xref: /openbmc/linux/mm/migrate.c (revision 615c36f5)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43 
44 /*
45  * migrate_prep() needs to be called before we start compiling a list of pages
46  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47  * undesirable, use migrate_prep_local()
48  */
49 int migrate_prep(void)
50 {
51 	/*
52 	 * Clear the LRU lists so pages can be isolated.
53 	 * Note that pages may be moved off the LRU after we have
54 	 * drained them. Those pages will fail to migrate like other
55 	 * pages that may be busy.
56 	 */
57 	lru_add_drain_all();
58 
59 	return 0;
60 }
61 
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
64 {
65 	lru_add_drain();
66 
67 	return 0;
68 }
69 
70 /*
71  * Add isolated pages on the list back to the LRU under page lock
72  * to avoid leaking evictable pages back onto unevictable list.
73  */
74 void putback_lru_pages(struct list_head *l)
75 {
76 	struct page *page;
77 	struct page *page2;
78 
79 	list_for_each_entry_safe(page, page2, l, lru) {
80 		list_del(&page->lru);
81 		dec_zone_page_state(page, NR_ISOLATED_ANON +
82 				page_is_file_cache(page));
83 		putback_lru_page(page);
84 	}
85 }
86 
87 /*
88  * Restore a potential migration pte to a working pte entry
89  */
90 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 				 unsigned long addr, void *old)
92 {
93 	struct mm_struct *mm = vma->vm_mm;
94 	swp_entry_t entry;
95  	pgd_t *pgd;
96  	pud_t *pud;
97  	pmd_t *pmd;
98 	pte_t *ptep, pte;
99  	spinlock_t *ptl;
100 
101 	if (unlikely(PageHuge(new))) {
102 		ptep = huge_pte_offset(mm, addr);
103 		if (!ptep)
104 			goto out;
105 		ptl = &mm->page_table_lock;
106 	} else {
107 		pgd = pgd_offset(mm, addr);
108 		if (!pgd_present(*pgd))
109 			goto out;
110 
111 		pud = pud_offset(pgd, addr);
112 		if (!pud_present(*pud))
113 			goto out;
114 
115 		pmd = pmd_offset(pud, addr);
116 		if (pmd_trans_huge(*pmd))
117 			goto out;
118 		if (!pmd_present(*pmd))
119 			goto out;
120 
121 		ptep = pte_offset_map(pmd, addr);
122 
123 		/*
124 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
125 		 * can race mremap's move_ptes(), which skips anon_vma lock.
126 		 */
127 
128 		ptl = pte_lockptr(mm, pmd);
129 	}
130 
131  	spin_lock(ptl);
132 	pte = *ptep;
133 	if (!is_swap_pte(pte))
134 		goto unlock;
135 
136 	entry = pte_to_swp_entry(pte);
137 
138 	if (!is_migration_entry(entry) ||
139 	    migration_entry_to_page(entry) != old)
140 		goto unlock;
141 
142 	get_page(new);
143 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144 	if (is_write_migration_entry(entry))
145 		pte = pte_mkwrite(pte);
146 #ifdef CONFIG_HUGETLB_PAGE
147 	if (PageHuge(new))
148 		pte = pte_mkhuge(pte);
149 #endif
150 	flush_cache_page(vma, addr, pte_pfn(pte));
151 	set_pte_at(mm, addr, ptep, pte);
152 
153 	if (PageHuge(new)) {
154 		if (PageAnon(new))
155 			hugepage_add_anon_rmap(new, vma, addr);
156 		else
157 			page_dup_rmap(new);
158 	} else if (PageAnon(new))
159 		page_add_anon_rmap(new, vma, addr);
160 	else
161 		page_add_file_rmap(new);
162 
163 	/* No need to invalidate - it was non-present before */
164 	update_mmu_cache(vma, addr, ptep);
165 unlock:
166 	pte_unmap_unlock(ptep, ptl);
167 out:
168 	return SWAP_AGAIN;
169 }
170 
171 /*
172  * Get rid of all migration entries and replace them by
173  * references to the indicated page.
174  */
175 static void remove_migration_ptes(struct page *old, struct page *new)
176 {
177 	rmap_walk(new, remove_migration_pte, old);
178 }
179 
180 /*
181  * Something used the pte of a page under migration. We need to
182  * get to the page and wait until migration is finished.
183  * When we return from this function the fault will be retried.
184  *
185  * This function is called from do_swap_page().
186  */
187 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188 				unsigned long address)
189 {
190 	pte_t *ptep, pte;
191 	spinlock_t *ptl;
192 	swp_entry_t entry;
193 	struct page *page;
194 
195 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196 	pte = *ptep;
197 	if (!is_swap_pte(pte))
198 		goto out;
199 
200 	entry = pte_to_swp_entry(pte);
201 	if (!is_migration_entry(entry))
202 		goto out;
203 
204 	page = migration_entry_to_page(entry);
205 
206 	/*
207 	 * Once radix-tree replacement of page migration started, page_count
208 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
209 	 * against a page without get_page().
210 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
211 	 * will occur again.
