xref: /openbmc/linux/mm/migrate.c (revision 62e7ca52)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Put previously isolated pages back onto the appropriate lists
76  * from where they were once taken off for compaction/migration.
77  *
78  * This function shall be used whenever the isolated pageset has been
79  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80  * and isolate_huge_page().
81  */
82 void putback_movable_pages(struct list_head *l)
83 {
84 	struct page *page;
85 	struct page *page2;
86 
87 	list_for_each_entry_safe(page, page2, l, lru) {
88 		if (unlikely(PageHuge(page))) {
89 			putback_active_hugepage(page);
90 			continue;
91 		}
92 		list_del(&page->lru);
93 		dec_zone_page_state(page, NR_ISOLATED_ANON +
94 				page_is_file_cache(page));
95 		if (unlikely(isolated_balloon_page(page)))
96 			balloon_page_putback(page);
97 		else
98 			putback_lru_page(page);
99 	}
100 }
101 
102 /*
103  * Restore a potential migration pte to a working pte entry
104  */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 				 unsigned long addr, void *old)
107 {
108 	struct mm_struct *mm = vma->vm_mm;
109 	swp_entry_t entry;
110  	pmd_t *pmd;
111 	pte_t *ptep, pte;
112  	spinlock_t *ptl;
113 
114 	if (unlikely(PageHuge(new))) {
115 		ptep = huge_pte_offset(mm, addr);
116 		if (!ptep)
117 			goto out;
118 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 	} else {
120 		pmd = mm_find_pmd(mm, addr);
121 		if (!pmd)
122 			goto out;
123 
124 		ptep = pte_offset_map(pmd, addr);
125 
126 		/*
127 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
128 		 * can race mremap's move_ptes(), which skips anon_vma lock.
129 		 */
130 
131 		ptl = pte_lockptr(mm, pmd);
132 	}
133 
134  	spin_lock(ptl);
135 	pte = *ptep;
136 	if (!is_swap_pte(pte))
137 		goto unlock;
138 
139 	entry = pte_to_swp_entry(pte);
140 
141 	if (!is_migration_entry(entry) ||
142 	    migration_entry_to_page(entry) != old)
143 		goto unlock;
144 
145 	get_page(new);
146 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 	if (pte_swp_soft_dirty(*ptep))
148 		pte = pte_mksoft_dirty(pte);
149 	if (is_write_migration_entry(entry))
150 		pte = pte_mkwrite(pte);
151 #ifdef CONFIG_HUGETLB_PAGE
152 	if (PageHuge(new)) {
153 		pte = pte_mkhuge(pte);
154 		pte = arch_make_huge_pte(pte, vma, new, 0);
155 	}
156 #endif
157 	flush_dcache_page(new);
158 	set_pte_at(mm, addr, ptep, pte);
159 
160 	if (PageHuge(new)) {
161 		if (PageAnon(new))
162 			hugepage_add_anon_rmap(new, vma, addr);
163 		else
164 			page_dup_rmap(new);
165 	} else if (PageAnon(new))
166 		page_add_anon_rmap(new, vma, addr);
167 	else
168 		page_add_file_rmap(new);
169 
170 	/* No need to invalidate - it was non-present before */
171 	update_mmu_cache(vma, addr, ptep);
172 unlock:
173 	pte_unmap_unlock(ptep, ptl);
174 out:
175 	return SWAP_AGAIN;
176 }
177 
178 /*
179  * Congratulations to trinity for discovering this bug.
180  * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
181  * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
182  * replace the specified range by file ptes throughout (maybe populated after).
183  * If page migration finds a page within that range, while it's still located
184  * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
185  * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
186  * But if the migrating page is in a part of the vma outside the range to be
187  * remapped, then it will not be cleared, and remove_migration_ptes() needs to
188  * deal with it.  Fortunately, this part of the vma is of course still linear,
189  * so we just need to use linear location on the nonlinear list.
190  */
191 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
192 		struct address_space *mapping, void *arg)
193 {
194 	struct vm_area_struct *vma;
195 	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
196 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
197 	unsigned long addr;
198 
199 	list_for_each_entry(vma,
200 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
201 
202 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
203 		if (addr >= vma->vm_start && addr < vma->vm_end)
204 			remove_migration_pte(page, vma, addr, arg);
205 	}
206 	return SWAP_AGAIN;
207 }
208 
209 /*
210  * Get rid of all migration entries and replace them by
211  * references to the indicated page.
212  */
213 static void remove_migration_ptes(struct page *old, struct page *new)
214 {
215 	struct rmap_walk_control rwc = {
216 		.rmap_one = remove_migration_pte,
217 		.arg = old,
218 		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
219 	};
220 
221 	rmap_walk(new, &rwc);
222 }
223 
224 /*
225  * Something used the pte of a page under migration. We need to
226  * get to the page and wait until migration is finished.
227  * When we return from this function the fault will be retried.
228  */
229 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
230 				spinlock_t *ptl)
231 {
232 	pte_t pte;
233 	swp_entry_t entry;
234 	struct page *page;
235 
236 	spin_lock(ptl);
237 	pte = *ptep;
238 	if (!is_swap_pte(pte))
239 		goto out;
240 
241 	entry = pte_to_swp_entry(pte);
242 	if (!is_migration_entry(entry))
243 		goto out;
244 
245 	page = migration_entry_to_page(entry);
246 
247 	/*
248 	 * Once radix-tree replacement of page migration started, page_count
249 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
250 	 * against a page without get_page().
251 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
252 	 * will occur again.
253 	 */
254 	if (!get_page_unless_zero(page))
255 		goto out;
256 	pte_unmap_unlock(ptep, ptl);
257 	wait_on_page_locked(page);
258 	put_page(page);
259 	return;
260 out:
261 	pte_unmap_unlock(ptep, ptl);
262 }
263 
264 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
265 				unsigned long address)
266 {
267 	spinlock_t *ptl = pte_lockptr(mm, pmd);
268 	pte_t *ptep = pte_offset_map(pmd, address);
269 	__migration_entry_wait(mm, ptep, ptl);
270 }
271 
272 void migration_entry_wait_huge(struct vm_area_struct *vma,
273 		struct mm_struct *mm, pte_t *pte)
274 {
275 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
276 	__migration_entry_wait(mm, pte, ptl);
277 }
278 
279 #ifdef CONFIG_BLOCK
280 /* Returns true if all buffers are successfully locked */
281 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
282 							enum migrate_mode mode)
283 {
284 	struct buffer_head *bh = head;
285 
286 	/* Simple case, sync compaction */
287 	if (mode != MIGRATE_ASYNC) {
288 		do {
289 			get_bh(bh);
290 			lock_buffer(bh);
291 			bh = bh->b_this_page;
292 
293 		} while (bh != head);
294 
295 		return true;
296 	}
297 
298 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
299 	do {
300 		get_bh(bh);
301 		if (!trylock_buffer(bh)) {
302 			/*
303 			 * We failed to lock the buffer and cannot stall in
304 			 * async migration. Release the taken locks
305 			 */
306 			struct buffer_head *failed_bh = bh;
307 			put_bh(failed_bh);
308 			bh = head;
309 			while (bh != failed_bh) {
310 				unlock_buffer(bh);
311 				put_bh(bh);
312 				bh = bh->b_this_page;
313 			}
314 			return false;
315 		}
316 
317 		bh = bh->b_this_page;
318 	} while (bh != head);
319 	return true;
320 }
321 #else
322 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
323 							enum migrate_mode mode)
324 {
325 	return true;
326 }
327 #endif /* CONFIG_BLOCK */
328 
329 /*
330  * Replace the page in the mapping.
