1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/gfp.h> 37 38 #include <asm/tlbflush.h> 39 40 #include "internal.h" 41 42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 43 44 /* 45 * migrate_prep() needs to be called before we start compiling a list of pages 46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 47 * undesirable, use migrate_prep_local() 48 */ 49 int migrate_prep(void) 50 { 51 /* 52 * Clear the LRU lists so pages can be isolated. 53 * Note that pages may be moved off the LRU after we have 54 * drained them. Those pages will fail to migrate like other 55 * pages that may be busy. 56 */ 57 lru_add_drain_all(); 58 59 return 0; 60 } 61 62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 63 int migrate_prep_local(void) 64 { 65 lru_add_drain(); 66 67 return 0; 68 } 69 70 /* 71 * Add isolated pages on the list back to the LRU under page lock 72 * to avoid leaking evictable pages back onto unevictable list. 73 */ 74 void putback_lru_pages(struct list_head *l) 75 { 76 struct page *page; 77 struct page *page2; 78 79 list_for_each_entry_safe(page, page2, l, lru) { 80 list_del(&page->lru); 81 dec_zone_page_state(page, NR_ISOLATED_ANON + 82 page_is_file_cache(page)); 83 putback_lru_page(page); 84 } 85 } 86 87 /* 88 * Restore a potential migration pte to a working pte entry 89 */ 90 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 91 unsigned long addr, void *old) 92 { 93 struct mm_struct *mm = vma->vm_mm; 94 swp_entry_t entry; 95 pgd_t *pgd; 96 pud_t *pud; 97 pmd_t *pmd; 98 pte_t *ptep, pte; 99 spinlock_t *ptl; 100 101 if (unlikely(PageHuge(new))) { 102 ptep = huge_pte_offset(mm, addr); 103 if (!ptep) 104 goto out; 105 ptl = &mm->page_table_lock; 106 } else { 107 pgd = pgd_offset(mm, addr); 108 if (!pgd_present(*pgd)) 109 goto out; 110 111 pud = pud_offset(pgd, addr); 112 if (!pud_present(*pud)) 113 goto out; 114 115 pmd = pmd_offset(pud, addr); 116 if (pmd_trans_huge(*pmd)) 117 goto out; 118 if (!pmd_present(*pmd)) 119 goto out; 120 121 ptep = pte_offset_map(pmd, addr); 122 123 /* 124 * Peek to check is_swap_pte() before taking ptlock? No, we 125 * can race mremap's move_ptes(), which skips anon_vma lock. 126 */ 127 128 ptl = pte_lockptr(mm, pmd); 129 } 130 131 spin_lock(ptl); 132 pte = *ptep; 133 if (!is_swap_pte(pte)) 134 goto unlock; 135 136 entry = pte_to_swp_entry(pte); 137 138 if (!is_migration_entry(entry) || 139 migration_entry_to_page(entry) != old) 140 goto unlock; 141 142 get_page(new); 143 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 144 if (is_write_migration_entry(entry)) 145 pte = pte_mkwrite(pte); 146 #ifdef CONFIG_HUGETLB_PAGE 147 if (PageHuge(new)) 148 pte = pte_mkhuge(pte); 149 #endif 150 flush_cache_page(vma, addr, pte_pfn(pte)); 151 set_pte_at(mm, addr, ptep, pte); 152 153 if (PageHuge(new)) { 154 if (PageAnon(new)) 155 hugepage_add_anon_rmap(new, vma, addr); 156 else 157 page_dup_rmap(new); 158 } else if (PageAnon(new)) 159 page_add_anon_rmap(new, vma, addr); 160 else 161 page_add_file_rmap(new); 162 163 /* No need to invalidate - it was non-present before */ 164 update_mmu_cache(vma, addr, ptep); 165 unlock: 166 pte_unmap_unlock(ptep, ptl); 167 out: 168 return SWAP_AGAIN; 169 } 170 171 /* 172 * Get rid of all migration entries and replace them by 173 * references to the indicated page. 174 */ 175 static void remove_migration_ptes(struct page *old, struct page *new) 176 { 177 rmap_walk(new, remove_migration_pte, old); 178 } 179 180 /* 181 * Something used the pte of a page under migration. We need to 182 * get to the page and wait until migration is finished. 183 * When we return from this function the fault will be retried. 184 * 185 * This function is called from do_swap_page(). 186 */ 187 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 188 unsigned long address) 189 { 190 pte_t *ptep, pte; 191 spinlock_t *ptl; 192 swp_entry_t entry; 193 struct page *page; 194 195 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 196 pte = *ptep; 197 if (!is_swap_pte(pte)) 198 goto out; 199 200 entry = pte_to_swp_entry(pte); 201 if (!is_migration_entry(entry)) 202 goto out; 203 204 page = migration_entry_to_page(entry); 205 206 /* 207 * Once radix-tree replacement of page migration started, page_count 208 * *must* be zero. And, we don't want to call wait_on_page_locked() 209 * against a page without get_page(). 