xref: /openbmc/linux/mm/migrate.c (revision 6128763f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -thp_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_device_private_page(new))) {
250 			entry = make_device_private_entry(new, pte_write(pte));
251 			pte = swp_entry_to_pte(entry);
252 			if (pte_swp_uffd_wp(*pvmw.pte))
253 				pte = pte_swp_mkuffd_wp(pte);
254 		}
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		if (PageTransHuge(page) && PageMlocked(page))
279 			clear_page_mlock(page);
280 
281 		/* No need to invalidate - it was non-present before */
282 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 	}
284 
285 	return true;
286 }
287 
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 	struct rmap_walk_control rwc = {
295 		.rmap_one = remove_migration_pte,
296 		.arg = old,
297 	};
298 
299 	if (locked)
300 		rmap_walk_locked(new, &rwc);
301 	else
302 		rmap_walk(new, &rwc);
303 }
304 
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 				spinlock_t *ptl)
312 {
313 	pte_t pte;
314 	swp_entry_t entry;
315 	struct page *page;
316 
317 	spin_lock(ptl);
318 	pte = *ptep;
319 	if (!is_swap_pte(pte))
320 		goto out;
321 
322 	entry = pte_to_swp_entry(pte);
323 	if (!is_migration_entry(entry))
324 		goto out;
325 
326 	page = migration_entry_to_page(entry);
327 
328 	/*
329 	 * Once page cache replacement of page migration started, page_count
330 	 * is zero; but we must not call put_and_wait_on_page_locked() without
331 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332 	 */
333 	if (!get_page_unless_zero(page))
334 		goto out;
335 	pte_unmap_unlock(ptep, ptl);
336 	put_and_wait_on_page_locked(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	put_and_wait_on_page_locked(page);
371 	return;
372 unlock:
373 	spin_unlock(ptl);
374 }
375 #endif
376 
377 static int expected_page_refs(struct address_space *mapping, struct page *page)
378 {
379 	int expected_count = 1;
380 
381 	/*
382 	 * Device public or private pages have an extra refcount as they are
383 	 * ZONE_DEVICE pages.
384 	 */
385 	expected_count += is_device_private_page(page);
386 	if (mapping)
387 		expected_count += thp_nr_pages(page) + page_has_private(page);
388 
389 	return expected_count;
390 }
391 
392 /*
393  * Replace the page in the mapping.
394  *
395  * The number of remaining references must be:
396  * 1 for anonymous pages without a mapping
397  * 2 for pages with a mapping
398  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
399  */
400 int migrate_page_move_mapping(struct address_space *mapping,
401 		struct page *newpage, struct page *page, int extra_count)
402 {
403 	XA_STATE(xas, &mapping->i_pages, page_index(page));
404 	struct zone *oldzone, *newzone;
405 	int dirty;
406 	int expected_count = expected_page_refs(mapping, page) + extra_count;
407 
408 	if (!mapping) {
409 		/* Anonymous page without mapping */
410 		if (page_count(page) != expected_count)
411 			return -EAGAIN;
412 
413 		/* No turning back from here */
414 		newpage->index = page->index;
415 		newpage->mapping = page->mapping;
416 		if (PageSwapBacked(page))
417 			__SetPageSwapBacked(newpage);
418 
419 		return MIGRATEPAGE_SUCCESS;
420 	}
421 
422 	oldzone = page_zone(page);
423 	newzone = page_zone(newpage);
424 
425 	xas_lock_irq(&xas);
426 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
427 		xas_unlock_irq(&xas);
428 		return -EAGAIN;
429 	}
430 
431 	if (!page_ref_freeze(page, expected_count)) {
432 		xas_unlock_irq(&xas);
433 		return -EAGAIN;
434 	}
435 
436 	/*
437 	 * Now we know that no one else is looking at the page:
438 	 * no turning back from here.
439 	 */
440 	newpage->index = page->index;
441 	newpage->mapping = page->mapping;
442 	page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
443 	if (PageSwapBacked(page)) {
444 		__SetPageSwapBacked(newpage);
445 		if (PageSwapCache(page)) {
446 			SetPageSwapCache(newpage);
447 			set_page_private(newpage, page_private(page));
448 		}
449 	} else {
450 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
451 	}
452 
453 	/* Move dirty while page refs frozen and newpage not yet exposed */
454 	dirty = PageDirty(page);
455 	if (dirty) {
456 		ClearPageDirty(page);
457 		SetPageDirty(newpage);
458 	}
459 
460 	xas_store(&xas, newpage);
461 	if (PageTransHuge(page)) {
462 		int i;
463 
464 		for (i = 1; i < HPAGE_PMD_NR; i++) {
465 			xas_next(&xas);
466 			xas_store(&xas, newpage);
467 		}
468 	}
469 
470 	/*
471 	 * Drop cache reference from old page by unfreezing
472 	 * to one less reference.
473 	 * We know this isn't the last reference.
474 	 */
475 	page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
476 
477 	xas_unlock(&xas);
478 	/* Leave irq disabled to prevent preemption while updating stats */
479 
480 	/*
481 	 * If moved to a different zone then also account
482 	 * the page for that zone. Other VM counters will be
483 	 * taken care of when we establish references to the
484 	 * new page and drop references to the old page.
485 	 *
486 	 * Note that anonymous pages are accounted for
487 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
488 	 * are mapped to swap space.
489 	 */
490 	if (newzone != oldzone) {
491 		struct lruvec *old_lruvec, *new_lruvec;
492 		struct mem_cgroup *memcg;
493 
494 		memcg = page_memcg(page);
495 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
496 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
497 
498 		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
499 		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
500 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
501 			__dec_lruvec_state(old_lruvec, NR_SHMEM);
502 			__inc_lruvec_state(new_lruvec, NR_SHMEM);
503 		}
504 		if (dirty && mapping_cap_account_dirty(mapping)) {
505 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
506 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
507 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
508 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
509 		}
510 	}
511 	local_irq_enable();
512 
513 	return MIGRATEPAGE_SUCCESS;
514 }
515 EXPORT_SYMBOL(migrate_page_move_mapping);
516 
517 /*
518  * The expected number of remaining references is the same as that
519  * of migrate_page_move_mapping().
520  */
521 int migrate_huge_page_move_mapping(struct address_space *mapping,
522 				   struct page *newpage, struct page *page)
523 {
524 	XA_STATE(xas, &mapping->i_pages, page_index(page));
525 	int expected_count;
526 
527 	xas_lock_irq(&xas);
528 	expected_count = 2 + page_has_private(page);
529 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
530 		xas_unlock_irq(&xas);
531 		return -EAGAIN;
532 	}
533 
534 	if (!page_ref_freeze(page, expected_count)) {
535 		xas_unlock_irq(&xas);
536 		return -EAGAIN;
537 	}
538 
539 	newpage->index = page->index;
540 	newpage->mapping = page->mapping;
541 
542 	get_page(newpage);
543 
544 	xas_store(&xas, newpage);
545 
546 	page_ref_unfreeze(page, expected_count - 1);
547 
548 	xas_unlock_irq(&xas);
549 
550 	return MIGRATEPAGE_SUCCESS;
551 }
552 
553 /*
554  * Gigantic pages are so large that we do not guarantee that page++ pointer
555  * arithmetic will work across the entire page.  We need something more
556  * specialized.
557  */
558 static void __copy_gigantic_page(struct page *dst, struct page *src,
559 				int nr_pages)
560 {
561 	int i;
562 	struct page *dst_base = dst;
563 	struct page *src_base = src;
564 
565 	for (i = 0; i < nr_pages; ) {
566 		cond_resched();
567 		copy_highpage(dst, src);
568 
569 		i++;
570 		dst = mem_map_next(dst, dst_base, i);
571 		src = mem_map_next(src, src_base, i);
572 	}
573 }
574 
575 static void copy_huge_page(struct page *dst, struct page *src)
576 {
577 	int i;
578 	int nr_pages;
579 
580 	if (PageHuge(src)) {
581 		/* hugetlbfs page */
582 		struct hstate *h = page_hstate(src);
583 		nr_pages = pages_per_huge_page(h);
584 
585 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
586 			__copy_gigantic_page(dst, src, nr_pages);
587 			return;
588 		}
589 	} else {
590 		/* thp page */
591 		BUG_ON(!PageTransHuge(src));
592 		nr_pages = thp_nr_pages(src);
593 	}
594 
595 	for (i = 0; i < nr_pages; i++) {
596 		cond_resched();
597 		copy_highpage(dst + i, src + i);
598 	}
599 }
600 
601 /*
602  * Copy the page to its new location
603  */
604 void migrate_page_states(struct page *newpage, struct page *page)
605 {
606 	int cpupid;
607 
608 	if (PageError(page))
609 		SetPageError(newpage);
610 	if (PageReferenced(page))
611 		SetPageReferenced(newpage);
612 	if (PageUptodate(page))
613 		SetPageUptodate(newpage);
614 	if (TestClearPageActive(page)) {
615 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
616 		SetPageActive(newpage);
617 	} else if (TestClearPageUnevictable(page))
618 		SetPageUnevictable(newpage);
619 	if (PageWorkingset(page))
620 		SetPageWorkingset(newpage);
621 	if (PageChecked(page))
622 		SetPageChecked(newpage);
623 	if (PageMappedToDisk(page))
624 		SetPageMappedToDisk(newpage);
625 
626 	/* Move dirty on pages not done by migrate_page_move_mapping() */
627 	if (PageDirty(page))
628 		SetPageDirty(newpage);
629 
630 	if (page_is_young(page))
631 		set_page_young(newpage);
632 	if (page_is_idle(page))
633 		set_page_idle(newpage);
634 
635 	/*
636 	 * Copy NUMA information to the new page, to prevent over-eager
637 	 * future migrations of this same page.
638 	 */
639 	cpupid = page_cpupid_xchg_last(page, -1);
640 	page_cpupid_xchg_last(newpage, cpupid);
641 
642 	ksm_migrate_page(newpage, page);
643 	/*
644 	 * Please do not reorder this without considering how mm/ksm.c's
645 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
646 	 */
647 	if (PageSwapCache(page))
648 		ClearPageSwapCache(page);
649 	ClearPagePrivate(page);
650 	set_page_private(page, 0);
651 
652 	/*
653 	 * If any waiters have accumulated on the new page then
654 	 * wake them up.
655 	 */
656 	if (PageWriteback(newpage))
657 		end_page_writeback(newpage);
658 
659 	/*
660 	 * PG_readahead shares the same bit with PG_reclaim.  The above
661 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
662 	 * bit after that.
663 	 */
664 	if (PageReadahead(page))
665 		SetPageReadahead(newpage);
666 
667 	copy_page_owner(page, newpage);
668 
669 	mem_cgroup_migrate(page, newpage);
670 }
671 EXPORT_SYMBOL(migrate_page_states);
672 
673 void migrate_page_copy(struct page *newpage, struct page *page)
674 {
675 	if (PageHuge(page) || PageTransHuge(page))
676 		copy_huge_page(newpage, page);
677 	else
678 		copy_highpage(newpage, page);
679 
680 	migrate_page_states(newpage, page);
681 }
682 EXPORT_SYMBOL(migrate_page_copy);
683 
684 /************************************************************
685  *                    Migration functions
686  ***********************************************************/
687 
688 /*
689  * Common logic to directly migrate a single LRU page suitable for
690  * pages that do not use PagePrivate/PagePrivate2.