331  *
332  * The number of remaining references must be:
333  * 1 for anonymous pages without a mapping
334  * 2 for pages with a mapping
335  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
336  */
337 int migrate_page_move_mapping(struct address_space *mapping,
338 		struct page *newpage, struct page *page,
339 		struct buffer_head *head, enum migrate_mode mode,
340 		int extra_count)
341 {
342 	int expected_count = 1 + extra_count;
343 	void **pslot;
344 
345 	if (!mapping) {
346 		/* Anonymous page without mapping */
347 		if (page_count(page) != expected_count)
348 			return -EAGAIN;
349 		return MIGRATEPAGE_SUCCESS;
350 	}
351 
352 	spin_lock_irq(&mapping->tree_lock);
353 
354 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
355  					page_index(page));
356 
357 	expected_count += 1 + page_has_private(page);
358 	if (page_count(page) != expected_count ||
359 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
360 		spin_unlock_irq(&mapping->tree_lock);
361 		return -EAGAIN;
362 	}
363 
364 	if (!page_freeze_refs(page, expected_count)) {
365 		spin_unlock_irq(&mapping->tree_lock);
366 		return -EAGAIN;
367 	}
368 
369 	/*
370 	 * In the async migration case of moving a page with buffers, lock the
371 	 * buffers using trylock before the mapping is moved. If the mapping
372 	 * was moved, we later failed to lock the buffers and could not move
373 	 * the mapping back due to an elevated page count, we would have to
374 	 * block waiting on other references to be dropped.
375 	 */
376 	if (mode == MIGRATE_ASYNC && head &&
377 			!buffer_migrate_lock_buffers(head, mode)) {
378 		page_unfreeze_refs(page, expected_count);
379 		spin_unlock_irq(&mapping->tree_lock);
380 		return -EAGAIN;
381 	}
382 
383 	/*
384 	 * Now we know that no one else is looking at the page.
385 	 */
386 	get_page(newpage);	/* add cache reference */
387 	if (PageSwapCache(page)) {
388 		SetPageSwapCache(newpage);
389 		set_page_private(newpage, page_private(page));
390 	}
391 
392 	radix_tree_replace_slot(pslot, newpage);
393 
394 	/*
395 	 * Drop cache reference from old page by unfreezing
396 	 * to one less reference.
397 	 * We know this isn't the last reference.
398 	 */
399 	page_unfreeze_refs(page, expected_count - 1);
400 
401 	/*
402 	 * If moved to a different zone then also account
403 	 * the page for that zone. Other VM counters will be
404 	 * taken care of when we establish references to the
405 	 * new page and drop references to the old page.
406 	 *
407 	 * Note that anonymous pages are accounted for
408 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
409 	 * are mapped to swap space.
410 	 */
411 	__dec_zone_page_state(page, NR_FILE_PAGES);
412 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
413 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
414 		__dec_zone_page_state(page, NR_SHMEM);
415 		__inc_zone_page_state(newpage, NR_SHMEM);
416 	}
417 	spin_unlock_irq(&mapping->tree_lock);
418 
419 	return MIGRATEPAGE_SUCCESS;
420 }
421 
422 /*
423  * The expected number of remaining references is the same as that
424  * of migrate_page_move_mapping().
425  */
426 int migrate_huge_page_move_mapping(struct address_space *mapping,
427 				   struct page *newpage, struct page *page)
428 {
429 	int expected_count;
430 	void **pslot;
431 
432 	if (!mapping) {
433 		if (page_count(page) != 1)
434 			return -EAGAIN;
435 		return MIGRATEPAGE_SUCCESS;
436 	}
437 
438 	spin_lock_irq(&mapping->tree_lock);
439 
440 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
441 					page_index(page));
442 
443 	expected_count = 2 + page_has_private(page);
444 	if (page_count(page) != expected_count ||
445 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
446 		spin_unlock_irq(&mapping->tree_lock);
447 		return -EAGAIN;
448 	}
449 
450 	if (!page_freeze_refs(page, expected_count)) {
451 		spin_unlock_irq(&mapping->tree_lock);
452 		return -EAGAIN;
453 	}
454 
455 	get_page(newpage);
456 
457 	radix_tree_replace_slot(pslot, newpage);
458 
459 	page_unfreeze_refs(page, expected_count - 1);
460 
461 	spin_unlock_irq(&mapping->tree_lock);
462 	return MIGRATEPAGE_SUCCESS;
463 }
464 
465 /*
466  * Gigantic pages are so large that we do not guarantee that page++ pointer
467  * arithmetic will work across the entire page.  We need something more
468  * specialized.
469  */
470 static void __copy_gigantic_page(struct page *dst, struct page *src,
471 				int nr_pages)
472 {
473 	int i;
474 	struct page *dst_base = dst;
475 	struct page *src_base = src;
476 
477 	for (i = 0; i < nr_pages; ) {
478 		cond_resched();
479 		copy_highpage(dst, src);
480 
481 		i++;
482 		dst = mem_map_next(dst, dst_base, i);
483 		src = mem_map_next(src, src_base, i);
484 	}
485 }
486 
487 static void copy_huge_page(struct page *dst, struct page *src)
488 {
489 	int i;
490 	int nr_pages;
491 
492 	if (PageHuge(src)) {
493 		/* hugetlbfs page */
494 		struct hstate *h = page_hstate(src);
495 		nr_pages = pages_per_huge_page(h);
496 
497 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
498 			__copy_gigantic_page(dst, src, nr_pages);
499 			return;
500 		}
501 	} else {
502 		/* thp page */
503 		BUG_ON(!PageTransHuge(src));
504 		nr_pages = hpage_nr_pages(src);
505 	}
506 
507 	for (i = 0; i < nr_pages; i++) {
508 		cond_resched();
509 		copy_highpage(dst + i, src + i);
510 	}
511 }
512 
513 /*
514  * Copy the page to its new location
515  */
516 void migrate_page_copy(struct page *newpage, struct page *page)
517 {
518 	int cpupid;
519 
520 	if (PageHuge(page) || PageTransHuge(page))
521 		copy_huge_page(newpage, page);
522 	else
523 		copy_highpage(newpage, page);
524 
525 	if (PageError(page))
526 		SetPageError(newpage);
527 	if (PageReferenced(page))
528 		SetPageReferenced(newpage);
529 	if (PageUptodate(page))
530 		SetPageUptodate(newpage);
531 	if (TestClearPageActive(page)) {
532 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
533 		SetPageActive(newpage);
534 	} else if (TestClearPageUnevictable(page))
535 		SetPageUnevictable(newpage);
536 	if (PageChecked(page))
537 		SetPageChecked(newpage);
538 	if (PageMappedToDisk(page))
539 		SetPageMappedToDisk(newpage);
540 
541 	if (PageDirty(page)) {
542 		clear_page_dirty_for_io(page);
543 		/*
544 		 * Want to mark the page and the radix tree as dirty, and
545 		 * redo the accounting that clear_page_dirty_for_io undid,
546 		 * but we can't use set_page_dirty because that function
547 		 * is actually a signal that all of the page has become dirty.
548 		 * Whereas only part of our page may be dirty.