210 * So, we use get_page_unless_zero(), here. Even failed, page fault 211 * will occur again. 212 */ 213 if (!get_page_unless_zero(page)) 214 goto out; 215 pte_unmap_unlock(ptep, ptl); 216 wait_on_page_locked(page); 217 put_page(page); 218 return; 219 out: 220 pte_unmap_unlock(ptep, ptl); 221 } 222 223 /* 224 * Replace the page in the mapping. 225 * 226 * The number of remaining references must be: 227 * 1 for anonymous pages without a mapping 228 * 2 for pages with a mapping 229 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 230 */ 231 static int migrate_page_move_mapping(struct address_space *mapping, 232 struct page *newpage, struct page *page) 233 { 234 int expected_count; 235 void **pslot; 236 237 if (!mapping) { 238 /* Anonymous page without mapping */ 239 if (page_count(page) != 1) 240 return -EAGAIN; 241 return 0; 242 } 243 244 spin_lock_irq(&mapping->tree_lock); 245 246 pslot = radix_tree_lookup_slot(&mapping->page_tree, 247 page_index(page)); 248 249 expected_count = 2 + page_has_private(page); 250 if (page_count(page) != expected_count || 251 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 252 spin_unlock_irq(&mapping->tree_lock); 253 return -EAGAIN; 254 } 255 256 if (!page_freeze_refs(page, expected_count)) { 257 spin_unlock_irq(&mapping->tree_lock); 258 return -EAGAIN; 259 } 260 261 /* 262 * Now we know that no one else is looking at the page. 263 */ 264 get_page(newpage); /* add cache reference */ 265 if (PageSwapCache(page)) { 266 SetPageSwapCache(newpage); 267 set_page_private(newpage, page_private(page)); 268 } 269 270 radix_tree_replace_slot(pslot, newpage); 271 272 page_unfreeze_refs(page, expected_count); 273 /* 274 * Drop cache reference from old page. 275 * We know this isn't the last reference. 276 */ 277 __put_page(page); 278 279 /* 280 * If moved to a different zone then also account 281 * the page for that zone. Other VM counters will be 282 * taken care of when we establish references to the 283 * new page and drop references to the old page. 284 * 285 * Note that anonymous pages are accounted for 286 * via NR_FILE_PAGES and NR_ANON_PAGES if they 287 * are mapped to swap space. 288 */ 289 __dec_zone_page_state(page, NR_FILE_PAGES); 290 __inc_zone_page_state(newpage, NR_FILE_PAGES); 291 if (!PageSwapCache(page) && PageSwapBacked(page)) { 292 __dec_zone_page_state(page, NR_SHMEM); 293 __inc_zone_page_state(newpage, NR_SHMEM); 294 } 295 spin_unlock_irq(&mapping->tree_lock); 296 297 return 0; 298 } 299 300 /* 301 * The expected number of remaining references is the same as that 302 * of migrate_page_move_mapping(). 303 */ 304 int migrate_huge_page_move_mapping(struct address_space *mapping, 305 struct page *newpage, struct page *page) 306 { 307 int expected_count; 308 void **pslot; 309 310 if (!mapping) { 311 if (page_count(page) != 1) 312 return -EAGAIN; 313 return 0; 314 } 315 316 spin_lock_irq(&mapping->tree_lock); 317 318 pslot = radix_tree_lookup_slot(&mapping->page_tree, 319 page_index(page)); 320 321 expected_count = 2 + page_has_private(page); 322 if (page_count(page) != expected_count || 323 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 324 spin_unlock_irq(&mapping->tree_lock); 325 return -EAGAIN; 326 } 327 328 if (!page_freeze_refs(page, expected_count)) { 329 spin_unlock_irq(&mapping->tree_lock); 330 return -EAGAIN; 331 } 332 333 get_page(newpage); 334 335 radix_tree_replace_slot(pslot, newpage); 336 337 page_unfreeze_refs(page, expected_count); 338 339 __put_page(page); 340 341 spin_unlock_irq(&mapping->tree_lock); 342 return 0; 343 } 344 345 /* 346 * Copy the page to its new location 347 */ 348 void migrate_page_copy(struct page *newpage, struct page *page) 349 { 350 if (PageHuge(page)) 351 copy_huge_page(newpage, page); 352 else 353 copy_highpage(newpage, page); 354 355 if (PageError(page)) 356 SetPageError(newpage); 357 if (PageReferenced(page)) 358 SetPageReferenced(newpage); 359 if (PageUptodate(page)) 360 SetPageUptodate(newpage); 361 if (TestClearPageActive(page)) { 362 VM_BUG_ON(PageUnevictable(page)); 363 SetPageActive(newpage); 364 } else if (TestClearPageUnevictable(page)) 365 SetPageUnevictable(newpage); 366 if (PageChecked(page)) 367 SetPageChecked(newpage); 368 if (PageMappedToDisk(page)) 369 SetPageMappedToDisk(newpage); 370 371 if (PageDirty(page)) { 372 clear_page_dirty_for_io(page); 373 /* 374 * Want to mark the page and the radix tree as dirty, and 375 * redo the accounting that clear_page_dirty_for_io undid, 376 * but we can't use set_page_dirty because that function 377 * is actually a signal that all of the page has become dirty. 