691  *
692  * Pages are locked upon entry and exit.
693  */
694 int migrate_page(struct address_space *mapping,
695 		struct page *newpage, struct page *page,
696 		enum migrate_mode mode)
697 {
698 	int rc;
699 
700 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
701 
702 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
703 
704 	if (rc != MIGRATEPAGE_SUCCESS)
705 		return rc;
706 
707 	if (mode != MIGRATE_SYNC_NO_COPY)
708 		migrate_page_copy(newpage, page);
709 	else
710 		migrate_page_states(newpage, page);
711 	return MIGRATEPAGE_SUCCESS;
712 }
713 EXPORT_SYMBOL(migrate_page);
714 
715 #ifdef CONFIG_BLOCK
716 /* Returns true if all buffers are successfully locked */
717 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
718 							enum migrate_mode mode)
719 {
720 	struct buffer_head *bh = head;
721 
722 	/* Simple case, sync compaction */
723 	if (mode != MIGRATE_ASYNC) {
724 		do {
725 			lock_buffer(bh);
726 			bh = bh->b_this_page;
727 
728 		} while (bh != head);
729 
730 		return true;
731 	}
732 
733 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
734 	do {
735 		if (!trylock_buffer(bh)) {
736 			/*
737 			 * We failed to lock the buffer and cannot stall in
738 			 * async migration. Release the taken locks
739 			 */
740 			struct buffer_head *failed_bh = bh;
741 			bh = head;
742 			while (bh != failed_bh) {
743 				unlock_buffer(bh);
744 				bh = bh->b_this_page;
745 			}
746 			return false;
747 		}
748 
749 		bh = bh->b_this_page;
750 	} while (bh != head);
751 	return true;
752 }
753 
754 static int __buffer_migrate_page(struct address_space *mapping,
755 		struct page *newpage, struct page *page, enum migrate_mode mode,
756 		bool check_refs)
757 {
758 	struct buffer_head *bh, *head;
759 	int rc;
760 	int expected_count;
761 
762 	if (!page_has_buffers(page))
763 		return migrate_page(mapping, newpage, page, mode);
764 
765 	/* Check whether page does not have extra refs before we do more work */
766 	expected_count = expected_page_refs(mapping, page);
767 	if (page_count(page) != expected_count)
768 		return -EAGAIN;
769 
770 	head = page_buffers(page);
771 	if (!buffer_migrate_lock_buffers(head, mode))
772 		return -EAGAIN;
773 
774 	if (check_refs) {
775 		bool busy;
776 		bool invalidated = false;
777 
778 recheck_buffers:
779 		busy = false;
780 		spin_lock(&mapping->private_lock);
781 		bh = head;
782 		do {
783 			if (atomic_read(&bh->b_count)) {
784 				busy = true;
785 				break;
786 			}
787 			bh = bh->b_this_page;
788 		} while (bh != head);
789 		if (busy) {
790 			if (invalidated) {
791 				rc = -EAGAIN;
792 				goto unlock_buffers;
793 			}
794 			spin_unlock(&mapping->private_lock);
795 			invalidate_bh_lrus();
796 			invalidated = true;
797 			goto recheck_buffers;
798 		}
799 	}
800 
801 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
802 	if (rc != MIGRATEPAGE_SUCCESS)
803 		goto unlock_buffers;
804 
805 	attach_page_private(newpage, detach_page_private(page));
806 
807 	bh = head;
808 	do {
809 		set_bh_page(bh, newpage, bh_offset(bh));
810 		bh = bh->b_this_page;
811 
812 	} while (bh != head);
813 
814 	if (mode != MIGRATE_SYNC_NO_COPY)
815 		migrate_page_copy(newpage, page);
816 	else
817 		migrate_page_states(newpage, page);
818 
819 	rc = MIGRATEPAGE_SUCCESS;
820 unlock_buffers:
821 	if (check_refs)
822 		spin_unlock(&mapping->private_lock);
823 	bh = head;
824 	do {
825 		unlock_buffer(bh);
826 		bh = bh->b_this_page;
827 
828 	} while (bh != head);
829 
830 	return rc;
831 }
832 
833 /*
834  * Migration function for pages with buffers. This function can only be used
835  * if the underlying filesystem guarantees that no other references to "page"
836  * exist. For example attached buffer heads are accessed only under page lock.
837  */
838 int buffer_migrate_page(struct address_space *mapping,
839 		struct page *newpage, struct page *page, enum migrate_mode mode)
840 {
841 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
842 }
843 EXPORT_SYMBOL(buffer_migrate_page);
844 
845 /*
846  * Same as above except that this variant is more careful and checks that there
847  * are also no buffer head references. This function is the right one for
848  * mappings where buffer heads are directly looked up and referenced (such as
849  * block device mappings).
850  */
851 int buffer_migrate_page_norefs(struct address_space *mapping,
852 		struct page *newpage, struct page *page, enum migrate_mode mode)
853 {
854 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
855 }
856 #endif
857 
858 /*
859  * Writeback a page to clean the dirty state
860  */
861 static int writeout(struct address_space *mapping, struct page *page)
862 {
863 	struct writeback_control wbc = {
864 		.sync_mode = WB_SYNC_NONE,
865 		.nr_to_write = 1,
866 		.range_start = 0,
867 		.range_end = LLONG_MAX,
868 		.for_reclaim = 1
869 	};
870 	int rc;
871 
872 	if (!mapping->a_ops->writepage)
873 		/* No write method for the address space */
874 		return -EINVAL;
875 
876 	if (!clear_page_dirty_for_io(page))
877 		/* Someone else already triggered a write */
878 		return -EAGAIN;
879 
880 	/*
881 	 * A dirty page may imply that the underlying filesystem has
882 	 * the page on some queue. So the page must be clean for
883 	 * migration. Writeout may mean we loose the lock and the
884 	 * page state is no longer what we checked for earlier.
885 	 * At this point we know that the migration attempt cannot
886 	 * be successful.
887 	 */
888 	remove_migration_ptes(page, page, false);
889 
890 	rc = mapping->a_ops->writepage(page, &wbc);
891 
892 	if (rc != AOP_WRITEPAGE_ACTIVATE)
893 		/* unlocked. Relock */
894 		lock_page(page);
895 
896 	return (rc < 0) ? -EIO : -EAGAIN;
897 }
898 
899 /*
900  * Default handling if a filesystem does not provide a migration function.
901  */
902 static int fallback_migrate_page(struct address_space *mapping,
903 	struct page *newpage, struct page *page, enum migrate_mode mode)
904 {
905 	if (PageDirty(page)) {
906 		/* Only writeback pages in full synchronous migration */
907 		switch (mode) {
908 		case MIGRATE_SYNC:
909 		case MIGRATE_SYNC_NO_COPY:
910 			break;
911 		default:
912 			return -EBUSY;
913 		}
914 		return writeout(mapping, page);
915 	}
916 
917 	/*
918 	 * Buffers may be managed in a filesystem specific way.
919 	 * We must have no buffers or drop them.
920 	 */
921 	if (page_has_private(page) &&
922 	    !try_to_release_page(page, GFP_KERNEL))
923 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
924 
925 	return migrate_page(mapping, newpage, page, mode);
926 }
927 
928 /*
929  * Move a page to a newly allocated page
930  * The page is locked and all ptes have been successfully removed.
931  *
932  * The new page will have replaced the old page if this function
933  * is successful.
934  *
935  * Return value:
936  *   < 0 - error code
937  *  MIGRATEPAGE_SUCCESS - success
938  */
939 static int move_to_new_page(struct page *newpage, struct page *page,
940 				enum migrate_mode mode)
941 {
942 	struct address_space *mapping;
943 	int rc = -EAGAIN;
944 	bool is_lru = !__PageMovable(page);
945 
946 	VM_BUG_ON_PAGE(!PageLocked(page), page);
947 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
948 
949 	mapping = page_mapping(page);
950 
951 	if (likely(is_lru)) {
952 		if (!mapping)
953 			rc = migrate_page(mapping, newpage, page, mode);
954 		else if (mapping->a_ops->migratepage)
955 			/*
956 			 * Most pages have a mapping and most filesystems
957 			 * provide a migratepage callback. Anonymous pages
958 			 * are part of swap space which also has its own
959 			 * migratepage callback. This is the most common path
960 			 * for page migration.
961 			 */
962 			rc = mapping->a_ops->migratepage(mapping, newpage,
963 							page, mode);
964 		else
965 			rc = fallback_migrate_page(mapping, newpage,
966 							page, mode);
967 	} else {
968 		/*
969 		 * In case of non-lru page, it could be released after
970 		 * isolation step. In that case, we shouldn't try migration.
971 		 */
972 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 		if (!PageMovable(page)) {
974 			rc = MIGRATEPAGE_SUCCESS;
975 			__ClearPageIsolated(page);
976 			goto out;
977 		}
978 
979 		rc = mapping->a_ops->migratepage(mapping, newpage,
980 						page, mode);
981 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
982 			!PageIsolated(page));
983 	}
984 
985 	/*
986 	 * When successful, old pagecache page->mapping must be cleared before
987 	 * page is freed; but stats require that PageAnon be left as PageAnon.
988 	 */
989 	if (rc == MIGRATEPAGE_SUCCESS) {
990 		if (__PageMovable(page)) {
991 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
992 
993 			/*
994 			 * We clear PG_movable under page_lock so any compactor
995 			 * cannot try to migrate this page.
996 			 */
997 			__ClearPageIsolated(page);
998 		}
999 
1000 		/*
1001 		 * Anonymous and movable page->mapping will be cleared by
1002 		 * free_pages_prepare so don't reset it here for keeping
1003 		 * the type to work PageAnon, for example.
1004 		 */
1005 		if (!PageMappingFlags(page))
1006 			page->mapping = NULL;
1007 
1008 		if (likely(!is_zone_device_page(newpage)))
1009 			flush_dcache_page(newpage);
1010 
1011 	}
1012 out:
1013 	return rc;
1014 }
1015 
1016 static int __unmap_and_move(struct page *page, struct page *newpage,
1017 				int force, enum migrate_mode mode)
1018 {
1019 	int rc = -EAGAIN;
1020 	int page_was_mapped = 0;
1021 	struct anon_vma *anon_vma = NULL;
1022 	bool is_lru = !__PageMovable(page);
1023 
1024 	if (!trylock_page(page)) {
1025 		if (!force || mode == MIGRATE_ASYNC)
1026 			goto out;
1027 
1028 		/*
1029 		 * It's not safe for direct compaction to call lock_page.