549 		 */
550 		if (PageSwapBacked(page))
551 			SetPageDirty(newpage);
552 		else
553 			__set_page_dirty_nobuffers(newpage);
554  	}
555 
556 	/*
557 	 * Copy NUMA information to the new page, to prevent over-eager
558 	 * future migrations of this same page.
559 	 */
560 	cpupid = page_cpupid_xchg_last(page, -1);
561 	page_cpupid_xchg_last(newpage, cpupid);
562 
563 	mlock_migrate_page(newpage, page);
564 	ksm_migrate_page(newpage, page);
565 	/*
566 	 * Please do not reorder this without considering how mm/ksm.c's
567 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
568 	 */
569 	ClearPageSwapCache(page);
570 	ClearPagePrivate(page);
571 	set_page_private(page, 0);
572 
573 	/*
574 	 * If any waiters have accumulated on the new page then
575 	 * wake them up.
576 	 */
577 	if (PageWriteback(newpage))
578 		end_page_writeback(newpage);
579 }
580 
581 /************************************************************
582  *                    Migration functions
583  ***********************************************************/
584 
585 /*
586  * Common logic to directly migrate a single page suitable for
587  * pages that do not use PagePrivate/PagePrivate2.
588  *
589  * Pages are locked upon entry and exit.
590  */
591 int migrate_page(struct address_space *mapping,
592 		struct page *newpage, struct page *page,
593 		enum migrate_mode mode)
594 {
595 	int rc;
596 
597 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
598 
599 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
600 
601 	if (rc != MIGRATEPAGE_SUCCESS)
602 		return rc;
603 
604 	migrate_page_copy(newpage, page);
605 	return MIGRATEPAGE_SUCCESS;
606 }
607 EXPORT_SYMBOL(migrate_page);
608 
609 #ifdef CONFIG_BLOCK
610 /*
611  * Migration function for pages with buffers. This function can only be used
612  * if the underlying filesystem guarantees that no other references to "page"
613  * exist.
614  */
615 int buffer_migrate_page(struct address_space *mapping,
616 		struct page *newpage, struct page *page, enum migrate_mode mode)
617 {
618 	struct buffer_head *bh, *head;
619 	int rc;
620 
621 	if (!page_has_buffers(page))
622 		return migrate_page(mapping, newpage, page, mode);
623 
624 	head = page_buffers(page);
625 
626 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
627 
628 	if (rc != MIGRATEPAGE_SUCCESS)
629 		return rc;
630 
631 	/*
632 	 * In the async case, migrate_page_move_mapping locked the buffers
633 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
634 	 * need to be locked now
635 	 */
636 	if (mode != MIGRATE_ASYNC)
637 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
638 
639 	ClearPagePrivate(page);
640 	set_page_private(newpage, page_private(page));
641 	set_page_private(page, 0);
642 	put_page(page);
643 	get_page(newpage);
644 
645 	bh = head;
646 	do {
647 		set_bh_page(bh, newpage, bh_offset(bh));
648 		bh = bh->b_this_page;
649 
650 	} while (bh != head);
651 
652 	SetPagePrivate(newpage);
653 
654 	migrate_page_copy(newpage, page);
655 
656 	bh = head;
657 	do {
658 		unlock_buffer(bh);
659  		put_bh(bh);
660 		bh = bh->b_this_page;
661 
662 	} while (bh != head);
663 
664 	return MIGRATEPAGE_SUCCESS;
665 }
666 EXPORT_SYMBOL(buffer_migrate_page);
667 #endif
668 
669 /*
670  * Writeback a page to clean the dirty state
671  */
672 static int writeout(struct address_space *mapping, struct page *page)
673 {
674 	struct writeback_control wbc = {
675 		.sync_mode = WB_SYNC_NONE,
676 		.nr_to_write = 1,
677 		.range_start = 0,
678 		.range_end = LLONG_MAX,
679 		.for_reclaim = 1
680 	};
681 	int rc;
682 
683 	if (!mapping->a_ops->writepage)
684 		/* No write method for the address space */
685 		return -EINVAL;
686 
687 	if (!clear_page_dirty_for_io(page))
688 		/* Someone else already triggered a write */
689 		return -EAGAIN;
690 
691 	/*
692 	 * A dirty page may imply that the underlying filesystem has
693 	 * the page on some queue. So the page must be clean for
694 	 * migration. Writeout may mean we loose the lock and the
695 	 * page state is no longer what we checked for earlier.
696 	 * At this point we know that the migration attempt cannot
697 	 * be successful.
698 	 */
699 	remove_migration_ptes(page, page);
700 
701 	rc = mapping->a_ops->writepage(page, &wbc);
702 
703 	if (rc != AOP_WRITEPAGE_ACTIVATE)
704 		/* unlocked. Relock */
705 		lock_page(page);
706 
707 	return (rc < 0) ? -EIO : -EAGAIN;
708 }
709 
710 /*
711  * Default handling if a filesystem does not provide a migration function.
712  */
713 static int fallback_migrate_page(struct address_space *mapping,
714 	struct page *newpage, struct page *page, enum migrate_mode mode)
715 {
716 	if (PageDirty(page)) {
717 		/* Only writeback pages in full synchronous migration */
718 		if (mode != MIGRATE_SYNC)
719 			return -EBUSY;
720 		return writeout(mapping, page);
721 	}
722 
723 	/*
724 	 * Buffers may be managed in a filesystem specific way.
725 	 * We must have no buffers or drop them.
726 	 */
727 	if (page_has_private(page) &&
728 	    !try_to_release_page(page, GFP_KERNEL))
729 		return -EAGAIN;
730 
731 	return migrate_page(mapping, newpage, page, mode);
732 }
733 
734 /*
735  * Move a page to a newly allocated page
736  * The page is locked and all ptes have been successfully removed.
737  *
738  * The new page will have replaced the old page if this function
739  * is successful.
740  *
741  * Return value:
742  *   < 0 - error code
743  *  MIGRATEPAGE_SUCCESS - success
744  */
745 static int move_to_new_page(struct page *newpage, struct page *page,
746 				int remap_swapcache, enum migrate_mode mode)
747 {
748 	struct address_space *mapping;
749 	int rc;
750 
751 	/*
752 	 * Block others from accessing the page when we get around to
753 	 * establishing additional references. We are the only one
754 	 * holding a reference to the new page at this point.
755 	 */
756 	if (!trylock_page(newpage))
757 		BUG();
758 
759 	/* Prepare mapping for the new page.*/
760 	newpage->index = page->index;
761 	newpage->mapping = page->mapping;
762 	if (PageSwapBacked(page))
763 		SetPageSwapBacked(newpage);
764 
765 	mapping = page_mapping(page);
766 	if (!mapping)
767 		rc = migrate_page(mapping, newpage, page, mode);
768 	else if (mapping->a_ops->migratepage)
769 		/*
770 		 * Most pages have a mapping and most filesystems provide a
771 		 * migratepage callback. Anonymous pages are part of swap
772 		 * space which also has its own migratepage callback. This
773 		 * is the most common path for page migration.
