1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grabbing the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } 250 } 251 252 #ifdef CONFIG_HUGETLB_PAGE 253 if (PageHuge(new)) { 254 pte = pte_mkhuge(pte); 255 pte = arch_make_huge_pte(pte, vma, new, 0); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 257 if (PageAnon(new)) 258 hugepage_add_anon_rmap(new, vma, pvmw.address); 259 else 260 page_dup_rmap(new, true); 261 } else 262 #endif 263 { 264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 265 266 if (PageAnon(new)) 267 page_add_anon_rmap(new, vma, pvmw.address, false); 268 else 269 page_add_file_rmap(new, false); 270 } 271 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 272 mlock_vma_page(new); 273 274 if (PageTransHuge(page) && PageMlocked(page)) 275 clear_page_mlock(page); 276 277 /* No need to invalidate - it was non-present before */ 278 update_mmu_cache(vma, pvmw.address, pvmw.pte); 279 } 280 281 return true; 282 } 283 284 /* 285 * Get rid of all migration entries and replace them by 286 * references to the indicated page. 287 */ 288 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 289 { 290 struct rmap_walk_control rwc = { 291 .rmap_one = remove_migration_pte, 292 .arg = old, 293 }; 294 295 if (locked) 296 rmap_walk_locked(new, &rwc); 297 else 298 rmap_walk(new, &rwc); 299 } 300 301 /* 302 * Something used the pte of a page under migration. We need to 303 * get to the page and wait until migration is finished. 304 * When we return from this function the fault will be retried. 305 */ 306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 307 spinlock_t *ptl) 308 { 309 pte_t pte; 310 swp_entry_t entry; 311 struct page *page; 312 313 spin_lock(ptl); 314 pte = *ptep; 315 if (!is_swap_pte(pte)) 316 goto out; 317 318 entry = pte_to_swp_entry(pte); 319 if (!is_migration_entry(entry)) 320 goto out; 321 322 page = migration_entry_to_page(entry); 323 324 /* 325 * Once page cache replacement of page migration started, page_count 326 * is zero; but we must not call put_and_wait_on_page_locked() without 327 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 328 */ 329 if (!get_page_unless_zero(page)) 330 goto out; 331 pte_unmap_unlock(ptep, ptl); 332 put_and_wait_on_page_locked(page); 333 return; 334 out: 335 pte_unmap_unlock(ptep, ptl); 336 } 337 338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 339 unsigned long address) 340 { 341 spinlock_t *ptl = pte_lockptr(mm, pmd); 342 pte_t *ptep = pte_offset_map(pmd, address); 343 __migration_entry_wait(mm, ptep, ptl); 344 } 345 346 void migration_entry_wait_huge(struct vm_area_struct *vma, 347 struct mm_struct *mm, pte_t *pte) 348 { 349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 350 __migration_entry_wait(mm, pte, ptl); 351 } 352 353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 355 { 356 spinlock_t *ptl; 357 struct page *page; 358 359 ptl = pmd_lock(mm, pmd); 360 if (!is_pmd_migration_entry(*pmd)) 361 goto unlock; 362 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 363 if (!get_page_unless_zero(page)) 364 goto unlock; 365 spin_unlock(ptl); 366 put_and_wait_on_page_locked(page); 367 return; 368 unlock: 369 spin_unlock(ptl); 370 } 371 #endif 372 373 static int expected_page_refs(struct address_space *mapping, struct page *page) 374 { 375 int expected_count = 1; 376 377 /* 378 * Device public or private pages have an extra refcount as they are 379 * ZONE_DEVICE pages. 380 */ 381 expected_count += is_device_private_page(page); 382 if (mapping) 383 expected_count += hpage_nr_pages(page) + page_has_private(page); 384 385 return expected_count; 386 } 387 388 /* 389 * Replace the page in the mapping. 390 * 391 * The number of remaining references must be: 392 * 1 for anonymous pages without a mapping 393 * 2 for pages with a mapping 394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 395 */ 396 int migrate_page_move_mapping(struct address_space *mapping, 397 struct page *newpage, struct page *page, enum migrate_mode mode, 398 int extra_count) 399 { 400 XA_STATE(xas, &mapping->i_pages, page_index(page)); 401 struct zone *oldzone, *newzone; 402 int dirty; 403 int expected_count = expected_page_refs(mapping, page) + extra_count; 404 405 if (!mapping) { 406 /* Anonymous page without mapping */ 407 if (page_count(page) != expected_count) 408 return -EAGAIN; 409 410 /* No turning back from here */ 411 newpage->index = page->index; 412 newpage->mapping = page->mapping; 413 if (PageSwapBacked(page)) 414 __SetPageSwapBacked(newpage); 415 416 return MIGRATEPAGE_SUCCESS; 417 } 418 419 oldzone = page_zone(page); 420 newzone = page_zone(newpage); 421 422 xas_lock_irq(&xas); 423 if (page_count(page) != expected_count || xas_load(&xas) != page) { 424 xas_unlock_irq(&xas); 425 return -EAGAIN; 426 } 427 428 if (!page_ref_freeze(page, expected_count)) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 /* 434 * Now we know that no one else is looking at the page: 435 * no turning back from here. 436 */ 437 newpage->index = page->index; 438 newpage->mapping = page->mapping; 439 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 440 if (PageSwapBacked(page)) { 441 __SetPageSwapBacked(newpage); 442 if (PageSwapCache(page)) { 443 SetPageSwapCache(newpage); 444 set_page_private(newpage, page_private(page)); 445 } 446 } else { 447 VM_BUG_ON_PAGE(PageSwapCache(page), page); 448 } 449 450 /* Move dirty while page refs frozen and newpage not yet exposed */ 451 dirty = PageDirty(page); 452 if (dirty) { 453 ClearPageDirty(page); 454 SetPageDirty(newpage); 455 } 456 457 xas_store(&xas, newpage); 458 if (PageTransHuge(page)) { 459 int i; 460 461 for (i = 1; i < HPAGE_PMD_NR; i++) { 462 xas_next(&xas); 463 xas_store(&xas, newpage + i); 464 } 465 } 466 467 /* 468 * Drop cache reference from old page by unfreezing 469 * to one less reference. 470 * We know this isn't the last reference. 471 */ 472 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 473 474 xas_unlock(&xas); 475 /* Leave irq disabled to prevent preemption while updating stats */ 476 477 /* 478 * If moved to a different zone then also account 479 * the page for that zone. Other VM counters will be 480 * taken care of when we establish references to the 481 * new page and drop references to the old page. 482 * 483 * Note that anonymous pages are accounted for 484 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 485 * are mapped to swap space. 486 */ 487 if (newzone != oldzone) { 488 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 489 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 490 if (PageSwapBacked(page) && !PageSwapCache(page)) { 491 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 492 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 493 } 494 if (dirty && mapping_cap_account_dirty(mapping)) { 495 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 496 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 497 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 498 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 499 } 500 } 501 local_irq_enable(); 502 503 return MIGRATEPAGE_SUCCESS; 504 } 505 EXPORT_SYMBOL(migrate_page_move_mapping); 506 507 /* 508 * The expected number of remaining references is the same as that 509 * of migrate_page_move_mapping(). 510 */ 511 int migrate_huge_page_move_mapping(struct address_space *mapping, 512 struct page *newpage, struct page *page) 513 { 514 XA_STATE(xas, &mapping->i_pages, page_index(page)); 515 int expected_count; 516 517 xas_lock_irq(&xas); 518 expected_count = 2 + page_has_private(page); 519 if (page_count(page) != expected_count || xas_load(&xas) != page) { 520 xas_unlock_irq(&xas); 521 return -EAGAIN; 522 } 523 524 if (!page_ref_freeze(page, expected_count)) { 525 xas_unlock_irq(&xas); 526 return -EAGAIN; 527 } 528 529 newpage->index = page->index; 530 newpage->mapping = page->mapping; 531 532 get_page(newpage); 533 534 xas_store(&xas, newpage); 535 536 page_ref_unfreeze(page, expected_count - 1); 537 538 xas_unlock_irq(&xas); 539 540 return MIGRATEPAGE_SUCCESS; 541 } 542 543 /* 544 * Gigantic pages are so large that we do not guarantee that page++ pointer 545 * arithmetic will work across the entire page. We need something more 546 * specialized. 547 */ 548 static void __copy_gigantic_page(struct page *dst, struct page *src, 549 int nr_pages) 550 { 551 int i; 552 struct page *dst_base = dst; 553 struct page *src_base = src; 554 555 for (i = 0; i < nr_pages; ) { 556 cond_resched(); 557 copy_highpage(dst, src); 558 559 i++; 560 dst = mem_map_next(dst, dst_base, i); 561 src = mem_map_next(src, src_base, i); 562 } 563 } 564 565 static void copy_huge_page(struct page *dst, struct page *src) 566 { 567 int i; 568 int nr_pages; 569 570 if (PageHuge(src)) { 571 /* hugetlbfs page */ 572 struct hstate *h = page_hstate(src); 573 nr_pages = pages_per_huge_page(h); 574 575 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 576 __copy_gigantic_page(dst, src, nr_pages); 577 return; 578 } 579 } else { 580 /* thp page */ 581 BUG_ON(!PageTransHuge(src)); 582 nr_pages = hpage_nr_pages(src); 583 } 584 585 for (i = 0; i < nr_pages; i++) { 586 cond_resched(); 587 copy_highpage(dst + i, src + i); 588 } 589 } 590 591 /* 592 * Copy the page to its new location 593 */ 594 void migrate_page_states(struct page *newpage, struct page *page) 595 { 596 int cpupid; 597 598 if (PageError(page)) 599 SetPageError(newpage); 600 if (PageReferenced(page)) 601 SetPageReferenced(newpage); 602 if (PageUptodate(page)) 603 SetPageUptodate(newpage); 604 if (TestClearPageActive(page)) { 605 VM_BUG_ON_PAGE(PageUnevictable(page), page); 606 SetPageActive(newpage); 607 } else if (TestClearPageUnevictable(page)) 608 SetPageUnevictable(newpage); 609 if (PageWorkingset(page)) 610 SetPageWorkingset(newpage); 611 if (PageChecked(page)) 612 