1030 		 * For example, during page readahead pages are added locked
1031 		 * to the LRU. Later, when the IO completes the pages are
1032 		 * marked uptodate and unlocked. However, the queueing
1033 		 * could be merging multiple pages for one bio (e.g.
1034 		 * mpage_readahead). If an allocation happens for the
1035 		 * second or third page, the process can end up locking
1036 		 * the same page twice and deadlocking. Rather than
1037 		 * trying to be clever about what pages can be locked,
1038 		 * avoid the use of lock_page for direct compaction
1039 		 * altogether.
1040 		 */
1041 		if (current->flags & PF_MEMALLOC)
1042 			goto out;
1043 
1044 		lock_page(page);
1045 	}
1046 
1047 	if (PageWriteback(page)) {
1048 		/*
1049 		 * Only in the case of a full synchronous migration is it
1050 		 * necessary to wait for PageWriteback. In the async case,
1051 		 * the retry loop is too short and in the sync-light case,
1052 		 * the overhead of stalling is too much
1053 		 */
1054 		switch (mode) {
1055 		case MIGRATE_SYNC:
1056 		case MIGRATE_SYNC_NO_COPY:
1057 			break;
1058 		default:
1059 			rc = -EBUSY;
1060 			goto out_unlock;
1061 		}
1062 		if (!force)
1063 			goto out_unlock;
1064 		wait_on_page_writeback(page);
1065 	}
1066 
1067 	/*
1068 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1069 	 * we cannot notice that anon_vma is freed while we migrates a page.
1070 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1071 	 * of migration. File cache pages are no problem because of page_lock()
1072 	 * File Caches may use write_page() or lock_page() in migration, then,
1073 	 * just care Anon page here.
1074 	 *
1075 	 * Only page_get_anon_vma() understands the subtleties of
1076 	 * getting a hold on an anon_vma from outside one of its mms.
1077 	 * But if we cannot get anon_vma, then we won't need it anyway,
1078 	 * because that implies that the anon page is no longer mapped
1079 	 * (and cannot be remapped so long as we hold the page lock).
1080 	 */
1081 	if (PageAnon(page) && !PageKsm(page))
1082 		anon_vma = page_get_anon_vma(page);
1083 
1084 	/*
1085 	 * Block others from accessing the new page when we get around to
1086 	 * establishing additional references. We are usually the only one
1087 	 * holding a reference to newpage at this point. We used to have a BUG
1088 	 * here if trylock_page(newpage) fails, but would like to allow for
1089 	 * cases where there might be a race with the previous use of newpage.
1090 	 * This is much like races on refcount of oldpage: just don't BUG().
1091 	 */
1092 	if (unlikely(!trylock_page(newpage)))
1093 		goto out_unlock;
1094 
1095 	if (unlikely(!is_lru)) {
1096 		rc = move_to_new_page(newpage, page, mode);
1097 		goto out_unlock_both;
1098 	}
1099 
1100 	/*
1101 	 * Corner case handling:
1102 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1103 	 * and treated as swapcache but it has no rmap yet.
1104 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1105 	 * trigger a BUG.  So handle it here.
1106 	 * 2. An orphaned page (see truncate_complete_page) might have
1107 	 * fs-private metadata. The page can be picked up due to memory
1108 	 * offlining.  Everywhere else except page reclaim, the page is
1109 	 * invisible to the vm, so the page can not be migrated.  So try to
1110 	 * free the metadata, so the page can be freed.
1111 	 */
1112 	if (!page->mapping) {
1113 		VM_BUG_ON_PAGE(PageAnon(page), page);
1114 		if (page_has_private(page)) {
1115 			try_to_free_buffers(page);
1116 			goto out_unlock_both;
1117 		}
1118 	} else if (page_mapped(page)) {
1119 		/* Establish migration ptes */
1120 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1121 				page);
1122 		try_to_unmap(page,
1123 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1124 		page_was_mapped = 1;
1125 	}
1126 
1127 	if (!page_mapped(page))
1128 		rc = move_to_new_page(newpage, page, mode);
1129 
1130 	if (page_was_mapped)
1131 		remove_migration_ptes(page,
1132 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1133 
1134 out_unlock_both:
1135 	unlock_page(newpage);
1136 out_unlock:
1137 	/* Drop an anon_vma reference if we took one */
1138 	if (anon_vma)
1139 		put_anon_vma(anon_vma);
1140 	unlock_page(page);
1141 out:
1142 	/*
1143 	 * If migration is successful, decrease refcount of the newpage
1144 	 * which will not free the page because new page owner increased
1145 	 * refcounter. As well, if it is LRU page, add the page to LRU
1146 	 * list in here. Use the old state of the isolated source page to
1147 	 * determine if we migrated a LRU page. newpage was already unlocked
1148 	 * and possibly modified by its owner - don't rely on the page
1149 	 * state.
1150 	 */
1151 	if (rc == MIGRATEPAGE_SUCCESS) {
1152 		if (unlikely(!is_lru))
1153 			put_page(newpage);
1154 		else
1155 			putback_lru_page(newpage);
1156 	}
1157 
1158 	return rc;
1159 }
1160 
1161 /*
1162  * Obtain the lock on page, remove all ptes and migrate the page
1163  * to the newly allocated page in newpage.
1164  */
1165 static int unmap_and_move(new_page_t get_new_page,
1166 				   free_page_t put_new_page,
1167 				   unsigned long private, struct page *page,
1168 				   int force, enum migrate_mode mode,
1169 				   enum migrate_reason reason)
1170 {
1171 	int rc = MIGRATEPAGE_SUCCESS;
1172 	struct page *newpage = NULL;
1173 
1174 	if (!thp_migration_supported() && PageTransHuge(page))
1175 		return -ENOMEM;
1176 
1177 	if (page_count(page) == 1) {
1178 		/* page was freed from under us. So we are done. */
1179 		ClearPageActive(page);
1180 		ClearPageUnevictable(page);
1181 		if (unlikely(__PageMovable(page))) {
1182 			lock_page(page);
1183 			if (!PageMovable(page))
1184 				__ClearPageIsolated(page);
1185 			unlock_page(page);
1186 		}
1187 		goto out;
1188 	}
1189 
1190 	newpage = get_new_page(page, private);
1191 	if (!newpage)
1192 		return -ENOMEM;
1193 
1194 	rc = __unmap_and_move(page, newpage, force, mode);
1195 	if (rc == MIGRATEPAGE_SUCCESS)
1196 		set_page_owner_migrate_reason(newpage, reason);
1197 
1198 out:
1199 	if (rc != -EAGAIN) {
1200 		/*
1201 		 * A page that has been migrated has all references
1202 		 * removed and will be freed. A page that has not been
1203 		 * migrated will have kept its references and be restored.
1204 		 */
1205 		list_del(&page->lru);
1206 
1207 		/*
1208 		 * Compaction can migrate also non-LRU pages which are
1209 		 * not accounted to NR_ISOLATED_*. They can be recognized
1210 		 * as __PageMovable
1211 		 */
1212 		if (likely(!__PageMovable(page)))
1213 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214 					page_is_file_lru(page), -thp_nr_pages(page));
1215 	}
1216 
1217 	/*
1218 	 * If migration is successful, releases reference grabbed during
1219 	 * isolation. Otherwise, restore the page to right list unless
1220 	 * we want to retry.
1221 	 */
1222 	if (rc == MIGRATEPAGE_SUCCESS) {
1223 		put_page(page);
1224 		if (reason == MR_MEMORY_FAILURE) {
1225 			/*
1226 			 * Set PG_HWPoison on just freed page
1227 			 * intentionally. Although it's rather weird,
1228 			 * it's how HWPoison flag works at the moment.
1229 			 */
1230 			if (set_hwpoison_free_buddy_page(page))
1231 				num_poisoned_pages_inc();
1232 		}
1233 	} else {
1234 		if (rc != -EAGAIN) {
1235 			if (likely(!__PageMovable(page))) {
1236 				putback_lru_page(page);
1237 				goto put_new;
1238 			}
1239 
1240 			lock_page(page);
1241 			if (PageMovable(page))
1242 				putback_movable_page(page);
1243 			else
1244 				__ClearPageIsolated(page);
1245 			unlock_page(page);
1246 			put_page(page);
1247 		}
1248 put_new:
1249 		if (put_new_page)
1250 			put_new_page(newpage, private);
1251 		else
1252 			put_page(newpage);
1253 	}
1254 
1255 	return rc;
1256 }
1257 
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 				free_page_t put_new_page, unsigned long private,
1278 				struct page *hpage, int force,
1279 				enum migrate_mode mode, int reason)
1280 {
1281 	int rc = -EAGAIN;
1282 	int page_was_mapped = 0;
1283 	struct page *new_hpage;
1284 	struct anon_vma *anon_vma = NULL;
1285 	struct address_space *mapping = NULL;
1286 
1287 	/*
1288 	 * Migratability of hugepages depends on architectures and their size.
1289 	 * This check is necessary because some callers of hugepage migration
1290 	 * like soft offline and memory hotremove don't walk through page
1291 	 * tables or check whether the hugepage is pmd-based or not before
1292 	 * kicking migration.
1293 	 */
1294 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1295 		putback_active_hugepage(hpage);
1296 		return -ENOSYS;
1297 	}
1298 
1299 	new_hpage = get_new_page(hpage, private);
1300 	if (!new_hpage)
1301 		return -ENOMEM;
1302 
1303 	if (!trylock_page(hpage)) {
1304 		if (!force)
1305 			goto out;
1306 		switch (mode) {
1307 		case MIGRATE_SYNC:
1308 		case MIGRATE_SYNC_NO_COPY:
1309 			break;
1310 		default:
1311 			goto out;
1312 		}
1313 		lock_page(hpage);
1314 	}
1315 
1316 	/*
1317 	 * Check for pages which are in the process of being freed.  Without
1318 	 * page_mapping() set, hugetlbfs specific move page routine will not
1319 	 * be called and we could leak usage counts for subpools.
1320 	 */
1321 	if (page_private(hpage) && !page_mapping(hpage)) {
1322 		rc = -EBUSY;
1323 		goto out_unlock;
1324 	}
1325 
1326 	if (PageAnon(hpage))
1327 		anon_vma = page_get_anon_vma(hpage);
1328 
1329 	if (unlikely(!trylock_page(new_hpage)))
1330 		goto put_anon;
1331 
1332 	if (page_mapped(hpage)) {
1333 		/*
1334 		 * try_to_unmap could potentially call huge_pmd_unshare.
1335 		 * Because of this, take semaphore in write mode here and
1336 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1337 		 * taken the lock.