212 	 */
213 	if (!get_page_unless_zero(page))
214 		goto out;
215 	pte_unmap_unlock(ptep, ptl);
216 	wait_on_page_locked(page);
217 	put_page(page);
218 	return;
219 out:
220 	pte_unmap_unlock(ptep, ptl);
221 }
222 
223 /*
224  * Replace the page in the mapping.
225  *
226  * The number of remaining references must be:
227  * 1 for anonymous pages without a mapping
228  * 2 for pages with a mapping
229  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
230  */
231 static int migrate_page_move_mapping(struct address_space *mapping,
232 		struct page *newpage, struct page *page)
233 {
234 	int expected_count;
235 	void **pslot;
236 
237 	if (!mapping) {
238 		/* Anonymous page without mapping */
239 		if (page_count(page) != 1)
240 			return -EAGAIN;
241 		return 0;
242 	}
243 
244 	spin_lock_irq(&mapping->tree_lock);
245 
246 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
247  					page_index(page));
248 
249 	expected_count = 2 + page_has_private(page);
250 	if (page_count(page) != expected_count ||
251 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
252 		spin_unlock_irq(&mapping->tree_lock);
253 		return -EAGAIN;
254 	}
255 
256 	if (!page_freeze_refs(page, expected_count)) {
257 		spin_unlock_irq(&mapping->tree_lock);
258 		return -EAGAIN;
259 	}
260 
261 	/*
262 	 * Now we know that no one else is looking at the page.
263 	 */
264 	get_page(newpage);	/* add cache reference */
265 	if (PageSwapCache(page)) {
266 		SetPageSwapCache(newpage);
267 		set_page_private(newpage, page_private(page));
268 	}
269 
270 	radix_tree_replace_slot(pslot, newpage);
271 
272 	page_unfreeze_refs(page, expected_count);
273 	/*
274 	 * Drop cache reference from old page.
275 	 * We know this isn't the last reference.
276 	 */
277 	__put_page(page);
278 
279 	/*
280 	 * If moved to a different zone then also account
281 	 * the page for that zone. Other VM counters will be
282 	 * taken care of when we establish references to the
283 	 * new page and drop references to the old page.
284 	 *
285 	 * Note that anonymous pages are accounted for
286 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
287 	 * are mapped to swap space.
288 	 */
289 	__dec_zone_page_state(page, NR_FILE_PAGES);
290 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
291 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
292 		__dec_zone_page_state(page, NR_SHMEM);
293 		__inc_zone_page_state(newpage, NR_SHMEM);
294 	}
295 	spin_unlock_irq(&mapping->tree_lock);
296 
297 	return 0;
298 }
299 
300 /*
301  * The expected number of remaining references is the same as that
302  * of migrate_page_move_mapping().
303  */
304 int migrate_huge_page_move_mapping(struct address_space *mapping,
305 				   struct page *newpage, struct page *page)
306 {
307 	int expected_count;
308 	void **pslot;
309 
310 	if (!mapping) {
311 		if (page_count(page) != 1)
312 			return -EAGAIN;
313 		return 0;
314 	}
315 
316 	spin_lock_irq(&mapping->tree_lock);
317 
318 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
319 					page_index(page));
320 
321 	expected_count = 2 + page_has_private(page);
322 	if (page_count(page) != expected_count ||
323 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
324 		spin_unlock_irq(&mapping->tree_lock);
325 		return -EAGAIN;
326 	}
327 
328 	if (!page_freeze_refs(page, expected_count)) {
329 		spin_unlock_irq(&mapping->tree_lock);
330 		return -EAGAIN;
331 	}
332 
333 	get_page(newpage);
334 
335 	radix_tree_replace_slot(pslot, newpage);
336 
337 	page_unfreeze_refs(page, expected_count);
338 
339 	__put_page(page);
340 
341 	spin_unlock_irq(&mapping->tree_lock);
342 	return 0;
343 }
344 
345 /*
346  * Copy the page to its new location
347  */
348 void migrate_page_copy(struct page *newpage, struct page *page)
349 {
350 	if (PageHuge(page))
351 		copy_huge_page(newpage, page);
352 	else
353 		copy_highpage(newpage, page);
354 
355 	if (PageError(page))
356 		SetPageError(newpage);
357 	if (PageReferenced(page))
358 		SetPageReferenced(newpage);
359 	if (PageUptodate(page))
360 		SetPageUptodate(newpage);
361 	if (TestClearPageActive(page)) {
362 		VM_BUG_ON(PageUnevictable(page));
363 		SetPageActive(newpage);
364 	} else if (TestClearPageUnevictable(page))
365 		SetPageUnevictable(newpage);
366 	if (PageChecked(page))
367 		SetPageChecked(newpage);
368 	if (PageMappedToDisk(page))
369 		SetPageMappedToDisk(newpage);
370 
371 	if (PageDirty(page)) {
372 		clear_page_dirty_for_io(page);
373 		/*
374 		 * Want to mark the page and the radix tree as dirty, and
375 		 * redo the accounting that clear_page_dirty_for_io undid,
376 		 * but we can't use set_page_dirty because that function
377 		 * is actually a signal that all of the page has become dirty.
