page_folio(page);
917 	struct folio *dst = page_folio(newpage);
918 	int rc = -EAGAIN;
919 	bool page_was_mapped = false;
920 	struct anon_vma *anon_vma = NULL;
921 	bool is_lru = !__PageMovable(page);
922 
923 	if (!trylock_page(page)) {
924 		if (!force || mode == MIGRATE_ASYNC)
925 			goto out;
926 
927 		/*
928 		 * It's not safe for direct compaction to call lock_page.
929 		 * For example, during page readahead pages are added locked
930 		 * to the LRU. Later, when the IO completes the pages are
931 		 * marked uptodate and unlocked. However, the queueing
932 		 * could be merging multiple pages for one bio (e.g.
933 		 * mpage_readahead). If an allocation happens for the
934 		 * second or third page, the process can end up locking
935 		 * the same page twice and deadlocking. Rather than
936 		 * trying to be clever about what pages can be locked,
937 		 * avoid the use of lock_page for direct compaction
938 		 * altogether.
939 		 */
940 		if (current->flags & PF_MEMALLOC)
941 			goto out;
942 
943 		lock_page(page);
944 	}
945 
946 	if (PageWriteback(page)) {
947 		/*
948 		 * Only in the case of a full synchronous migration is it
949 		 * necessary to wait for PageWriteback. In the async case,
950 		 * the retry loop is too short and in the sync-light case,
951 		 * the overhead of stalling is too much
952 		 */
953 		switch (mode) {
954 		case MIGRATE_SYNC:
955 		case MIGRATE_SYNC_NO_COPY:
956 			break;
957 		default:
958 			rc = -EBUSY;
959 			goto out_unlock;
960 		}
961 		if (!force)
962 			goto out_unlock;
963 		wait_on_page_writeback(page);
964 	}
965 
966 	/*
967 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
968 	 * we cannot notice that anon_vma is freed while we migrates a page.
969 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
970 	 * of migration. File cache pages are no problem because of page_lock()
971 	 * File Caches may use write_page() or lock_page() in migration, then,
972 	 * just care Anon page here.
973 	 *
974 	 * Only page_get_anon_vma() understands the subtleties of
975 	 * getting a hold on an anon_vma from outside one of its mms.
976 	 * But if we cannot get anon_vma, then we won't need it anyway,
977 	 * because that implies that the anon page is no longer mapped
978 	 * (and cannot be remapped so long as we hold the page lock).
979 	 */
980 	if (PageAnon(page) && !PageKsm(page))
981 		anon_vma = page_get_anon_vma(page);
982 
983 	/*
984 	 * Block others from accessing the new page when we get around to
985 	 * establishing additional references. We are usually the only one
986 	 * holding a reference to newpage at this point. We used to have a BUG
987 	 * here if trylock_page(newpage) fails, but would like to allow for
988 	 * cases where there might be a race with the previous use of newpage.
989 	 * This is much like races on refcount of oldpage: just don't BUG().
990 	 */
991 	if (unlikely(!trylock_page(newpage)))
992 		goto out_unlock;
993 
994 	if (unlikely(!is_lru)) {
995 		rc = move_to_new_page(newpage, page, mode);
996 		goto out_unlock_both;
997 	}
998 
999 	/*
1000 	 * Corner case handling:
1001 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1002 	 * and treated as swapcache but it has no rmap yet.
1003 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1004 	 * trigger a BUG.  So handle it here.
1005 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1006 	 * fs-private metadata. The page can be picked up due to memory
1007 	 * offlining.  Everywhere else except page reclaim, the page is
1008 	 * invisible to the vm, so the page can not be migrated.  So try to
1009 	 * free the metadata, so the page can be freed.
1010 	 */
1011 	if (!page->mapping) {
1012 		VM_BUG_ON_PAGE(PageAnon(page), page);
1013 		if (page_has_private(page)) {
1014 			try_to_free_buffers(page);
1015 			goto out_unlock_both;
1016 		}
1017 	} else if (page_mapped(page)) {
1018 		/* Establish migration ptes */
1019 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1020 				page);
1021 		try_to_migrate(folio, 0);
1022 		page_was_mapped = true;
1023 	}
1024 
1025 	if (!page_mapped(page))
1026 		rc = move_to_new_page(newpage, page, mode);
1027 
1028 	/*
1029 	 * When successful, push newpage to LRU immediately: so that if it
1030 	 * turns out to be an mlocked page, remove_migration_ptes() will
1031 	 * automatically build up the correct newpage->mlock_count for it.
1032 	 *
1033 	 * We would like to do something similar for the old page, when
1034 	 * unsuccessful, and other cases when a page has been temporarily
1035 	 * isolated from the unevictable LRU: but this case is the easiest.
1036 	 */
1037 	if (rc == MIGRATEPAGE_SUCCESS) {
1038 		lru_cache_add(newpage);
1039 		if (page_was_mapped)
1040 			lru_add_drain();
1041 	}
1042 
1043 	if (page_was_mapped)
1044 		remove_migration_ptes(folio,
1045 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1046 
1047 out_unlock_both:
1048 	unlock_page(newpage);
1049 out_unlock:
1050 	/* Drop an anon_vma reference if we took one */
1051 	if (anon_vma)
1052 		put_anon_vma(anon_vma);
1053 	unlock_page(page);
1054 out:
1055 	/*
1056 	 * If migration is successful, decrease refcount of the newpage,
1057 	 * which will not free the page because new page owner increased
1058 	 * refcounter.
1059 	 */
1060 	if (rc == MIGRATEPAGE_SUCCESS)
1061 		put_page(newpage);
1062 
1063 	return rc;
1064 }
1065 
1066 /*
1067  * Obtain the lock on page, remove all ptes and migrate the page
1068  * to the newly allocated page in newpage.
1069  */
1070 static int unmap_and_move(new_page_t get_new_page,
1071 				   free_page_t put_new_page,
1072 				   unsigned long private, struct page *page,
1073 				   int force, enum migrate_mode mode,
1074 				   enum migrate_reason reason,
1075 				   struct list_head *ret)
1076 {
1077 	int rc = MIGRATEPAGE_SUCCESS;
1078 	struct page *newpage = NULL;
1079 
1080 	if (!thp_migration_supported() && PageTransHuge(page))
1081 		return -ENOSYS;
1082 
1083 	if (page_count(page) == 1) {
1084 		/* page was freed from under us. So we are done. */
1085 		ClearPageActive(page);
1086 		ClearPageUnevictable(page);
1087 		if (unlikely(__PageMovable(page))) {
1088 			lock_page(page);
1089 			if (!PageMovable(page))
1090 				ClearPageIsolated(page);
1091 			unlock_page(page);
1092 		}
1093 		goto out;
1094 	}
1095 
1096 	newpage = get_new_page(page, private);
1097 	if (!newpage)
1098 		return -ENOMEM;
1099 
1100 	rc = __unmap_and_move(page, newpage, force, mode);
1101 	if (rc == MIGRATEPAGE_SUCCESS)
1102 		set_page_owner_migrate_reason(newpage, reason);
1103 
1104 out:
1105 	if (rc != -EAGAIN) {
1106 		/*
1107 		 * A page that has been migrated has all references
1108 		 * removed and will be freed. A page that has not been
1109 		 * migrated will have kept its references and be restored.