1338 		 */
1339 		mapping = hugetlb_page_mapping_lock_write(hpage);
1340 		if (unlikely(!mapping))
1341 			goto unlock_put_anon;
1342 
1343 		try_to_unmap(hpage,
1344 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1345 			TTU_RMAP_LOCKED);
1346 		page_was_mapped = 1;
1347 		/*
1348 		 * Leave mapping locked until after subsequent call to
1349 		 * remove_migration_ptes()
1350 		 */
1351 	}
1352 
1353 	if (!page_mapped(hpage))
1354 		rc = move_to_new_page(new_hpage, hpage, mode);
1355 
1356 	if (page_was_mapped) {
1357 		remove_migration_ptes(hpage,
1358 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1359 		i_mmap_unlock_write(mapping);
1360 	}
1361 
1362 unlock_put_anon:
1363 	unlock_page(new_hpage);
1364 
1365 put_anon:
1366 	if (anon_vma)
1367 		put_anon_vma(anon_vma);
1368 
1369 	if (rc == MIGRATEPAGE_SUCCESS) {
1370 		move_hugetlb_state(hpage, new_hpage, reason);
1371 		put_new_page = NULL;
1372 	}
1373 
1374 out_unlock:
1375 	unlock_page(hpage);
1376 out:
1377 	if (rc != -EAGAIN)
1378 		putback_active_hugepage(hpage);
1379 
1380 	/*
1381 	 * If migration was not successful and there's a freeing callback, use
1382 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1383 	 * isolation.
1384 	 */
1385 	if (put_new_page)
1386 		put_new_page(new_hpage, private);
1387 	else
1388 		putback_active_hugepage(new_hpage);
1389 
1390 	return rc;
1391 }
1392 
1393 /*
1394  * migrate_pages - migrate the pages specified in a list, to the free pages
1395  *		   supplied as the target for the page migration
1396  *
1397  * @from:		The list of pages to be migrated.
1398  * @get_new_page:	The function used to allocate free pages to be used
1399  *			as the target of the page migration.
1400  * @put_new_page:	The function used to free target pages if migration
1401  *			fails, or NULL if no special handling is necessary.
1402  * @private:		Private data to be passed on to get_new_page()
1403  * @mode:		The migration mode that specifies the constraints for
1404  *			page migration, if any.
1405  * @reason:		The reason for page migration.
1406  *
1407  * The function returns after 10 attempts or if no pages are movable any more
1408  * because the list has become empty or no retryable pages exist any more.
1409  * The caller should call putback_movable_pages() to return pages to the LRU
1410  * or free list only if ret != 0.
1411  *
1412  * Returns the number of pages that were not migrated, or an error code.
1413  */
1414 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1415 		free_page_t put_new_page, unsigned long private,
1416 		enum migrate_mode mode, int reason)
1417 {
1418 	int retry = 1;
1419 	int thp_retry = 1;
1420 	int nr_failed = 0;
1421 	int nr_succeeded = 0;
1422 	int nr_thp_succeeded = 0;
1423 	int nr_thp_failed = 0;
1424 	int nr_thp_split = 0;
1425 	int pass = 0;
1426 	bool is_thp = false;
1427 	struct page *page;
1428 	struct page *page2;
1429 	int swapwrite = current->flags & PF_SWAPWRITE;
1430 	int rc, nr_subpages;
1431 
1432 	if (!swapwrite)
1433 		current->flags |= PF_SWAPWRITE;
1434 
1435 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1436 		retry = 0;
1437 		thp_retry = 0;
1438 
1439 		list_for_each_entry_safe(page, page2, from, lru) {
1440 retry:
1441 			/*
1442 			 * THP statistics is based on the source huge page.
1443 			 * Capture required information that might get lost
1444 			 * during migration.
1445 			 */
1446 			is_thp = PageTransHuge(page);
1447 			nr_subpages = thp_nr_pages(page);
1448 			cond_resched();
1449 
1450 			if (PageHuge(page))
1451 				rc = unmap_and_move_huge_page(get_new_page,
1452 						put_new_page, private, page,
1453 						pass > 2, mode, reason);
1454 			else
1455 				rc = unmap_and_move(get_new_page, put_new_page,
1456 						private, page, pass > 2, mode,
1457 						reason);
1458 
1459 			switch(rc) {
1460 			case -ENOMEM:
1461 				/*
1462 				 * THP migration might be unsupported or the
1463 				 * allocation could've failed so we should
1464 				 * retry on the same page with the THP split
1465 				 * to base pages.
1466 				 *
1467 				 * Head page is retried immediately and tail
1468 				 * pages are added to the tail of the list so
1469 				 * we encounter them after the rest of the list
1470 				 * is processed.
1471 				 */
1472 				if (PageTransHuge(page) && !PageHuge(page)) {
1473 					lock_page(page);
1474 					rc = split_huge_page_to_list(page, from);
1475 					unlock_page(page);
1476 					if (!rc) {
1477 						list_safe_reset_next(page, page2, lru);
1478 						nr_thp_split++;
1479 						goto retry;
1480 					}
1481 				}
1482 				if (is_thp) {
1483 					nr_thp_failed++;
1484 					nr_failed += nr_subpages;
1485 					goto out;
1486 				}
1487 				nr_failed++;
1488 				goto out;
1489 			case -EAGAIN:
1490 				if (is_thp) {
1491 					thp_retry++;
1492 					break;
1493 				}
1494 				retry++;
1495 				break;
1496 			case MIGRATEPAGE_SUCCESS:
1497 				if (is_thp) {
1498 					nr_thp_succeeded++;
1499 					nr_succeeded += nr_subpages;
1500 					break;
1501 				}
1502 				nr_succeeded++;
1503 				break;
1504 			default:
1505 				/*
1506 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1507 				 * unlike -EAGAIN case, the failed page is
1508 				 * removed from migration page list and not
1509 				 * retried in the next outer loop.
1510 				 */
1511 				if (is_thp) {
1512 					nr_thp_failed++;
1513 					nr_failed += nr_subpages;
1514 					break;
1515 				}
1516 				nr_failed++;
1517 				break;
1518 			}
1519 		}
1520 	}
1521 	nr_failed += retry + thp_retry;
1522 	nr_thp_failed += thp_retry;
1523 	rc = nr_failed;
1524 out:
1525 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1526 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1527 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1528 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1529 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1530 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1531 			       nr_thp_failed, nr_thp_split, mode, reason);
1532 
1533 	if (!swapwrite)
1534 		current->flags &= ~PF_SWAPWRITE;
1535 
1536 	return rc;
1537 }
1538 
1539 struct page *alloc_migration_target(struct page *page, unsigned long private)
1540 {
1541 	struct migration_target_control *mtc;
1542 	gfp_t gfp_mask;
1543 	unsigned int order = 0;
1544 	struct page *new_page = NULL;
1545 	int nid;
1546 	int zidx;
1547 
1548 	mtc = (struct migration_target_control *)private;
1549 	gfp_mask = mtc->gfp_mask;
1550 	nid = mtc->nid;
1551 	if (nid == NUMA_NO_NODE)
1552 		nid = page_to_nid(page);
1553 
1554 	if (PageHuge(page)) {
1555 		struct hstate *h = page_hstate(compound_head(page));
1556 
1557 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1558 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1559 	}
1560 
1561 	if (PageTransHuge(page)) {
1562 		/*
1563 		 * clear __GFP_RECLAIM to make the migration callback
1564 		 * consistent with regular THP allocations.
1565 		 */
1566 		gfp_mask &= ~__GFP_RECLAIM;
1567 		gfp_mask |= GFP_TRANSHUGE;
1568 		order = HPAGE_PMD_ORDER;
1569 	}
1570 	zidx = zone_idx(page_zone(page));
1571 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1572 		gfp_mask |= __GFP_HIGHMEM;
1573 
1574 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1575 
1576 	if (new_page && PageTransHuge(new_page))
1577 		prep_transhuge_page(new_page);
1578 
1579 	return new_page;
1580 }
1581 
1582 #ifdef CONFIG_NUMA
1583 
1584 static int store_status(int __user *status, int start, int value, int nr)
1585 {
1586 	while (nr-- > 0) {
1587 		if (put_user(value, status + start))
1588 			return -EFAULT;
1589 		start++;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static int do_move_pages_to_node(struct mm_struct *mm,
1596 		struct list_head *pagelist, int node)
1597 {
1598 	int err;
1599 	struct migration_target_control mtc = {
1600 		.nid = node,
1601 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1602 	};
1603 
1604 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1605 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1606 	if (err)
1607 		putback_movable_pages(pagelist);
1608 	return err;
1609 }
1610 
1611 /*
1612  * Resolves the given address to a struct page, isolates it from the LRU and
1613  * puts it to the given pagelist.
1614  * Returns:
1615  *     errno - if the page cannot be found/isolated
1616  *     0 - when it doesn't have to be migrated because it is already on the
1617  *         target node
1618  *     1 - when it has been queued
1619  */
1620 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1621 		int node, struct list_head *pagelist, bool migrate_all)
1622 {
1623 	struct vm_area_struct *vma;
1624 	struct page *page;
1625 	unsigned int follflags;
1626 	int err;
1627 
1628 	mmap_read_lock(mm);
1629 	err = -EFAULT;
1630 	vma = find_vma(mm, addr);
1631 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1632 		goto out;
1633 
1634 	/* FOLL_DUMP to ignore special (like zero) pages */
1635 	follflags = FOLL_GET | FOLL_DUMP;
1636 	page = follow_page(vma, addr, follflags);
1637 
1638 	err = PTR_ERR(page);
1639 	if (IS_ERR(page))
1640 		goto out;
1641 
1642 	err = -ENOENT;
1643 	if (!page)
1644 		goto out;
1645 
1646 	err = 0;
1647 	if (page_to_nid(page) == node)
1648 		goto out_putpage;
1649 
1650 	err = -EACCES;
1651 	if (page_mapcount(page) > 1 && !migrate_all)
1652 		goto out_putpage;
1653 
1654 	if (PageHuge(page)) {
1655 		if (PageHead(page)) {
1656 			isolate_huge_page(page, pagelist);
1657 			err = 1;
1658 		}
1659 	} else {
1660 		struct page *head;
1661 
1662 		head = compound_head(page);
1663 		err = isolate_lru_page(head);
1664 		if (err)
1665 			goto out_putpage;
1666 
1667 		err = 1;
1668 		list_add_tail(&head->lru, pagelist);
1669 		mod_node_page_state(page_pgdat(head),
1670 			NR_ISOLATED_ANON + page_is_file_lru(head),
1671 			thp_nr_pages(head));
1672 	}
1673 out_putpage:
1674 	/*
1675 	 * Either remove the duplicate refcount from
1676 	 * isolate_lru_page() or drop the page ref if it was
1677 	 * not isolated.
1678 	 */
1679 	put_page(page);
1680 out:
1681 	mmap_read_unlock(mm);
1682 	return err;
1683 }
1684 
1685 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1686 		struct list_head *pagelist, int __user *status,
1687 		int start, int i, unsigned long nr_pages)
1688 {
1689 	int err;
1690 
1691 	if (list_empty(pagelist))
1692 		return 0;
1693 
1694 	err = do_move_pages_to_node(mm, pagelist, node);
1695 	if (err) {
1696 		/*
1697 		 * Positive err means the number of failed
1698 		 * pages to migrate.  Since we are going to
1699 		 * abort and return the number of non-migrated
1700 		 * pages, so need to incude the rest of the
1701 		 * nr_pages that have not been attempted as
1702 		 * well.