774 		 */
775 		rc = mapping->a_ops->migratepage(mapping,
776 						newpage, page, mode);
777 	else
778 		rc = fallback_migrate_page(mapping, newpage, page, mode);
779 
780 	if (rc != MIGRATEPAGE_SUCCESS) {
781 		newpage->mapping = NULL;
782 	} else {
783 		if (remap_swapcache)
784 			remove_migration_ptes(page, newpage);
785 		page->mapping = NULL;
786 	}
787 
788 	unlock_page(newpage);
789 
790 	return rc;
791 }
792 
793 static int __unmap_and_move(struct page *page, struct page *newpage,
794 				int force, enum migrate_mode mode)
795 {
796 	int rc = -EAGAIN;
797 	int remap_swapcache = 1;
798 	struct mem_cgroup *mem;
799 	struct anon_vma *anon_vma = NULL;
800 
801 	if (!trylock_page(page)) {
802 		if (!force || mode == MIGRATE_ASYNC)
803 			goto out;
804 
805 		/*
806 		 * It's not safe for direct compaction to call lock_page.
807 		 * For example, during page readahead pages are added locked
808 		 * to the LRU. Later, when the IO completes the pages are
809 		 * marked uptodate and unlocked. However, the queueing
810 		 * could be merging multiple pages for one bio (e.g.
811 		 * mpage_readpages). If an allocation happens for the
812 		 * second or third page, the process can end up locking
813 		 * the same page twice and deadlocking. Rather than
814 		 * trying to be clever about what pages can be locked,
815 		 * avoid the use of lock_page for direct compaction
816 		 * altogether.
817 		 */
818 		if (current->flags & PF_MEMALLOC)
819 			goto out;
820 
821 		lock_page(page);
822 	}
823 
824 	/* charge against new page */
825 	mem_cgroup_prepare_migration(page, newpage, &mem);
826 
827 	if (PageWriteback(page)) {
828 		/*
829 		 * Only in the case of a full synchronous migration is it
830 		 * necessary to wait for PageWriteback. In the async case,
831 		 * the retry loop is too short and in the sync-light case,
832 		 * the overhead of stalling is too much
833 		 */
834 		if (mode != MIGRATE_SYNC) {
835 			rc = -EBUSY;
836 			goto uncharge;
837 		}
838 		if (!force)
839 			goto uncharge;
840 		wait_on_page_writeback(page);
841 	}
842 	/*
843 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
844 	 * we cannot notice that anon_vma is freed while we migrates a page.
845 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
846 	 * of migration. File cache pages are no problem because of page_lock()
847 	 * File Caches may use write_page() or lock_page() in migration, then,
848 	 * just care Anon page here.
849 	 */
850 	if (PageAnon(page) && !PageKsm(page)) {
851 		/*
852 		 * Only page_lock_anon_vma_read() understands the subtleties of
853 		 * getting a hold on an anon_vma from outside one of its mms.
854 		 */
855 		anon_vma = page_get_anon_vma(page);
856 		if (anon_vma) {
857 			/*
858 			 * Anon page
859 			 */
860 		} else if (PageSwapCache(page)) {
861 			/*
862 			 * We cannot be sure that the anon_vma of an unmapped
863 			 * swapcache page is safe to use because we don't
864 			 * know in advance if the VMA that this page belonged
865 			 * to still exists. If the VMA and others sharing the
866 			 * data have been freed, then the anon_vma could
867 			 * already be invalid.
868 			 *
869 			 * To avoid this possibility, swapcache pages get
870 			 * migrated but are not remapped when migration
871 			 * completes
872 			 */
873 			remap_swapcache = 0;
874 		} else {
875 			goto uncharge;
876 		}
877 	}
878 
879 	if (unlikely(balloon_page_movable(page))) {
880 		/*
881 		 * A ballooned page does not need any special attention from
882 		 * physical to virtual reverse mapping procedures.
883 		 * Skip any attempt to unmap PTEs or to remap swap cache,
884 		 * in order to avoid burning cycles at rmap level, and perform
885 		 * the page migration right away (proteced by page lock).
886 		 */
887 		rc = balloon_page_migrate(newpage, page, mode);
888 		goto uncharge;
889 	}
890 
891 	/*
892 	 * Corner case handling:
893 	 * 1. When a new swap-cache page is read into, it is added to the LRU
894 	 * and treated as swapcache but it has no rmap yet.
895 	 * Calling try_to_unmap() against a page->mapping==NULL page will
896 	 * trigger a BUG.  So handle it here.
897 	 * 2. An orphaned page (see truncate_complete_page) might have
898 	 * fs-private metadata. The page can be picked up due to memory
899 	 * offlining.  Everywhere else except page reclaim, the page is
900 	 * invisible to the vm, so the page can not be migrated.  So try to
901 	 * free the metadata, so the page can be freed.
902 	 */
903 	if (!page->mapping) {
904 		VM_BUG_ON_PAGE(PageAnon(page), page);
905 		if (page_has_private(page)) {
906 			try_to_free_buffers(page);
907 			goto uncharge;
908 		}
909 		goto skip_unmap;
910 	}
911 
912 	/* Establish migration ptes or remove ptes */
913 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
914 
915 skip_unmap:
916 	if (!page_mapped(page))
917 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
918 
919 	if (rc && remap_swapcache)
920 		remove_migration_ptes(page, page);
921 
922 	/* Drop an anon_vma reference if we took one */
923 	if (anon_vma)
924 		put_anon_vma(anon_vma);
925 
926 uncharge:
927 	mem_cgroup_end_migration(mem, page, newpage,
928 				 (rc == MIGRATEPAGE_SUCCESS ||
929 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
930 	unlock_page(page);
931 out:
932 	return rc;
933 }
934 
935 /*
936  * Obtain the lock on page, remove all ptes and migrate the page
937  * to the newly allocated page in newpage.
938  */
939 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
940 			unsigned long private, struct page *page, int force,
941 			enum migrate_mode mode)
942 {
943 	int rc = 0;
944 	int *result = NULL;
945 	struct page *newpage = get_new_page(page, private, &result);
946 
947 	if (!newpage)
948 		return -ENOMEM;
949 
950 	if (page_count(page) == 1) {
951 		/* page was freed from under us. So we are done. */
952 		goto out;
953 	}
954 
955 	if (unlikely(PageTransHuge(page)))
956 		if (unlikely(split_huge_page(page)))
957 			goto out;
958 
959 	rc = __unmap_and_move(page, newpage, force, mode);
960 
961 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
962 		/*
963 		 * A ballooned page has been migrated already.
964 		 * Now, it's the time to wrap-up counters,
965 		 * handle the page back to Buddy and return.
966 		 */
967 		dec_zone_page_state(page, NR_ISOLATED_ANON +
968 				    page_is_file_cache(page));
969 		balloon_page_free(page);
970 		return MIGRATEPAGE_SUCCESS;
971 	}
972 out:
973 	if (rc != -EAGAIN) {
974 		/*
975 		 * A page that has been migrated has all references
976 		 * removed and will be freed. A page that has not been
977 		 * migrated will have kepts its references and be
978 		 * restored.
979 		 */
980 		list_del(&page->lru);
981 		dec_zone_page_state(page, NR_ISOLATED_ANON +
982 				page_is_file_cache(page));
983 		putback_lru_page(page);
984 	}
985 
986 	/*
987 	 * If migration was not successful and there's a freeing callback, use
988 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
989 	 * during isolation.