1110 		 */
1111 		list_del(&page->lru);
1112 	}
1113 
1114 	/*
1115 	 * If migration is successful, releases reference grabbed during
1116 	 * isolation. Otherwise, restore the page to right list unless
1117 	 * we want to retry.
1118 	 */
1119 	if (rc == MIGRATEPAGE_SUCCESS) {
1120 		/*
1121 		 * Compaction can migrate also non-LRU pages which are
1122 		 * not accounted to NR_ISOLATED_*. They can be recognized
1123 		 * as __PageMovable
1124 		 */
1125 		if (likely(!__PageMovable(page)))
1126 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1127 					page_is_file_lru(page), -thp_nr_pages(page));
1128 
1129 		if (reason != MR_MEMORY_FAILURE)
1130 			/*
1131 			 * We release the page in page_handle_poison.
1132 			 */
1133 			put_page(page);
1134 	} else {
1135 		if (rc != -EAGAIN)
1136 			list_add_tail(&page->lru, ret);
1137 
1138 		if (put_new_page)
1139 			put_new_page(newpage, private);
1140 		else
1141 			put_page(newpage);
1142 	}
1143 
1144 	return rc;
1145 }
1146 
1147 /*
1148  * Counterpart of unmap_and_move_page() for hugepage migration.
1149  *
1150  * This function doesn't wait the completion of hugepage I/O
1151  * because there is no race between I/O and migration for hugepage.
1152  * Note that currently hugepage I/O occurs only in direct I/O
1153  * where no lock is held and PG_writeback is irrelevant,
1154  * and writeback status of all subpages are counted in the reference
1155  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1156  * under direct I/O, the reference of the head page is 512 and a bit more.)
1157  * This means that when we try to migrate hugepage whose subpages are
1158  * doing direct I/O, some references remain after try_to_unmap() and
1159  * hugepage migration fails without data corruption.
1160  *
1161  * There is also no race when direct I/O is issued on the page under migration,
1162  * because then pte is replaced with migration swap entry and direct I/O code
1163  * will wait in the page fault for migration to complete.
1164  */
1165 static int unmap_and_move_huge_page(new_page_t get_new_page,
1166 				free_page_t put_new_page, unsigned long private,
1167 				struct page *hpage, int force,
1168 				enum migrate_mode mode, int reason,
1169 				struct list_head *ret)
1170 {
1171 	struct folio *dst, *src = page_folio(hpage);
1172 	int rc = -EAGAIN;
1173 	int page_was_mapped = 0;
1174 	struct page *new_hpage;
1175 	struct anon_vma *anon_vma = NULL;
1176 	struct address_space *mapping = NULL;
1177 
1178 	/*
1179 	 * Migratability of hugepages depends on architectures and their size.
1180 	 * This check is necessary because some callers of hugepage migration
1181 	 * like soft offline and memory hotremove don't walk through page
1182 	 * tables or check whether the hugepage is pmd-based or not before
1183 	 * kicking migration.
1184 	 */
1185 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1186 		list_move_tail(&hpage->lru, ret);
1187 		return -ENOSYS;
1188 	}
1189 
1190 	if (page_count(hpage) == 1) {
1191 		/* page was freed from under us. So we are done. */
1192 		putback_active_hugepage(hpage);
1193 		return MIGRATEPAGE_SUCCESS;
1194 	}
1195 
1196 	new_hpage = get_new_page(hpage, private);
1197 	if (!new_hpage)
1198 		return -ENOMEM;
1199 	dst = page_folio(new_hpage);
1200 
1201 	if (!trylock_page(hpage)) {
1202 		if (!force)
1203 			goto out;
1204 		switch (mode) {
1205 		case MIGRATE_SYNC:
1206 		case MIGRATE_SYNC_NO_COPY:
1207 			break;
1208 		default:
1209 			goto out;
1210 		}
1211 		lock_page(hpage);
1212 	}
1213 
1214 	/*
1215 	 * Check for pages which are in the process of being freed.  Without
1216 	 * page_mapping() set, hugetlbfs specific move page routine will not
1217 	 * be called and we could leak usage counts for subpools.
1218 	 */
1219 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1220 		rc = -EBUSY;
1221 		goto out_unlock;
1222 	}
1223 
1224 	if (PageAnon(hpage))
1225 		anon_vma = page_get_anon_vma(hpage);
1226 
1227 	if (unlikely(!trylock_page(new_hpage)))
1228 		goto put_anon;
1229 
1230 	if (page_mapped(hpage)) {
1231 		bool mapping_locked = false;
1232 		enum ttu_flags ttu = 0;
1233 
1234 		if (!PageAnon(hpage)) {
1235 			/*
1236 			 * In shared mappings, try_to_unmap could potentially
1237 			 * call huge_pmd_unshare.  Because of this, take
1238 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1239 			 * to let lower levels know we have taken the lock.
1240 			 */
1241 			mapping = hugetlb_page_mapping_lock_write(hpage);
1242 			if (unlikely(!mapping))
1243 				goto unlock_put_anon;
1244 
1245 			mapping_locked = true;
1246 			ttu |= TTU_RMAP_LOCKED;
1247 		}
1248 
1249 		try_to_migrate(src, ttu);
1250 		page_was_mapped = 1;
1251 
1252 		if (mapping_locked)
1253 			i_mmap_unlock_write(mapping);
1254 	}
1255 
1256 	if (!page_mapped(hpage))
1257 		rc = move_to_new_page(new_hpage, hpage, mode);
1258 
1259 	if (page_was_mapped)
1260 		remove_migration_ptes(src,
1261 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1262 
1263 unlock_put_anon:
1264 	unlock_page(new_hpage);
1265 
1266 put_anon:
1267 	if (anon_vma)
1268 		put_anon_vma(anon_vma);
1269 
1270 	if (rc == MIGRATEPAGE_SUCCESS) {
1271 		move_hugetlb_state(hpage, new_hpage, reason);
1272 		put_new_page = NULL;
1273 	}
1274 
1275 out_unlock:
1276 	unlock_page(hpage);
1277 out:
1278 	if (rc == MIGRATEPAGE_SUCCESS)
1279 		putback_active_hugepage(hpage);
1280 	else if (rc != -EAGAIN)
1281 		list_move_tail(&hpage->lru, ret);
1282 
1283 	/*
1284 	 * If migration was not successful and there's a freeing callback, use
1285 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1286 	 * isolation.