378 * Whereas only part of our page may be dirty. 379 */ 380 __set_page_dirty_nobuffers(newpage); 381 } 382 383 mlock_migrate_page(newpage, page); 384 ksm_migrate_page(newpage, page); 385 386 ClearPageSwapCache(page); 387 ClearPagePrivate(page); 388 set_page_private(page, 0); 389 page->mapping = NULL; 390 391 /* 392 * If any waiters have accumulated on the new page then 393 * wake them up. 394 */ 395 if (PageWriteback(newpage)) 396 end_page_writeback(newpage); 397 } 398 399 /************************************************************ 400 * Migration functions 401 ***********************************************************/ 402 403 /* Always fail migration. Used for mappings that are not movable */ 404 int fail_migrate_page(struct address_space *mapping, 405 struct page *newpage, struct page *page) 406 { 407 return -EIO; 408 } 409 EXPORT_SYMBOL(fail_migrate_page); 410 411 /* 412 * Common logic to directly migrate a single page suitable for 413 * pages that do not use PagePrivate/PagePrivate2. 414 * 415 * Pages are locked upon entry and exit. 416 */ 417 int migrate_page(struct address_space *mapping, 418 struct page *newpage, struct page *page) 419 { 420 int rc; 421 422 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 423 424 rc = migrate_page_move_mapping(mapping, newpage, page); 425 426 if (rc) 427 return rc; 428 429 migrate_page_copy(newpage, page); 430 return 0; 431 } 432 EXPORT_SYMBOL(migrate_page); 433 434 #ifdef CONFIG_BLOCK 435 /* 436 * Migration function for pages with buffers. This function can only be used 437 * if the underlying filesystem guarantees that no other references to "page" 438 * exist. 439 */ 440 int buffer_migrate_page(struct address_space *mapping, 441 struct page *newpage, struct page *page) 442 { 443 struct buffer_head *bh, *head; 444 int rc; 445 446 if (!page_has_buffers(page)) 447 return migrate_page(mapping, newpage, page); 448 449 head = page_buffers(page); 450 451 rc = migrate_page_move_mapping(mapping, newpage, page); 452 453 if (rc) 454 return rc; 455 456 bh = head; 457 do { 458 get_bh(bh); 459 lock_buffer(bh); 460 bh = bh->b_this_page; 461 462 } while (bh != head); 463 464 ClearPagePrivate(page); 465 set_page_private(newpage, page_private(page)); 466 set_page_private(page, 0); 467 put_page(page); 468 get_page(newpage); 469 470 bh = head; 471 do { 472 set_bh_page(bh, newpage, bh_offset(bh)); 473 bh = bh->b_this_page; 474 475 } while (bh != head); 476 477 SetPagePrivate(newpage); 478 479 migrate_page_copy(newpage, page); 480 481 bh = head; 482 do { 483 unlock_buffer(bh); 484 put_bh(bh); 485 bh = bh->b_this_page; 486 487 } while (bh != head); 488 489 return 0; 490 } 491 EXPORT_SYMBOL(buffer_migrate_page); 492 #endif 493 494 /* 495 * Writeback a page to clean the dirty state 496 */ 497 static int writeout(struct address_space *mapping, struct page *page) 498 { 499 struct writeback_control wbc = { 500 .sync_mode = WB_SYNC_NONE, 501 .nr_to_write = 1, 502 .range_start = 0, 503 .range_end = LLONG_MAX, 504 .for_reclaim = 1 505 }; 506 int rc; 507 508 if (!mapping->a_ops->writepage) 509 /* No write method for the address space */ 510 return -EINVAL; 511 512 if (!clear_page_dirty_for_io(page)) 513 /* Someone else already triggered a write */ 514 return -EAGAIN; 515 516 /* 517 * A dirty page may imply that the underlying filesystem has 518 * the page on some queue. So the page must be clean for 519 * migration. Writeout may mean we loose the lock and the 520 * page state is no longer what we checked for earlier. 521 * At this point we know that the migration attempt cannot 522 * be successful. 523 */ 524 remove_migration_ptes(page, page); 525 526 rc = mapping->a_ops->writepage(page, &wbc); 527 528 if (rc != AOP_WRITEPAGE_ACTIVATE) 529 /* unlocked. Relock */ 530 lock_page(page); 531 532 return (rc < 0) ? -EIO : -EAGAIN; 533 } 534 535 /* 536 * Default handling if a filesystem does not provide a migration function. 