378 		 * Whereas only part of our page may be dirty.
379 		 */
380 		__set_page_dirty_nobuffers(newpage);
381  	}
382 
383 	mlock_migrate_page(newpage, page);
384 	ksm_migrate_page(newpage, page);
385 
386 	ClearPageSwapCache(page);
387 	ClearPagePrivate(page);
388 	set_page_private(page, 0);
389 	page->mapping = NULL;
390 
391 	/*
392 	 * If any waiters have accumulated on the new page then
393 	 * wake them up.
394 	 */
395 	if (PageWriteback(newpage))
396 		end_page_writeback(newpage);
397 }
398 
399 /************************************************************
400  *                    Migration functions
401  ***********************************************************/
402 
403 /* Always fail migration. Used for mappings that are not movable */
404 int fail_migrate_page(struct address_space *mapping,
405 			struct page *newpage, struct page *page)
406 {
407 	return -EIO;
408 }
409 EXPORT_SYMBOL(fail_migrate_page);
410 
411 /*
412  * Common logic to directly migrate a single page suitable for
413  * pages that do not use PagePrivate/PagePrivate2.
414  *
415  * Pages are locked upon entry and exit.
416  */
417 int migrate_page(struct address_space *mapping,
418 		struct page *newpage, struct page *page)
419 {
420 	int rc;
421 
422 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
423 
424 	rc = migrate_page_move_mapping(mapping, newpage, page);
425 
426 	if (rc)
427 		return rc;
428 
429 	migrate_page_copy(newpage, page);
430 	return 0;
431 }
432 EXPORT_SYMBOL(migrate_page);
433 
434 #ifdef CONFIG_BLOCK
435 /*
436  * Migration function for pages with buffers. This function can only be used
437  * if the underlying filesystem guarantees that no other references to "page"
438  * exist.
439  */
440 int buffer_migrate_page(struct address_space *mapping,
441 		struct page *newpage, struct page *page)
442 {
443 	struct buffer_head *bh, *head;
444 	int rc;
445 
446 	if (!page_has_buffers(page))
447 		return migrate_page(mapping, newpage, page);
448 
449 	head = page_buffers(page);
450 
451 	rc = migrate_page_move_mapping(mapping, newpage, page);
452 
453 	if (rc)
454 		return rc;
455 
456 	bh = head;
457 	do {
458 		get_bh(bh);
459 		lock_buffer(bh);
460 		bh = bh->b_this_page;
461 
462 	} while (bh != head);
463 
464 	ClearPagePrivate(page);
465 	set_page_private(newpage, page_private(page));
466 	set_page_private(page, 0);
467 	put_page(page);
468 	get_page(newpage);
469 
470 	bh = head;
471 	do {
472 		set_bh_page(bh, newpage, bh_offset(bh));
473 		bh = bh->b_this_page;
474 
475 	} while (bh != head);
476 
477 	SetPagePrivate(newpage);
478 
479 	migrate_page_copy(newpage, page);
480 
481 	bh = head;
482 	do {
483 		unlock_buffer(bh);
484  		put_bh(bh);
485 		bh = bh->b_this_page;
486 
487 	} while (bh != head);
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL(buffer_migrate_page);
492 #endif
493 
494 /*
495  * Writeback a page to clean the dirty state
496  */
497 static int writeout(struct address_space *mapping, struct page *page)
498 {
499 	struct writeback_control wbc = {
500 		.sync_mode = WB_SYNC_NONE,
501 		.nr_to_write = 1,
502 		.range_start = 0,
503 		.range_end = LLONG_MAX,
504 		.for_reclaim = 1
505 	};
506 	int rc;
507 
508 	if (!mapping->a_ops->writepage)
509 		/* No write method for the address space */
510 		return -EINVAL;
511 
512 	if (!clear_page_dirty_for_io(page))
513 		/* Someone else already triggered a write */
514 		return -EAGAIN;
515 
516 	/*
517 	 * A dirty page may imply that the underlying filesystem has
518 	 * the page on some queue. So the page must be clean for
519 	 * migration. Writeout may mean we loose the lock and the
520 	 * page state is no longer what we checked for earlier.
521 	 * At this point we know that the migration attempt cannot
522 	 * be successful.
523 	 */
524 	remove_migration_ptes(page, page);
525 
526 	rc = mapping->a_ops->writepage(page, &wbc);
527 
528 	if (rc != AOP_WRITEPAGE_ACTIVATE)
529 		/* unlocked. Relock */
530 		lock_page(page);
531 
532 	return (rc < 0) ? -EIO : -EAGAIN;
533 }
534 
535 /*
536  * Default handling if a filesystem does not provide a migration function.
537  */
538 static int fallback_migrate_page(struct address_space *mapping,
539 	struct page *newpage, struct page *page)
540 {
541 	if (PageDirty(page))
542 		return writeout(mapping, page);
543 
544 	/*
545 	 * Buffers may be managed in a filesystem specific way.