1287 	 */
1288 	if (put_new_page)
1289 		put_new_page(new_hpage, private);
1290 	else
1291 		putback_active_hugepage(new_hpage);
1292 
1293 	return rc;
1294 }
1295 
1296 static inline int try_split_thp(struct page *page, struct page **page2,
1297 				struct list_head *from)
1298 {
1299 	int rc = 0;
1300 
1301 	lock_page(page);
1302 	rc = split_huge_page_to_list(page, from);
1303 	unlock_page(page);
1304 	if (!rc)
1305 		list_safe_reset_next(page, *page2, lru);
1306 
1307 	return rc;
1308 }
1309 
1310 /*
1311  * migrate_pages - migrate the pages specified in a list, to the free pages
1312  *		   supplied as the target for the page migration
1313  *
1314  * @from:		The list of pages to be migrated.
1315  * @get_new_page:	The function used to allocate free pages to be used
1316  *			as the target of the page migration.
1317  * @put_new_page:	The function used to free target pages if migration
1318  *			fails, or NULL if no special handling is necessary.
1319  * @private:		Private data to be passed on to get_new_page()
1320  * @mode:		The migration mode that specifies the constraints for
1321  *			page migration, if any.
1322  * @reason:		The reason for page migration.
1323  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1324  *			the caller passes a non-NULL pointer.
1325  *
1326  * The function returns after 10 attempts or if no pages are movable any more
1327  * because the list has become empty or no retryable pages exist any more.
1328  * It is caller's responsibility to call putback_movable_pages() to return pages
1329  * to the LRU or free list only if ret != 0.
1330  *
1331  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1332  * an error code. The number of THP splits will be considered as the number of
1333  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1334  */
1335 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1336 		free_page_t put_new_page, unsigned long private,
1337 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1338 {
1339 	int retry = 1;
1340 	int thp_retry = 1;
1341 	int nr_failed = 0;
1342 	int nr_failed_pages = 0;
1343 	int nr_succeeded = 0;
1344 	int nr_thp_succeeded = 0;
1345 	int nr_thp_failed = 0;
1346 	int nr_thp_split = 0;
1347 	int pass = 0;
1348 	bool is_thp = false;
1349 	struct page *page;
1350 	struct page *page2;
1351 	int rc, nr_subpages;
1352 	LIST_HEAD(ret_pages);
1353 	LIST_HEAD(thp_split_pages);
1354 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1355 	bool no_subpage_counting = false;
1356 
1357 	trace_mm_migrate_pages_start(mode, reason);
1358 
1359 thp_subpage_migration:
1360 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1361 		retry = 0;
1362 		thp_retry = 0;
1363 
1364 		list_for_each_entry_safe(page, page2, from, lru) {
1365 retry:
1366 			/*
1367 			 * THP statistics is based on the source huge page.
1368 			 * Capture required information that might get lost
1369 			 * during migration.
1370 			 */
1371 			is_thp = PageTransHuge(page) && !PageHuge(page);
1372 			nr_subpages = compound_nr(page);
1373 			cond_resched();
1374 
1375 			if (PageHuge(page))
1376 				rc = unmap_and_move_huge_page(get_new_page,
1377 						put_new_page, private, page,
1378 						pass > 2, mode, reason,
1379 						&ret_pages);
1380 			else
1381 				rc = unmap_and_move(get_new_page, put_new_page,
1382 						private, page, pass > 2, mode,
1383 						reason, &ret_pages);
1384 			/*
1385 			 * The rules are:
1386 			 *	Success: non hugetlb page will be freed, hugetlb
1387 			 *		 page will be put back
1388 			 *	-EAGAIN: stay on the from list
1389 			 *	-ENOMEM: stay on the from list
1390 			 *	Other errno: put on ret_pages list then splice to
1391 			 *		     from list
1392 			 */
1393 			switch(rc) {
1394 			/*
1395 			 * THP migration might be unsupported or the
1396 			 * allocation could've failed so we should
1397 			 * retry on the same page with the THP split
1398 			 * to base pages.
1399 			 *
1400 			 * Head page is retried immediately and tail
1401 			 * pages are added to the tail of the list so
1402 			 * we encounter them after the rest of the list
1403 			 * is processed.
1404 			 */
1405 			case -ENOSYS:
1406 				/* THP migration is unsupported */
1407 				if (is_thp) {
1408 					nr_thp_failed++;
1409 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1410 						nr_thp_split++;
1411 						goto retry;
1412 					}
1413 
1414 					nr_failed_pages += nr_subpages;
1415 					break;
1416 				}
1417 
1418 				/* Hugetlb migration is unsupported */
1419 				if (!no_subpage_counting)
1420 					nr_failed++;
1421 				nr_failed_pages += nr_subpages;
1422 				break;
1423 			case -ENOMEM:
1424 				/*
1425 				 * When memory is low, don't bother to try to migrate
1426 				 * other pages, just exit.
1427 				 * THP NUMA faulting doesn't split THP to retry.
1428 				 */
1429 				if (is_thp && !nosplit) {
1430 					nr_thp_failed++;
1431 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1432 						nr_thp_split++;
1433 						goto retry;
1434 					}
1435 
1436 					nr_failed_pages += nr_subpages;
1437 					goto out;
1438 				}
1439 
1440 				if (!no_subpage_counting)
1441 					nr_failed++;
1442 				nr_failed_pages += nr_subpages;
1443 				goto out;
1444 			case -EAGAIN:
1445 				if (is_thp) {
1446 					thp_retry++;
1447 					break;
1448 				}
1449 				retry++;
1450 				break;
1451 			case MIGRATEPAGE_SUCCESS:
1452 				nr_succeeded += nr_subpages;
1453 				if (is_thp) {
1454 					nr_thp_succeeded++;
1455 					break;
1456 				}
1457 				break;
1458 			default:
1459 				/*
1460 				 * Permanent failure (-EBUSY, etc.):
1461 				 * unlike -EAGAIN case, the failed page is
1462 				 * removed from migration page list and not
1463 				 * retried in the next outer loop.
1464 				 */
1465 				if (is_thp) {
1466 					nr_thp_failed++;
1467 					nr_failed_pages += nr_subpages;
1468 					break;
1469 				}
1470 
1471 				if (!no_subpage_counting)
1472 					nr_failed++;
1473 				nr_failed_pages += nr_subpages;
1474 				break;
1475 			}
1476 		}
1477 	}
1478 	nr_failed += retry;
1479 	nr_thp_failed += thp_retry;
1480 	/*
1481 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1482 	 * counting in this round, since all subpages of a THP is counted
1483 	 * as 1 failure in the first round.
1484 	 */
1485 	if (!list_empty(&thp_split_pages)) {
1486 		/*
1487 		 * Move non-migrated pages (after 10 retries) to ret_pages
1488 		 * to avoid migrating them again.