537 */ 538 static int fallback_migrate_page(struct address_space *mapping, 539 struct page *newpage, struct page *page) 540 { 541 if (PageDirty(page)) 542 return writeout(mapping, page); 543 544 /* 545 * Buffers may be managed in a filesystem specific way. 546 * We must have no buffers or drop them. 547 */ 548 if (page_has_private(page) && 549 !try_to_release_page(page, GFP_KERNEL)) 550 return -EAGAIN; 551 552 return migrate_page(mapping, newpage, page); 553 } 554 555 /* 556 * Move a page to a newly allocated page 557 * The page is locked and all ptes have been successfully removed. 558 * 559 * The new page will have replaced the old page if this function 560 * is successful. 561 * 562 * Return value: 563 * < 0 - error code 564 * == 0 - success 565 */ 566 static int move_to_new_page(struct page *newpage, struct page *page, 567 int remap_swapcache, bool sync) 568 { 569 struct address_space *mapping; 570 int rc; 571 572 /* 573 * Block others from accessing the page when we get around to 574 * establishing additional references. We are the only one 575 * holding a reference to the new page at this point. 576 */ 577 if (!trylock_page(newpage)) 578 BUG(); 579 580 /* Prepare mapping for the new page.*/ 581 newpage->index = page->index; 582 newpage->mapping = page->mapping; 583 if (PageSwapBacked(page)) 584 SetPageSwapBacked(newpage); 585 586 mapping = page_mapping(page); 587 if (!mapping) 588 rc = migrate_page(mapping, newpage, page); 589 else { 590 /* 591 * Do not writeback pages if !sync and migratepage is 592 * not pointing to migrate_page() which is nonblocking 593 * (swapcache/tmpfs uses migratepage = migrate_page). 594 */ 595 if (PageDirty(page) && !sync && 596 mapping->a_ops->migratepage != migrate_page) 597 rc = -EBUSY; 598 else if (mapping->a_ops->migratepage) 599 /* 600 * Most pages have a mapping and most filesystems 601 * should provide a migration function. Anonymous 602 * pages are part of swap space which also has its 603 * own migration function. This is the most common 604 * path for page migration. 605 */ 606 rc = mapping->a_ops->migratepage(mapping, 607 newpage, page); 608 else 609 rc = fallback_migrate_page(mapping, newpage, page); 610 } 611 612 if (rc) { 613 newpage->mapping = NULL; 614 } else { 615 if (remap_swapcache) 616 remove_migration_ptes(page, newpage); 617 } 618 619 unlock_page(newpage); 620 621 return rc; 622 } 623 624 static int __unmap_and_move(struct page *page, struct page *newpage, 625 int force, bool offlining, bool sync) 626 { 627 int rc = -EAGAIN; 628 int remap_swapcache = 1; 629 int charge = 0; 630 struct mem_cgroup *mem; 631 struct anon_vma *anon_vma = NULL; 632 633 if (!trylock_page(page)) { 634 if (!force || !sync) 635 goto out; 636 637 /* 638 * It's not safe for direct compaction to call lock_page. 639 * For example, during page readahead pages are added locked 640 * to the LRU. Later, when the IO completes the pages are 641 * marked uptodate and unlocked. However, the queueing 642 * could be merging multiple pages for one bio (e.g. 643 * mpage_readpages). If an allocation happens for the 644 * second or third page, the process can end up locking 645 * the same page twice and deadlocking. Rather than 646 * trying to be clever about what pages can be locked, 647 * avoid the use of lock_page for direct compaction 648 * altogether. 649 */ 650 if (current->flags & PF_MEMALLOC) 651 goto out; 652 653 lock_page(page); 654 } 655 656 /* 657 * Only memory hotplug's offline_pages() caller has locked out KSM, 658 * and can safely migrate a KSM page. The other cases have skipped 659 * PageKsm along with PageReserved - but it is only now when we have 660 * the page lock that we can be certain it will not go KSM beneath us 661 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees 662 * its pagecount raised, but only here do we take the page lock which 663 * serializes that). 664 */ 665 if (PageKsm(page) && !offlining) { 666 rc = -EBUSY; 667 goto unlock; 668 } 669 670 /* charge against new page */ 671 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL); 672 if (charge == -ENOMEM) { 673 rc = -ENOMEM; 674 goto unlock; 675 } 676 BUG_ON(charge); 677 678 if (PageWriteback(page)) { 679 /* 680 * For !sync, there is no point retrying as the retry loop 681 * is expected to be too short for PageWriteback to be cleared 682 */ 683 if (!sync) { 684 rc = -EBUSY; 685 goto uncharge; 686 } 687 if (!force) 688 goto uncharge; 689 wait_on_page_writeback(page); 690 } 691 /* 692 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 693 * we cannot notice that anon_vma is freed while we