546 	 * We must have no buffers or drop them.
547 	 */
548 	if (page_has_private(page) &&
549 	    !try_to_release_page(page, GFP_KERNEL))
550 		return -EAGAIN;
551 
552 	return migrate_page(mapping, newpage, page);
553 }
554 
555 /*
556  * Move a page to a newly allocated page
557  * The page is locked and all ptes have been successfully removed.
558  *
559  * The new page will have replaced the old page if this function
560  * is successful.
561  *
562  * Return value:
563  *   < 0 - error code
564  *  == 0 - success
565  */
566 static int move_to_new_page(struct page *newpage, struct page *page,
567 					int remap_swapcache, bool sync)
568 {
569 	struct address_space *mapping;
570 	int rc;
571 
572 	/*
573 	 * Block others from accessing the page when we get around to
574 	 * establishing additional references. We are the only one
575 	 * holding a reference to the new page at this point.
576 	 */
577 	if (!trylock_page(newpage))
578 		BUG();
579 
580 	/* Prepare mapping for the new page.*/
581 	newpage->index = page->index;
582 	newpage->mapping = page->mapping;
583 	if (PageSwapBacked(page))
584 		SetPageSwapBacked(newpage);
585 
586 	mapping = page_mapping(page);
587 	if (!mapping)
588 		rc = migrate_page(mapping, newpage, page);
589 	else {
590 		/*
591 		 * Do not writeback pages if !sync and migratepage is
592 		 * not pointing to migrate_page() which is nonblocking
593 		 * (swapcache/tmpfs uses migratepage = migrate_page).
594 		 */
595 		if (PageDirty(page) && !sync &&
596 		    mapping->a_ops->migratepage != migrate_page)
597 			rc = -EBUSY;
598 		else if (mapping->a_ops->migratepage)
599 			/*
600 			 * Most pages have a mapping and most filesystems
601 			 * should provide a migration function. Anonymous
602 			 * pages are part of swap space which also has its
603 			 * own migration function. This is the most common
604 			 * path for page migration.
605 			 */
606 			rc = mapping->a_ops->migratepage(mapping,
607 							newpage, page);
608 		else
609 			rc = fallback_migrate_page(mapping, newpage, page);
610 	}
611 
612 	if (rc) {
613 		newpage->mapping = NULL;
614 	} else {
615 		if (remap_swapcache)
616 			remove_migration_ptes(page, newpage);
617 	}
618 
619 	unlock_page(newpage);
620 
621 	return rc;
622 }
623 
624 static int __unmap_and_move(struct page *page, struct page *newpage,
625 				int force, bool offlining, bool sync)
626 {
627 	int rc = -EAGAIN;
628 	int remap_swapcache = 1;
629 	int charge = 0;
630 	struct mem_cgroup *mem;
631 	struct anon_vma *anon_vma = NULL;
632 
633 	if (!trylock_page(page)) {
634 		if (!force || !sync)
635 			goto out;
636 
637 		/*
638 		 * It's not safe for direct compaction to call lock_page.
639 		 * For example, during page readahead pages are added locked
640 		 * to the LRU. Later, when the IO completes the pages are
641 		 * marked uptodate and unlocked. However, the queueing
642 		 * could be merging multiple pages for one bio (e.g.
643 		 * mpage_readpages). If an allocation happens for the
644 		 * second or third page, the process can end up locking
645 		 * the same page twice and deadlocking. Rather than
646 		 * trying to be clever about what pages can be locked,
647 		 * avoid the use of lock_page for direct compaction
648 		 * altogether.
649 		 */
650 		if (current->flags & PF_MEMALLOC)
651 			goto out;
652 
653 		lock_page(page);
654 	}
655 
656 	/*
657 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
658 	 * and can safely migrate a KSM page.  The other cases have skipped
659 	 * PageKsm along with PageReserved - but it is only now when we have
660 	 * the page lock that we can be certain it will not go KSM beneath us
661 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
662 	 * its pagecount raised, but only here do we take the page lock which
663 	 * serializes that).
664 	 */
665 	if (PageKsm(page) && !offlining) {
666 		rc = -EBUSY;
667 		goto unlock;
668 	}
669 
670 	/* charge against new page */
671 	charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
672 	if (charge == -ENOMEM) {
673 		rc = -ENOMEM;
674 		goto unlock;
675 	}
676 	BUG_ON(charge);
677 
678 	if (PageWriteback(page)) {
679 		/*
680 		 * For !sync, there is no point retrying as the retry loop
681 		 * is expected to be too short for PageWriteback to be cleared
682 		 */
683 		if (!sync) {
684 			rc = -EBUSY;
685 			goto uncharge;
686 		}
687 		if (!force)
688 			goto uncharge;
689 		wait_on_page_writeback(page);
690 	}
691 	/*
692 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
693 	 * we cannot notice that anon_vma is freed while we migrates a page.
694 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
695 	 * of migration. File cache pages are no problem because of page_lock()
696 	 * File Caches may use write_page() or lock_page() in migration, then,
697 	 * just care Anon page here.