1489 		 */
1490 		list_splice_init(from, &ret_pages);
1491 		list_splice_init(&thp_split_pages, from);
1492 		no_subpage_counting = true;
1493 		retry = 1;
1494 		goto thp_subpage_migration;
1495 	}
1496 
1497 	rc = nr_failed + nr_thp_failed;
1498 out:
1499 	/*
1500 	 * Put the permanent failure page back to migration list, they
1501 	 * will be put back to the right list by the caller.
1502 	 */
1503 	list_splice(&ret_pages, from);
1504 
1505 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1506 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1507 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1508 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1509 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1510 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1511 			       nr_thp_failed, nr_thp_split, mode, reason);
1512 
1513 	if (ret_succeeded)
1514 		*ret_succeeded = nr_succeeded;
1515 
1516 	return rc;
1517 }
1518 
1519 struct page *alloc_migration_target(struct page *page, unsigned long private)
1520 {
1521 	struct migration_target_control *mtc;
1522 	gfp_t gfp_mask;
1523 	unsigned int order = 0;
1524 	struct page *new_page = NULL;
1525 	int nid;
1526 	int zidx;
1527 
1528 	mtc = (struct migration_target_control *)private;
1529 	gfp_mask = mtc->gfp_mask;
1530 	nid = mtc->nid;
1531 	if (nid == NUMA_NO_NODE)
1532 		nid = page_to_nid(page);
1533 
1534 	if (PageHuge(page)) {
1535 		struct hstate *h = page_hstate(compound_head(page));
1536 
1537 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1538 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1539 	}
1540 
1541 	if (PageTransHuge(page)) {
1542 		/*
1543 		 * clear __GFP_RECLAIM to make the migration callback
1544 		 * consistent with regular THP allocations.
1545 		 */
1546 		gfp_mask &= ~__GFP_RECLAIM;
1547 		gfp_mask |= GFP_TRANSHUGE;
1548 		order = HPAGE_PMD_ORDER;
1549 	}
1550 	zidx = zone_idx(page_zone(page));
1551 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1552 		gfp_mask |= __GFP_HIGHMEM;
1553 
1554 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1555 
1556 	if (new_page && PageTransHuge(new_page))
1557 		prep_transhuge_page(new_page);
1558 
1559 	return new_page;
1560 }
1561 
1562 #ifdef CONFIG_NUMA
1563 
1564 static int store_status(int __user *status, int start, int value, int nr)
1565 {
1566 	while (nr-- > 0) {
1567 		if (put_user(value, status + start))
1568 			return -EFAULT;
1569 		start++;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 static int do_move_pages_to_node(struct mm_struct *mm,
1576 		struct list_head *pagelist, int node)
1577 {
1578 	int err;
1579 	struct migration_target_control mtc = {
1580 		.nid = node,
1581 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1582 	};
1583 
1584 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1585 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1586 	if (err)
1587 		putback_movable_pages(pagelist);
1588 	return err;
1589 }
1590 
1591 /*
1592  * Resolves the given address to a struct page, isolates it from the LRU and
1593  * puts it to the given pagelist.
1594  * Returns:
1595  *     errno - if the page cannot be found/isolated
1596  *     0 - when it doesn't have to be migrated because it is already on the
1597  *         target node
1598  *     1 - when it has been queued
1599  */
1600 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1601 		int node, struct list_head *pagelist, bool migrate_all)
1602 {
1603 	struct vm_area_struct *vma;
1604 	struct page *page;
1605 	int err;
1606 
1607 	mmap_read_lock(mm);
1608 	err = -EFAULT;
1609 	vma = find_vma(mm, addr);
1610 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1611 		goto out;
1612 
1613 	/* FOLL_DUMP to ignore special (like zero) pages */
1614 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1615 
1616 	err = PTR_ERR(page);
1617 	if (IS_ERR(page))
1618 		goto out;
1619 
1620 	err = -ENOENT;
1621 	if (!page)
1622 		goto out;
1623 
1624 	err = 0;
1625 	if (page_to_nid(page) == node)
1626 		goto out_putpage;
1627 
1628 	err = -EACCES;
1629 	if (page_mapcount(page) > 1 && !migrate_all)
1630 		goto out_putpage;
1631 
1632 	if (PageHuge(page)) {
1633 		if (PageHead(page)) {
1634 			isolate_huge_page(page, pagelist);
1635 			err = 1;
1636 		}
1637 	} else {
1638 		struct page *head;
1639 
1640 		head = compound_head(page);
1641 		err = isolate_lru_page(head);
1642 		if (err)
1643 			goto out_putpage;
1644 
1645 		err = 1;
1646 		list_add_tail(&head->lru, pagelist);
1647 		mod_node_page_state(page_pgdat(head),
1648 			NR_ISOLATED_ANON + page_is_file_lru(head),
1649 			thp_nr_pages(head));
1650 	}
1651 out_putpage:
1652 	/*
1653 	 * Either remove the duplicate refcount from
1654 	 * isolate_lru_page() or drop the page ref if it was
1655 	 * not isolated.
1656 	 */
1657 	put_page(page);
1658 out:
1659 	mmap_read_unlock(mm);
1660 	return err;
1661 }
1662 
1663 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1664 		struct list_head *pagelist, int __user *status,
1665 		int start, int i, unsigned long nr_pages)
1666 {
1667 	int err;
1668 
1669 	if (list_empty(pagelist))
1670 		return 0;
1671 
1672 	err = do_move_pages_to_node(mm, pagelist, node);
1673 	if (err) {
1674 		/*
1675 		 * Positive err means the number of failed
1676 		 * pages to migrate.  Since we are going to
1677 		 * abort and return the number of non-migrated
1678 		 * pages, so need to include the rest of the
1679 		 * nr_pages that have not been attempted as
1680 		 * well.
1681 		 */
1682 		if (err > 0)
1683 			err += nr_pages - i - 1;
1684 		return err;
1685 	}
1686 	return store_status(status, start, node, i - start);
1687 }
1688 
1689 /*
1690  * Migrate an array of page address onto an array of nodes and fill
1691  * the corresponding array of status.