migrates a page. 694 * This get_anon_vma() delays freeing anon_vma pointer until the end 695 * of migration. File cache pages are no problem because of page_lock() 696 * File Caches may use write_page() or lock_page() in migration, then, 697 * just care Anon page here. 698 */ 699 if (PageAnon(page)) { 700 /* 701 * Only page_lock_anon_vma() understands the subtleties of 702 * getting a hold on an anon_vma from outside one of its mms. 703 */ 704 anon_vma = page_get_anon_vma(page); 705 if (anon_vma) { 706 /* 707 * Anon page 708 */ 709 } else if (PageSwapCache(page)) { 710 /* 711 * We cannot be sure that the anon_vma of an unmapped 712 * swapcache page is safe to use because we don't 713 * know in advance if the VMA that this page belonged 714 * to still exists. If the VMA and others sharing the 715 * data have been freed, then the anon_vma could 716 * already be invalid. 717 * 718 * To avoid this possibility, swapcache pages get 719 * migrated but are not remapped when migration 720 * completes 721 */ 722 remap_swapcache = 0; 723 } else { 724 goto uncharge; 725 } 726 } 727 728 /* 729 * Corner case handling: 730 * 1. When a new swap-cache page is read into, it is added to the LRU 731 * and treated as swapcache but it has no rmap yet. 732 * Calling try_to_unmap() against a page->mapping==NULL page will 733 * trigger a BUG. So handle it here. 734 * 2. An orphaned page (see truncate_complete_page) might have 735 * fs-private metadata. The page can be picked up due to memory 736 * offlining. Everywhere else except page reclaim, the page is 737 * invisible to the vm, so the page can not be migrated. So try to 738 * free the metadata, so the page can be freed. 739 */ 740 if (!page->mapping) { 741 VM_BUG_ON(PageAnon(page)); 742 if (page_has_private(page)) { 743 try_to_free_buffers(page); 744 goto uncharge; 745 } 746 goto skip_unmap; 747 } 748 749 /* Establish migration ptes or remove ptes */ 750 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 751 752 skip_unmap: 753 if (!page_mapped(page)) 754 rc = move_to_new_page(newpage, page, remap_swapcache, sync); 755 756 if (rc && remap_swapcache) 757 remove_migration_ptes(page, page); 758 759 /* Drop an anon_vma reference if we took one */ 760 if (anon_vma) 761 put_anon_vma(anon_vma); 762 763 uncharge: 764 if (!charge) 765 mem_cgroup_end_migration(mem, page, newpage, rc == 0); 766 unlock: 767 unlock_page(page); 768 out: 769 return rc; 770 } 771 772 /* 773 * Obtain the lock on page, remove all ptes and migrate the page 774 * to the newly allocated page in newpage. 775 */ 776 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 777 struct page *page, int force, bool offlining, bool sync) 778 { 779 int rc = 0; 780 int *result = NULL; 781 struct page *newpage = get_new_page(page, private, &result); 782 783 if (!newpage) 784 return -ENOMEM; 785 786 if (page_count(page) == 1) { 787 /* page was freed from under us. So we are done. */ 788 goto out; 789 } 790 791 if (unlikely(PageTransHuge(page))) 792 if (unlikely(split_huge_page(page))) 793 goto out; 794 795 rc = __unmap_and_move(page, newpage, force, offlining, sync); 796 out: 797 if (rc != -EAGAIN) { 798 /* 799 * A page that has been migrated has all references 800 * removed and will be freed. A page that has not been 801 * migrated will have kepts its references and be 802 * restored. 803 */ 804 list_del(&page->lru); 805 dec_zone_page_state(page, NR_ISOLATED_ANON + 806 page_is_file_cache(page)); 807 putback_lru_page(page); 808 } 809 /* 810 * Move the new page to the LRU. If migration was not successful 811 * then this will free the page. 812 */ 813 putback_lru_page(newpage); 814 if (result) { 815 if (rc) 816 *result = rc; 817 else 818 *result = page_to_nid(newpage); 819 } 820 return rc; 821 } 822 823 /* 824 * Counterpart of unmap_and_move_page() for hugepage migration. 825 * 826 * This function doesn't wait the completion of hugepage I/O 827 * because there is no race between I/O and migration for hugepage. 828 * Note that currently hugepage I/O occurs only in direct I/O 829 * where no lock is held and PG_writeback is irrelevant, 830 * and writeback status of all subpages are counted in the reference 831 * count of the head page (i.e. if all subpages of a 2MB hugepage are 832 * under direct I/O, the reference of the head page is 512 and a bit more.) 833 * This means that when we try to migrate hugepage whose subpages are 834 * doing direct I/O, some references remain after try_to_unmap() and 835 * hugepage migration fails without data corruption. 