990 	 */
991 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
992 		ClearPageSwapBacked(newpage);
993 		put_new_page(newpage, private);
994 	} else
995 		putback_lru_page(newpage);
996 
997 	if (result) {
998 		if (rc)
999 			*result = rc;
1000 		else
1001 			*result = page_to_nid(newpage);
1002 	}
1003 	return rc;
1004 }
1005 
1006 /*
1007  * Counterpart of unmap_and_move_page() for hugepage migration.
1008  *
1009  * This function doesn't wait the completion of hugepage I/O
1010  * because there is no race between I/O and migration for hugepage.
1011  * Note that currently hugepage I/O occurs only in direct I/O
1012  * where no lock is held and PG_writeback is irrelevant,
1013  * and writeback status of all subpages are counted in the reference
1014  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1015  * under direct I/O, the reference of the head page is 512 and a bit more.)
1016  * This means that when we try to migrate hugepage whose subpages are
1017  * doing direct I/O, some references remain after try_to_unmap() and
1018  * hugepage migration fails without data corruption.
1019  *
1020  * There is also no race when direct I/O is issued on the page under migration,
1021  * because then pte is replaced with migration swap entry and direct I/O code
1022  * will wait in the page fault for migration to complete.
1023  */
1024 static int unmap_and_move_huge_page(new_page_t get_new_page,
1025 				free_page_t put_new_page, unsigned long private,
1026 				struct page *hpage, int force,
1027 				enum migrate_mode mode)
1028 {
1029 	int rc = 0;
1030 	int *result = NULL;
1031 	struct page *new_hpage;
1032 	struct anon_vma *anon_vma = NULL;
1033 
1034 	/*
1035 	 * Movability of hugepages depends on architectures and hugepage size.
1036 	 * This check is necessary because some callers of hugepage migration
1037 	 * like soft offline and memory hotremove don't walk through page
1038 	 * tables or check whether the hugepage is pmd-based or not before
1039 	 * kicking migration.
1040 	 */
1041 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1042 		putback_active_hugepage(hpage);
1043 		return -ENOSYS;
1044 	}
1045 
1046 	new_hpage = get_new_page(hpage, private, &result);
1047 	if (!new_hpage)
1048 		return -ENOMEM;
1049 
1050 	rc = -EAGAIN;
1051 
1052 	if (!trylock_page(hpage)) {
1053 		if (!force || mode != MIGRATE_SYNC)
1054 			goto out;
1055 		lock_page(hpage);
1056 	}
1057 
1058 	if (PageAnon(hpage))
1059 		anon_vma = page_get_anon_vma(hpage);
1060 
1061 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1062 
1063 	if (!page_mapped(hpage))
1064 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1065 
1066 	if (rc != MIGRATEPAGE_SUCCESS)
1067 		remove_migration_ptes(hpage, hpage);
1068 
1069 	if (anon_vma)
1070 		put_anon_vma(anon_vma);
1071 
1072 	if (rc == MIGRATEPAGE_SUCCESS)
1073 		hugetlb_cgroup_migrate(hpage, new_hpage);
1074 
1075 	unlock_page(hpage);
1076 out:
1077 	if (rc != -EAGAIN)
1078 		putback_active_hugepage(hpage);
1079 
1080 	/*
1081 	 * If migration was not successful and there's a freeing callback, use
1082 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1083 	 * isolation.
1084 	 */
1085 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1086 		put_new_page(new_hpage, private);
1087 	else
1088 		put_page(new_hpage);
1089 
1090 	if (result) {
1091 		if (rc)
1092 			*result = rc;
1093 		else
1094 			*result = page_to_nid(new_hpage);
1095 	}
1096 	return rc;
1097 }
1098 
1099 /*
1100  * migrate_pages - migrate the pages specified in a list, to the free pages
1101  *		   supplied as the target for the page migration
1102  *
1103  * @from:		The list of pages to be migrated.
1104  * @get_new_page:	The function used to allocate free pages to be used
1105  *			as the target of the page migration.
1106  * @put_new_page:	The function used to free target pages if migration
1107  *			fails, or NULL if no special handling is necessary.
1108  * @private:		Private data to be passed on to get_new_page()
1109  * @mode:		The migration mode that specifies the constraints for
1110  *			page migration, if any.
1111  * @reason:		The reason for page migration.
1112  *
1113  * The function returns after 10 attempts or if no pages are movable any more
1114  * because the list has become empty or no retryable pages exist any more.
1115  * The caller should call putback_lru_pages() to return pages to the LRU
1116  * or free list only if ret != 0.
1117  *
1118  * Returns the number of pages that were not migrated, or an error code.
1119  */
1120 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1121 		free_page_t put_new_page, unsigned long private,
1122 		enum migrate_mode mode, int reason)
1123 {
1124 	int retry = 1;
1125 	int nr_failed = 0;
1126 	int nr_succeeded = 0;
1127 	int pass = 0;
1128 	struct page *page;
1129 	struct page *page2;
1130 	int swapwrite = current->flags & PF_SWAPWRITE;
1131 	int rc;
1132 
1133 	if (!swapwrite)
1134 		current->flags |= PF_SWAPWRITE;
1135 
1136 	for(pass = 0; pass < 10 && retry; pass++) {
1137 		retry = 0;
1138 
1139 		list_for_each_entry_safe(page, page2, from, lru) {
1140 			cond_resched();
1141 
1142 			if (PageHuge(page))
1143 				rc = unmap_and_move_huge_page(get_new_page,
1144 						put_new_page, private, page,
1145 						pass > 2, mode);
1146 			else
1147 				rc = unmap_and_move(get_new_page, put_new_page,
1148 						private, page, pass > 2, mode);
1149 
1150 			switch(rc) {
1151 			case -ENOMEM:
1152 				goto out;
1153 			case -EAGAIN:
1154 				retry++;
1155 				break;
1156 			case MIGRATEPAGE_SUCCESS:
1157 				nr_succeeded++;
1158 				break;
1159 			default:
1160 				/*
1161 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1162 				 * unlike -EAGAIN case, the failed page is
1163 				 * removed from migration page list and not
1164 				 * retried in the next outer loop.
1165 				 */
1166 				nr_failed++;
1167 				break;
1168 			}
1169 		}
1170 	}
1171 	rc = nr_failed + retry;
1172 out:
1173 	if (nr_succeeded)
1174 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1175 	if (nr_failed)
1176 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1177 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1178 
1179 	if (!swapwrite)
1180 		current->flags &= ~PF_SWAPWRITE;
1181 
1182 	return rc;
1183 }
1184 
1185 #ifdef CONFIG_NUMA
1186 /*
1187  * Move a list of individual pages
1188  */
1189 struct page_to_node {
1190 	unsigned long addr;
1191 	struct page *page;
1192 	int node;
1193 	int status;
1194 };
1195 
1196 static struct page *new_page_node(struct page *p, unsigned long private,
1197 		int **result)
1198 {
1199 	struct page_to_node *pm = (struct page_to_node *)private;
1200 
1201 	while (pm->node != MAX_NUMNODES && pm->page != p)
1202 		pm++;
1203 
1204 	if (pm->node == MAX_NUMNODES)
1205 		return NULL;
1206 
1207 	*result = &pm->status;
1208 
1209 	if (PageHuge(p))
1210 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1211 					pm->node);
1212 	else
1213 		return alloc_pages_exact_node(pm->node,
1214 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1215 }
1216 
1217 /*
1218  * Move a set of pages as indicated in the pm array. The addr
1219  * field must be set to the virtual address of the page to be moved
1220  * and the node number must contain a valid target node.