SetPageChecked(newpage); 613 if (PageMappedToDisk(page)) 614 SetPageMappedToDisk(newpage); 615 616 /* Move dirty on pages not done by migrate_page_move_mapping() */ 617 if (PageDirty(page)) 618 SetPageDirty(newpage); 619 620 if (page_is_young(page)) 621 set_page_young(newpage); 622 if (page_is_idle(page)) 623 set_page_idle(newpage); 624 625 /* 626 * Copy NUMA information to the new page, to prevent over-eager 627 * future migrations of this same page. 628 */ 629 cpupid = page_cpupid_xchg_last(page, -1); 630 page_cpupid_xchg_last(newpage, cpupid); 631 632 ksm_migrate_page(newpage, page); 633 /* 634 * Please do not reorder this without considering how mm/ksm.c's 635 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 636 */ 637 if (PageSwapCache(page)) 638 ClearPageSwapCache(page); 639 ClearPagePrivate(page); 640 set_page_private(page, 0); 641 642 /* 643 * If any waiters have accumulated on the new page then 644 * wake them up. 645 */ 646 if (PageWriteback(newpage)) 647 end_page_writeback(newpage); 648 649 copy_page_owner(page, newpage); 650 651 mem_cgroup_migrate(page, newpage); 652 } 653 EXPORT_SYMBOL(migrate_page_states); 654 655 void migrate_page_copy(struct page *newpage, struct page *page) 656 { 657 if (PageHuge(page) || PageTransHuge(page)) 658 copy_huge_page(newpage, page); 659 else 660 copy_highpage(newpage, page); 661 662 migrate_page_states(newpage, page); 663 } 664 EXPORT_SYMBOL(migrate_page_copy); 665 666 /************************************************************ 667 * Migration functions 668 ***********************************************************/ 669 670 /* 671 * Common logic to directly migrate a single LRU page suitable for 672 * pages that do not use PagePrivate/PagePrivate2. 673 * 674 * Pages are locked upon entry and exit. 675 */ 676 int migrate_page(struct address_space *mapping, 677 struct page *newpage, struct page *page, 678 enum migrate_mode mode) 679 { 680 int rc; 681 682 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 683 684 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 685 686 if (rc != MIGRATEPAGE_SUCCESS) 687 return rc; 688 689 if (mode != MIGRATE_SYNC_NO_COPY) 690 migrate_page_copy(newpage, page); 691 else 692 migrate_page_states(newpage, page); 693 return MIGRATEPAGE_SUCCESS; 694 } 695 EXPORT_SYMBOL(migrate_page); 696 697 #ifdef CONFIG_BLOCK 698 /* Returns true if all buffers are successfully locked */ 699 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 700 enum migrate_mode mode) 701 { 702 struct buffer_head *bh = head; 703 704 /* Simple case, sync compaction */ 705 if (mode != MIGRATE_ASYNC) { 706 do { 707 lock_buffer(bh); 708 bh = bh->b_this_page; 709 710 } while (bh != head); 711 712 return true; 713 } 714 715 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 716 do { 717 if (!trylock_buffer(bh)) { 718 /* 719 * We failed to lock the buffer and cannot stall in 720 * async migration. Release the taken locks 721 */ 722 struct buffer_head *failed_bh = bh; 723 bh = head; 724 while (bh != failed_bh) { 725 unlock_buffer(bh); 726 bh = bh->b_this_page; 727 } 728 return false; 729 } 730 731 bh = bh->b_this_page; 732 } while (bh != head); 733 return true; 734 } 735 736 static int __buffer_migrate_page(struct address_space *mapping, 737 struct page *newpage, struct page *page, enum migrate_mode mode, 738 bool check_refs) 739 { 740 struct buffer_head *bh, *head; 741 int rc; 742 int expected_count; 743 744 if (!page_has_buffers(page)) 745 return migrate_page(mapping, newpage, page, mode); 746 747 /* Check whether page does not have extra refs before we do more work */ 748 expected_count = expected_page_refs(mapping, page); 749 if (page_count(page) != expected_count) 750 return -EAGAIN; 751 752 head = page_buffers(page); 753 if (!buffer_migrate_lock_buffers(head, mode)) 754 return -EAGAIN; 755 756 if (check_refs) { 757 bool busy; 758 bool invalidated = false; 759 760 recheck_buffers: 761 busy = false; 762 spin_lock(&mapping->private_lock); 763 bh = head; 764 do { 765 if (atomic_read(&bh->b_count)) { 766 busy = true; 767 break; 768 } 769 bh = bh->b_this_page; 770 } while (bh != head); 771 spin_unlock(&mapping->private_lock); 772 if (busy) { 773 if (invalidated) { 774 rc = -EAGAIN; 775 goto unlock_buffers; 776 } 777 invalidate_bh_lrus(); 778 invalidated = true; 779 goto recheck_buffers; 780 } 781 } 782 783 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 784 if (rc != MIGRATEPAGE_SUCCESS) 785 goto unlock_buffers; 786 787 ClearPagePrivate(page); 788 set_page_private(newpage, page_private(page)); 789 set_page_private(page, 0); 790 put_page(page); 791 get_page(newpage); 792 793 bh = head; 794 do { 795 set_bh_page(bh, newpage, bh_offset(bh)); 796 bh = bh->b_this_page; 797 798 } while (bh != head); 799 800 SetPagePrivate(newpage); 801 802 if (mode != MIGRATE_SYNC_NO_COPY) 803 migrate_page_copy(newpage, page); 804 else 805 migrate_page_states(newpage, page); 806 807 rc = MIGRATEPAGE_SUCCESS; 808 unlock_buffers: 809 bh = head; 810 do { 811 unlock_buffer(bh); 812 bh = bh->b_this_page; 813 814 } while (bh != head); 815 816 return rc; 817 } 818 819 /* 820 * Migration function for pages with buffers. This function can only be used 821 * if the underlying filesystem guarantees that no other references to "page" 822 * exist. For example attached buffer heads are accessed only under page lock. 823 */ 824 int buffer_migrate_page(struct address_space *mapping, 825 struct page *newpage, struct page *page, enum migrate_mode mode) 826 { 827 return __buffer_migrate_page(mapping, newpage, page, mode, false); 828 } 829 EXPORT_SYMBOL(buffer_migrate_page); 830 831 /* 832 * Same as above except that this variant is more careful and checks that there 833 * are also no buffer head references. This function is the right one for 834 * mappings where buffer heads are directly looked up and referenced (such as 835 * block device mappings). 836 */ 837 int buffer_migrate_page_norefs(struct address_space *mapping, 838 struct page *newpage, struct page *page, enum migrate_mode mode) 839 { 840 return __buffer_migrate_page(mapping, newpage, page, mode, true); 841 } 842 #endif 843 844 /* 845 * Writeback a page to clean the dirty state 846 */ 847 static int writeout(struct address_space *mapping, struct page *page) 848 { 849 struct writeback_control wbc = { 850 .sync_mode = WB_SYNC_NONE, 851 .nr_to_write = 1, 852 .range_start = 0, 853 .range_end = LLONG_MAX, 854 .for_reclaim = 1 855 }; 856 int rc; 857 858 if (!mapping->a_ops->writepage) 859 /* No write method for the address space */ 860 return -EINVAL; 861 862 if (!clear_page_dirty_for_io(page)) 863 /* Someone else already triggered a write */ 864 return -EAGAIN; 865 866 /* 867 * A dirty page may imply that the underlying filesystem has 868 * the page on some queue. So the page must be clean for 869 * migration. Writeout may mean we loose the lock and the 870 * page state is no longer what we checked for earlier. 871 * At this point we know that the migration attempt cannot 872 * be successful. 873 */ 874 remove_migration_ptes(page, page, false); 875 876 rc = mapping->a_ops->writepage(page, &wbc); 877 878 if (rc != AOP_WRITEPAGE_ACTIVATE) 879 /* unlocked. Relock */ 880 lock_page(page); 881 882 return (rc < 0) ? -EIO : -EAGAIN; 883 } 884 885 /* 886 * Default handling if a filesystem does not provide a migration function. 887 */ 888 static int fallback_migrate_page(struct address_space *mapping, 889 struct page *newpage, struct page *page, enum migrate_mode mode) 890 { 891 if (PageDirty(page)) { 892 /* Only writeback pages in full synchronous migration */ 893 switch (mode) { 894 case MIGRATE_SYNC: 895 case MIGRATE_SYNC_NO_COPY: 896 break; 897 default: 898 return -EBUSY; 899 } 900 return writeout(mapping, page); 901 } 902 903 /* 904 * Buffers may be managed in a filesystem specific way. 905 * We must have no buffers or drop them. 906 */ 907 if (page_has_private(page) && 908 !try_to_release_page(page, GFP_KERNEL)) 909 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 910 911 return migrate_page(mapping, newpage, page, mode); 912 } 913 914 /* 915 * Move a page to a newly allocated page 916 * The page is locked and all ptes have been successfully removed. 917 * 918 * The new page will have replaced the old page if this function 919 * is successful. 920 * 921 * Return value: 922 * < 0 - error code 923 * MIGRATEPAGE_SUCCESS - success 924 */ 925 static int move_to_new_page(struct page *newpage, struct page *page, 926 enum migrate_mode mode) 927 { 928 struct address_space *mapping; 929 int rc = -EAGAIN; 930 bool is_lru = !__PageMovable(page); 931 932 VM_BUG_ON_PAGE(!PageLocked(page), page); 933 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 934 935 mapping = page_mapping(page); 936 937 if (likely(is_lru)) { 938 if (!mapping) 939 rc = migrate_page(mapping, newpage, page, mode); 940 else if (mapping->a_ops->migratepage) 941 /* 942 * Most pages have a mapping and most filesystems 943 * provide a migratepage callback. Anonymous pages 944 * are part of swap space which also has its own 945 * migratepage callback. This is the most common path 946 * for page migration. 947 */ 948 rc = mapping->a_ops->migratepage(mapping, newpage, 949 page, mode); 950 else 951 rc = fallback_migrate_page(mapping, newpage, 952 page, mode); 953 } else { 954 /* 955 * In case of non-lru page, it could be released after 956 * isolation step. In that case, we shouldn't try migration. 957 */ 958 VM_BUG_ON_PAGE(!PageIsolated(page), page); 959 if (!PageMovable(page)) { 960 rc = MIGRATEPAGE_SUCCESS; 961 __ClearPageIsolated(page); 962 goto out; 963 } 964 965 rc = mapping->a_ops->migratepage(mapping, newpage, 966 page, mode); 967 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 968 !PageIsolated(page)); 969 } 970 971 /* 972 * When successful, old pagecache page->mapping must be cleared before 973 * page is freed; but stats require that PageAnon be left as PageAnon. 