836 * 837 * There is also no race when direct I/O is issued on the page under migration, 838 * because then pte is replaced with migration swap entry and direct I/O code 839 * will wait in the page fault for migration to complete. 840 */ 841 static int unmap_and_move_huge_page(new_page_t get_new_page, 842 unsigned long private, struct page *hpage, 843 int force, bool offlining, bool sync) 844 { 845 int rc = 0; 846 int *result = NULL; 847 struct page *new_hpage = get_new_page(hpage, private, &result); 848 struct anon_vma *anon_vma = NULL; 849 850 if (!new_hpage) 851 return -ENOMEM; 852 853 rc = -EAGAIN; 854 855 if (!trylock_page(hpage)) { 856 if (!force || !sync) 857 goto out; 858 lock_page(hpage); 859 } 860 861 if (PageAnon(hpage)) 862 anon_vma = page_get_anon_vma(hpage); 863 864 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 865 866 if (!page_mapped(hpage)) 867 rc = move_to_new_page(new_hpage, hpage, 1, sync); 868 869 if (rc) 870 remove_migration_ptes(hpage, hpage); 871 872 if (anon_vma) 873 put_anon_vma(anon_vma); 874 out: 875 unlock_page(hpage); 876 877 if (rc != -EAGAIN) { 878 list_del(&hpage->lru); 879 put_page(hpage); 880 } 881 882 put_page(new_hpage); 883 884 if (result) { 885 if (rc) 886 *result = rc; 887 else 888 *result = page_to_nid(new_hpage); 889 } 890 return rc; 891 } 892 893 /* 894 * migrate_pages 895 * 896 * The function takes one list of pages to migrate and a function 897 * that determines from the page to be migrated and the private data 898 * the target of the move and allocates the page. 899 * 900 * The function returns after 10 attempts or if no pages 901 * are movable anymore because to has become empty 902 * or no retryable pages exist anymore. 903 * Caller should call putback_lru_pages to return pages to the LRU 904 * or free list only if ret != 0. 905 * 906 * Return: Number of pages not migrated or error code. 907 */ 908 int migrate_pages(struct list_head *from, 909 new_page_t get_new_page, unsigned long private, bool offlining, 910 bool sync) 911 { 912 int retry = 1; 913 int nr_failed = 0; 914 int pass = 0; 915 struct page *page; 916 struct page *page2; 917 int swapwrite = current->flags & PF_SWAPWRITE; 918 int rc; 919 920 if (!swapwrite) 921 current->flags |= PF_SWAPWRITE; 922 923 for(pass = 0; pass < 10 && retry; pass++) { 924 retry = 0; 925 926 list_for_each_entry_safe(page, page2, from, lru) { 927 cond_resched(); 928 929 rc = unmap_and_move(get_new_page, private, 930 page, pass > 2, offlining, 931 sync); 932 933 switch(rc) { 934 case -ENOMEM: 935 goto out; 936 case -EAGAIN: 937 retry++; 938 break; 939 case 0: 940 break; 941 default: 942 /* Permanent failure */ 943 nr_failed++; 944 break; 945 } 946 } 947 } 948 rc = 0; 949 out: 950 if (!swapwrite) 951 current->flags &= ~PF_SWAPWRITE; 952 953 if (rc) 954 return rc; 955 956 return nr_failed + retry; 957 } 958 959 int migrate_huge_pages(struct list_head *from, 960 new_page_t get_new_page, unsigned long private, bool offlining, 961 bool sync) 962 { 963 int retry = 1; 964 int nr_failed = 0; 965 int pass = 0; 966 struct page *page; 967 struct page *page2; 968 int rc; 969 970 for (pass = 0; pass < 10 && retry; pass++) { 971 retry = 0; 972 973 list_for_each_entry_safe(page, page2, from, lru) { 974 cond_resched(); 975 976 rc = unmap_and_move_huge_page(get_new_page, 977 private, page, pass > 2, offlining, 978 sync); 979 980 switch(rc) { 981 case -ENOMEM: 982 goto out; 983 case -EAGAIN: 984 retry++; 985 break; 986 case 0: 987 break; 988 default: 989 /* Permanent failure */ 990 nr_failed++; 991 break; 992 } 993 } 994 } 995 rc = 0; 996 out: 997 if (rc) 998 return rc; 999 1000 return nr_failed + retry; 1001 } 1002 1003 #ifdef CONFIG_NUMA 1004 /* 1005 * Move a list of individual pages 1006 */ 1007 struct page_to_node { 1008 unsigned long addr; 1009 struct page *page; 1010 int node; 1011 int status; 1012 }; 1013 1014 static struct page *new_page_node(struct page *p, unsigned long private, 1015 int **result) 1016 { 1017 struct page_to_node *pm = (struct page_to_node *)private; 1018 1019 while (pm->node != MAX_NUMNODES && pm->page != p) 1020 pm++; 1021 1022 if (pm->node == MAX_NUMNODES) 1023 return NULL; 1024 1025 *result = &pm->status; 1026 1027 return alloc_pages_exact_node(pm->node, 1028 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 1029 } 1030 1031 /* 1032 * Move a set of pages as indicated in the pm array. The addr 1033 * field must be set to the virtual address of the page to be moved 1034 * and the node number must contain a valid target node. 1035 * The pm array ends with node = MAX_NUMNODES. 