698 	 */
699 	if (PageAnon(page)) {
700 		/*
701 		 * Only page_lock_anon_vma() understands the subtleties of
702 		 * getting a hold on an anon_vma from outside one of its mms.
703 		 */
704 		anon_vma = page_get_anon_vma(page);
705 		if (anon_vma) {
706 			/*
707 			 * Anon page
708 			 */
709 		} else if (PageSwapCache(page)) {
710 			/*
711 			 * We cannot be sure that the anon_vma of an unmapped
712 			 * swapcache page is safe to use because we don't
713 			 * know in advance if the VMA that this page belonged
714 			 * to still exists. If the VMA and others sharing the
715 			 * data have been freed, then the anon_vma could
716 			 * already be invalid.
717 			 *
718 			 * To avoid this possibility, swapcache pages get
719 			 * migrated but are not remapped when migration
720 			 * completes
721 			 */
722 			remap_swapcache = 0;
723 		} else {
724 			goto uncharge;
725 		}
726 	}
727 
728 	/*
729 	 * Corner case handling:
730 	 * 1. When a new swap-cache page is read into, it is added to the LRU
731 	 * and treated as swapcache but it has no rmap yet.
732 	 * Calling try_to_unmap() against a page->mapping==NULL page will
733 	 * trigger a BUG.  So handle it here.
734 	 * 2. An orphaned page (see truncate_complete_page) might have
735 	 * fs-private metadata. The page can be picked up due to memory
736 	 * offlining.  Everywhere else except page reclaim, the page is
737 	 * invisible to the vm, so the page can not be migrated.  So try to
738 	 * free the metadata, so the page can be freed.
739 	 */
740 	if (!page->mapping) {
741 		VM_BUG_ON(PageAnon(page));
742 		if (page_has_private(page)) {
743 			try_to_free_buffers(page);
744 			goto uncharge;
745 		}
746 		goto skip_unmap;
747 	}
748 
749 	/* Establish migration ptes or remove ptes */
750 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
751 
752 skip_unmap:
753 	if (!page_mapped(page))
754 		rc = move_to_new_page(newpage, page, remap_swapcache, sync);
755 
756 	if (rc && remap_swapcache)
757 		remove_migration_ptes(page, page);
758 
759 	/* Drop an anon_vma reference if we took one */
760 	if (anon_vma)
761 		put_anon_vma(anon_vma);
762 
763 uncharge:
764 	if (!charge)
765 		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
766 unlock:
767 	unlock_page(page);
768 out:
769 	return rc;
770 }
771 
772 /*
773  * Obtain the lock on page, remove all ptes and migrate the page
774  * to the newly allocated page in newpage.
775  */
776 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
777 			struct page *page, int force, bool offlining, bool sync)
778 {
779 	int rc = 0;
780 	int *result = NULL;
781 	struct page *newpage = get_new_page(page, private, &result);
782 
783 	if (!newpage)
784 		return -ENOMEM;
785 
786 	if (page_count(page) == 1) {
787 		/* page was freed from under us. So we are done. */
788 		goto out;
789 	}
790 
791 	if (unlikely(PageTransHuge(page)))
792 		if (unlikely(split_huge_page(page)))
793 			goto out;
794 
795 	rc = __unmap_and_move(page, newpage, force, offlining, sync);
796 out:
797 	if (rc != -EAGAIN) {
798 		/*
799 		 * A page that has been migrated has all references
800 		 * removed and will be freed. A page that has not been
801 		 * migrated will have kepts its references and be
802 		 * restored.
803 		 */
804 		list_del(&page->lru);
805 		dec_zone_page_state(page, NR_ISOLATED_ANON +
806 				page_is_file_cache(page));
807 		putback_lru_page(page);
808 	}
809 	/*
810 	 * Move the new page to the LRU. If migration was not successful
811 	 * then this will free the page.
812 	 */
813 	putback_lru_page(newpage);
814 	if (result) {
815 		if (rc)
816 			*result = rc;
817 		else
818 			*result = page_to_nid(newpage);
819 	}
820 	return rc;
821 }
822 
823 /*
824  * Counterpart of unmap_and_move_page() for hugepage migration.
825  *
826  * This function doesn't wait the completion of hugepage I/O
827  * because there is no race between I/O and migration for hugepage.
828  * Note that currently hugepage I/O occurs only in direct I/O
829  * where no lock is held and PG_writeback is irrelevant,
830  * and writeback status of all subpages are counted in the reference
831  * count of the head page (i.e. if all subpages of a 2MB hugepage are
832  * under direct I/O, the reference of the head page is 512 and a bit more.)
833  * This means that when we try to migrate hugepage whose subpages are
834  * doing direct I/O, some references remain after try_to_unmap() and
835  * hugepage migration fails without data corruption.
836  *
837  * There is also no race when direct I/O is issued on the page under migration,
838  * because then pte is replaced with migration swap entry and direct I/O code
839  * will wait in the page fault for migration to complete.