1692  */
1693 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1694 			 unsigned long nr_pages,
1695 			 const void __user * __user *pages,
1696 			 const int __user *nodes,
1697 			 int __user *status, int flags)
1698 {
1699 	int current_node = NUMA_NO_NODE;
1700 	LIST_HEAD(pagelist);
1701 	int start, i;
1702 	int err = 0, err1;
1703 
1704 	lru_cache_disable();
1705 
1706 	for (i = start = 0; i < nr_pages; i++) {
1707 		const void __user *p;
1708 		unsigned long addr;
1709 		int node;
1710 
1711 		err = -EFAULT;
1712 		if (get_user(p, pages + i))
1713 			goto out_flush;
1714 		if (get_user(node, nodes + i))
1715 			goto out_flush;
1716 		addr = (unsigned long)untagged_addr(p);
1717 
1718 		err = -ENODEV;
1719 		if (node < 0 || node >= MAX_NUMNODES)
1720 			goto out_flush;
1721 		if (!node_state(node, N_MEMORY))
1722 			goto out_flush;
1723 
1724 		err = -EACCES;
1725 		if (!node_isset(node, task_nodes))
1726 			goto out_flush;
1727 
1728 		if (current_node == NUMA_NO_NODE) {
1729 			current_node = node;
1730 			start = i;
1731 		} else if (node != current_node) {
1732 			err = move_pages_and_store_status(mm, current_node,
1733 					&pagelist, status, start, i, nr_pages);
1734 			if (err)
1735 				goto out;
1736 			start = i;
1737 			current_node = node;
1738 		}
1739 
1740 		/*
1741 		 * Errors in the page lookup or isolation are not fatal and we simply
1742 		 * report them via status
1743 		 */
1744 		err = add_page_for_migration(mm, addr, current_node,
1745 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1746 
1747 		if (err > 0) {
1748 			/* The page is successfully queued for migration */
1749 			continue;
1750 		}
1751 
1752 		/*
1753 		 * The move_pages() man page does not have an -EEXIST choice, so
1754 		 * use -EFAULT instead.
1755 		 */
1756 		if (err == -EEXIST)
1757 			err = -EFAULT;
1758 
1759 		/*
1760 		 * If the page is already on the target node (!err), store the
1761 		 * node, otherwise, store the err.
1762 		 */
1763 		err = store_status(status, i, err ? : current_node, 1);
1764 		if (err)
1765 			goto out_flush;
1766 
1767 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1768 				status, start, i, nr_pages);
1769 		if (err)
1770 			goto out;
1771 		current_node = NUMA_NO_NODE;
1772 	}
1773 out_flush:
1774 	/* Make sure we do not overwrite the existing error */
1775 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1776 				status, start, i, nr_pages);
1777 	if (err >= 0)
1778 		err = err1;
1779 out:
1780 	lru_cache_enable();
1781 	return err;
1782 }
1783 
1784 /*
1785  * Determine the nodes of an array of pages and store it in an array of status.
1786  */
1787 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1788 				const void __user **pages, int *status)
1789 {
1790 	unsigned long i;
1791 
1792 	mmap_read_lock(mm);
1793 
1794 	for (i = 0; i < nr_pages; i++) {
1795 		unsigned long addr = (unsigned long)(*pages);
1796 		struct vm_area_struct *vma;
1797 		struct page *page;
1798 		int err = -EFAULT;
1799 
1800 		vma = vma_lookup(mm, addr);
1801 		if (!vma)
1802 			goto set_status;
1803 
1804 		/* FOLL_DUMP to ignore special (like zero) pages */
1805 		page = follow_page(vma, addr, FOLL_DUMP);
1806 
1807 		err = PTR_ERR(page);
1808 		if (IS_ERR(page))
1809 			goto set_status;
1810 
1811 		err = page ? page_to_nid(page) : -ENOENT;
1812 set_status:
1813 		*status = err;
1814 
1815 		pages++;
1816 		status++;
1817 	}
1818 
1819 	mmap_read_unlock(mm);
1820 }
1821 
1822 static int get_compat_pages_array(const void __user *chunk_pages[],
1823 				  const void __user * __user *pages,
1824 				  unsigned long chunk_nr)
1825 {
1826 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1827 	compat_uptr_t p;
1828 	int i;
1829 
1830 	for (i = 0; i < chunk_nr; i++) {
1831 		if (get_user(p, pages32 + i))
1832 			return -EFAULT;
1833 		chunk_pages[i] = compat_ptr(p);
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 /*
1840  * Determine the nodes of a user array of pages and store it in
1841  * a user array of status.
1842  */
1843 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1844 			 const void __user * __user *pages,
1845 			 int __user *status)
1846 {
1847 #define DO_PAGES_STAT_CHUNK_NR 16
1848 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1849 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1850 
1851 	while (nr_pages) {
1852 		unsigned long chunk_nr;
1853 
1854 		chunk_nr = nr_pages;
1855 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1856 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1857 
1858 		if (in_compat_syscall()) {
1859 			if (get_compat_pages_array(chunk_pages, pages,
1860 						   chunk_nr))
1861 				break;
1862 		} else {
1863 			if (copy_from_user(chunk_pages, pages,
1864 				      chunk_nr * sizeof(*chunk_pages)))
1865 				break;
1866 		}
1867 
1868 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1869 
1870 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1871 			break;
1872 
1873 		pages += chunk_nr;
1874 		status += chunk_nr;
1875 		nr_pages -= chunk_nr;
1876 	}
1877 	return nr_pages ? -EFAULT : 0;
1878 }
1879 
1880 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1881 {
1882 	struct task_struct *task;
1883 	struct mm_struct *mm;
1884 
1885 	/*
1886 	 * There is no need to check if current process has the right to modify
1887 	 * the specified process when they are same.
1888 	 */
1889 	if (!pid) {
1890 		mmget(current->mm);
1891 		*mem_nodes = cpuset_mems_allowed(current);
1892 		return current->mm;
1893 	}
1894 
1895 	/* Find the mm_struct */
1896 	rcu_read_lock();
1897 	task = find_task_by_vpid(pid);
1898 	if (!task) {
1899 		rcu_read_unlock();
1900 		return ERR_PTR(-ESRCH);
1901 	}
1902 	get_task_struct(task);
1903 
1904 	/*
1905 	 * Check if this process has the right to modify the specified
1906 	 * process. Use the regular "ptrace_may_access()" checks.
1907 	 */
1908 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1909 		rcu_read_unlock();
1910 		mm = ERR_PTR(-EPERM);
1911 		goto out;
1912 	}
1913 	rcu_read_unlock();
1914 
1915 	mm = ERR_PTR(security_task_movememory(task));
1916 	if (IS_ERR(mm))
1917 		goto out;
1918 	*mem_nodes = cpuset_mems_allowed(task);
1919 	mm = get_task_mm(task);
1920 out:
1921 	put_task_struct(task);
1922 	if (!mm)
1923 		mm = ERR_PTR(-EINVAL);
1924 	return mm;
1925 }
1926 
1927 /*
1928  * Move a list of pages in the address space of the currently executing
1929  * process.