974 */ 975 if (rc == MIGRATEPAGE_SUCCESS) { 976 if (__PageMovable(page)) { 977 VM_BUG_ON_PAGE(!PageIsolated(page), page); 978 979 /* 980 * We clear PG_movable under page_lock so any compactor 981 * cannot try to migrate this page. 982 */ 983 __ClearPageIsolated(page); 984 } 985 986 /* 987 * Anonymous and movable page->mapping will be cleard by 988 * free_pages_prepare so don't reset it here for keeping 989 * the type to work PageAnon, for example. 990 */ 991 if (!PageMappingFlags(page)) 992 page->mapping = NULL; 993 994 if (likely(!is_zone_device_page(newpage))) 995 flush_dcache_page(newpage); 996 997 } 998 out: 999 return rc; 1000 } 1001 1002 static int __unmap_and_move(struct page *page, struct page *newpage, 1003 int force, enum migrate_mode mode) 1004 { 1005 int rc = -EAGAIN; 1006 int page_was_mapped = 0; 1007 struct anon_vma *anon_vma = NULL; 1008 bool is_lru = !__PageMovable(page); 1009 1010 if (!trylock_page(page)) { 1011 if (!force || mode == MIGRATE_ASYNC) 1012 goto out; 1013 1014 /* 1015 * It's not safe for direct compaction to call lock_page. 1016 * For example, during page readahead pages are added locked 1017 * to the LRU. Later, when the IO completes the pages are 1018 * marked uptodate and unlocked. However, the queueing 1019 * could be merging multiple pages for one bio (e.g. 1020 * mpage_readpages). If an allocation happens for the 1021 * second or third page, the process can end up locking 1022 * the same page twice and deadlocking. Rather than 1023 * trying to be clever about what pages can be locked, 1024 * avoid the use of lock_page for direct compaction 1025 * altogether. 1026 */ 1027 if (current->flags & PF_MEMALLOC) 1028 goto out; 1029 1030 lock_page(page); 1031 } 1032 1033 if (PageWriteback(page)) { 1034 /* 1035 * Only in the case of a full synchronous migration is it 1036 * necessary to wait for PageWriteback. In the async case, 1037 * the retry loop is too short and in the sync-light case, 1038 * the overhead of stalling is too much 1039 */ 1040 switch (mode) { 1041 case MIGRATE_SYNC: 1042 case MIGRATE_SYNC_NO_COPY: 1043 break; 1044 default: 1045 rc = -EBUSY; 1046 goto out_unlock; 1047 } 1048 if (!force) 1049 goto out_unlock; 1050 wait_on_page_writeback(page); 1051 } 1052 1053 /* 1054 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1055 * we cannot notice that anon_vma is freed while we migrates a page. 1056 * This get_anon_vma() delays freeing anon_vma pointer until the end 1057 * of migration. File cache pages are no problem because of page_lock() 1058 * File Caches may use write_page() or lock_page() in migration, then, 1059 * just care Anon page here. 1060 * 1061 * Only page_get_anon_vma() understands the subtleties of 1062 * getting a hold on an anon_vma from outside one of its mms. 1063 * But if we cannot get anon_vma, then we won't need it anyway, 1064 * because that implies that the anon page is no longer mapped 1065 * (and cannot be remapped so long as we hold the page lock). 1066 */ 1067 if (PageAnon(page) && !PageKsm(page)) 1068 anon_vma = page_get_anon_vma(page); 1069 1070 /* 1071 * Block others from accessing the new page when we get around to 1072 * establishing additional references. We are usually the only one 1073 * holding a reference to newpage at this point. We used to have a BUG 1074 * here if trylock_page(newpage) fails, but would like to allow for 1075 * cases where there might be a race with the previous use of newpage. 1076 * This is much like races on refcount of oldpage: just don't BUG(). 1077 */ 1078 if (unlikely(!trylock_page(newpage))) 1079 goto out_unlock; 1080 1081 if (unlikely(!is_lru)) { 1082 rc = move_to_new_page(newpage, page, mode); 1083 goto out_unlock_both; 1084 } 1085 1086 /* 1087 * Corner case handling: 1088 * 1. When a new swap-cache page is read into, it is added to the LRU 1089 * and treated as swapcache but it has no rmap yet. 1090 * Calling try_to_unmap() against a page->mapping==NULL page will 1091 * trigger a BUG. So handle it here. 1092 * 2. An orphaned page (see truncate_complete_page) might have 1093 * fs-private metadata. The page can be picked up due to memory 1094 * offlining. Everywhere else except page reclaim, the page is 1095 * invisible to the vm, so the page can not be migrated. So try to 1096 * free the metadata, so the page can be freed. 1097 */ 1098 if (!page->mapping) { 1099 VM_BUG_ON_PAGE(PageAnon(page), page); 1100 if (page_has_private(page)) { 1101 try_to_free_buffers(page); 1102 goto out_unlock_both; 1103 } 1104 } else if (page_mapped(page)) { 1105 /* Establish migration ptes */ 1106 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1107 page); 1108 try_to_unmap(page, 1109 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1110 page_was_mapped = 1; 1111 } 1112 1113 if (!page_mapped(page)) 1114 rc = move_to_new_page(newpage, page, mode); 1115 1116 if (page_was_mapped) 1117 remove_migration_ptes(page, 1118 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1119 1120 out_unlock_both: 1121 unlock_page(newpage); 1122 out_unlock: 1123 /* Drop an anon_vma reference if we took one */ 1124 if (anon_vma) 1125 put_anon_vma(anon_vma); 1126 unlock_page(page); 1127 out: 1128 /* 1129 * If migration is successful, decrease refcount of the newpage 1130 * which will not free the page because new page owner increased 1131 * refcounter. As well, if it is LRU page, add the page to LRU 1132 * list in here. Use the old state of the isolated source page to 1133 * determine if we migrated a LRU page. newpage was already unlocked 1134 * and possibly modified by its owner - don't rely on the page 1135 * state. 1136 */ 1137 if (rc == MIGRATEPAGE_SUCCESS) { 1138 if (unlikely(!is_lru)) 1139 put_page(newpage); 1140 else 1141 putback_lru_page(newpage); 1142 } 1143 1144 return rc; 1145 } 1146 1147 /* 1148 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1149 * around it. 1150 */ 1151 #if defined(CONFIG_ARM) && \ 1152 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1153 #define ICE_noinline noinline 1154 #else 1155 #define ICE_noinline 1156 #endif 1157 1158 /* 1159 * Obtain the lock on page, remove all ptes and migrate the page 1160 * to the newly allocated page in newpage. 1161 */ 1162 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1163 free_page_t put_new_page, 1164 unsigned long private, struct page *page, 1165 int force, enum migrate_mode mode, 1166 enum migrate_reason reason) 1167 { 1168 int rc = MIGRATEPAGE_SUCCESS; 1169 struct page *newpage; 1170 1171 if (!thp_migration_supported() && PageTransHuge(page)) 1172 return -ENOMEM; 1173 1174 newpage = get_new_page(page, private); 1175 if (!newpage) 1176 return -ENOMEM; 1177 1178 if (page_count(page) == 1) { 1179 /* page was freed from under us. So we are done. */ 1180 ClearPageActive(page); 1181 ClearPageUnevictable(page); 1182 if (unlikely(__PageMovable(page))) { 1183 lock_page(page); 1184 if (!PageMovable(page)) 1185 __ClearPageIsolated(page); 1186 unlock_page(page); 1187 } 1188 if (put_new_page) 1189 put_new_page(newpage, private); 1190 else 1191 put_page(newpage); 1192 goto out; 1193 } 1194 1195 rc = __unmap_and_move(page, newpage, force, mode); 1196 if (rc == MIGRATEPAGE_SUCCESS) 1197 set_page_owner_migrate_reason(newpage, reason); 1198 1199 out: 1200 if (rc != -EAGAIN) { 1201 /* 1202 * A page that has been migrated has all references 1203 * removed and will be freed. A page that has not been 1204 * migrated will have kepts its references and be 1205 * restored. 1206 */ 1207 list_del(&page->lru); 1208 1209 /* 1210 * Compaction can migrate also non-LRU pages which are 1211 * not accounted to NR_ISOLATED_*. They can be recognized 1212 * as __PageMovable 1213 */ 1214 if (likely(!__PageMovable(page))) 1215 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1216 page_is_file_cache(page), -hpage_nr_pages(page)); 1217 } 1218 1219 /* 1220 * If migration is successful, releases reference grabbed during 1221 * isolation. Otherwise, restore the page to right list unless 1222 * we want to retry. 1223 */ 1224 if (rc == MIGRATEPAGE_SUCCESS) { 1225 put_page(page); 1226 if (reason == MR_MEMORY_FAILURE) { 1227 /* 1228 * Set PG_HWPoison on just freed page 1229 * intentionally. Although it's rather weird, 1230 * it's how HWPoison flag works at the moment. 1231 */ 1232 if (set_hwpoison_free_buddy_page(page)) 1233 num_poisoned_pages_inc(); 1234 } 1235 } else { 1236 if (rc != -EAGAIN) { 1237 if (likely(!__PageMovable(page))) { 1238 putback_lru_page(page); 1239 goto put_new; 1240 } 1241 1242 lock_page(page); 1243 if (PageMovable(page)) 1244 putback_movable_page(page); 1245 else 1246 __ClearPageIsolated(page); 1247 unlock_page(page); 1248 put_page(page); 1249 } 1250 put_new: 1251 if (put_new_page) 1252 put_new_page(newpage, private); 1253 else 1254 put_page(newpage); 1255 } 1256 1257 return rc; 1258 } 1259 1260 /* 1261 * Counterpart of unmap_and_move_page() for hugepage migration. 1262 * 1263 * This function doesn't wait the completion of hugepage I/O 1264 * because there is no race between I/O and migration for hugepage. 1265 * Note that currently hugepage I/O occurs only in direct I/O 1266 * where no lock is held and PG_writeback is irrelevant, 1267 * and writeback status of all subpages are counted in the reference 1268 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1269 * under direct I/O, the reference of the head page is 512 and a bit more.) 1270 * This means that when we try to migrate hugepage whose subpages are 1271 * doing direct I/O, some references remain after try_to_unmap() and 1272 * hugepage migration fails without data corruption. 1273 * 1274 * There is also no race when direct I/O is issued on the page under migration, 1275 * because then pte is replaced with migration swap entry and direct I/O code 1276 * will wait in the page fault for migration to complete. 