840  */
841 static int unmap_and_move_huge_page(new_page_t get_new_page,
842 				unsigned long private, struct page *hpage,
843 				int force, bool offlining, bool sync)
844 {
845 	int rc = 0;
846 	int *result = NULL;
847 	struct page *new_hpage = get_new_page(hpage, private, &result);
848 	struct anon_vma *anon_vma = NULL;
849 
850 	if (!new_hpage)
851 		return -ENOMEM;
852 
853 	rc = -EAGAIN;
854 
855 	if (!trylock_page(hpage)) {
856 		if (!force || !sync)
857 			goto out;
858 		lock_page(hpage);
859 	}
860 
861 	if (PageAnon(hpage))
862 		anon_vma = page_get_anon_vma(hpage);
863 
864 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
865 
866 	if (!page_mapped(hpage))
867 		rc = move_to_new_page(new_hpage, hpage, 1, sync);
868 
869 	if (rc)
870 		remove_migration_ptes(hpage, hpage);
871 
872 	if (anon_vma)
873 		put_anon_vma(anon_vma);
874 out:
875 	unlock_page(hpage);
876 
877 	if (rc != -EAGAIN) {
878 		list_del(&hpage->lru);
879 		put_page(hpage);
880 	}
881 
882 	put_page(new_hpage);
883 
884 	if (result) {
885 		if (rc)
886 			*result = rc;
887 		else
888 			*result = page_to_nid(new_hpage);
889 	}
890 	return rc;
891 }
892 
893 /*
894  * migrate_pages
895  *
896  * The function takes one list of pages to migrate and a function
897  * that determines from the page to be migrated and the private data
898  * the target of the move and allocates the page.
899  *
900  * The function returns after 10 attempts or if no pages
901  * are movable anymore because to has become empty
902  * or no retryable pages exist anymore.
903  * Caller should call putback_lru_pages to return pages to the LRU
904  * or free list only if ret != 0.
905  *
906  * Return: Number of pages not migrated or error code.
907  */
908 int migrate_pages(struct list_head *from,
909 		new_page_t get_new_page, unsigned long private, bool offlining,
910 		bool sync)
911 {
912 	int retry = 1;
913 	int nr_failed = 0;
914 	int pass = 0;
915 	struct page *page;
916 	struct page *page2;
917 	int swapwrite = current->flags & PF_SWAPWRITE;
918 	int rc;
919 
920 	if (!swapwrite)
921 		current->flags |= PF_SWAPWRITE;
922 
923 	for(pass = 0; pass < 10 && retry; pass++) {
924 		retry = 0;
925 
926 		list_for_each_entry_safe(page, page2, from, lru) {
927 			cond_resched();
928 
929 			rc = unmap_and_move(get_new_page, private,
930 						page, pass > 2, offlining,
931 						sync);
932 
933 			switch(rc) {
934 			case -ENOMEM:
935 				goto out;
936 			case -EAGAIN:
937 				retry++;
938 				break;
939 			case 0:
940 				break;
941 			default:
942 				/* Permanent failure */
943 				nr_failed++;
944 				break;
945 			}
946 		}
947 	}
948 	rc = 0;
949 out:
950 	if (!swapwrite)
951 		current->flags &= ~PF_SWAPWRITE;
952 
953 	if (rc)
954 		return rc;
955 
956 	return nr_failed + retry;
957 }
958 
959 int migrate_huge_pages(struct list_head *from,
960 		new_page_t get_new_page, unsigned long private, bool offlining,
961 		bool sync)
962 {
963 	int retry = 1;
964 	int nr_failed = 0;
965 	int pass = 0;
966 	struct page *page;
967 	struct page *page2;
968 	int rc;
969 
970 	for (pass = 0; pass < 10 && retry; pass++) {
971 		retry = 0;
972 
973 		list_for_each_entry_safe(page, page2, from, lru) {
974 			cond_resched();
975 
976 			rc = unmap_and_move_huge_page(get_new_page,
977 					private, page, pass > 2, offlining,
978 					sync);
979 
980 			switch(rc) {
981 			case -ENOMEM:
982 				goto out;
983 			case -EAGAIN:
984 				retry++;
985 				break;
986 			case 0:
987 				break;
988 			default:
989 				/* Permanent failure */
990 				nr_failed++;
991 				break;
992 			}
993 		}
994 	}
995 	rc = 0;
996 out:
997 	if (rc)
998 		return rc;
999 
1000 	return nr_failed + retry;
1001 }
1002 
1003 #ifdef CONFIG_NUMA
1004 /*
1005  * Move a list of individual pages
1006  */
1007 struct page_to_node {
1008 	unsigned long addr;
1009 	struct page *page;
1010 	int node;
1011 	int status;
1012 };
1013 
1014 static struct page *new_page_node(struct page *p, unsigned long private,
1015 		int **result)
1016 {
1017 	struct page_to_node *pm = (struct page_to_node *)private;
1018 
1019 	while (pm->node != MAX_NUMNODES && pm->page != p)
1020 		pm++;
1021 
1022 	if (pm->node == MAX_NUMNODES)
1023 		return NULL;
1024 
1025 	*result = &pm->status;
1026 
1027 	return alloc_pages_exact_node(pm->node,
1028 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1029 }
1030 
1031 /*
1032  * Move a set of pages as indicated in the pm array. The addr
1033  * field must be set to the virtual address of the page to be moved
1034  * and the node number must contain a valid target node.