1930  */
1931 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1932 			     const void __user * __user *pages,
1933 			     const int __user *nodes,
1934 			     int __user *status, int flags)
1935 {
1936 	struct mm_struct *mm;
1937 	int err;
1938 	nodemask_t task_nodes;
1939 
1940 	/* Check flags */
1941 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1942 		return -EINVAL;
1943 
1944 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1945 		return -EPERM;
1946 
1947 	mm = find_mm_struct(pid, &task_nodes);
1948 	if (IS_ERR(mm))
1949 		return PTR_ERR(mm);
1950 
1951 	if (nodes)
1952 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1953 				    nodes, status, flags);
1954 	else
1955 		err = do_pages_stat(mm, nr_pages, pages, status);
1956 
1957 	mmput(mm);
1958 	return err;
1959 }
1960 
1961 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1962 		const void __user * __user *, pages,
1963 		const int __user *, nodes,
1964 		int __user *, status, int, flags)
1965 {
1966 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1967 }
1968 
1969 #ifdef CONFIG_NUMA_BALANCING
1970 /*
1971  * Returns true if this is a safe migration target node for misplaced NUMA
1972  * pages. Currently it only checks the watermarks which crude
1973  */
1974 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1975 				   unsigned long nr_migrate_pages)
1976 {
1977 	int z;
1978 
1979 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1980 		struct zone *zone = pgdat->node_zones + z;
1981 
1982 		if (!populated_zone(zone))
1983 			continue;
1984 
1985 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1986 		if (!zone_watermark_ok(zone, 0,
1987 				       high_wmark_pages(zone) +
1988 				       nr_migrate_pages,
1989 				       ZONE_MOVABLE, 0))
1990 			continue;
1991 		return true;
1992 	}
1993 	return false;
1994 }
1995 
1996 static struct page *alloc_misplaced_dst_page(struct page *page,
1997 					   unsigned long data)
1998 {
1999 	int nid = (int) data;
2000 	struct page *newpage;
2001 
2002 	newpage = __alloc_pages_node(nid,
2003 					 (GFP_HIGHUSER_MOVABLE |
2004 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2005 					  __GFP_NORETRY | __GFP_NOWARN) &
2006 					 ~__GFP_RECLAIM, 0);
2007 
2008 	return newpage;
2009 }
2010 
2011 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2012 						 unsigned long data)
2013 {
2014 	int nid = (int) data;
2015 	struct page *newpage;
2016 
2017 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2018 				   HPAGE_PMD_ORDER);
2019 	if (!newpage)
2020 		goto out;
2021 
2022 	prep_transhuge_page(newpage);
2023 
2024 out:
2025 	return newpage;
2026 }
2027 
2028 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2029 {
2030 	int page_lru;
2031 	int nr_pages = thp_nr_pages(page);
2032 	int order = compound_order(page);
2033 
2034 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2035 
2036 	/* Do not migrate THP mapped by multiple processes */
2037 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2038 		return 0;
2039 
2040 	/* Avoid migrating to a node that is nearly full */
2041 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2042 		int z;
2043 
2044 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2045 			return 0;
2046 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2047 			if (populated_zone(pgdat->node_zones + z))
2048 				break;
2049 		}
2050 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2051 		return 0;
2052 	}
2053 
2054 	if (isolate_lru_page(page))
2055 		return 0;
2056 
2057 	page_lru = page_is_file_lru(page);
2058 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2059 			    nr_pages);
2060 
2061 	/*
2062 	 * Isolating the page has taken another reference, so the
2063 	 * caller's reference can be safely dropped without the page
2064 	 * disappearing underneath us during migration.
2065 	 */
2066 	put_page(page);
2067 	return 1;
2068 }
2069 
2070 /*
2071  * Attempt to migrate a misplaced page to the specified destination
2072  * node. Caller is expected to have an elevated reference count on
2073  * the page that will be dropped by this function before returning.
2074  */
2075 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2076 			   int node)
2077 {
2078 	pg_data_t *pgdat = NODE_DATA(node);
2079 	int isolated;
2080 	int nr_remaining;
2081 	unsigned int nr_succeeded;
2082 	LIST_HEAD(migratepages);
2083 	new_page_t *new;
2084 	bool compound;
2085 	int nr_pages = thp_nr_pages(page);
2086 
2087 	/*
2088 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2089 	 * be either base page or THP.  And it must be head page if it is
2090 	 * THP.
2091 	 */
2092 	compound = PageTransHuge(page);
2093 
2094 	if (compound)
2095 		new = alloc_misplaced_dst_page_thp;
2096 	else
2097 		new = alloc_misplaced_dst_page;
2098 
2099 	/*
2100 	 * Don't migrate file pages that are mapped in multiple processes
2101 	 * with execute permissions as they are probably shared libraries.
2102 	 */
2103 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2104 	    (vma->vm_flags & VM_EXEC))
2105 		goto out;
2106 
2107 	/*
2108 	 * Also do not migrate dirty pages as not all filesystems can move
2109 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2110 	 */
2111 	if (page_is_file_lru(page) && PageDirty(page))
2112 		goto out;
2113 
2114 	isolated = numamigrate_isolate_page(pgdat, page);
2115 	if (!isolated)
2116 		goto out;
2117 
2118 	list_add(&page->lru, &migratepages);
2119 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2120 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED,
2121 				     &nr_succeeded);
2122 	if (nr_remaining) {
2123 		if (!list_empty(&migratepages)) {
2124 			list_del(&page->lru);
2125 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2126 					page_is_file_lru(page), -nr_pages);
2127 			putback_lru_page(page);
2128 		}
2129 		isolated = 0;
2130 	}
2131 	if (nr_succeeded) {
2132 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2133 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2134 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2135 					    nr_succeeded);
2136 	}
2137 	BUG_ON(!list_empty(&migratepages));
2138 	return isolated;
2139 
2140 out:
2141 	put_page(page);
2142 	return 0;
2143 }
2144 #endif /* CONFIG_NUMA_BALANCING */
2145 #endif /* CONFIG_NUMA */
2146 
2147 /*
2148  * node_demotion[] example:
2149  *
2150  * Consider a system with two sockets.  Each socket has
2151  * three classes of memory attached: fast, medium and slow.
2152  * Each memory class is placed in its own NUMA node.  The
2153  * CPUs are placed in the node with the "fast" memory.  The
2154  * 6 NUMA nodes (0-5) might be split among the sockets like
2155  * this:
2156  *
2157  *	Socket A: 0, 1, 2
2158  *	Socket B: 3, 4, 5
2159  *
2160  * When Node 0 fills up, its memory should be migrated to
2161  * Node 1.  When Node 1 fills up, it should be migrated to
2162  * Node 2.  The migration path start on the nodes with the
2163  * processors (since allocations default to this node) and
2164  * fast memory, progress through medium and end with the
2165  * slow memory:
2166  *
2167  *	0 -> 1 -> 2 -> stop
2168  *	3 -> 4 -> 5 -> stop
2169  *
2170  * This is represented in the node_demotion[] like this:
2171  *
2172  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2173  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2174  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2175  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2176  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2177  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2178  *
2179  * Moreover some systems may have multiple slow memory nodes.