1277 */ 1278 static int unmap_and_move_huge_page(new_page_t get_new_page, 1279 free_page_t put_new_page, unsigned long private, 1280 struct page *hpage, int force, 1281 enum migrate_mode mode, int reason) 1282 { 1283 int rc = -EAGAIN; 1284 int page_was_mapped = 0; 1285 struct page *new_hpage; 1286 struct anon_vma *anon_vma = NULL; 1287 1288 /* 1289 * Migratability of hugepages depends on architectures and their size. 1290 * This check is necessary because some callers of hugepage migration 1291 * like soft offline and memory hotremove don't walk through page 1292 * tables or check whether the hugepage is pmd-based or not before 1293 * kicking migration. 1294 */ 1295 if (!hugepage_migration_supported(page_hstate(hpage))) { 1296 putback_active_hugepage(hpage); 1297 return -ENOSYS; 1298 } 1299 1300 new_hpage = get_new_page(hpage, private); 1301 if (!new_hpage) 1302 return -ENOMEM; 1303 1304 if (!trylock_page(hpage)) { 1305 if (!force) 1306 goto out; 1307 switch (mode) { 1308 case MIGRATE_SYNC: 1309 case MIGRATE_SYNC_NO_COPY: 1310 break; 1311 default: 1312 goto out; 1313 } 1314 lock_page(hpage); 1315 } 1316 1317 /* 1318 * Check for pages which are in the process of being freed. Without 1319 * page_mapping() set, hugetlbfs specific move page routine will not 1320 * be called and we could leak usage counts for subpools. 1321 */ 1322 if (page_private(hpage) && !page_mapping(hpage)) { 1323 rc = -EBUSY; 1324 goto out_unlock; 1325 } 1326 1327 if (PageAnon(hpage)) 1328 anon_vma = page_get_anon_vma(hpage); 1329 1330 if (unlikely(!trylock_page(new_hpage))) 1331 goto put_anon; 1332 1333 if (page_mapped(hpage)) { 1334 try_to_unmap(hpage, 1335 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1336 page_was_mapped = 1; 1337 } 1338 1339 if (!page_mapped(hpage)) 1340 rc = move_to_new_page(new_hpage, hpage, mode); 1341 1342 if (page_was_mapped) 1343 remove_migration_ptes(hpage, 1344 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1345 1346 unlock_page(new_hpage); 1347 1348 put_anon: 1349 if (anon_vma) 1350 put_anon_vma(anon_vma); 1351 1352 if (rc == MIGRATEPAGE_SUCCESS) { 1353 move_hugetlb_state(hpage, new_hpage, reason); 1354 put_new_page = NULL; 1355 } 1356 1357 out_unlock: 1358 unlock_page(hpage); 1359 out: 1360 if (rc != -EAGAIN) 1361 putback_active_hugepage(hpage); 1362 1363 /* 1364 * If migration was not successful and there's a freeing callback, use 1365 * it. Otherwise, put_page() will drop the reference grabbed during 1366 * isolation. 1367 */ 1368 if (put_new_page) 1369 put_new_page(new_hpage, private); 1370 else 1371 putback_active_hugepage(new_hpage); 1372 1373 return rc; 1374 } 1375 1376 /* 1377 * migrate_pages - migrate the pages specified in a list, to the free pages 1378 * supplied as the target for the page migration 1379 * 1380 * @from: The list of pages to be migrated. 1381 * @get_new_page: The function used to allocate free pages to be used 1382 * as the target of the page migration. 1383 * @put_new_page: The function used to free target pages if migration 1384 * fails, or NULL if no special handling is necessary. 1385 * @private: Private data to be passed on to get_new_page() 1386 * @mode: The migration mode that specifies the constraints for 1387 * page migration, if any. 1388 * @reason: The reason for page migration. 1389 * 1390 * The function returns after 10 attempts or if no pages are movable any more 1391 * because the list has become empty or no retryable pages exist any more. 1392 * The caller should call putback_movable_pages() to return pages to the LRU 1393 * or free list only if ret != 0. 1394 * 1395 * Returns the number of pages that were not migrated, or an error code. 1396 */ 1397 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1398 free_page_t put_new_page, unsigned long private, 1399 enum migrate_mode mode, int reason) 1400 { 1401 int retry = 1; 1402 int nr_failed = 0; 1403 int nr_succeeded = 0; 1404 int pass = 0; 1405 struct page *page; 1406 struct page *page2; 1407 int swapwrite = current->flags & PF_SWAPWRITE; 1408 int rc; 1409 1410 if (!swapwrite) 1411 current->flags |= PF_SWAPWRITE; 1412 1413 for(pass = 0; pass < 10 && retry; pass++) { 1414 retry = 0; 1415 1416 list_for_each_entry_safe(page, page2, from, lru) { 1417 retry: 1418 cond_resched(); 1419 1420 if (PageHuge(page)) 1421 rc = unmap_and_move_huge_page(get_new_page, 1422 put_new_page, private, page, 1423 pass > 2, mode, reason); 1424 else 1425 rc = unmap_and_move(get_new_page, put_new_page, 1426 private, page, pass > 2, mode, 1427 reason); 1428 1429 switch(rc) { 1430 case -ENOMEM: 1431 /* 1432 * THP migration might be unsupported or the 1433 * allocation could've failed so we should 1434 * retry on the same page with the THP split 1435 * to base pages. 1436 * 1437 * Head page is retried immediately and tail 1438 * pages are added to the tail of the list so 1439 * we encounter them after the rest of the list 1440 * is processed. 1441 */ 1442 if (PageTransHuge(page) && !PageHuge(page)) { 1443 lock_page(page); 1444 rc = split_huge_page_to_list(page, from); 1445 unlock_page(page); 1446 if (!rc) { 1447 list_safe_reset_next(page, page2, lru); 1448 goto retry; 1449 } 1450 } 1451 nr_failed++; 1452 goto out; 1453 case -EAGAIN: 1454 retry++; 1455 break; 1456 case MIGRATEPAGE_SUCCESS: 1457 nr_succeeded++; 1458 break; 1459 default: 1460 /* 1461 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1462 * unlike -EAGAIN case, the failed page is 1463 * removed from migration page list and not 1464 * retried in the next outer loop. 1465 */ 1466 nr_failed++; 1467 break; 1468 } 1469 } 1470 } 1471 nr_failed += retry; 1472 rc = nr_failed; 1473 out: 1474 if (nr_succeeded) 1475 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1476 if (nr_failed) 1477 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1478 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1479 1480 if (!swapwrite) 1481 current->flags &= ~PF_SWAPWRITE; 1482 1483 return rc; 1484 } 1485 1486 #ifdef CONFIG_NUMA 1487 1488 static int store_status(int __user *status, int start, int value, int nr) 1489 { 1490 while (nr-- > 0) { 1491 if (put_user(value, status + start)) 1492 return -EFAULT; 1493 start++; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static int do_move_pages_to_node(struct mm_struct *mm, 1500 struct list_head *pagelist, int node) 1501 { 1502 int err; 1503 1504 if (list_empty(pagelist)) 1505 return 0; 1506 1507 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1508 MIGRATE_SYNC, MR_SYSCALL); 1509 if (err) 1510 putback_movable_pages(pagelist); 1511 return err; 1512 } 1513 1514 /* 1515 * Resolves the given address to a struct page, isolates it from the LRU and 1516 * puts it to the given pagelist. 1517 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1518 * queued or the page doesn't need to be migrated because it is already on 1519 * the target node 1520 */ 1521 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1522 int node, struct list_head *pagelist, bool migrate_all) 1523 { 1524 struct vm_area_struct *vma; 1525 struct page *page; 1526 unsigned int follflags; 1527 int err; 1528 1529 down_read(&mm->mmap_sem); 1530 err = -EFAULT; 1531 vma = find_vma(mm, addr); 1532 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1533 goto out; 1534 1535 /* FOLL_DUMP to ignore special (like zero) pages */ 1536 follflags = FOLL_GET | FOLL_DUMP; 1537 page = follow_page(vma, addr, follflags); 1538 1539 err = PTR_ERR(page); 1540 if (IS_ERR(page)) 1541 goto out; 1542 1543 err = -ENOENT; 1544 if (!page) 1545 goto out; 1546 1547 err = 0; 1548 if (page_to_nid(page) == node) 1549 goto out_putpage; 1550 1551 err = -EACCES; 1552 if (page_mapcount(page) > 1 && !migrate_all) 1553 goto out_putpage; 1554 1555 if (PageHuge(page)) { 1556 if (PageHead(page)) { 1557 isolate_huge_page(page, pagelist); 1558 err = 0; 1559 } 1560 } else { 1561 struct page *head; 1562 1563 head = compound_head(page); 1564 err = isolate_lru_page(head); 1565 if (err) 1566 goto out_putpage; 1567 1568 err = 0; 1569 list_add_tail(&head->lru, pagelist); 1570 mod_node_page_state(page_pgdat(head), 1571 NR_ISOLATED_ANON + page_is_file_cache(head), 1572 hpage_nr_pages(head)); 1573 } 1574 out_putpage: 1575 /* 1576 * Either remove the duplicate refcount from 1577 * isolate_lru_page() or drop the page ref if it was 1578 * not isolated. 1579 */ 1580 put_page(page); 1581 out: 1582 up_read(&mm->mmap_sem); 1583 return err; 1584 } 1585 1586 /* 1587 * Migrate an array of page address onto an array of nodes and fill 1588 * the corresponding array of status. 1589 */ 1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1591 unsigned long nr_pages, 1592 const void __user * __user *pages, 1593 const int __user *nodes, 1594 int __user *status, int flags) 1595 { 1596 int current_node = NUMA_NO_NODE; 1597 LIST_HEAD(pagelist); 1598 int start, i; 1599 int err = 0, err1; 1600 1601 migrate_prep(); 1602 1603 for (i = start = 0; i < nr_pages; i++) { 1604 const void __user *p; 1605 unsigned long addr; 1606 int node; 1607 1608 err = -EFAULT; 1609 if (get_user(p, pages + i)) 1610 goto out_flush; 1611 if (get_user(node, nodes + i)) 1612 goto out_flush; 1613 addr = (unsigned long)p; 1614 1615 err = -ENODEV; 1616 if (node < 0 || node >= MAX_NUMNODES) 1617 goto out_flush; 1618 if (!node_state(node, N_MEMORY)) 1619 goto out_flush; 1620 1621 err = -EACCES; 1622 if (!node_isset(node, task_nodes)) 1623 goto out_flush; 1624 1625 if (current_node == NUMA_NO_NODE) { 1626 current_node = node; 1627 start = i; 1628 } else if (node != current_node) { 1629 err = do_move_pages_to_node(mm, &pagelist, current_node); 1630 if (err) 1631 goto out; 1632 err = store_status(status, start, current_node, i - start); 1633 if (err) 1634 goto out; 1635 start = i; 1636 current_node = node; 1637 } 1638 1639 /* 1640 * Errors in the page lookup or isolation are not fatal and we simply 1641 * report them via status 1642 */ 1643 err = add_page_for_migration(mm, addr, current_node, 1644 &pagelist, flags & MPOL_MF_MOVE_ALL); 1645 if (!err) 1646 continue; 1647 1648 err = store_status(status, i, err, 1); 1649 if (err) 1650 goto out_flush; 1651 1652 err = do_move_pages_to_node(mm, &pagelist, current_node); 1653 if (err) 1654 goto out; 1655 if (i > start) { 1656 err = store_status(status, start, current_node, i - start); 1657 if (err) 1658 goto out; 1659 } 1660 current_node = NUMA_NO_NODE; 1661 } 1662 out_flush: 1663 if (list_empty(&pagelist)) 1664 return err; 1665 1666 /* Make sure we do not overwrite the existing error */ 1667 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1668 if (!err1) 1669 err1 = store_status(status, start, current_node, i - start); 1670 if (!err) 1671 err = err1; 1672 out: 1673 return err; 1674 } 1675 1676 /* 1677 * Determine the nodes of an array of pages and store it in an array of status. 