1221  * The pm array ends with node = MAX_NUMNODES.
1222  */
1223 static int do_move_page_to_node_array(struct mm_struct *mm,
1224 				      struct page_to_node *pm,
1225 				      int migrate_all)
1226 {
1227 	int err;
1228 	struct page_to_node *pp;
1229 	LIST_HEAD(pagelist);
1230 
1231 	down_read(&mm->mmap_sem);
1232 
1233 	/*
1234 	 * Build a list of pages to migrate
1235 	 */
1236 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1237 		struct vm_area_struct *vma;
1238 		struct page *page;
1239 
1240 		err = -EFAULT;
1241 		vma = find_vma(mm, pp->addr);
1242 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1243 			goto set_status;
1244 
1245 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1246 
1247 		err = PTR_ERR(page);
1248 		if (IS_ERR(page))
1249 			goto set_status;
1250 
1251 		err = -ENOENT;
1252 		if (!page)
1253 			goto set_status;
1254 
1255 		/* Use PageReserved to check for zero page */
1256 		if (PageReserved(page))
1257 			goto put_and_set;
1258 
1259 		pp->page = page;
1260 		err = page_to_nid(page);
1261 
1262 		if (err == pp->node)
1263 			/*
1264 			 * Node already in the right place
1265 			 */
1266 			goto put_and_set;
1267 
1268 		err = -EACCES;
1269 		if (page_mapcount(page) > 1 &&
1270 				!migrate_all)
1271 			goto put_and_set;
1272 
1273 		if (PageHuge(page)) {
1274 			isolate_huge_page(page, &pagelist);
1275 			goto put_and_set;
1276 		}
1277 
1278 		err = isolate_lru_page(page);
1279 		if (!err) {
1280 			list_add_tail(&page->lru, &pagelist);
1281 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1282 					    page_is_file_cache(page));
1283 		}
1284 put_and_set:
1285 		/*
1286 		 * Either remove the duplicate refcount from
1287 		 * isolate_lru_page() or drop the page ref if it was
1288 		 * not isolated.
1289 		 */
1290 		put_page(page);
1291 set_status:
1292 		pp->status = err;
1293 	}
1294 
1295 	err = 0;
1296 	if (!list_empty(&pagelist)) {
1297 		err = migrate_pages(&pagelist, new_page_node, NULL,
1298 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1299 		if (err)
1300 			putback_movable_pages(&pagelist);
1301 	}
1302 
1303 	up_read(&mm->mmap_sem);
1304 	return err;
1305 }
1306 
1307 /*
1308  * Migrate an array of page address onto an array of nodes and fill
1309  * the corresponding array of status.
1310  */
1311 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1312 			 unsigned long nr_pages,
1313 			 const void __user * __user *pages,
1314 			 const int __user *nodes,
1315 			 int __user *status, int flags)
1316 {
1317 	struct page_to_node *pm;
1318 	unsigned long chunk_nr_pages;
1319 	unsigned long chunk_start;
1320 	int err;
1321 
1322 	err = -ENOMEM;
1323 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1324 	if (!pm)
1325 		goto out;
1326 
1327 	migrate_prep();
1328 
1329 	/*
1330 	 * Store a chunk of page_to_node array in a page,
1331 	 * but keep the last one as a marker
1332 	 */
1333 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1334 
1335 	for (chunk_start = 0;
1336 	     chunk_start < nr_pages;
1337 	     chunk_start += chunk_nr_pages) {
1338 		int j;
1339 
1340 		if (chunk_start + chunk_nr_pages > nr_pages)
1341 			chunk_nr_pages = nr_pages - chunk_start;
1342 
1343 		/* fill the chunk pm with addrs and nodes from user-space */
1344 		for (j = 0; j < chunk_nr_pages; j++) {
1345 			const void __user *p;
1346 			int node;
1347 
1348 			err = -EFAULT;
1349 			if (get_user(p, pages + j + chunk_start))
1350 				goto out_pm;
1351 			pm[j].addr = (unsigned long) p;
1352 
1353 			if (get_user(node, nodes + j + chunk_start))
1354 				goto out_pm;
1355 
1356 			err = -ENODEV;
1357 			if (node < 0 || node >= MAX_NUMNODES)
1358 				goto out_pm;
1359 
1360 			if (!node_state(node, N_MEMORY))
1361 				goto out_pm;
1362 
1363 			err = -EACCES;
1364 			if (!node_isset(node, task_nodes))
1365 				goto out_pm;
1366 
1367 			pm[j].node = node;
1368 		}
1369 
1370 		/* End marker for this chunk */
1371 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1372 
1373 		/* Migrate this chunk */
1374 		err = do_move_page_to_node_array(mm, pm,
1375 						 flags & MPOL_MF_MOVE_ALL);
1376 		if (err < 0)
1377 			goto out_pm;
1378 
1379 		/* Return status information */
1380 		for (j = 0; j < chunk_nr_pages; j++)
1381 			if (put_user(pm[j].status, status + j + chunk_start)) {
1382 				err = -EFAULT;
1383 				goto out_pm;
1384 			}
1385 	}
1386 	err = 0;
1387 
1388 out_pm:
1389 	free_page((unsigned long)pm);
1390 out:
1391 	return err;
1392 }
1393 
1394 /*
1395  * Determine the nodes of an array of pages and store it in an array of status.
1396  */
1397 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1398 				const void __user **pages, int *status)
1399 {
1400 	unsigned long i;
1401 
1402 	down_read(&mm->mmap_sem);
1403 
1404 	for (i = 0; i < nr_pages; i++) {
1405 		unsigned long addr = (unsigned long)(*pages);
1406 		struct vm_area_struct *vma;
1407 		struct page *page;
1408 		int err = -EFAULT;
1409 
1410 		vma = find_vma(mm, addr);
1411 		if (!vma || addr < vma->vm_start)
1412 			goto set_status;
1413 
1414 		page = follow_page(vma, addr, 0);
1415 
1416 		err = PTR_ERR(page);
1417 		if (IS_ERR(page))
1418 			goto set_status;
1419 
1420 		err = -ENOENT;
1421 		/* Use PageReserved to check for zero page */
1422 		if (!page || PageReserved(page))
1423 			goto set_status;
1424 
1425 		err = page_to_nid(page);
1426 set_status:
1427 		*status = err;
1428 
1429 		pages++;
1430 		status++;
1431 	}
1432 
1433 	up_read(&mm->mmap_sem);
1434 }
1435 
1436 /*
1437  * Determine the nodes of a user array of pages and store it in
1438  * a user array of status.
1439  */
1440 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1441 			 const void __user * __user *pages,
1442 			 int __user *status)
1443 {
1444 #define DO_PAGES_STAT_CHUNK_NR 16
1445 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1446 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1447 
1448 	while (nr_pages) {
1449 		unsigned long chunk_nr;
1450 
1451 		chunk_nr = nr_pages;
1452 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1453 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1454 
1455 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1456 			break;
1457 
1458 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1459 
1460 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1461 			break;
1462 
1463 		pages += chunk_nr;
1464 		status += chunk_nr;
1465 		nr_pages -= chunk_nr;
1466 	}
1467 	return nr_pages ? -EFAULT : 0;
1468 }
1469 
1470 /*
1471  * Move a list of pages in the address space of the currently executing
1472  * process.