1703 		 */
1704 		if (err > 0)
1705 			err += nr_pages - i - 1;
1706 		return err;
1707 	}
1708 	return store_status(status, start, node, i - start);
1709 }
1710 
1711 /*
1712  * Migrate an array of page address onto an array of nodes and fill
1713  * the corresponding array of status.
1714  */
1715 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1716 			 unsigned long nr_pages,
1717 			 const void __user * __user *pages,
1718 			 const int __user *nodes,
1719 			 int __user *status, int flags)
1720 {
1721 	int current_node = NUMA_NO_NODE;
1722 	LIST_HEAD(pagelist);
1723 	int start, i;
1724 	int err = 0, err1;
1725 
1726 	migrate_prep();
1727 
1728 	for (i = start = 0; i < nr_pages; i++) {
1729 		const void __user *p;
1730 		unsigned long addr;
1731 		int node;
1732 
1733 		err = -EFAULT;
1734 		if (get_user(p, pages + i))
1735 			goto out_flush;
1736 		if (get_user(node, nodes + i))
1737 			goto out_flush;
1738 		addr = (unsigned long)untagged_addr(p);
1739 
1740 		err = -ENODEV;
1741 		if (node < 0 || node >= MAX_NUMNODES)
1742 			goto out_flush;
1743 		if (!node_state(node, N_MEMORY))
1744 			goto out_flush;
1745 
1746 		err = -EACCES;
1747 		if (!node_isset(node, task_nodes))
1748 			goto out_flush;
1749 
1750 		if (current_node == NUMA_NO_NODE) {
1751 			current_node = node;
1752 			start = i;
1753 		} else if (node != current_node) {
1754 			err = move_pages_and_store_status(mm, current_node,
1755 					&pagelist, status, start, i, nr_pages);
1756 			if (err)
1757 				goto out;
1758 			start = i;
1759 			current_node = node;
1760 		}
1761 
1762 		/*
1763 		 * Errors in the page lookup or isolation are not fatal and we simply
1764 		 * report them via status
1765 		 */
1766 		err = add_page_for_migration(mm, addr, current_node,
1767 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1768 
1769 		if (err > 0) {
1770 			/* The page is successfully queued for migration */
1771 			continue;
1772 		}
1773 
1774 		/*
1775 		 * If the page is already on the target node (!err), store the
1776 		 * node, otherwise, store the err.
1777 		 */
1778 		err = store_status(status, i, err ? : current_node, 1);
1779 		if (err)
1780 			goto out_flush;
1781 
1782 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1783 				status, start, i, nr_pages);
1784 		if (err)
1785 			goto out;
1786 		current_node = NUMA_NO_NODE;
1787 	}
1788 out_flush:
1789 	/* Make sure we do not overwrite the existing error */
1790 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1791 				status, start, i, nr_pages);
1792 	if (err >= 0)
1793 		err = err1;
1794 out:
1795 	return err;
1796 }
1797 
1798 /*
1799  * Determine the nodes of an array of pages and store it in an array of status.
1800  */
1801 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1802 				const void __user **pages, int *status)
1803 {
1804 	unsigned long i;
1805 
1806 	mmap_read_lock(mm);
1807 
1808 	for (i = 0; i < nr_pages; i++) {
1809 		unsigned long addr = (unsigned long)(*pages);
1810 		struct vm_area_struct *vma;
1811 		struct page *page;
1812 		int err = -EFAULT;
1813 
1814 		vma = find_vma(mm, addr);
1815 		if (!vma || addr < vma->vm_start)
1816 			goto set_status;
1817 
1818 		/* FOLL_DUMP to ignore special (like zero) pages */
1819 		page = follow_page(vma, addr, FOLL_DUMP);
1820 
1821 		err = PTR_ERR(page);
1822 		if (IS_ERR(page))
1823 			goto set_status;
1824 
1825 		err = page ? page_to_nid(page) : -ENOENT;
1826 set_status:
1827 		*status = err;
1828 
1829 		pages++;
1830 		status++;
1831 	}
1832 
1833 	mmap_read_unlock(mm);
1834 }
1835 
1836 /*
1837  * Determine the nodes of a user array of pages and store it in
1838  * a user array of status.
1839  */
1840 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1841 			 const void __user * __user *pages,
1842 			 int __user *status)
1843 {
1844 #define DO_PAGES_STAT_CHUNK_NR 16
1845 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1846 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1847 
1848 	while (nr_pages) {
1849 		unsigned long chunk_nr;
1850 
1851 		chunk_nr = nr_pages;
1852 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1853 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1854 
1855 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1856 			break;
1857 
1858 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1859 
1860 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1861 			break;
1862 
1863 		pages += chunk_nr;
1864 		status += chunk_nr;
1865 		nr_pages -= chunk_nr;
1866 	}
1867 	return nr_pages ? -EFAULT : 0;
1868 }
1869 
1870 /*
1871  * Move a list of pages in the address space of the currently executing
1872  * process.
1873  */
1874 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1875 			     const void __user * __user *pages,
1876 			     const int __user *nodes,
1877 			     int __user *status, int flags)
1878 {
1879 	struct task_struct *task;
1880 	struct mm_struct *mm;
1881 	int err;
1882 	nodemask_t task_nodes;
1883 
1884 	/* Check flags */
1885 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1886 		return -EINVAL;
1887 
1888 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1889 		return -EPERM;
1890 
1891 	/* Find the mm_struct */
1892 	rcu_read_lock();
1893 	task = pid ? find_task_by_vpid(pid) : current;
1894 	if (!task) {
1895 		rcu_read_unlock();
1896 		return -ESRCH;
1897 	}
1898 	get_task_struct(task);
1899 
1900 	/*
1901 	 * Check if this process has the right to modify the specified
1902 	 * process. Use the regular "ptrace_may_access()" checks.
1903 	 */
1904 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1905 		rcu_read_unlock();
1906 		err = -EPERM;
1907 		goto out;
1908 	}
1909 	rcu_read_unlock();
1910 
1911  	err = security_task_movememory(task);
1912  	if (err)
1913 		goto out;
1914 
1915 	task_nodes = cpuset_mems_allowed(task);
1916 	mm = get_task_mm(task);
1917 	put_task_struct(task);
1918 
1919 	if (!mm)
1920 		return -EINVAL;
1921 
1922 	if (nodes)
1923 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1924 				    nodes, status, flags);
1925 	else
1926 		err = do_pages_stat(mm, nr_pages, pages, status);
1927 
1928 	mmput(mm);
1929 	return err;
1930 
1931 out:
1932 	put_task_struct(task);
1933 	return err;
1934 }
1935 
1936 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1937 		const void __user * __user *, pages,
1938 		const int __user *, nodes,
1939 		int __user *, status, int, flags)
1940 {
1941 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1942 }
1943 
1944 #ifdef CONFIG_COMPAT
1945 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1946 		       compat_uptr_t __user *, pages32,
1947 		       const int __user *, nodes,
1948 		       int __user *, status,
1949 		       int, flags)
1950 {
1951 	const void __user * __user *pages;
1952 	int i;
1953 
1954 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1955 	for (i = 0; i < nr_pages; i++) {
1956 		compat_uptr_t p;
1957 
1958 		if (get_user(p, pages32 + i) ||
1959 			put_user(compat_ptr(p), pages + i))
1960 			return -EFAULT;
1961 	}
1962 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1963 }
1964 #endif /* CONFIG_COMPAT */
1965 
1966 #ifdef CONFIG_NUMA_BALANCING
1967 /*
1968  * Returns true if this is a safe migration target node for misplaced NUMA
1969  * pages. Currently it only checks the watermarks which crude
1970  */
1971 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1972 				   unsigned long nr_migrate_pages)
1973 {
1974 	int z;
1975 
1976 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1977 		struct zone *zone = pgdat->node_zones + z;
1978 
1979 		if (!populated_zone(zone))
1980 			continue;
1981 
1982 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1983 		if (!zone_watermark_ok(zone, 0,
1984 				       high_wmark_pages(zone) +
1985 				       nr_migrate_pages,
1986 				       ZONE_MOVABLE, 0))
1987 			continue;
1988 		return true;
1989 	}
1990 	return false;
1991 }
1992 
1993 static struct page *alloc_misplaced_dst_page(struct page *page,
1994 					   unsigned long data)
1995 {
1996 	int nid = (int) data;
1997 	struct page *newpage;
1998 
1999 	newpage = __alloc_pages_node(nid,
2000 					 (GFP_HIGHUSER_MOVABLE |
2001 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2002 					  __GFP_NORETRY | __GFP_NOWARN) &
2003 					 ~__GFP_RECLAIM, 0);
2004 
2005 	return newpage;
2006 }
2007 
2008 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2009 {
2010 	int page_lru;
2011 
2012 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2013 
2014 	/* Avoid migrating to a node that is nearly full */
2015 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2016 		return 0;
2017 
2018 	if (isolate_lru_page(page))
2019 		return 0;
2020 
2021 	/*
2022 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2023 	 * check on page_count(), so we must do it here, now that the page
2024 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2025 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2026 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2027 	 */
2028 	if (PageTransHuge(page) && page_count(page) != 3) {
2029 		putback_lru_page(page);
2030 		return 0;
2031 	}
2032 
2033 	page_lru = page_is_file_lru(page);
2034 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2035 				thp_nr_pages(page));
2036 
2037 	/*
2038 	 * Isolating the page has taken another reference, so the
2039 	 * caller's reference can be safely dropped without the page
2040 	 * disappearing underneath us during migration.
2041 	 */
2042 	put_page(page);
2043 	return 1;
2044 }
2045 
2046 bool pmd_trans_migrating(pmd_t pmd)
2047 {
2048 	struct page *page = pmd_page(pmd);
2049 	return PageLocked(page);
2050 }
2051 
2052 /*
2053  * Attempt to migrate a misplaced page to the specified destination
2054  * node. Caller is expected to have an elevated reference count on
2055  * the page that will be dropped by this function before returning.
2056  */
2057 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2058 			   int node)
2059 {
2060 	pg_data_t *pgdat = NODE_DATA(node);
2061 	int isolated;
2062 	int nr_remaining;
2063 	LIST_HEAD(migratepages);
2064 
2065 	/*
2066 	 * Don't migrate file pages that are mapped in multiple processes
2067 	 * with execute permissions as they are probably shared libraries.