1678 */ 1679 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1680 const void __user **pages, int *status) 1681 { 1682 unsigned long i; 1683 1684 down_read(&mm->mmap_sem); 1685 1686 for (i = 0; i < nr_pages; i++) { 1687 unsigned long addr = (unsigned long)(*pages); 1688 struct vm_area_struct *vma; 1689 struct page *page; 1690 int err = -EFAULT; 1691 1692 vma = find_vma(mm, addr); 1693 if (!vma || addr < vma->vm_start) 1694 goto set_status; 1695 1696 /* FOLL_DUMP to ignore special (like zero) pages */ 1697 page = follow_page(vma, addr, FOLL_DUMP); 1698 1699 err = PTR_ERR(page); 1700 if (IS_ERR(page)) 1701 goto set_status; 1702 1703 err = page ? page_to_nid(page) : -ENOENT; 1704 set_status: 1705 *status = err; 1706 1707 pages++; 1708 status++; 1709 } 1710 1711 up_read(&mm->mmap_sem); 1712 } 1713 1714 /* 1715 * Determine the nodes of a user array of pages and store it in 1716 * a user array of status. 1717 */ 1718 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1719 const void __user * __user *pages, 1720 int __user *status) 1721 { 1722 #define DO_PAGES_STAT_CHUNK_NR 16 1723 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1724 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1725 1726 while (nr_pages) { 1727 unsigned long chunk_nr; 1728 1729 chunk_nr = nr_pages; 1730 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1731 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1732 1733 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1734 break; 1735 1736 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1737 1738 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1739 break; 1740 1741 pages += chunk_nr; 1742 status += chunk_nr; 1743 nr_pages -= chunk_nr; 1744 } 1745 return nr_pages ? -EFAULT : 0; 1746 } 1747 1748 /* 1749 * Move a list of pages in the address space of the currently executing 1750 * process. 1751 */ 1752 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1753 const void __user * __user *pages, 1754 const int __user *nodes, 1755 int __user *status, int flags) 1756 { 1757 struct task_struct *task; 1758 struct mm_struct *mm; 1759 int err; 1760 nodemask_t task_nodes; 1761 1762 /* Check flags */ 1763 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1764 return -EINVAL; 1765 1766 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1767 return -EPERM; 1768 1769 /* Find the mm_struct */ 1770 rcu_read_lock(); 1771 task = pid ? find_task_by_vpid(pid) : current; 1772 if (!task) { 1773 rcu_read_unlock(); 1774 return -ESRCH; 1775 } 1776 get_task_struct(task); 1777 1778 /* 1779 * Check if this process has the right to modify the specified 1780 * process. Use the regular "ptrace_may_access()" checks. 1781 */ 1782 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1783 rcu_read_unlock(); 1784 err = -EPERM; 1785 goto out; 1786 } 1787 rcu_read_unlock(); 1788 1789 err = security_task_movememory(task); 1790 if (err) 1791 goto out; 1792 1793 task_nodes = cpuset_mems_allowed(task); 1794 mm = get_task_mm(task); 1795 put_task_struct(task); 1796 1797 if (!mm) 1798 return -EINVAL; 1799 1800 if (nodes) 1801 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1802 nodes, status, flags); 1803 else 1804 err = do_pages_stat(mm, nr_pages, pages, status); 1805 1806 mmput(mm); 1807 return err; 1808 1809 out: 1810 put_task_struct(task); 1811 return err; 1812 } 1813 1814 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1815 const void __user * __user *, pages, 1816 const int __user *, nodes, 1817 int __user *, status, int, flags) 1818 { 1819 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1820 } 1821 1822 #ifdef CONFIG_COMPAT 1823 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1824 compat_uptr_t __user *, pages32, 1825 const int __user *, nodes, 1826 int __user *, status, 1827 int, flags) 1828 { 1829 const void __user * __user *pages; 1830 int i; 1831 1832 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1833 for (i = 0; i < nr_pages; i++) { 1834 compat_uptr_t p; 1835 1836 if (get_user(p, pages32 + i) || 1837 put_user(compat_ptr(p), pages + i)) 1838 return -EFAULT; 1839 } 1840 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1841 } 1842 #endif /* CONFIG_COMPAT */ 1843 1844 #ifdef CONFIG_NUMA_BALANCING 1845 /* 1846 * Returns true if this is a safe migration target node for misplaced NUMA 1847 * pages. Currently it only checks the watermarks which crude 1848 */ 1849 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1850 unsigned long nr_migrate_pages) 1851 { 1852 int z; 1853 1854 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1855 struct zone *zone = pgdat->node_zones + z; 1856 1857 if (!populated_zone(zone)) 1858 continue; 1859 1860 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1861 if (!zone_watermark_ok(zone, 0, 1862 high_wmark_pages(zone) + 1863 nr_migrate_pages, 1864 0, 0)) 1865 continue; 1866 return true; 1867 } 1868 return false; 1869 } 1870 1871 static struct page *alloc_misplaced_dst_page(struct page *page, 1872 unsigned long data) 1873 { 1874 int nid = (int) data; 1875 struct page *newpage; 1876 1877 newpage = __alloc_pages_node(nid, 1878 (GFP_HIGHUSER_MOVABLE | 1879 __GFP_THISNODE | __GFP_NOMEMALLOC | 1880 __GFP_NORETRY | __GFP_NOWARN) & 1881 ~__GFP_RECLAIM, 0); 1882 1883 return newpage; 1884 } 1885 1886 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1887 { 1888 int page_lru; 1889 1890 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1891 1892 /* Avoid migrating to a node that is nearly full */ 1893 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1894 return 0; 1895 1896 if (isolate_lru_page(page)) 1897 return 0; 1898 1899 /* 1900 * migrate_misplaced_transhuge_page() skips page migration's usual 1901 * check on page_count(), so we must do it here, now that the page 1902 * has been isolated: a GUP pin, or any other pin, prevents migration. 1903 * The expected page count is 3: 1 for page's mapcount and 1 for the 1904 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1905 */ 1906 if (PageTransHuge(page) && page_count(page) != 3) { 1907 putback_lru_page(page); 1908 return 0; 1909 } 1910 1911 page_lru = page_is_file_cache(page); 1912 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1913 hpage_nr_pages(page)); 1914 1915 /* 1916 * Isolating the page has taken another reference, so the 1917 * caller's reference can be safely dropped without the page 1918 * disappearing underneath us during migration. 1919 */ 1920 put_page(page); 1921 return 1; 1922 } 1923 1924 bool pmd_trans_migrating(pmd_t pmd) 1925 { 1926 struct page *page = pmd_page(pmd); 1927 return PageLocked(page); 1928 } 1929 1930 /* 1931 * Attempt to migrate a misplaced page to the specified destination 1932 * node. Caller is expected to have an elevated reference count on 1933 * the page that will be dropped by this function before returning. 1934 */ 1935 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1936 int node) 1937 { 1938 pg_data_t *pgdat = NODE_DATA(node); 1939 int isolated; 1940 int nr_remaining; 1941 LIST_HEAD(migratepages); 1942 1943 /* 1944 * Don't migrate file pages that are mapped in multiple processes 1945 * with execute permissions as they are probably shared libraries. 1946 */ 1947 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1948 (vma->vm_flags & VM_EXEC)) 1949 goto out; 1950 1951 /* 1952 * Also do not migrate dirty pages as not all filesystems can move 1953 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1954 */ 1955 if (page_is_file_cache(page) && PageDirty(page)) 1956 goto out; 1957 1958 isolated = numamigrate_isolate_page(pgdat, page); 1959 if (!isolated) 1960 goto out; 1961 1962 list_add(&page->lru, &migratepages); 1963 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1964 NULL, node, MIGRATE_ASYNC, 1965 MR_NUMA_MISPLACED); 1966 if (nr_remaining) { 1967 if (!list_empty(&migratepages)) { 1968 list_del(&page->lru); 1969 dec_node_page_state(page, NR_ISOLATED_ANON + 1970 page_is_file_cache(page)); 1971 putback_lru_page(page); 1972 } 1973 isolated = 0; 1974 } else 1975 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1976 BUG_ON(!list_empty(&migratepages)); 1977 return isolated; 1978 1979 out: 1980 put_page(page); 1981 return 0; 1982 } 1983 #endif /* CONFIG_NUMA_BALANCING */ 1984 1985 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1986 /* 1987 * Migrates a THP to a given target node. page must be locked and is unlocked 1988 * before returning. 