1036 */ 1037 static int do_move_page_to_node_array(struct mm_struct *mm, 1038 struct page_to_node *pm, 1039 int migrate_all) 1040 { 1041 int err; 1042 struct page_to_node *pp; 1043 LIST_HEAD(pagelist); 1044 1045 down_read(&mm->mmap_sem); 1046 1047 /* 1048 * Build a list of pages to migrate 1049 */ 1050 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1051 struct vm_area_struct *vma; 1052 struct page *page; 1053 1054 err = -EFAULT; 1055 vma = find_vma(mm, pp->addr); 1056 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1057 goto set_status; 1058 1059 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1060 1061 err = PTR_ERR(page); 1062 if (IS_ERR(page)) 1063 goto set_status; 1064 1065 err = -ENOENT; 1066 if (!page) 1067 goto set_status; 1068 1069 /* Use PageReserved to check for zero page */ 1070 if (PageReserved(page) || PageKsm(page)) 1071 goto put_and_set; 1072 1073 pp->page = page; 1074 err = page_to_nid(page); 1075 1076 if (err == pp->node) 1077 /* 1078 * Node already in the right place 1079 */ 1080 goto put_and_set; 1081 1082 err = -EACCES; 1083 if (page_mapcount(page) > 1 && 1084 !migrate_all) 1085 goto put_and_set; 1086 1087 err = isolate_lru_page(page); 1088 if (!err) { 1089 list_add_tail(&page->lru, &pagelist); 1090 inc_zone_page_state(page, NR_ISOLATED_ANON + 1091 page_is_file_cache(page)); 1092 } 1093 put_and_set: 1094 /* 1095 * Either remove the duplicate refcount from 1096 * isolate_lru_page() or drop the page ref if it was 1097 * not isolated. 1098 */ 1099 put_page(page); 1100 set_status: 1101 pp->status = err; 1102 } 1103 1104 err = 0; 1105 if (!list_empty(&pagelist)) { 1106 err = migrate_pages(&pagelist, new_page_node, 1107 (unsigned long)pm, 0, true); 1108 if (err) 1109 putback_lru_pages(&pagelist); 1110 } 1111 1112 up_read(&mm->mmap_sem); 1113 return err; 1114 } 1115 1116 /* 1117 * Migrate an array of page address onto an array of nodes and fill 1118 * the corresponding array of status. 1119 */ 1120 static int do_pages_move(struct mm_struct *mm, struct task_struct *task, 1121 unsigned long nr_pages, 1122 const void __user * __user *pages, 1123 const int __user *nodes, 1124 int __user *status, int flags) 1125 { 1126 struct page_to_node *pm; 1127 nodemask_t task_nodes; 1128 unsigned long chunk_nr_pages; 1129 unsigned long chunk_start; 1130 int err; 1131 1132 task_nodes = cpuset_mems_allowed(task); 1133 1134 err = -ENOMEM; 1135 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1136 if (!pm) 1137 goto out; 1138 1139 migrate_prep(); 1140 1141 /* 1142 * Store a chunk of page_to_node array in a page, 1143 * but keep the last one as a marker 1144 */ 1145 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1146 1147 for (chunk_start = 0; 1148 chunk_start < nr_pages; 1149 chunk_start += chunk_nr_pages) { 1150 int j; 1151 1152 if (chunk_start + chunk_nr_pages > nr_pages) 1153 chunk_nr_pages = nr_pages - chunk_start; 1154 1155 /* fill the chunk pm with addrs and nodes from user-space */ 1156 for (j = 0; j < chunk_nr_pages; j++) { 1157 const void __user *p; 1158 int node; 1159 1160 err = -EFAULT; 1161 if (get_user(p, pages + j + chunk_start)) 1162 goto out_pm; 1163 pm[j].addr = (unsigned long) p; 1164 1165 if (get_user(node, nodes + j + chunk_start)) 1166 goto out_pm; 1167 1168 err = -ENODEV; 1169 if (node < 0 || node >= MAX_NUMNODES) 1170 goto out_pm; 1171 1172 if (!node_state(node, N_HIGH_MEMORY)) 1173 goto out_pm; 1174 1175 err = -EACCES; 1176 if (!node_isset(node, task_nodes)) 1177 goto out_pm; 1178 1179 pm[j].node = node; 1180 } 1181 1182 /* End marker for this chunk */ 1183 pm[chunk_nr_pages].node = MAX_NUMNODES; 1184 1185 /* Migrate this chunk */ 1186 err = do_move_page_to_node_array(mm, pm, 1187 flags & MPOL_MF_MOVE_ALL); 1188 if (err < 0) 1189 goto out_pm; 1190 1191 /* Return status information */ 1192 for (j = 0; j < chunk_nr_pages; j++) 1193 if (put_user(pm[j].status, status + j + chunk_start)) { 1194 err = -EFAULT; 1195 goto out_pm; 1196 } 1197 } 1198 err = 0; 1199 1200 out_pm: 1201 free_page((unsigned long)pm); 1202 out: 1203 return err; 1204 } 1205 1206 /* 1207 * Determine the nodes of an array of pages and store it in an array of status. 