1473  */
1474 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1475 		const void __user * __user *, pages,
1476 		const int __user *, nodes,
1477 		int __user *, status, int, flags)
1478 {
1479 	const struct cred *cred = current_cred(), *tcred;
1480 	struct task_struct *task;
1481 	struct mm_struct *mm;
1482 	int err;
1483 	nodemask_t task_nodes;
1484 
1485 	/* Check flags */
1486 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1487 		return -EINVAL;
1488 
1489 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1490 		return -EPERM;
1491 
1492 	/* Find the mm_struct */
1493 	rcu_read_lock();
1494 	task = pid ? find_task_by_vpid(pid) : current;
1495 	if (!task) {
1496 		rcu_read_unlock();
1497 		return -ESRCH;
1498 	}
1499 	get_task_struct(task);
1500 
1501 	/*
1502 	 * Check if this process has the right to modify the specified
1503 	 * process. The right exists if the process has administrative
1504 	 * capabilities, superuser privileges or the same
1505 	 * userid as the target process.
1506 	 */
1507 	tcred = __task_cred(task);
1508 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1509 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1510 	    !capable(CAP_SYS_NICE)) {
1511 		rcu_read_unlock();
1512 		err = -EPERM;
1513 		goto out;
1514 	}
1515 	rcu_read_unlock();
1516 
1517  	err = security_task_movememory(task);
1518  	if (err)
1519 		goto out;
1520 
1521 	task_nodes = cpuset_mems_allowed(task);
1522 	mm = get_task_mm(task);
1523 	put_task_struct(task);
1524 
1525 	if (!mm)
1526 		return -EINVAL;
1527 
1528 	if (nodes)
1529 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1530 				    nodes, status, flags);
1531 	else
1532 		err = do_pages_stat(mm, nr_pages, pages, status);
1533 
1534 	mmput(mm);
1535 	return err;
1536 
1537 out:
1538 	put_task_struct(task);
1539 	return err;
1540 }
1541 
1542 /*
1543  * Call migration functions in the vma_ops that may prepare
1544  * memory in a vm for migration. migration functions may perform
1545  * the migration for vmas that do not have an underlying page struct.
1546  */
1547 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1548 	const nodemask_t *from, unsigned long flags)
1549 {
1550  	struct vm_area_struct *vma;
1551  	int err = 0;
1552 
1553 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1554  		if (vma->vm_ops && vma->vm_ops->migrate) {
1555  			err = vma->vm_ops->migrate(vma, to, from, flags);
1556  			if (err)
1557  				break;
1558  		}
1559  	}
1560  	return err;
1561 }
1562 
1563 #ifdef CONFIG_NUMA_BALANCING
1564 /*
1565  * Returns true if this is a safe migration target node for misplaced NUMA
1566  * pages. Currently it only checks the watermarks which crude
1567  */
1568 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1569 				   unsigned long nr_migrate_pages)
1570 {
1571 	int z;
1572 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1573 		struct zone *zone = pgdat->node_zones + z;
1574 
1575 		if (!populated_zone(zone))
1576 			continue;
1577 
1578 		if (!zone_reclaimable(zone))
1579 			continue;
1580 
1581 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1582 		if (!zone_watermark_ok(zone, 0,
1583 				       high_wmark_pages(zone) +
1584 				       nr_migrate_pages,
1585 				       0, 0))
1586 			continue;
1587 		return true;
1588 	}
1589 	return false;
1590 }
1591 
1592 static struct page *alloc_misplaced_dst_page(struct page *page,
1593 					   unsigned long data,
1594 					   int **result)
1595 {
1596 	int nid = (int) data;
1597 	struct page *newpage;
1598 
1599 	newpage = alloc_pages_exact_node(nid,
1600 					 (GFP_HIGHUSER_MOVABLE |
1601 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1602 					  __GFP_NORETRY | __GFP_NOWARN) &
1603 					 ~GFP_IOFS, 0);
1604 
1605 	return newpage;
1606 }
1607 
1608 /*
1609  * page migration rate limiting control.
1610  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1611  * window of time. Default here says do not migrate more than 1280M per second.
1612  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1613  * as it is faults that reset the window, pte updates will happen unconditionally
1614  * if there has not been a fault since @pteupdate_interval_millisecs after the
1615  * throttle window closed.
1616  */
1617 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1618 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1619 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1620 
1621 /* Returns true if NUMA migration is currently rate limited */
1622 bool migrate_ratelimited(int node)
1623 {
1624 	pg_data_t *pgdat = NODE_DATA(node);
1625 
1626 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1627 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1628 		return false;
1629 
1630 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1631 		return false;
1632 
1633 	return true;
1634 }
1635 
1636 /* Returns true if the node is migrate rate-limited after the update */
1637 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1638 					unsigned long nr_pages)
1639 {
1640 	/*
1641 	 * Rate-limit the amount of data that is being migrated to a node.
1642 	 * Optimal placement is no good if the memory bus is saturated and
1643 	 * all the time is being spent migrating!
1644 	 */
1645 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1646 		spin_lock(&pgdat->numabalancing_migrate_lock);
1647 		pgdat->numabalancing_migrate_nr_pages = 0;
1648 		pgdat->numabalancing_migrate_next_window = jiffies +
1649 			msecs_to_jiffies(migrate_interval_millisecs);
1650 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1651 	}
1652 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1653 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1654 								nr_pages);
1655 		return true;
1656 	}
1657 
1658 	/*
1659 	 * This is an unlocked non-atomic update so errors are possible.
1660 	 * The consequences are failing to migrate when we potentiall should
1661 	 * have which is not severe enough to warrant locking. If it is ever
1662 	 * a problem, it can be converted to a per-cpu counter.
1663 	 */
1664 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1665 	return false;
1666 }
1667 
1668 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1669 {
1670 	int page_lru;
1671 
1672 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1673 
1674 	/* Avoid migrating to a node that is nearly full */
1675 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1676 		return 0;
1677 
1678 	if (isolate_lru_page(page))
1679 		return 0;
1680 
1681 	/*
1682 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1683 	 * check on page_count(), so we must do it here, now that the page
1684 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1685 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1686 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1687 	 */
1688 	if (PageTransHuge(page) && page_count(page) != 3) {
1689 		putback_lru_page(page);
1690 		return 0;
1691 	}
1692 
1693 	page_lru = page_is_file_cache(page);
1694 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1695 				hpage_nr_pages(page));
1696 
1697 	/*
1698 	 * Isolating the page has taken another reference, so the
1699 	 * caller's reference can be safely dropped without the page
1700 	 * disappearing underneath us during migration.
1701 	 */
1702 	put_page(page);
1703 	return 1;
1704 }
1705 
1706 bool pmd_trans_migrating(pmd_t pmd)
1707 {
1708 	struct page *page = pmd_page(pmd);
1709 	return PageLocked(page);
1710 }
1711 
1712 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1713 {
1714 	struct page *page = pmd_page(*pmd);
1715 	wait_on_page_locked(page);
1716 }
1717 
1718 /*
1719  * Attempt to migrate a misplaced page to the specified destination
1720  * node. Caller is expected to have an elevated reference count on
1721  * the page that will be dropped by this function before returning.
1722  */
1723 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1724 			   int node)
1725 {
1726 	pg_data_t *pgdat = NODE_DATA(node);
1727 	int isolated;
1728 	int nr_remaining;
1729 	LIST_HEAD(migratepages);
1730 
1731 	/*
1732 	 * Don't migrate file pages that are mapped in multiple processes
1733 	 * with execute permissions as they are probably shared libraries.