1989 */ 1990 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1991 struct vm_area_struct *vma, 1992 pmd_t *pmd, pmd_t entry, 1993 unsigned long address, 1994 struct page *page, int node) 1995 { 1996 spinlock_t *ptl; 1997 pg_data_t *pgdat = NODE_DATA(node); 1998 int isolated = 0; 1999 struct page *new_page = NULL; 2000 int page_lru = page_is_file_cache(page); 2001 unsigned long start = address & HPAGE_PMD_MASK; 2002 2003 new_page = alloc_pages_node(node, 2004 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2005 HPAGE_PMD_ORDER); 2006 if (!new_page) 2007 goto out_fail; 2008 prep_transhuge_page(new_page); 2009 2010 isolated = numamigrate_isolate_page(pgdat, page); 2011 if (!isolated) { 2012 put_page(new_page); 2013 goto out_fail; 2014 } 2015 2016 /* Prepare a page as a migration target */ 2017 __SetPageLocked(new_page); 2018 if (PageSwapBacked(page)) 2019 __SetPageSwapBacked(new_page); 2020 2021 /* anon mapping, we can simply copy page->mapping to the new page: */ 2022 new_page->mapping = page->mapping; 2023 new_page->index = page->index; 2024 /* flush the cache before copying using the kernel virtual address */ 2025 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2026 migrate_page_copy(new_page, page); 2027 WARN_ON(PageLRU(new_page)); 2028 2029 /* Recheck the target PMD */ 2030 ptl = pmd_lock(mm, pmd); 2031 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2032 spin_unlock(ptl); 2033 2034 /* Reverse changes made by migrate_page_copy() */ 2035 if (TestClearPageActive(new_page)) 2036 SetPageActive(page); 2037 if (TestClearPageUnevictable(new_page)) 2038 SetPageUnevictable(page); 2039 2040 unlock_page(new_page); 2041 put_page(new_page); /* Free it */ 2042 2043 /* Retake the callers reference and putback on LRU */ 2044 get_page(page); 2045 putback_lru_page(page); 2046 mod_node_page_state(page_pgdat(page), 2047 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2048 2049 goto out_unlock; 2050 } 2051 2052 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2053 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2054 2055 /* 2056 * Overwrite the old entry under pagetable lock and establish 2057 * the new PTE. Any parallel GUP will either observe the old 2058 * page blocking on the page lock, block on the page table 2059 * lock or observe the new page. The SetPageUptodate on the 2060 * new page and page_add_new_anon_rmap guarantee the copy is 2061 * visible before the pagetable update. 2062 */ 2063 page_add_anon_rmap(new_page, vma, start, true); 2064 /* 2065 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2066 * has already been flushed globally. So no TLB can be currently 2067 * caching this non present pmd mapping. There's no need to clear the 2068 * pmd before doing set_pmd_at(), nor to flush the TLB after 2069 * set_pmd_at(). Clearing the pmd here would introduce a race 2070 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2071 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2072 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2073 * pmd. 2074 */ 2075 set_pmd_at(mm, start, pmd, entry); 2076 update_mmu_cache_pmd(vma, address, &entry); 2077 2078 page_ref_unfreeze(page, 2); 2079 mlock_migrate_page(new_page, page); 2080 page_remove_rmap(page, true); 2081 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2082 2083 spin_unlock(ptl); 2084 2085 /* Take an "isolate" reference and put new page on the LRU. */ 2086 get_page(new_page); 2087 putback_lru_page(new_page); 2088 2089 unlock_page(new_page); 2090 unlock_page(page); 2091 put_page(page); /* Drop the rmap reference */ 2092 put_page(page); /* Drop the LRU isolation reference */ 2093 2094 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2095 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2096 2097 mod_node_page_state(page_pgdat(page), 2098 NR_ISOLATED_ANON + page_lru, 2099 -HPAGE_PMD_NR); 2100 return isolated; 2101 2102 out_fail: 2103 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2104 ptl = pmd_lock(mm, pmd); 2105 if (pmd_same(*pmd, entry)) { 2106 entry = pmd_modify(entry, vma->vm_page_prot); 2107 set_pmd_at(mm, start, pmd, entry); 2108 update_mmu_cache_pmd(vma, address, &entry); 2109 } 2110 spin_unlock(ptl); 2111 2112 out_unlock: 2113 unlock_page(page); 2114 put_page(page); 2115 return 0; 2116 } 2117 #endif /* CONFIG_NUMA_BALANCING */ 2118 2119 #endif /* CONFIG_NUMA */ 2120 2121 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2122 struct migrate_vma { 2123 struct vm_area_struct *vma; 2124 unsigned long *dst; 2125 unsigned long *src; 2126 unsigned long cpages; 2127 unsigned long npages; 2128 unsigned long start; 2129 unsigned long end; 2130 }; 2131 2132 static int migrate_vma_collect_hole(unsigned long start, 2133 unsigned long end, 2134 struct mm_walk *walk) 2135 { 2136 struct migrate_vma *migrate = walk->private; 2137 unsigned long addr; 2138 2139 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2140 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2141 migrate->dst[migrate->npages] = 0; 2142 migrate->npages++; 2143 migrate->cpages++; 2144 } 2145 2146 return 0; 2147 } 2148 2149 static int migrate_vma_collect_skip(unsigned long start, 2150 unsigned long end, 2151 struct mm_walk *walk) 2152 { 2153 struct migrate_vma *migrate = walk->private; 2154 unsigned long addr; 2155 2156 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2157 migrate->dst[migrate->npages] = 0; 2158 migrate->src[migrate->npages++] = 0; 2159 } 2160 2161 return 0; 2162 } 2163 2164 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2165 unsigned long start, 2166 unsigned long end, 2167 struct mm_walk *walk) 2168 { 2169 struct migrate_vma *migrate = walk->private; 2170 struct vm_area_struct *vma = walk->vma; 2171 struct mm_struct *mm = vma->vm_mm; 2172 unsigned long addr = start, unmapped = 0; 2173 spinlock_t *ptl; 2174 pte_t *ptep; 2175 2176 again: 2177 if (pmd_none(*pmdp)) 2178 return migrate_vma_collect_hole(start, end, walk); 2179 2180 if (pmd_trans_huge(*pmdp)) { 2181 struct page *page; 2182 2183 ptl = pmd_lock(mm, pmdp); 2184 if (unlikely(!pmd_trans_huge(*pmdp))) { 2185 spin_unlock(ptl); 2186 goto again; 2187 } 2188 2189 page = pmd_page(*pmdp); 2190 if (is_huge_zero_page(page)) { 2191 spin_unlock(ptl); 2192 split_huge_pmd(vma, pmdp, addr); 2193 if (pmd_trans_unstable(pmdp)) 2194 return migrate_vma_collect_skip(start, end, 2195 walk); 2196 } else { 2197 int ret; 2198 2199 get_page(page); 2200 spin_unlock(ptl); 2201 if (unlikely(!trylock_page(page))) 2202 return migrate_vma_collect_skip(start, end, 2203 walk); 2204 ret = split_huge_page(page); 2205 unlock_page(page); 2206 put_page(page); 2207 if (ret) 2208 return migrate_vma_collect_skip(start, end, 2209 walk); 2210 if (pmd_none(*pmdp)) 2211 return migrate_vma_collect_hole(start, end, 2212 walk); 2213 } 2214 } 2215 2216 if (unlikely(pmd_bad(*pmdp))) 2217 return migrate_vma_collect_skip(start, end, walk); 2218 2219 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2220 arch_enter_lazy_mmu_mode(); 2221 2222 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2223 unsigned long mpfn, pfn; 2224 struct page *page; 2225 swp_entry_t entry; 2226 pte_t pte; 2227 2228 pte = *ptep; 2229 pfn = pte_pfn(pte); 2230 2231 if (pte_none(pte)) { 2232 mpfn = MIGRATE_PFN_MIGRATE; 2233 migrate->cpages++; 2234 pfn = 0; 2235 goto next; 2236 } 2237 2238 if (!pte_present(pte)) { 2239 mpfn = pfn = 0; 2240 2241 /* 2242 * Only care about unaddressable device page special 2243 * page table entry. Other special swap entries are not 2244 * migratable, and we ignore regular swapped page. 2245 */ 2246 entry = pte_to_swp_entry(pte); 2247 if (!is_device_private_entry(entry)) 2248 goto next; 2249 2250 page = device_private_entry_to_page(entry); 2251 mpfn = migrate_pfn(page_to_pfn(page))| 2252 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2253 if (is_write_device_private_entry(entry)) 2254 mpfn |= MIGRATE_PFN_WRITE; 2255 } else { 2256 if (is_zero_pfn(pfn)) { 2257 mpfn = MIGRATE_PFN_MIGRATE; 2258 migrate->cpages++; 2259 pfn = 0; 2260 goto next; 2261 } 2262 page = vm_normal_page(migrate->vma, addr, pte); 2263 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2264 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2265 } 2266 2267 /* FIXME support THP */ 2268 if (!page || !page->mapping || PageTransCompound(page)) { 2269 mpfn = pfn = 0; 2270 goto next; 2271 } 2272 pfn = page_to_pfn(page); 2273 2274 /* 2275 * By getting a reference on the page we pin it and that blocks 2276 * any kind of migration. Side effect is that it "freezes" the 2277 * pte. 2278 * 2279 * We drop this reference after isolating the page from the lru 2280 * for non device page (device page are not on the lru and thus 2281 * can't be dropped from it). 2282 */ 2283 get_page(page); 2284 migrate->cpages++; 2285 2286 /* 2287 * Optimize for the common case where page is only mapped once 2288 * in one process. If we can lock the page, then we can safely 2289 * set up a special migration page table entry now. 2290 */ 2291 if (trylock_page(page)) { 2292 pte_t swp_pte; 2293 2294 mpfn |= MIGRATE_PFN_LOCKED; 2295 ptep_get_and_clear(mm, addr, ptep); 2296 2297 /* Setup special migration page table entry */ 2298 entry = make_migration_entry(page, mpfn & 2299 MIGRATE_PFN_WRITE); 2300 swp_pte = swp_entry_to_pte(entry); 2301 if (pte_soft_dirty(pte)) 2302 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2303 set_pte_at(mm, addr, ptep, swp_pte); 2304 2305 /* 2306 * This is like regular unmap: we remove the rmap and 2307 * drop page refcount. Page won't be freed, as we took 2308 * a reference just above. 