2068 	 */
2069 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2070 	    (vma->vm_flags & VM_EXEC))
2071 		goto out;
2072 
2073 	/*
2074 	 * Also do not migrate dirty pages as not all filesystems can move
2075 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2076 	 */
2077 	if (page_is_file_lru(page) && PageDirty(page))
2078 		goto out;
2079 
2080 	isolated = numamigrate_isolate_page(pgdat, page);
2081 	if (!isolated)
2082 		goto out;
2083 
2084 	list_add(&page->lru, &migratepages);
2085 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2086 				     NULL, node, MIGRATE_ASYNC,
2087 				     MR_NUMA_MISPLACED);
2088 	if (nr_remaining) {
2089 		if (!list_empty(&migratepages)) {
2090 			list_del(&page->lru);
2091 			dec_node_page_state(page, NR_ISOLATED_ANON +
2092 					page_is_file_lru(page));
2093 			putback_lru_page(page);
2094 		}
2095 		isolated = 0;
2096 	} else
2097 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2098 	BUG_ON(!list_empty(&migratepages));
2099 	return isolated;
2100 
2101 out:
2102 	put_page(page);
2103 	return 0;
2104 }
2105 #endif /* CONFIG_NUMA_BALANCING */
2106 
2107 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2108 /*
2109  * Migrates a THP to a given target node. page must be locked and is unlocked
2110  * before returning.
2111  */
2112 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2113 				struct vm_area_struct *vma,
2114 				pmd_t *pmd, pmd_t entry,
2115 				unsigned long address,
2116 				struct page *page, int node)
2117 {
2118 	spinlock_t *ptl;
2119 	pg_data_t *pgdat = NODE_DATA(node);
2120 	int isolated = 0;
2121 	struct page *new_page = NULL;
2122 	int page_lru = page_is_file_lru(page);
2123 	unsigned long start = address & HPAGE_PMD_MASK;
2124 
2125 	new_page = alloc_pages_node(node,
2126 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2127 		HPAGE_PMD_ORDER);
2128 	if (!new_page)
2129 		goto out_fail;
2130 	prep_transhuge_page(new_page);
2131 
2132 	isolated = numamigrate_isolate_page(pgdat, page);
2133 	if (!isolated) {
2134 		put_page(new_page);
2135 		goto out_fail;
2136 	}
2137 
2138 	/* Prepare a page as a migration target */
2139 	__SetPageLocked(new_page);
2140 	if (PageSwapBacked(page))
2141 		__SetPageSwapBacked(new_page);
2142 
2143 	/* anon mapping, we can simply copy page->mapping to the new page: */
2144 	new_page->mapping = page->mapping;
2145 	new_page->index = page->index;
2146 	/* flush the cache before copying using the kernel virtual address */
2147 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2148 	migrate_page_copy(new_page, page);
2149 	WARN_ON(PageLRU(new_page));
2150 
2151 	/* Recheck the target PMD */
2152 	ptl = pmd_lock(mm, pmd);
2153 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2154 		spin_unlock(ptl);
2155 
2156 		/* Reverse changes made by migrate_page_copy() */
2157 		if (TestClearPageActive(new_page))
2158 			SetPageActive(page);
2159 		if (TestClearPageUnevictable(new_page))
2160 			SetPageUnevictable(page);
2161 
2162 		unlock_page(new_page);
2163 		put_page(new_page);		/* Free it */
2164 
2165 		/* Retake the callers reference and putback on LRU */
2166 		get_page(page);
2167 		putback_lru_page(page);
2168 		mod_node_page_state(page_pgdat(page),
2169 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2170 
2171 		goto out_unlock;
2172 	}
2173 
2174 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2175 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2176 
2177 	/*
2178 	 * Overwrite the old entry under pagetable lock and establish
2179 	 * the new PTE. Any parallel GUP will either observe the old
2180 	 * page blocking on the page lock, block on the page table
2181 	 * lock or observe the new page. The SetPageUptodate on the
2182 	 * new page and page_add_new_anon_rmap guarantee the copy is
2183 	 * visible before the pagetable update.
2184 	 */
2185 	page_add_anon_rmap(new_page, vma, start, true);
2186 	/*
2187 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2188 	 * has already been flushed globally.  So no TLB can be currently
2189 	 * caching this non present pmd mapping.  There's no need to clear the
2190 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2191 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2192 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2193 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2194 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2195 	 * pmd.
2196 	 */
2197 	set_pmd_at(mm, start, pmd, entry);
2198 	update_mmu_cache_pmd(vma, address, &entry);
2199 
2200 	page_ref_unfreeze(page, 2);
2201 	mlock_migrate_page(new_page, page);
2202 	page_remove_rmap(page, true);
2203 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2204 
2205 	spin_unlock(ptl);
2206 
2207 	/* Take an "isolate" reference and put new page on the LRU. */
2208 	get_page(new_page);
2209 	putback_lru_page(new_page);
2210 
2211 	unlock_page(new_page);
2212 	unlock_page(page);
2213 	put_page(page);			/* Drop the rmap reference */
2214 	put_page(page);			/* Drop the LRU isolation reference */
2215 
2216 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2217 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2218 
2219 	mod_node_page_state(page_pgdat(page),
2220 			NR_ISOLATED_ANON + page_lru,
2221 			-HPAGE_PMD_NR);
2222 	return isolated;
2223 
2224 out_fail:
2225 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2226 	ptl = pmd_lock(mm, pmd);
2227 	if (pmd_same(*pmd, entry)) {
2228 		entry = pmd_modify(entry, vma->vm_page_prot);
2229 		set_pmd_at(mm, start, pmd, entry);
2230 		update_mmu_cache_pmd(vma, address, &entry);
2231 	}
2232 	spin_unlock(ptl);
2233 
2234 out_unlock:
2235 	unlock_page(page);
2236 	put_page(page);
2237 	return 0;
2238 }
2239 #endif /* CONFIG_NUMA_BALANCING */
2240 
2241 #endif /* CONFIG_NUMA */
2242 
2243 #ifdef CONFIG_DEVICE_PRIVATE
2244 static int migrate_vma_collect_hole(unsigned long start,
2245 				    unsigned long end,
2246 				    __always_unused int depth,
2247 				    struct mm_walk *walk)
2248 {
2249 	struct migrate_vma *migrate = walk->private;
2250 	unsigned long addr;
2251 
2252 	/* Only allow populating anonymous memory. */
2253 	if (!vma_is_anonymous(walk->vma)) {
2254 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2255 			migrate->src[migrate->npages] = 0;
2256 			migrate->dst[migrate->npages] = 0;
2257 			migrate->npages++;
2258 		}
2259 		return 0;
2260 	}
2261 
2262 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2263 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2264 		migrate->dst[migrate->npages] = 0;
2265 		migrate->npages++;
2266 		migrate->cpages++;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int migrate_vma_collect_skip(unsigned long start,
2273 				    unsigned long end,
2274 				    struct mm_walk *walk)
2275 {
2276 	struct migrate_vma *migrate = walk->private;
2277 	unsigned long addr;
2278 
2279 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2280 		migrate->dst[migrate->npages] = 0;
2281 		migrate->src[migrate->npages++] = 0;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2288 				   unsigned long start,
2289 				   unsigned long end,
2290 				   struct mm_walk *walk)
2291 {
2292 	struct migrate_vma *migrate = walk->private;
2293 	struct vm_area_struct *vma = walk->vma;
2294 	struct mm_struct *mm = vma->vm_mm;
2295 	unsigned long addr = start, unmapped = 0;
2296 	spinlock_t *ptl;
2297 	pte_t *ptep;
2298 
2299 again:
2300 	if (pmd_none(*pmdp))
2301 		return migrate_vma_collect_hole(start, end, -1, walk);
2302 
2303 	if (pmd_trans_huge(*pmdp)) {
2304 		struct page *page;
2305 
2306 		ptl = pmd_lock(mm, pmdp);
2307 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2308 			spin_unlock(ptl);
2309 			goto again;
2310 		}
2311 
2312 		page = pmd_page(*pmdp);
2313 		if (is_huge_zero_page(page)) {
2314 			spin_unlock(ptl);
2315 			split_huge_pmd(vma, pmdp, addr);
2316 			if (pmd_trans_unstable(pmdp))
2317 				return migrate_vma_collect_skip(start, end,
2318 								walk);
2319 		} else {
2320 			int ret;
2321 
2322 			get_page(page);
2323 			spin_unlock(ptl);
2324 			if (unlikely(!trylock_page(page)))
2325 				return migrate_vma_collect_skip(start, end,
2326 								walk);
2327 			ret = split_huge_page(page);
2328 			unlock_page(page);
2329 			put_page(page);
2330 			if (ret)
2331 				return migrate_vma_collect_skip(start, end,
2332 								walk);
2333 			if (pmd_none(*pmdp))
2334 				return migrate_vma_collect_hole(start, end, -1,
2335 								walk);
2336 		}
2337 	}
2338 
2339 	if (unlikely(pmd_bad(*pmdp)))
2340 		return migrate_vma_collect_skip(start, end, walk);
2341 
2342 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2343 	arch_enter_lazy_mmu_mode();
2344 
2345 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2346 		unsigned long mpfn = 0, pfn;
2347 		struct page *page;
2348 		swp_entry_t entry;
2349 		pte_t pte;
2350 
2351 		pte = *ptep;
2352 
2353 		if (pte_none(pte)) {
2354 			if (vma_is_anonymous(vma)) {
2355 				mpfn = MIGRATE_PFN_MIGRATE;
2356 				migrate->cpages++;
2357 			}
2358 			goto next;
2359 		}
2360 
2361 		if (!pte_present(pte)) {
2362 			/*
2363 			 * Only care about unaddressable device page special
2364 			 * page table entry. Other special swap entries are not
2365 			 * migratable, and we ignore regular swapped page.
2366 			 */
2367 			entry = pte_to_swp_entry(pte);
2368 			if (!is_device_private_entry(entry))
2369 				goto next;
2370 
2371 			page = device_private_entry_to_page(entry);
2372 			if (!(migrate->flags &
2373 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2374 			    page->pgmap->owner != migrate->pgmap_owner)
2375 				goto next;
2376 
2377 			mpfn = migrate_pfn(page_to_pfn(page)) |
2378 					MIGRATE_PFN_MIGRATE;
2379 			if (is_write_device_private_entry(entry))
2380 				mpfn |= MIGRATE_PFN_WRITE;
2381 		} else {
2382 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2383 				goto next;
2384 			pfn = pte_pfn(pte);
2385 			if (is_zero_pfn(pfn)) {
2386 				mpfn = MIGRATE_PFN_MIGRATE;
2387 				migrate->cpages++;
2388 				goto next;
2389 			}
2390 			page = vm_normal_page(migrate->vma, addr, pte);
2391 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2392 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2393 		}
2394 
2395 		/* FIXME support THP */
2396 		if (!page || !page->mapping || PageTransCompound(page)) {
2397 			mpfn = 0;
2398 			goto next;
2399 		}
2400 
2401 		/*
2402 		 * By getting a reference on the page we pin it and that blocks
2403 		 * any kind of migration. Side effect is that it "freezes" the
2404 		 * pte.
2405 		 *
2406 		 * We drop this reference after isolating the page from the lru
2407 		 * for non device page (device page are not on the lru and thus
2408 		 * can't be dropped from it).
2409 		 */
2410 		get_page(page);
2411 		migrate->cpages++;
2412 
2413 		/*
2414 		 * Optimize for the common case where page is only mapped once
2415 		 * in one process. If we can lock the page, then we can safely
2416 		 * set up a special migration page table entry now.