2180  * Suppose a system has one socket with 3 memory nodes, node 0
2181  * is fast memory type, and node 1/2 both are slow memory
2182  * type, and the distance between fast memory node and slow
2183  * memory node is same. So the migration path should be:
2184  *
2185  *	0 -> 1/2 -> stop
2186  *
2187  * This is represented in the node_demotion[] like this:
2188  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2189  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2190  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2191  */
2192 
2193 /*
2194  * Writes to this array occur without locking.  Cycles are
2195  * not allowed: Node X demotes to Y which demotes to X...
2196  *
2197  * If multiple reads are performed, a single rcu_read_lock()
2198  * must be held over all reads to ensure that no cycles are
2199  * observed.
2200  */
2201 #define DEFAULT_DEMOTION_TARGET_NODES 15
2202 
2203 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2204 #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
2205 #else
2206 #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
2207 #endif
2208 
2209 struct demotion_nodes {
2210 	unsigned short nr;
2211 	short nodes[DEMOTION_TARGET_NODES];
2212 };
2213 
2214 static struct demotion_nodes *node_demotion __read_mostly;
2215 
2216 /**
2217  * next_demotion_node() - Get the next node in the demotion path
2218  * @node: The starting node to lookup the next node
2219  *
2220  * Return: node id for next memory node in the demotion path hierarchy
2221  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2222  * @node online or guarantee that it *continues* to be the next demotion
2223  * target.
2224  */
2225 int next_demotion_node(int node)
2226 {
2227 	struct demotion_nodes *nd;
2228 	unsigned short target_nr, index;
2229 	int target;
2230 
2231 	if (!node_demotion)
2232 		return NUMA_NO_NODE;
2233 
2234 	nd = &node_demotion[node];
2235 
2236 	/*
2237 	 * node_demotion[] is updated without excluding this
2238 	 * function from running.  RCU doesn't provide any
2239 	 * compiler barriers, so the READ_ONCE() is required
2240 	 * to avoid compiler reordering or read merging.
2241 	 *
2242 	 * Make sure to use RCU over entire code blocks if
2243 	 * node_demotion[] reads need to be consistent.
2244 	 */
2245 	rcu_read_lock();
2246 	target_nr = READ_ONCE(nd->nr);
2247 
2248 	switch (target_nr) {
2249 	case 0:
2250 		target = NUMA_NO_NODE;
2251 		goto out;
2252 	case 1:
2253 		index = 0;
2254 		break;
2255 	default:
2256 		/*
2257 		 * If there are multiple target nodes, just select one
2258 		 * target node randomly.
2259 		 *
2260 		 * In addition, we can also use round-robin to select
2261 		 * target node, but we should introduce another variable
2262 		 * for node_demotion[] to record last selected target node,
2263 		 * that may cause cache ping-pong due to the changing of
2264 		 * last target node. Or introducing per-cpu data to avoid
2265 		 * caching issue, which seems more complicated. So selecting
2266 		 * target node randomly seems better until now.
2267 		 */
2268 		index = get_random_int() % target_nr;
2269 		break;
2270 	}
2271 
2272 	target = READ_ONCE(nd->nodes[index]);
2273 
2274 out:
2275 	rcu_read_unlock();
2276 	return target;
2277 }
2278 
2279 #if defined(CONFIG_HOTPLUG_CPU)
2280 /* Disable reclaim-based migration. */
2281 static void __disable_all_migrate_targets(void)
2282 {
2283 	int node, i;
2284 
2285 	if (!node_demotion)
2286 		return;
2287 
2288 	for_each_online_node(node) {
2289 		node_demotion[node].nr = 0;
2290 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2291 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
2292 	}
2293 }
2294 
2295 static void disable_all_migrate_targets(void)
2296 {
2297 	__disable_all_migrate_targets();
2298 
2299 	/*
2300 	 * Ensure that the "disable" is visible across the system.
2301 	 * Readers will see either a combination of before+disable
2302 	 * state or disable+after.  They will never see before and
2303 	 * after state together.
2304 	 *
2305 	 * The before+after state together might have cycles and
2306 	 * could cause readers to do things like loop until this
2307 	 * function finishes.  This ensures they can only see a
2308 	 * single "bad" read and would, for instance, only loop
2309 	 * once.
2310 	 */
2311 	synchronize_rcu();
2312 }
2313 
2314 /*
2315  * Find an automatic demotion target for 'node'.
2316  * Failing here is OK.  It might just indicate
2317  * being at the end of a chain.
2318  */
2319 static int establish_migrate_target(int node, nodemask_t *used,
2320 				    int best_distance)
2321 {
2322 	int migration_target, index, val;
2323 	struct demotion_nodes *nd;
2324 
2325 	if (!node_demotion)
2326 		return NUMA_NO_NODE;
2327 
2328 	nd = &node_demotion[node];
2329 
2330 	migration_target = find_next_best_node(node, used);
2331 	if (migration_target == NUMA_NO_NODE)
2332 		return NUMA_NO_NODE;
2333 
2334 	/*
2335 	 * If the node has been set a migration target node before,
2336 	 * which means it's the best distance between them. Still
2337 	 * check if this node can be demoted to other target nodes
2338 	 * if they have a same best distance.
2339 	 */
2340 	if (best_distance != -1) {
2341 		val = node_distance(node, migration_target);
2342 		if (val > best_distance)
2343 			goto out_clear;
2344 	}
2345 
2346 	index = nd->nr;
2347 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2348 		      "Exceeds maximum demotion target nodes\n"))
2349 		goto out_clear;
2350 
2351 	nd->nodes[index] = migration_target;
2352 	nd->nr++;
2353 
2354 	return migration_target;
2355 out_clear:
2356 	node_clear(migration_target, *used);
2357 	return NUMA_NO_NODE;
2358 }
2359 
2360 /*
2361  * When memory fills up on a node, memory contents can be
2362  * automatically migrated to another node instead of
2363  * discarded at reclaim.
2364  *
2365  * Establish a "migration path" which will start at nodes
2366  * with CPUs and will follow the priorities used to build the
2367  * page allocator zonelists.
2368  *
2369  * The difference here is that cycles must be avoided.  If
2370  * node0 migrates to node1, then neither node1, nor anything
2371  * node1 migrates to can migrate to node0. Also one node can
2372  * be migrated to multiple nodes if the target nodes all have
2373  * a same best-distance against the source node.
2374  *
2375  * This function can run simultaneously with readers of
2376  * node_demotion[].  However, it can not run simultaneously
2377  * with itself.  Exclusion is provided by memory hotplug events
2378  * being single-threaded.
2379  */
2380 static void __set_migration_target_nodes(void)
2381 {
2382 	nodemask_t next_pass	= NODE_MASK_NONE;
2383 	nodemask_t this_pass	= NODE_MASK_NONE;
2384 	nodemask_t used_targets = NODE_MASK_NONE;
2385 	int node, best_distance;
2386 
2387 	/*
2388 	 * Avoid any oddities like cycles that could occur
2389 	 * from changes in the topology.  This will leave
2390 	 * a momentary gap when migration is disabled.