2309 */ 2310 page_remove_rmap(page, false); 2311 put_page(page); 2312 2313 if (pte_present(pte)) 2314 unmapped++; 2315 } 2316 2317 next: 2318 migrate->dst[migrate->npages] = 0; 2319 migrate->src[migrate->npages++] = mpfn; 2320 } 2321 arch_leave_lazy_mmu_mode(); 2322 pte_unmap_unlock(ptep - 1, ptl); 2323 2324 /* Only flush the TLB if we actually modified any entries */ 2325 if (unmapped) 2326 flush_tlb_range(walk->vma, start, end); 2327 2328 return 0; 2329 } 2330 2331 /* 2332 * migrate_vma_collect() - collect pages over a range of virtual addresses 2333 * @migrate: migrate struct containing all migration information 2334 * 2335 * This will walk the CPU page table. For each virtual address backed by a 2336 * valid page, it updates the src array and takes a reference on the page, in 2337 * order to pin the page until we lock it and unmap it. 2338 */ 2339 static void migrate_vma_collect(struct migrate_vma *migrate) 2340 { 2341 struct mmu_notifier_range range; 2342 struct mm_walk mm_walk; 2343 2344 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2345 mm_walk.pte_entry = NULL; 2346 mm_walk.pte_hole = migrate_vma_collect_hole; 2347 mm_walk.hugetlb_entry = NULL; 2348 mm_walk.test_walk = NULL; 2349 mm_walk.vma = migrate->vma; 2350 mm_walk.mm = migrate->vma->vm_mm; 2351 mm_walk.private = migrate; 2352 2353 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm, 2354 migrate->start, 2355 migrate->end); 2356 mmu_notifier_invalidate_range_start(&range); 2357 walk_page_range(migrate->start, migrate->end, &mm_walk); 2358 mmu_notifier_invalidate_range_end(&range); 2359 2360 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2361 } 2362 2363 /* 2364 * migrate_vma_check_page() - check if page is pinned or not 2365 * @page: struct page to check 2366 * 2367 * Pinned pages cannot be migrated. This is the same test as in 2368 * migrate_page_move_mapping(), except that here we allow migration of a 2369 * ZONE_DEVICE page. 2370 */ 2371 static bool migrate_vma_check_page(struct page *page) 2372 { 2373 /* 2374 * One extra ref because caller holds an extra reference, either from 2375 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2376 * a device page. 2377 */ 2378 int extra = 1; 2379 2380 /* 2381 * FIXME support THP (transparent huge page), it is bit more complex to 2382 * check them than regular pages, because they can be mapped with a pmd 2383 * or with a pte (split pte mapping). 2384 */ 2385 if (PageCompound(page)) 2386 return false; 2387 2388 /* Page from ZONE_DEVICE have one extra reference */ 2389 if (is_zone_device_page(page)) { 2390 /* 2391 * Private page can never be pin as they have no valid pte and 2392 * GUP will fail for those. Yet if there is a pending migration 2393 * a thread might try to wait on the pte migration entry and 2394 * will bump the page reference count. Sadly there is no way to 2395 * differentiate a regular pin from migration wait. Hence to 2396 * avoid 2 racing thread trying to migrate back to CPU to enter 2397 * infinite loop (one stoping migration because the other is 2398 * waiting on pte migration entry). We always return true here. 2399 * 2400 * FIXME proper solution is to rework migration_entry_wait() so 2401 * it does not need to take a reference on page. 2402 */ 2403 return is_device_private_page(page); 2404 } 2405 2406 /* For file back page */ 2407 if (page_mapping(page)) 2408 extra += 1 + page_has_private(page); 2409 2410 if ((page_count(page) - extra) > page_mapcount(page)) 2411 return false; 2412 2413 return true; 2414 } 2415 2416 /* 2417 * migrate_vma_prepare() - lock pages and isolate them from the lru 2418 * @migrate: migrate struct containing all migration information 2419 * 2420 * This locks pages that have been collected by migrate_vma_collect(). Once each 2421 * page is locked it is isolated from the lru (for non-device pages). Finally, 2422 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2423 * migrated by concurrent kernel threads. 2424 */ 2425 static void migrate_vma_prepare(struct migrate_vma *migrate) 2426 { 2427 const unsigned long npages = migrate->npages; 2428 const unsigned long start = migrate->start; 2429 unsigned long addr, i, restore = 0; 2430 bool allow_drain = true; 2431 2432 lru_add_drain(); 2433 2434 for (i = 0; (i < npages) && migrate->cpages; i++) { 2435 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2436 bool remap = true; 2437 2438 if (!page) 2439 continue; 2440 2441 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2442 /* 2443 * Because we are migrating several pages there can be 2444 * a deadlock between 2 concurrent migration where each 2445 * are waiting on each other page lock. 2446 * 2447 * Make migrate_vma() a best effort thing and backoff 2448 * for any page we can not lock right away. 2449 */ 2450 if (!trylock_page(page)) { 2451 migrate->src[i] = 0; 2452 migrate->cpages--; 2453 put_page(page); 2454 continue; 2455 } 2456 remap = false; 2457 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2458 } 2459 2460 /* ZONE_DEVICE pages are not on LRU */ 2461 if (!is_zone_device_page(page)) { 2462 if (!PageLRU(page) && allow_drain) { 2463 /* Drain CPU's pagevec */ 2464 lru_add_drain_all(); 2465 allow_drain = false; 2466 } 2467 2468 if (isolate_lru_page(page)) { 2469 if (remap) { 2470 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2471 migrate->cpages--; 2472 restore++; 2473 } else { 2474 migrate->src[i] = 0; 2475 unlock_page(page); 2476 migrate->cpages--; 2477 put_page(page); 2478 } 2479 continue; 2480 } 2481 2482 /* Drop the reference we took in collect */ 2483 put_page(page); 2484 } 2485 2486 if (!migrate_vma_check_page(page)) { 2487 if (remap) { 2488 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2489 migrate->cpages--; 2490 restore++; 2491 2492 if (!is_zone_device_page(page)) { 2493 get_page(page); 2494 putback_lru_page(page); 2495 } 2496 } else { 2497 migrate->src[i] = 0; 2498 unlock_page(page); 2499 migrate->cpages--; 2500 2501 if (!is_zone_device_page(page)) 2502 putback_lru_page(page); 2503 else 2504 put_page(page); 2505 } 2506 } 2507 } 2508 2509 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2510 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2511 2512 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2513 continue; 2514 2515 remove_migration_pte(page, migrate->vma, addr, page); 2516 2517 migrate->src[i] = 0; 2518 unlock_page(page); 2519 put_page(page); 2520 restore--; 2521 } 2522 } 2523 2524 /* 2525 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2526 * @migrate: migrate struct containing all migration information 2527 * 2528 * Replace page mapping (CPU page table pte) with a special migration pte entry 2529 * and check again if it has been pinned. Pinned pages are restored because we 2530 * cannot migrate them. 2531 * 2532 * This is the last step before we call the device driver callback to allocate 2533 * destination memory and copy contents of original page over to new page. 2534 */ 2535 static void migrate_vma_unmap(struct migrate_vma *migrate) 2536 { 2537 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2538 const unsigned long npages = migrate->npages; 2539 const unsigned long start = migrate->start; 2540 unsigned long addr, i, restore = 0; 2541 2542 for (i = 0; i < npages; i++) { 2543 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2544 2545 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2546 continue; 2547 2548 if (page_mapped(page)) { 2549 try_to_unmap(page, flags); 2550 if (page_mapped(page)) 2551 goto restore; 2552 } 2553 2554 if (migrate_vma_check_page(page)) 2555 continue; 2556 2557 restore: 2558 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2559 migrate->cpages--; 2560 restore++; 2561 } 2562 2563 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2564 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2565 2566 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2567 continue; 2568 2569 remove_migration_ptes(page, page, false); 2570 2571 migrate->src[i] = 0; 2572 unlock_page(page); 2573 restore--; 2574 2575 if (is_zone_device_page(page)) 2576 put_page(page); 2577 else 2578 putback_lru_page(page); 2579 } 2580 } 2581 2582 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2583 unsigned long addr, 2584 struct page *page, 2585 unsigned long *src, 2586 unsigned long *dst) 2587 { 2588 struct vm_area_struct *vma = migrate->vma; 2589 struct mm_struct *mm = vma->vm_mm; 2590 struct mem_cgroup *memcg; 2591 bool flush = false; 2592 spinlock_t *ptl; 2593 pte_t entry; 2594 pgd_t *pgdp; 2595 p4d_t *p4dp; 2596 pud_t *pudp; 2597 pmd_t *pmdp; 2598 pte_t *ptep; 2599 2600 /* Only allow populating anonymous memory */ 2601 if (!vma_is_anonymous(vma)) 2602 goto abort; 2603 2604 pgdp = pgd_offset(mm, addr); 2605 p4dp = p4d_alloc(mm, pgdp, addr); 2606 if (!p4dp) 2607 goto abort; 2608 pudp = pud_alloc(mm, p4dp, addr); 2609 if (!pudp) 2610 goto abort; 2611 pmdp = pmd_alloc(mm, pudp, addr); 2612 if (!pmdp) 2613 goto abort; 2614 2615 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2616 goto abort; 2617 2618 /* 2619 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2620 * pte_offset_map() on pmds where a huge pmd might be created 2621 * from a different thread. 2622 * 2623 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2624 * parallel threads are excluded by other means. 2625 * 2626 * Here we only have down_read(mmap_sem). 2627 */ 2628 if (pte_alloc(mm, pmdp)) 2629 goto abort; 2630 2631 /* See the comment in pte_alloc_one_map() */ 2632 if (unlikely(pmd_trans_unstable(pmdp))) 2633 goto abort; 2634 2635 if (unlikely(anon_vma_prepare(vma))) 2636 goto abort; 2637 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2638 goto abort; 2639 2640 /* 2641 * The memory barrier inside __SetPageUptodate makes sure that 2642 * preceding stores to the page contents become visible before 2643 * the set_pte_at() write. 