2417 		 */
2418 		if (trylock_page(page)) {
2419 			pte_t swp_pte;
2420 
2421 			mpfn |= MIGRATE_PFN_LOCKED;
2422 			ptep_get_and_clear(mm, addr, ptep);
2423 
2424 			/* Setup special migration page table entry */
2425 			entry = make_migration_entry(page, mpfn &
2426 						     MIGRATE_PFN_WRITE);
2427 			swp_pte = swp_entry_to_pte(entry);
2428 			if (pte_present(pte)) {
2429 				if (pte_soft_dirty(pte))
2430 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2431 				if (pte_uffd_wp(pte))
2432 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2433 			} else {
2434 				if (pte_swp_soft_dirty(pte))
2435 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2436 				if (pte_swp_uffd_wp(pte))
2437 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2438 			}
2439 			set_pte_at(mm, addr, ptep, swp_pte);
2440 
2441 			/*
2442 			 * This is like regular unmap: we remove the rmap and
2443 			 * drop page refcount. Page won't be freed, as we took
2444 			 * a reference just above.
2445 			 */
2446 			page_remove_rmap(page, false);
2447 			put_page(page);
2448 
2449 			if (pte_present(pte))
2450 				unmapped++;
2451 		}
2452 
2453 next:
2454 		migrate->dst[migrate->npages] = 0;
2455 		migrate->src[migrate->npages++] = mpfn;
2456 	}
2457 	arch_leave_lazy_mmu_mode();
2458 	pte_unmap_unlock(ptep - 1, ptl);
2459 
2460 	/* Only flush the TLB if we actually modified any entries */
2461 	if (unmapped)
2462 		flush_tlb_range(walk->vma, start, end);
2463 
2464 	return 0;
2465 }
2466 
2467 static const struct mm_walk_ops migrate_vma_walk_ops = {
2468 	.pmd_entry		= migrate_vma_collect_pmd,
2469 	.pte_hole		= migrate_vma_collect_hole,
2470 };
2471 
2472 /*
2473  * migrate_vma_collect() - collect pages over a range of virtual addresses
2474  * @migrate: migrate struct containing all migration information
2475  *
2476  * This will walk the CPU page table. For each virtual address backed by a
2477  * valid page, it updates the src array and takes a reference on the page, in
2478  * order to pin the page until we lock it and unmap it.
2479  */
2480 static void migrate_vma_collect(struct migrate_vma *migrate)
2481 {
2482 	struct mmu_notifier_range range;
2483 
2484 	/*
2485 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2486 	 * that the registered device driver can skip invalidating device
2487 	 * private page mappings that won't be migrated.
2488 	 */
2489 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2490 		migrate->vma->vm_mm, migrate->start, migrate->end,
2491 		migrate->pgmap_owner);
2492 	mmu_notifier_invalidate_range_start(&range);
2493 
2494 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2495 			&migrate_vma_walk_ops, migrate);
2496 
2497 	mmu_notifier_invalidate_range_end(&range);
2498 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2499 }
2500 
2501 /*
2502  * migrate_vma_check_page() - check if page is pinned or not
2503  * @page: struct page to check
2504  *
2505  * Pinned pages cannot be migrated. This is the same test as in
2506  * migrate_page_move_mapping(), except that here we allow migration of a
2507  * ZONE_DEVICE page.
2508  */
2509 static bool migrate_vma_check_page(struct page *page)
2510 {
2511 	/*
2512 	 * One extra ref because caller holds an extra reference, either from
2513 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2514 	 * a device page.
2515 	 */
2516 	int extra = 1;
2517 
2518 	/*
2519 	 * FIXME support THP (transparent huge page), it is bit more complex to
2520 	 * check them than regular pages, because they can be mapped with a pmd
2521 	 * or with a pte (split pte mapping).
2522 	 */
2523 	if (PageCompound(page))
2524 		return false;
2525 
2526 	/* Page from ZONE_DEVICE have one extra reference */
2527 	if (is_zone_device_page(page)) {
2528 		/*
2529 		 * Private page can never be pin as they have no valid pte and
2530 		 * GUP will fail for those. Yet if there is a pending migration
2531 		 * a thread might try to wait on the pte migration entry and
2532 		 * will bump the page reference count. Sadly there is no way to
2533 		 * differentiate a regular pin from migration wait. Hence to
2534 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2535 		 * infinite loop (one stoping migration because the other is
2536 		 * waiting on pte migration entry). We always return true here.
2537 		 *
2538 		 * FIXME proper solution is to rework migration_entry_wait() so
2539 		 * it does not need to take a reference on page.
2540 		 */
2541 		return is_device_private_page(page);
2542 	}
2543 
2544 	/* For file back page */
2545 	if (page_mapping(page))
2546 		extra += 1 + page_has_private(page);
2547 
2548 	if ((page_count(page) - extra) > page_mapcount(page))
2549 		return false;
2550 
2551 	return true;
2552 }
2553 
2554 /*
2555  * migrate_vma_prepare() - lock pages and isolate them from the lru
2556  * @migrate: migrate struct containing all migration information
2557  *
2558  * This locks pages that have been collected by migrate_vma_collect(). Once each
2559  * page is locked it is isolated from the lru (for non-device pages). Finally,
2560  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2561  * migrated by concurrent kernel threads.
2562  */
2563 static void migrate_vma_prepare(struct migrate_vma *migrate)
2564 {
2565 	const unsigned long npages = migrate->npages;
2566 	const unsigned long start = migrate->start;
2567 	unsigned long addr, i, restore = 0;
2568 	bool allow_drain = true;
2569 
2570 	lru_add_drain();
2571 
2572 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2573 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2574 		bool remap = true;
2575 
2576 		if (!page)
2577 			continue;
2578 
2579 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2580 			/*
2581 			 * Because we are migrating several pages there can be
2582 			 * a deadlock between 2 concurrent migration where each
2583 			 * are waiting on each other page lock.
2584 			 *
2585 			 * Make migrate_vma() a best effort thing and backoff
2586 			 * for any page we can not lock right away.
2587 			 */
2588 			if (!trylock_page(page)) {
2589 				migrate->src[i] = 0;
2590 				migrate->cpages--;
2591 				put_page(page);
2592 				continue;
2593 			}
2594 			remap = false;
2595 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2596 		}
2597 
2598 		/* ZONE_DEVICE pages are not on LRU */
2599 		if (!is_zone_device_page(page)) {
2600 			if (!PageLRU(page) && allow_drain) {
2601 				/* Drain CPU's pagevec */
2602 				lru_add_drain_all();
2603 				allow_drain = false;
2604 			}
2605 
2606 			if (isolate_lru_page(page)) {
2607 				if (remap) {
2608 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2609 					migrate->cpages--;
2610 					restore++;
2611 				} else {
2612 					migrate->src[i] = 0;
2613 					unlock_page(page);
2614 					migrate->cpages--;
2615 					put_page(page);
2616 				}
2617 				continue;
2618 			}
2619 
2620 			/* Drop the reference we took in collect */
2621 			put_page(page);
2622 		}
2623 
2624 		if (!migrate_vma_check_page(page)) {
2625 			if (remap) {
2626 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2627 				migrate->cpages--;
2628 				restore++;
2629 
2630 				if (!is_zone_device_page(page)) {
2631 					get_page(page);
2632 					putback_lru_page(page);
2633 				}
2634 			} else {
2635 				migrate->src[i] = 0;
2636 				unlock_page(page);
2637 				migrate->cpages--;
2638 
2639 				if (!is_zone_device_page(page))
2640 					putback_lru_page(page);
2641 				else
2642 					put_page(page);
2643 			}
2644 		}
2645 	}
2646 
2647 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2648 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2649 
2650 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2651 			continue;
2652 
2653 		remove_migration_pte(page, migrate->vma, addr, page);
2654 
2655 		migrate->src[i] = 0;
2656 		unlock_page(page);
2657 		put_page(page);
2658 		restore--;
2659 	}
2660 }
2661 
2662 /*
2663  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2664  * @migrate: migrate struct containing all migration information
2665  *
2666  * Replace page mapping (CPU page table pte) with a special migration pte entry
2667  * and check again if it has been pinned. Pinned pages are restored because we
2668  * cannot migrate them.
2669  *
2670  * This is the last step before we call the device driver callback to allocate
2671  * destination memory and copy contents of original page over to new page.
2672  */
2673 static void migrate_vma_unmap(struct migrate_vma *migrate)
2674 {
2675 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2676 	const unsigned long npages = migrate->npages;
2677 	const unsigned long start = migrate->start;
2678 	unsigned long addr, i, restore = 0;
2679 
2680 	for (i = 0; i < npages; i++) {
2681 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2682 
2683 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2684 			continue;
2685 
2686 		if (page_mapped(page)) {
2687 			try_to_unmap(page, flags);
2688 			if (page_mapped(page))
2689 				goto restore;
2690 		}
2691 
2692 		if (migrate_vma_check_page(page))
2693 			continue;
2694 
2695 restore:
2696 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2697 		migrate->cpages--;
2698 		restore++;
2699 	}
2700 
2701 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2702 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2703 
2704 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2705 			continue;
2706 
2707 		remove_migration_ptes(page, page, false);
2708 
2709 		migrate->src[i] = 0;
2710 		unlock_page(page);
2711 		restore--;
2712 
2713 		if (is_zone_device_page(page))
2714 			put_page(page);
2715 		else
2716 			putback_lru_page(page);
2717 	}
2718 }
2719 
2720 /**
2721  * migrate_vma_setup() - prepare to migrate a range of memory
2722  * @args: contains the vma, start, and pfns arrays for the migration
2723  *
2724  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2725  * without an error.
2726  *
2727  * Prepare to migrate a range of memory virtual address range by collecting all
2728  * the pages backing each virtual address in the range, saving them inside the
2729  * src array.  Then lock those pages and unmap them. Once the pages are locked
2730  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2731  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2732  * corresponding src array entry.  Then restores any pages that are pinned, by
2733  * remapping and unlocking those pages.
2734  *
2735  * The caller should then allocate destination memory and copy source memory to
2736  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2737  * flag set).  Once these are allocated and copied, the caller must update each
2738  * corresponding entry in the dst array with the pfn value of the destination
2739  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2740  * (destination pages must have their struct pages locked, via lock_page()).
2741  *
2742  * Note that the caller does not have to migrate all the pages that are marked
2743  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2744  * device memory to system memory.  If the caller cannot migrate a device page
2745  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2746  * consequences for the userspace process, so it must be avoided if at all
2747  * possible.
2748  *
2749  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2750  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2751  * allowing the caller to allocate device memory for those unback virtual
2752  * address.  For this the caller simply has to allocate device memory and
2753  * properly set the destination entry like for regular migration.  Note that
2754  * this can still fails and thus inside the device driver must check if the
2755  * migration was successful for those entries after calling migrate_vma_pages()
2756  * just like for regular migration.