1035  * The pm array ends with node = MAX_NUMNODES.
1036  */
1037 static int do_move_page_to_node_array(struct mm_struct *mm,
1038 				      struct page_to_node *pm,
1039 				      int migrate_all)
1040 {
1041 	int err;
1042 	struct page_to_node *pp;
1043 	LIST_HEAD(pagelist);
1044 
1045 	down_read(&mm->mmap_sem);
1046 
1047 	/*
1048 	 * Build a list of pages to migrate
1049 	 */
1050 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1051 		struct vm_area_struct *vma;
1052 		struct page *page;
1053 
1054 		err = -EFAULT;
1055 		vma = find_vma(mm, pp->addr);
1056 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1057 			goto set_status;
1058 
1059 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1060 
1061 		err = PTR_ERR(page);
1062 		if (IS_ERR(page))
1063 			goto set_status;
1064 
1065 		err = -ENOENT;
1066 		if (!page)
1067 			goto set_status;
1068 
1069 		/* Use PageReserved to check for zero page */
1070 		if (PageReserved(page) || PageKsm(page))
1071 			goto put_and_set;
1072 
1073 		pp->page = page;
1074 		err = page_to_nid(page);
1075 
1076 		if (err == pp->node)
1077 			/*
1078 			 * Node already in the right place
1079 			 */
1080 			goto put_and_set;
1081 
1082 		err = -EACCES;
1083 		if (page_mapcount(page) > 1 &&
1084 				!migrate_all)
1085 			goto put_and_set;
1086 
1087 		err = isolate_lru_page(page);
1088 		if (!err) {
1089 			list_add_tail(&page->lru, &pagelist);
1090 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1091 					    page_is_file_cache(page));
1092 		}
1093 put_and_set:
1094 		/*
1095 		 * Either remove the duplicate refcount from
1096 		 * isolate_lru_page() or drop the page ref if it was
1097 		 * not isolated.
1098 		 */
1099 		put_page(page);
1100 set_status:
1101 		pp->status = err;
1102 	}
1103 
1104 	err = 0;
1105 	if (!list_empty(&pagelist)) {
1106 		err = migrate_pages(&pagelist, new_page_node,
1107 				(unsigned long)pm, 0, true);
1108 		if (err)
1109 			putback_lru_pages(&pagelist);
1110 	}
1111 
1112 	up_read(&mm->mmap_sem);
1113 	return err;
1114 }
1115 
1116 /*
1117  * Migrate an array of page address onto an array of nodes and fill
1118  * the corresponding array of status.
1119  */
1120 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1121 			 unsigned long nr_pages,
1122 			 const void __user * __user *pages,
1123 			 const int __user *nodes,
1124 			 int __user *status, int flags)
1125 {
1126 	struct page_to_node *pm;
1127 	nodemask_t task_nodes;
1128 	unsigned long chunk_nr_pages;
1129 	unsigned long chunk_start;
1130 	int err;
1131 
1132 	task_nodes = cpuset_mems_allowed(task);
1133 
1134 	err = -ENOMEM;
1135 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1136 	if (!pm)
1137 		goto out;
1138 
1139 	migrate_prep();
1140 
1141 	/*
1142 	 * Store a chunk of page_to_node array in a page,
1143 	 * but keep the last one as a marker
1144 	 */
1145 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1146 
1147 	for (chunk_start = 0;
1148 	     chunk_start < nr_pages;
1149 	     chunk_start += chunk_nr_pages) {
1150 		int j;
1151 
1152 		if (chunk_start + chunk_nr_pages > nr_pages)
1153 			chunk_nr_pages = nr_pages - chunk_start;
1154 
1155 		/* fill the chunk pm with addrs and nodes from user-space */
1156 		for (j = 0; j < chunk_nr_pages; j++) {
1157 			const void __user *p;
1158 			int node;
1159 
1160 			err = -EFAULT;
1161 			if (get_user(p, pages + j + chunk_start))
1162 				goto out_pm;
1163 			pm[j].addr = (unsigned long) p;
1164 
1165 			if (get_user(node, nodes + j + chunk_start))
1166 				goto out_pm;
1167 
1168 			err = -ENODEV;
1169 			if (node < 0 || node >= MAX_NUMNODES)
1170 				goto out_pm;
1171 
1172 			if (!node_state(node, N_HIGH_MEMORY))
1173 				goto out_pm;
1174 
1175 			err = -EACCES;
1176 			if (!node_isset(node, task_nodes))
1177 				goto out_pm;
1178 
1179 			pm[j].node = node;
1180 		}
1181 
1182 		/* End marker for this chunk */
1183 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1184 
1185 		/* Migrate this chunk */
1186 		err = do_move_page_to_node_array(mm, pm,
1187 						 flags & MPOL_MF_MOVE_ALL);
1188 		if (err < 0)
1189 			goto out_pm;
1190 
1191 		/* Return status information */
1192 		for (j = 0; j < chunk_nr_pages; j++)
1193 			if (put_user(pm[j].status, status + j + chunk_start)) {
1194 				err = -EFAULT;
1195 				goto out_pm;
1196 			}
1197 	}
1198 	err = 0;
1199 
1200 out_pm:
1201 	free_page((unsigned long)pm);
1202 out:
1203 	return err;
1204 }
1205 
1206 /*
1207  * Determine the nodes of an array of pages and store it in an array of status.