2644 */ 2645 __SetPageUptodate(page); 2646 2647 if (is_zone_device_page(page)) { 2648 if (is_device_private_page(page)) { 2649 swp_entry_t swp_entry; 2650 2651 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2652 entry = swp_entry_to_pte(swp_entry); 2653 } 2654 } else { 2655 entry = mk_pte(page, vma->vm_page_prot); 2656 if (vma->vm_flags & VM_WRITE) 2657 entry = pte_mkwrite(pte_mkdirty(entry)); 2658 } 2659 2660 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2661 2662 if (pte_present(*ptep)) { 2663 unsigned long pfn = pte_pfn(*ptep); 2664 2665 if (!is_zero_pfn(pfn)) { 2666 pte_unmap_unlock(ptep, ptl); 2667 mem_cgroup_cancel_charge(page, memcg, false); 2668 goto abort; 2669 } 2670 flush = true; 2671 } else if (!pte_none(*ptep)) { 2672 pte_unmap_unlock(ptep, ptl); 2673 mem_cgroup_cancel_charge(page, memcg, false); 2674 goto abort; 2675 } 2676 2677 /* 2678 * Check for usefaultfd but do not deliver the fault. Instead, 2679 * just back off. 2680 */ 2681 if (userfaultfd_missing(vma)) { 2682 pte_unmap_unlock(ptep, ptl); 2683 mem_cgroup_cancel_charge(page, memcg, false); 2684 goto abort; 2685 } 2686 2687 inc_mm_counter(mm, MM_ANONPAGES); 2688 page_add_new_anon_rmap(page, vma, addr, false); 2689 mem_cgroup_commit_charge(page, memcg, false, false); 2690 if (!is_zone_device_page(page)) 2691 lru_cache_add_active_or_unevictable(page, vma); 2692 get_page(page); 2693 2694 if (flush) { 2695 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2696 ptep_clear_flush_notify(vma, addr, ptep); 2697 set_pte_at_notify(mm, addr, ptep, entry); 2698 update_mmu_cache(vma, addr, ptep); 2699 } else { 2700 /* No need to invalidate - it was non-present before */ 2701 set_pte_at(mm, addr, ptep, entry); 2702 update_mmu_cache(vma, addr, ptep); 2703 } 2704 2705 pte_unmap_unlock(ptep, ptl); 2706 *src = MIGRATE_PFN_MIGRATE; 2707 return; 2708 2709 abort: 2710 *src &= ~MIGRATE_PFN_MIGRATE; 2711 } 2712 2713 /* 2714 * migrate_vma_pages() - migrate meta-data from src page to dst page 2715 * @migrate: migrate struct containing all migration information 2716 * 2717 * This migrates struct page meta-data from source struct page to destination 2718 * struct page. This effectively finishes the migration from source page to the 2719 * destination page. 2720 */ 2721 static void migrate_vma_pages(struct migrate_vma *migrate) 2722 { 2723 const unsigned long npages = migrate->npages; 2724 const unsigned long start = migrate->start; 2725 struct mmu_notifier_range range; 2726 unsigned long addr, i; 2727 bool notified = false; 2728 2729 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2730 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2731 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2732 struct address_space *mapping; 2733 int r; 2734 2735 if (!newpage) { 2736 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2737 continue; 2738 } 2739 2740 if (!page) { 2741 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2742 continue; 2743 } 2744 if (!notified) { 2745 notified = true; 2746 2747 mmu_notifier_range_init(&range, 2748 MMU_NOTIFY_CLEAR, 0, 2749 NULL, 2750 migrate->vma->vm_mm, 2751 addr, migrate->end); 2752 mmu_notifier_invalidate_range_start(&range); 2753 } 2754 migrate_vma_insert_page(migrate, addr, newpage, 2755 &migrate->src[i], 2756 &migrate->dst[i]); 2757 continue; 2758 } 2759 2760 mapping = page_mapping(page); 2761 2762 if (is_zone_device_page(newpage)) { 2763 if (is_device_private_page(newpage)) { 2764 /* 2765 * For now only support private anonymous when 2766 * migrating to un-addressable device memory. 2767 */ 2768 if (mapping) { 2769 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2770 continue; 2771 } 2772 } else { 2773 /* 2774 * Other types of ZONE_DEVICE page are not 2775 * supported. 2776 */ 2777 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2778 continue; 2779 } 2780 } 2781 2782 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2783 if (r != MIGRATEPAGE_SUCCESS) 2784 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2785 } 2786 2787 /* 2788 * No need to double call mmu_notifier->invalidate_range() callback as 2789 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2790 * did already call it. 2791 */ 2792 if (notified) 2793 mmu_notifier_invalidate_range_only_end(&range); 2794 } 2795 2796 /* 2797 * migrate_vma_finalize() - restore CPU page table entry 2798 * @migrate: migrate struct containing all migration information 2799 * 2800 * This replaces the special migration pte entry with either a mapping to the 2801 * new page if migration was successful for that page, or to the original page 2802 * otherwise. 2803 * 2804 * This also unlocks the pages and puts them back on the lru, or drops the extra 2805 * refcount, for device pages. 2806 */ 2807 static void migrate_vma_finalize(struct migrate_vma *migrate) 2808 { 2809 const unsigned long npages = migrate->npages; 2810 unsigned long i; 2811 2812 for (i = 0; i < npages; i++) { 2813 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2814 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2815 2816 if (!page) { 2817 if (newpage) { 2818 unlock_page(newpage); 2819 put_page(newpage); 2820 } 2821 continue; 2822 } 2823 2824 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2825 if (newpage) { 2826 unlock_page(newpage); 2827 put_page(newpage); 2828 } 2829 newpage = page; 2830 } 2831 2832 remove_migration_ptes(page, newpage, false); 2833 unlock_page(page); 2834 migrate->cpages--; 2835 2836 if (is_zone_device_page(page)) 2837 put_page(page); 2838 else 2839 putback_lru_page(page); 2840 2841 if (newpage != page) { 2842 unlock_page(newpage); 2843 if (is_zone_device_page(newpage)) 2844 put_page(newpage); 2845 else 2846 putback_lru_page(newpage); 2847 } 2848 } 2849 } 2850 2851 /* 2852 * migrate_vma() - migrate a range of memory inside vma 2853 * 2854 * @ops: migration callback for allocating destination memory and copying 2855 * @vma: virtual memory area containing the range to be migrated 2856 * @start: start address of the range to migrate (inclusive) 2857 * @end: end address of the range to migrate (exclusive) 2858 * @src: array of hmm_pfn_t containing source pfns 2859 * @dst: array of hmm_pfn_t containing destination pfns 2860 * @private: pointer passed back to each of the callback 2861 * Returns: 0 on success, error code otherwise 2862 * 2863 * This function tries to migrate a range of memory virtual address range, using 2864 * callbacks to allocate and copy memory from source to destination. First it 2865 * collects all the pages backing each virtual address in the range, saving this 2866 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2867 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2868 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2869 * in the corresponding src array entry. It then restores any pages that are 2870 * pinned, by remapping and unlocking those pages. 2871 * 2872 * At this point it calls the alloc_and_copy() callback. For documentation on 2873 * what is expected from that callback, see struct migrate_vma_ops comments in 2874 * include/linux/migrate.h 2875 * 2876 * After the alloc_and_copy() callback, this function goes over each entry in 2877 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2878 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2879 * then the function tries to migrate struct page information from the source 2880 * struct page to the destination struct page. If it fails to migrate the struct 2881 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2882 * array. 2883 * 2884 * At this point all successfully migrated pages have an entry in the src 2885 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2886 * array entry with MIGRATE_PFN_VALID flag set. 2887 * 2888 * It then calls the finalize_and_map() callback. See comments for "struct 2889 * migrate_vma_ops", in include/linux/migrate.h for details about 2890 * finalize_and_map() behavior. 2891 * 2892 * After the finalize_and_map() callback, for successfully migrated pages, this 2893 * function updates the CPU page table to point to new pages, otherwise it 2894 * restores the CPU page table to point to the original source pages. 2895 * 2896 * Function returns 0 after the above steps, even if no pages were migrated 2897 * (The function only returns an error if any of the arguments are invalid.) 2898 * 2899 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2900 * unsigned long entries. 2901 */ 2902 int migrate_vma(const struct migrate_vma_ops *ops, 2903 struct vm_area_struct *vma, 2904 unsigned long start, 2905 unsigned long end, 2906 unsigned long *src, 2907 unsigned long *dst, 2908 void *private) 2909 { 2910 struct migrate_vma migrate; 2911 2912 /* Sanity check the arguments */ 2913 start &= PAGE_MASK; 2914 end &= PAGE_MASK; 2915 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2916 vma_is_dax(vma)) 2917 return -EINVAL; 2918 if (start < vma->vm_start || start >= vma->vm_end) 2919 return -EINVAL; 2920 if (end <= vma->vm_start || end > vma->vm_end) 2921 return -EINVAL; 2922 if (!ops || !src || !dst || start >= end) 2923 return -EINVAL; 2924 2925 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2926 migrate.src = src; 2927 migrate.dst = dst; 2928 migrate.start = start; 2929 migrate.npages = 0; 2930 migrate.cpages = 0; 2931 migrate.end = end; 2932 migrate.vma = vma; 2933 2934 /* Collect, and try to unmap source pages */ 2935 migrate_vma_collect(&migrate); 2936 if (!migrate.cpages) 2937 return 0; 2938 2939 /* Lock and isolate page */ 2940 migrate_vma_prepare(&migrate); 2941 if (!migrate.cpages) 2942 return 0; 2943 2944 /* Unmap pages */ 2945 migrate_vma_unmap(&migrate); 2946 if (!migrate.cpages) 2947 return 0; 2948 2949 /* 2950 * At this point pages are locked and unmapped, and thus they have 2951 * stable content and can safely be copied to destination memory that 2952 * is allocated by the callback. 2953 * 2954 * Note that migration can fail in migrate_vma_struct_page() for each 2955 * individual page. 2956 */ 2957 ops->alloc_and_copy(vma, src, dst, start, end, private); 2958 2959 /* This does the real migration of struct page */ 2960 migrate_vma_pages(&migrate); 2961 2962 ops->finalize_and_map(vma, src, dst, start, end, private); 2963 2964 /* Unlock and remap pages */ 2965 migrate_vma_finalize(&migrate); 2966 2967 return 0; 2968 } 2969 EXPORT_SYMBOL(migrate_vma); 2970 #endif /* defined(MIGRATE_VMA_HELPER) */ 2971