2391 	 */
2392 	disable_all_migrate_targets();
2393 
2394 	/*
2395 	 * Allocations go close to CPUs, first.  Assume that
2396 	 * the migration path starts at the nodes with CPUs.
2397 	 */
2398 	next_pass = node_states[N_CPU];
2399 again:
2400 	this_pass = next_pass;
2401 	next_pass = NODE_MASK_NONE;
2402 	/*
2403 	 * To avoid cycles in the migration "graph", ensure
2404 	 * that migration sources are not future targets by
2405 	 * setting them in 'used_targets'.  Do this only
2406 	 * once per pass so that multiple source nodes can
2407 	 * share a target node.
2408 	 *
2409 	 * 'used_targets' will become unavailable in future
2410 	 * passes.  This limits some opportunities for
2411 	 * multiple source nodes to share a destination.
2412 	 */
2413 	nodes_or(used_targets, used_targets, this_pass);
2414 
2415 	for_each_node_mask(node, this_pass) {
2416 		best_distance = -1;
2417 
2418 		/*
2419 		 * Try to set up the migration path for the node, and the target
2420 		 * migration nodes can be multiple, so doing a loop to find all
2421 		 * the target nodes if they all have a best node distance.
2422 		 */
2423 		do {
2424 			int target_node =
2425 				establish_migrate_target(node, &used_targets,
2426 							 best_distance);
2427 
2428 			if (target_node == NUMA_NO_NODE)
2429 				break;
2430 
2431 			if (best_distance == -1)
2432 				best_distance = node_distance(node, target_node);
2433 
2434 			/*
2435 			 * Visit targets from this pass in the next pass.
2436 			 * Eventually, every node will have been part of
2437 			 * a pass, and will become set in 'used_targets'.
2438 			 */
2439 			node_set(target_node, next_pass);
2440 		} while (1);
2441 	}
2442 	/*
2443 	 * 'next_pass' contains nodes which became migration
2444 	 * targets in this pass.  Make additional passes until
2445 	 * no more migrations targets are available.
2446 	 */
2447 	if (!nodes_empty(next_pass))
2448 		goto again;
2449 }
2450 
2451 /*
2452  * For callers that do not hold get_online_mems() already.
2453  */
2454 void set_migration_target_nodes(void)
2455 {
2456 	get_online_mems();
2457 	__set_migration_target_nodes();
2458 	put_online_mems();
2459 }
2460 
2461 /*
2462  * This leaves migrate-on-reclaim transiently disabled between
2463  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
2464  * whether reclaim-based migration is enabled or not, which
2465  * ensures that the user can turn reclaim-based migration at
2466  * any time without needing to recalculate migration targets.
2467  *
2468  * These callbacks already hold get_online_mems().  That is why
2469  * __set_migration_target_nodes() can be used as opposed to
2470  * set_migration_target_nodes().
2471  */
2472 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2473 						 unsigned long action, void *_arg)
2474 {
2475 	struct memory_notify *arg = _arg;
2476 
2477 	/*
2478 	 * Only update the node migration order when a node is
2479 	 * changing status, like online->offline.  This avoids
2480 	 * the overhead of synchronize_rcu() in most cases.
2481 	 */
2482 	if (arg->status_change_nid < 0)
2483 		return notifier_from_errno(0);
2484 
2485 	switch (action) {
2486 	case MEM_GOING_OFFLINE:
2487 		/*
2488 		 * Make sure there are not transient states where
2489 		 * an offline node is a migration target.  This
2490 		 * will leave migration disabled until the offline
2491 		 * completes and the MEM_OFFLINE case below runs.
2492 		 */
2493 		disable_all_migrate_targets();
2494 		break;
2495 	case MEM_OFFLINE:
2496 	case MEM_ONLINE:
2497 		/*
2498 		 * Recalculate the target nodes once the node
2499 		 * reaches its final state (online or offline).
2500 		 */
2501 		__set_migration_target_nodes();
2502 		break;
2503 	case MEM_CANCEL_OFFLINE:
2504 		/*
2505 		 * MEM_GOING_OFFLINE disabled all the migration
2506 		 * targets.  Reenable them.
2507 		 */
2508 		__set_migration_target_nodes();
2509 		break;
2510 	case MEM_GOING_ONLINE:
2511 	case MEM_CANCEL_ONLINE:
2512 		break;
2513 	}
2514 
2515 	return notifier_from_errno(0);
2516 }
2517 
2518 void __init migrate_on_reclaim_init(void)
2519 {
2520 	node_demotion = kmalloc_array(nr_node_ids,
2521 				      sizeof(struct demotion_nodes),
2522 				      GFP_KERNEL);
2523 	WARN_ON(!node_demotion);
2524 
2525 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2526 	/*
2527 	 * At this point, all numa nodes with memory/CPus have their state
2528 	 * properly set, so we can build the demotion order now.
2529 	 * Let us hold the cpu_hotplug lock just, as we could possibily have
2530 	 * CPU hotplug events during boot.
2531 	 */
2532 	cpus_read_lock();
2533 	set_migration_target_nodes();
2534 	cpus_read_unlock();
2535 }
2536 #endif /* CONFIG_HOTPLUG_CPU */
2537 
2538 bool numa_demotion_enabled = false;
2539 
2540 #ifdef CONFIG_SYSFS
2541 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2542 					  struct kobj_attribute *attr, char *buf)
2543 {
2544 	return sysfs_emit(buf, "%s\n",
2545 			  numa_demotion_enabled ? "true" : "false");
2546 }
2547 
2548 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2549 					   struct kobj_attribute *attr,
2550 					   const char *buf, size_t count)
2551 {
2552 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
2553 		numa_demotion_enabled = true;
2554 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
2555 		numa_demotion_enabled = false;
2556 	else
2557 		return -EINVAL;
2558 
2559 	return count;
2560 }
2561 
2562 static struct kobj_attribute numa_demotion_enabled_attr =
2563 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2564 	       numa_demotion_enabled_store);
2565 
2566 static struct attribute *numa_attrs[] = {
2567 	&numa_demotion_enabled_attr.attr,
2568 	NULL,
2569 };
2570 
2571 static const struct attribute_group numa_attr_group = {
2572 	.attrs = numa_attrs,
2573 };
2574 
2575 static int __init numa_init_sysfs(void)
2576 {
2577 	int err;
2578 	struct kobject *numa_kobj;
2579 
2580 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
2581 	if (!numa_kobj) {
2582 		pr_err("failed to create numa kobject\n");
2583 		return -ENOMEM;
2584 	}
2585 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
2586 	if (err) {
2587 		pr_err("failed to register numa group\n");
2588 		goto delete_obj;
2589 	}
2590 	return 0;
2591 
2592 delete_obj:
2593 	kobject_put(numa_kobj);
2594 	return err;
2595 }
2596 subsys_initcall(numa_init_sysfs);
2597 #endif
2598