2757  *
2758  * After that, the callers must call migrate_vma_pages() to go over each entry
2759  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2760  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2761  * then migrate_vma_pages() to migrate struct page information from the source
2762  * struct page to the destination struct page.  If it fails to migrate the
2763  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2764  * src array.
2765  *
2766  * At this point all successfully migrated pages have an entry in the src
2767  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2768  * array entry with MIGRATE_PFN_VALID flag set.
2769  *
2770  * Once migrate_vma_pages() returns the caller may inspect which pages were
2771  * successfully migrated, and which were not.  Successfully migrated pages will
2772  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2773  *
2774  * It is safe to update device page table after migrate_vma_pages() because
2775  * both destination and source page are still locked, and the mmap_lock is held
2776  * in read mode (hence no one can unmap the range being migrated).
2777  *
2778  * Once the caller is done cleaning up things and updating its page table (if it
2779  * chose to do so, this is not an obligation) it finally calls
2780  * migrate_vma_finalize() to update the CPU page table to point to new pages
2781  * for successfully migrated pages or otherwise restore the CPU page table to
2782  * point to the original source pages.
2783  */
2784 int migrate_vma_setup(struct migrate_vma *args)
2785 {
2786 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2787 
2788 	args->start &= PAGE_MASK;
2789 	args->end &= PAGE_MASK;
2790 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2791 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2792 		return -EINVAL;
2793 	if (nr_pages <= 0)
2794 		return -EINVAL;
2795 	if (args->start < args->vma->vm_start ||
2796 	    args->start >= args->vma->vm_end)
2797 		return -EINVAL;
2798 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2799 		return -EINVAL;
2800 	if (!args->src || !args->dst)
2801 		return -EINVAL;
2802 
2803 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2804 	args->cpages = 0;
2805 	args->npages = 0;
2806 
2807 	migrate_vma_collect(args);
2808 
2809 	if (args->cpages)
2810 		migrate_vma_prepare(args);
2811 	if (args->cpages)
2812 		migrate_vma_unmap(args);
2813 
2814 	/*
2815 	 * At this point pages are locked and unmapped, and thus they have
2816 	 * stable content and can safely be copied to destination memory that
2817 	 * is allocated by the drivers.
2818 	 */
2819 	return 0;
2820 
2821 }
2822 EXPORT_SYMBOL(migrate_vma_setup);
2823 
2824 /*
2825  * This code closely matches the code in:
2826  *   __handle_mm_fault()
2827  *     handle_pte_fault()
2828  *       do_anonymous_page()
2829  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2830  * private page.
2831  */
2832 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2833 				    unsigned long addr,
2834 				    struct page *page,
2835 				    unsigned long *src,
2836 				    unsigned long *dst)
2837 {
2838 	struct vm_area_struct *vma = migrate->vma;
2839 	struct mm_struct *mm = vma->vm_mm;
2840 	bool flush = false;
2841 	spinlock_t *ptl;
2842 	pte_t entry;
2843 	pgd_t *pgdp;
2844 	p4d_t *p4dp;
2845 	pud_t *pudp;
2846 	pmd_t *pmdp;
2847 	pte_t *ptep;
2848 
2849 	/* Only allow populating anonymous memory */
2850 	if (!vma_is_anonymous(vma))
2851 		goto abort;
2852 
2853 	pgdp = pgd_offset(mm, addr);
2854 	p4dp = p4d_alloc(mm, pgdp, addr);
2855 	if (!p4dp)
2856 		goto abort;
2857 	pudp = pud_alloc(mm, p4dp, addr);
2858 	if (!pudp)
2859 		goto abort;
2860 	pmdp = pmd_alloc(mm, pudp, addr);
2861 	if (!pmdp)
2862 		goto abort;
2863 
2864 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2865 		goto abort;
2866 
2867 	/*
2868 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2869 	 * pte_offset_map() on pmds where a huge pmd might be created
2870 	 * from a different thread.
2871 	 *
2872 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2873 	 * parallel threads are excluded by other means.
2874 	 *
2875 	 * Here we only have mmap_read_lock(mm).
2876 	 */
2877 	if (pte_alloc(mm, pmdp))
2878 		goto abort;
2879 
2880 	/* See the comment in pte_alloc_one_map() */
2881 	if (unlikely(pmd_trans_unstable(pmdp)))
2882 		goto abort;
2883 
2884 	if (unlikely(anon_vma_prepare(vma)))
2885 		goto abort;
2886 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2887 		goto abort;
2888 
2889 	/*
2890 	 * The memory barrier inside __SetPageUptodate makes sure that
2891 	 * preceding stores to the page contents become visible before
2892 	 * the set_pte_at() write.
2893 	 */
2894 	__SetPageUptodate(page);
2895 
2896 	if (is_zone_device_page(page)) {
2897 		if (is_device_private_page(page)) {
2898 			swp_entry_t swp_entry;
2899 
2900 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2901 			entry = swp_entry_to_pte(swp_entry);
2902 		}
2903 	} else {
2904 		entry = mk_pte(page, vma->vm_page_prot);
2905 		if (vma->vm_flags & VM_WRITE)
2906 			entry = pte_mkwrite(pte_mkdirty(entry));
2907 	}
2908 
2909 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2910 
2911 	if (check_stable_address_space(mm))
2912 		goto unlock_abort;
2913 
2914 	if (pte_present(*ptep)) {
2915 		unsigned long pfn = pte_pfn(*ptep);
2916 
2917 		if (!is_zero_pfn(pfn))
2918 			goto unlock_abort;
2919 		flush = true;
2920 	} else if (!pte_none(*ptep))
2921 		goto unlock_abort;
2922 
2923 	/*
2924 	 * Check for userfaultfd but do not deliver the fault. Instead,
2925 	 * just back off.
2926 	 */
2927 	if (userfaultfd_missing(vma))
2928 		goto unlock_abort;
2929 
2930 	inc_mm_counter(mm, MM_ANONPAGES);
2931 	page_add_new_anon_rmap(page, vma, addr, false);
2932 	if (!is_zone_device_page(page))
2933 		lru_cache_add_inactive_or_unevictable(page, vma);
2934 	get_page(page);
2935 
2936 	if (flush) {
2937 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2938 		ptep_clear_flush_notify(vma, addr, ptep);
2939 		set_pte_at_notify(mm, addr, ptep, entry);
2940 		update_mmu_cache(vma, addr, ptep);
2941 	} else {
2942 		/* No need to invalidate - it was non-present before */
2943 		set_pte_at(mm, addr, ptep, entry);
2944 		update_mmu_cache(vma, addr, ptep);
2945 	}
2946 
2947 	pte_unmap_unlock(ptep, ptl);
2948 	*src = MIGRATE_PFN_MIGRATE;
2949 	return;
2950 
2951 unlock_abort:
2952 	pte_unmap_unlock(ptep, ptl);
2953 abort:
2954 	*src &= ~MIGRATE_PFN_MIGRATE;
2955 }
2956 
2957 /**
2958  * migrate_vma_pages() - migrate meta-data from src page to dst page
2959  * @migrate: migrate struct containing all migration information
2960  *
2961  * This migrates struct page meta-data from source struct page to destination
2962  * struct page. This effectively finishes the migration from source page to the
2963  * destination page.
2964  */
2965 void migrate_vma_pages(struct migrate_vma *migrate)
2966 {
2967 	const unsigned long npages = migrate->npages;
2968 	const unsigned long start = migrate->start;
2969 	struct mmu_notifier_range range;
2970 	unsigned long addr, i;
2971 	bool notified = false;
2972 
2973 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2974 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2975 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2976 		struct address_space *mapping;
2977 		int r;
2978 
2979 		if (!newpage) {
2980 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2981 			continue;
2982 		}
2983 
2984 		if (!page) {
2985 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2986 				continue;
2987 			if (!notified) {
2988 				notified = true;
2989 
2990 				mmu_notifier_range_init(&range,
2991 							MMU_NOTIFY_CLEAR, 0,
2992 							NULL,
2993 							migrate->vma->vm_mm,
2994 							addr, migrate->end);
2995 				mmu_notifier_invalidate_range_start(&range);
2996 			}
2997 			migrate_vma_insert_page(migrate, addr, newpage,
2998 						&migrate->src[i],
2999 						&migrate->dst[i]);
3000 			continue;
3001 		}
3002 
3003 		mapping = page_mapping(page);
3004 
3005 		if (is_zone_device_page(newpage)) {
3006 			if (is_device_private_page(newpage)) {
3007 				/*
3008 				 * For now only support private anonymous when
3009 				 * migrating to un-addressable device memory.
3010 				 */
3011 				if (mapping) {
3012 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3013 					continue;
3014 				}
3015 			} else {
3016 				/*
3017 				 * Other types of ZONE_DEVICE page are not
3018 				 * supported.
3019 				 */
3020 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3021 				continue;
3022 			}
3023 		}
3024 
3025 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3026 		if (r != MIGRATEPAGE_SUCCESS)
3027 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3028 	}
3029 
3030 	/*
3031 	 * No need to double call mmu_notifier->invalidate_range() callback as
3032 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3033 	 * did already call it.
3034 	 */
3035 	if (notified)
3036 		mmu_notifier_invalidate_range_only_end(&range);
3037 }
3038 EXPORT_SYMBOL(migrate_vma_pages);
3039 
3040 /**
3041  * migrate_vma_finalize() - restore CPU page table entry
3042  * @migrate: migrate struct containing all migration information
3043  *
3044  * This replaces the special migration pte entry with either a mapping to the
3045  * new page if migration was successful for that page, or to the original page
3046  * otherwise.
3047  *
3048  * This also unlocks the pages and puts them back on the lru, or drops the extra
3049  * refcount, for device pages.
3050  */
3051 void migrate_vma_finalize(struct migrate_vma *migrate)
3052 {
3053 	const unsigned long npages = migrate->npages;
3054 	unsigned long i;
3055 
3056 	for (i = 0; i < npages; i++) {
3057 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3058 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3059 
3060 		if (!page) {
3061 			if (newpage) {
3062 				unlock_page(newpage);
3063 				put_page(newpage);
3064 			}
3065 			continue;
3066 		}
3067 
3068 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3069 			if (newpage) {
3070 				unlock_page(newpage);
3071 				put_page(newpage);
3072 			}
3073 			newpage = page;
3074 		}
3075 
3076 		remove_migration_ptes(page, newpage, false);
3077 		unlock_page(page);
3078 		migrate->cpages--;
3079 
3080 		if (is_zone_device_page(page))
3081 			put_page(page);
3082 		else
3083 			putback_lru_page(page);
3084 
3085 		if (newpage != page) {
3086 			unlock_page(newpage);
3087 			if (is_zone_device_page(newpage))
3088 				put_page(newpage);
3089 			else
3090 				putback_lru_page(newpage);
3091 		}
3092 	}
3093 }
3094 EXPORT_SYMBOL(migrate_vma_finalize);
3095 #endif /* CONFIG_DEVICE_PRIVATE */
3096