1208 */ 1209 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1210 const void __user **pages, int *status) 1211 { 1212 unsigned long i; 1213 1214 down_read(&mm->mmap_sem); 1215 1216 for (i = 0; i < nr_pages; i++) { 1217 unsigned long addr = (unsigned long)(*pages); 1218 struct vm_area_struct *vma; 1219 struct page *page; 1220 int err = -EFAULT; 1221 1222 vma = find_vma(mm, addr); 1223 if (!vma || addr < vma->vm_start) 1224 goto set_status; 1225 1226 page = follow_page(vma, addr, 0); 1227 1228 err = PTR_ERR(page); 1229 if (IS_ERR(page)) 1230 goto set_status; 1231 1232 err = -ENOENT; 1233 /* Use PageReserved to check for zero page */ 1234 if (!page || PageReserved(page) || PageKsm(page)) 1235 goto set_status; 1236 1237 err = page_to_nid(page); 1238 set_status: 1239 *status = err; 1240 1241 pages++; 1242 status++; 1243 } 1244 1245 up_read(&mm->mmap_sem); 1246 } 1247 1248 /* 1249 * Determine the nodes of a user array of pages and store it in 1250 * a user array of status. 1251 */ 1252 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1253 const void __user * __user *pages, 1254 int __user *status) 1255 { 1256 #define DO_PAGES_STAT_CHUNK_NR 16 1257 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1258 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1259 1260 while (nr_pages) { 1261 unsigned long chunk_nr; 1262 1263 chunk_nr = nr_pages; 1264 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1265 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1266 1267 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1268 break; 1269 1270 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1271 1272 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1273 break; 1274 1275 pages += chunk_nr; 1276 status += chunk_nr; 1277 nr_pages -= chunk_nr; 1278 } 1279 return nr_pages ? -EFAULT : 0; 1280 } 1281 1282 /* 1283 * Move a list of pages in the address space of the currently executing 1284 * process. 1285 */ 1286 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1287 const void __user * __user *, pages, 1288 const int __user *, nodes, 1289 int __user *, status, int, flags) 1290 { 1291 const struct cred *cred = current_cred(), *tcred; 1292 struct task_struct *task; 1293 struct mm_struct *mm; 1294 int err; 1295 1296 /* Check flags */ 1297 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1298 return -EINVAL; 1299 1300 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1301 return -EPERM; 1302 1303 /* Find the mm_struct */ 1304 rcu_read_lock(); 1305 task = pid ? find_task_by_vpid(pid) : current; 1306 if (!task) { 1307 rcu_read_unlock(); 1308 return -ESRCH; 1309 } 1310 mm = get_task_mm(task); 1311 rcu_read_unlock(); 1312 1313 if (!mm) 1314 return -EINVAL; 1315 1316 /* 1317 * Check if this process has the right to modify the specified 1318 * process. The right exists if the process has administrative 1319 * capabilities, superuser privileges or the same 1320 * userid as the target process. 1321 */ 1322 rcu_read_lock(); 1323 tcred = __task_cred(task); 1324 if (cred->euid != tcred->suid && cred->euid != tcred->uid && 1325 cred->uid != tcred->suid && cred->uid != tcred->uid && 1326 !capable(CAP_SYS_NICE)) { 1327 rcu_read_unlock(); 1328 err = -EPERM; 1329 goto out; 1330 } 1331 rcu_read_unlock(); 1332 1333 err = security_task_movememory(task); 1334 if (err) 1335 goto out; 1336 1337 if (nodes) { 1338 err = do_pages_move(mm, task, nr_pages, pages, nodes, status, 1339 flags); 1340 } else { 1341 err = do_pages_stat(mm, nr_pages, pages, status); 1342 } 1343 1344 out: 1345 mmput(mm); 1346 return err; 1347 } 1348 1349 /* 1350 * Call migration functions in the vma_ops that may prepare 1351 * memory in a vm for migration. migration functions may perform 1352 * the migration for vmas that do not have an underlying page struct. 1353 */ 1354 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1355 const nodemask_t *from, unsigned long flags) 1356 { 1357 struct vm_area_struct *vma; 1358 int err = 0; 1359 1360 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1361 if (vma->vm_ops && vma->vm_ops->migrate) { 1362 err = vma->vm_ops->migrate(vma, to, from, flags); 1363 if (err) 1364 break; 1365 } 1366 } 1367 return err; 1368 } 1369 #endif 1370