1208  */
1209 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1210 				const void __user **pages, int *status)
1211 {
1212 	unsigned long i;
1213 
1214 	down_read(&mm->mmap_sem);
1215 
1216 	for (i = 0; i < nr_pages; i++) {
1217 		unsigned long addr = (unsigned long)(*pages);
1218 		struct vm_area_struct *vma;
1219 		struct page *page;
1220 		int err = -EFAULT;
1221 
1222 		vma = find_vma(mm, addr);
1223 		if (!vma || addr < vma->vm_start)
1224 			goto set_status;
1225 
1226 		page = follow_page(vma, addr, 0);
1227 
1228 		err = PTR_ERR(page);
1229 		if (IS_ERR(page))
1230 			goto set_status;
1231 
1232 		err = -ENOENT;
1233 		/* Use PageReserved to check for zero page */
1234 		if (!page || PageReserved(page) || PageKsm(page))
1235 			goto set_status;
1236 
1237 		err = page_to_nid(page);
1238 set_status:
1239 		*status = err;
1240 
1241 		pages++;
1242 		status++;
1243 	}
1244 
1245 	up_read(&mm->mmap_sem);
1246 }
1247 
1248 /*
1249  * Determine the nodes of a user array of pages and store it in
1250  * a user array of status.
1251  */
1252 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1253 			 const void __user * __user *pages,
1254 			 int __user *status)
1255 {
1256 #define DO_PAGES_STAT_CHUNK_NR 16
1257 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1258 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1259 
1260 	while (nr_pages) {
1261 		unsigned long chunk_nr;
1262 
1263 		chunk_nr = nr_pages;
1264 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1265 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1266 
1267 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1268 			break;
1269 
1270 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1271 
1272 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1273 			break;
1274 
1275 		pages += chunk_nr;
1276 		status += chunk_nr;
1277 		nr_pages -= chunk_nr;
1278 	}
1279 	return nr_pages ? -EFAULT : 0;
1280 }
1281 
1282 /*
1283  * Move a list of pages in the address space of the currently executing
1284  * process.
1285  */
1286 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1287 		const void __user * __user *, pages,
1288 		const int __user *, nodes,
1289 		int __user *, status, int, flags)
1290 {
1291 	const struct cred *cred = current_cred(), *tcred;
1292 	struct task_struct *task;
1293 	struct mm_struct *mm;
1294 	int err;
1295 
1296 	/* Check flags */
1297 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1298 		return -EINVAL;
1299 
1300 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1301 		return -EPERM;
1302 
1303 	/* Find the mm_struct */
1304 	rcu_read_lock();
1305 	task = pid ? find_task_by_vpid(pid) : current;
1306 	if (!task) {
1307 		rcu_read_unlock();
1308 		return -ESRCH;
1309 	}
1310 	mm = get_task_mm(task);
1311 	rcu_read_unlock();
1312 
1313 	if (!mm)
1314 		return -EINVAL;
1315 
1316 	/*
1317 	 * Check if this process has the right to modify the specified
1318 	 * process. The right exists if the process has administrative
1319 	 * capabilities, superuser privileges or the same
1320 	 * userid as the target process.
1321 	 */
1322 	rcu_read_lock();
1323 	tcred = __task_cred(task);
1324 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1325 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1326 	    !capable(CAP_SYS_NICE)) {
1327 		rcu_read_unlock();
1328 		err = -EPERM;
1329 		goto out;
1330 	}
1331 	rcu_read_unlock();
1332 
1333  	err = security_task_movememory(task);
1334  	if (err)
1335 		goto out;
1336 
1337 	if (nodes) {
1338 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1339 				    flags);
1340 	} else {
1341 		err = do_pages_stat(mm, nr_pages, pages, status);
1342 	}
1343 
1344 out:
1345 	mmput(mm);
1346 	return err;
1347 }
1348 
1349 /*
1350  * Call migration functions in the vma_ops that may prepare
1351  * memory in a vm for migration. migration functions may perform
1352  * the migration for vmas that do not have an underlying page struct.
1353  */
1354 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1355 	const nodemask_t *from, unsigned long flags)
1356 {
1357  	struct vm_area_struct *vma;
1358  	int err = 0;
1359 
1360 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1361  		if (vma->vm_ops && vma->vm_ops->migrate) {
1362  			err = vma->vm_ops->migrate(vma, to, from, flags);
1363  			if (err)
1364  				break;
1365  		}
1366  	}
1367  	return err;
1368 }
1369 #endif
1370