1734 	 */
1735 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1736 	    (vma->vm_flags & VM_EXEC))
1737 		goto out;
1738 
1739 	/*
1740 	 * Rate-limit the amount of data that is being migrated to a node.
1741 	 * Optimal placement is no good if the memory bus is saturated and
1742 	 * all the time is being spent migrating!
1743 	 */
1744 	if (numamigrate_update_ratelimit(pgdat, 1))
1745 		goto out;
1746 
1747 	isolated = numamigrate_isolate_page(pgdat, page);
1748 	if (!isolated)
1749 		goto out;
1750 
1751 	list_add(&page->lru, &migratepages);
1752 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1753 				     NULL, node, MIGRATE_ASYNC,
1754 				     MR_NUMA_MISPLACED);
1755 	if (nr_remaining) {
1756 		if (!list_empty(&migratepages)) {
1757 			list_del(&page->lru);
1758 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1759 					page_is_file_cache(page));
1760 			putback_lru_page(page);
1761 		}
1762 		isolated = 0;
1763 	} else
1764 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1765 	BUG_ON(!list_empty(&migratepages));
1766 	return isolated;
1767 
1768 out:
1769 	put_page(page);
1770 	return 0;
1771 }
1772 #endif /* CONFIG_NUMA_BALANCING */
1773 
1774 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1775 /*
1776  * Migrates a THP to a given target node. page must be locked and is unlocked
1777  * before returning.
1778  */
1779 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1780 				struct vm_area_struct *vma,
1781 				pmd_t *pmd, pmd_t entry,
1782 				unsigned long address,
1783 				struct page *page, int node)
1784 {
1785 	spinlock_t *ptl;
1786 	pg_data_t *pgdat = NODE_DATA(node);
1787 	int isolated = 0;
1788 	struct page *new_page = NULL;
1789 	struct mem_cgroup *memcg = NULL;
1790 	int page_lru = page_is_file_cache(page);
1791 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1792 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1793 	pmd_t orig_entry;
1794 
1795 	/*
1796 	 * Rate-limit the amount of data that is being migrated to a node.
1797 	 * Optimal placement is no good if the memory bus is saturated and
1798 	 * all the time is being spent migrating!
1799 	 */
1800 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1801 		goto out_dropref;
1802 
1803 	new_page = alloc_pages_node(node,
1804 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1805 		HPAGE_PMD_ORDER);
1806 	if (!new_page)
1807 		goto out_fail;
1808 
1809 	isolated = numamigrate_isolate_page(pgdat, page);
1810 	if (!isolated) {
1811 		put_page(new_page);
1812 		goto out_fail;
1813 	}
1814 
1815 	if (mm_tlb_flush_pending(mm))
1816 		flush_tlb_range(vma, mmun_start, mmun_end);
1817 
1818 	/* Prepare a page as a migration target */
1819 	__set_page_locked(new_page);
1820 	SetPageSwapBacked(new_page);
1821 
1822 	/* anon mapping, we can simply copy page->mapping to the new page: */
1823 	new_page->mapping = page->mapping;
1824 	new_page->index = page->index;
1825 	migrate_page_copy(new_page, page);
1826 	WARN_ON(PageLRU(new_page));
1827 
1828 	/* Recheck the target PMD */
1829 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1830 	ptl = pmd_lock(mm, pmd);
1831 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1832 fail_putback:
1833 		spin_unlock(ptl);
1834 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1835 
1836 		/* Reverse changes made by migrate_page_copy() */
1837 		if (TestClearPageActive(new_page))
1838 			SetPageActive(page);
1839 		if (TestClearPageUnevictable(new_page))
1840 			SetPageUnevictable(page);
1841 		mlock_migrate_page(page, new_page);
1842 
1843 		unlock_page(new_page);
1844 		put_page(new_page);		/* Free it */
1845 
1846 		/* Retake the callers reference and putback on LRU */
1847 		get_page(page);
1848 		putback_lru_page(page);
1849 		mod_zone_page_state(page_zone(page),
1850 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1851 
1852 		goto out_unlock;
1853 	}
1854 
1855 	/*
1856 	 * Traditional migration needs to prepare the memcg charge
1857 	 * transaction early to prevent the old page from being
1858 	 * uncharged when installing migration entries.  Here we can
1859 	 * save the potential rollback and start the charge transfer
1860 	 * only when migration is already known to end successfully.
1861 	 */
1862 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1863 
1864 	orig_entry = *pmd;
1865 	entry = mk_pmd(new_page, vma->vm_page_prot);
1866 	entry = pmd_mkhuge(entry);
1867 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1868 
1869 	/*
1870 	 * Clear the old entry under pagetable lock and establish the new PTE.
1871 	 * Any parallel GUP will either observe the old page blocking on the
1872 	 * page lock, block on the page table lock or observe the new page.
1873 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1874 	 * guarantee the copy is visible before the pagetable update.
1875 	 */
1876 	flush_cache_range(vma, mmun_start, mmun_end);
1877 	page_add_anon_rmap(new_page, vma, mmun_start);
1878 	pmdp_clear_flush(vma, mmun_start, pmd);
1879 	set_pmd_at(mm, mmun_start, pmd, entry);
1880 	flush_tlb_range(vma, mmun_start, mmun_end);
1881 	update_mmu_cache_pmd(vma, address, &entry);
1882 
1883 	if (page_count(page) != 2) {
1884 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1885 		flush_tlb_range(vma, mmun_start, mmun_end);
1886 		update_mmu_cache_pmd(vma, address, &entry);
1887 		page_remove_rmap(new_page);
1888 		goto fail_putback;
1889 	}
1890 
1891 	page_remove_rmap(page);
1892 
1893 	/*
1894 	 * Finish the charge transaction under the page table lock to
1895 	 * prevent split_huge_page() from dividing up the charge
1896 	 * before it's fully transferred to the new page.
1897 	 */
1898 	mem_cgroup_end_migration(memcg, page, new_page, true);
1899 	spin_unlock(ptl);
1900 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1901 
1902 	/* Take an "isolate" reference and put new page on the LRU. */
1903 	get_page(new_page);
1904 	putback_lru_page(new_page);
1905 
1906 	unlock_page(new_page);
1907 	unlock_page(page);
1908 	put_page(page);			/* Drop the rmap reference */
1909 	put_page(page);			/* Drop the LRU isolation reference */
1910 
1911 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1912 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1913 
1914 	mod_zone_page_state(page_zone(page),
1915 			NR_ISOLATED_ANON + page_lru,
1916 			-HPAGE_PMD_NR);
1917 	return isolated;
1918 
1919 out_fail:
1920 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1921 out_dropref:
1922 	ptl = pmd_lock(mm, pmd);
1923 	if (pmd_same(*pmd, entry)) {
1924 		entry = pmd_mknonnuma(entry);
1925 		set_pmd_at(mm, mmun_start, pmd, entry);
1926 		update_mmu_cache_pmd(vma, address, &entry);
1927 	}
1928 	spin_unlock(ptl);
1929 
1930 out_unlock:
1931 	unlock_page(page);
1932 	put_page(page);
1933 	return 0;
1934 }
1935 #endif /* CONFIG_NUMA_BALANCING */
1936 
1937 #endif /* CONFIG_NUMA */
1938