1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 41 #include <asm/tlbflush.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/migrate.h> 45 46 #include "internal.h" 47 48 /* 49 * migrate_prep() needs to be called before we start compiling a list of pages 50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 51 * undesirable, use migrate_prep_local() 52 */ 53 int migrate_prep(void) 54 { 55 /* 56 * Clear the LRU lists so pages can be isolated. 57 * Note that pages may be moved off the LRU after we have 58 * drained them. Those pages will fail to migrate like other 59 * pages that may be busy. 60 */ 61 lru_add_drain_all(); 62 63 return 0; 64 } 65 66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 67 int migrate_prep_local(void) 68 { 69 lru_add_drain(); 70 71 return 0; 72 } 73 74 /* 75 * Put previously isolated pages back onto the appropriate lists 76 * from where they were once taken off for compaction/migration. 77 * 78 * This function shall be used whenever the isolated pageset has been 79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 80 * and isolate_huge_page(). 81 */ 82 void putback_movable_pages(struct list_head *l) 83 { 84 struct page *page; 85 struct page *page2; 86 87 list_for_each_entry_safe(page, page2, l, lru) { 88 if (unlikely(PageHuge(page))) { 89 putback_active_hugepage(page); 90 continue; 91 } 92 list_del(&page->lru); 93 dec_zone_page_state(page, NR_ISOLATED_ANON + 94 page_is_file_cache(page)); 95 if (unlikely(isolated_balloon_page(page))) 96 balloon_page_putback(page); 97 else 98 putback_lru_page(page); 99 } 100 } 101 102 /* 103 * Restore a potential migration pte to a working pte entry 104 */ 105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 106 unsigned long addr, void *old) 107 { 108 struct mm_struct *mm = vma->vm_mm; 109 swp_entry_t entry; 110 pmd_t *pmd; 111 pte_t *ptep, pte; 112 spinlock_t *ptl; 113 114 if (unlikely(PageHuge(new))) { 115 ptep = huge_pte_offset(mm, addr); 116 if (!ptep) 117 goto out; 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 119 } else { 120 pmd = mm_find_pmd(mm, addr); 121 if (!pmd) 122 goto out; 123 124 ptep = pte_offset_map(pmd, addr); 125 126 /* 127 * Peek to check is_swap_pte() before taking ptlock? No, we 128 * can race mremap's move_ptes(), which skips anon_vma lock. 129 */ 130 131 ptl = pte_lockptr(mm, pmd); 132 } 133 134 spin_lock(ptl); 135 pte = *ptep; 136 if (!is_swap_pte(pte)) 137 goto unlock; 138 139 entry = pte_to_swp_entry(pte); 140 141 if (!is_migration_entry(entry) || 142 migration_entry_to_page(entry) != old) 143 goto unlock; 144 145 get_page(new); 146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 147 if (pte_swp_soft_dirty(*ptep)) 148 pte = pte_mksoft_dirty(pte); 149 150 /* Recheck VMA as permissions can change since migration started */ 151 if (is_write_migration_entry(entry)) 152 pte = maybe_mkwrite(pte, vma); 153 154 #ifdef CONFIG_HUGETLB_PAGE 155 if (PageHuge(new)) { 156 pte = pte_mkhuge(pte); 157 pte = arch_make_huge_pte(pte, vma, new, 0); 158 } 159 #endif 160 flush_dcache_page(new); 161 set_pte_at(mm, addr, ptep, pte); 162 163 if (PageHuge(new)) { 164 if (PageAnon(new)) 165 hugepage_add_anon_rmap(new, vma, addr); 166 else 167 page_dup_rmap(new); 168 } else if (PageAnon(new)) 169 page_add_anon_rmap(new, vma, addr); 170 else 171 page_add_file_rmap(new); 172 173 /* No need to invalidate - it was non-present before */ 174 update_mmu_cache(vma, addr, ptep); 175 unlock: 176 pte_unmap_unlock(ptep, ptl); 177 out: 178 return SWAP_AGAIN; 179 } 180 181 /* 182 * Congratulations to trinity for discovering this bug. 183 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to 184 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then 185 * replace the specified range by file ptes throughout (maybe populated after). 186 * If page migration finds a page within that range, while it's still located 187 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem: 188 * zap_pte() clears the temporary migration entry before mmap_sem is dropped. 189 * But if the migrating page is in a part of the vma outside the range to be 190 * remapped, then it will not be cleared, and remove_migration_ptes() needs to 191 * deal with it. Fortunately, this part of the vma is of course still linear, 192 * so we just need to use linear location on the nonlinear list. 193 */ 194 static int remove_linear_migration_ptes_from_nonlinear(struct page *page, 195 struct address_space *mapping, void *arg) 196 { 197 struct vm_area_struct *vma; 198 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */ 199 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 200 unsigned long addr; 201 202 list_for_each_entry(vma, 203 &mapping->i_mmap_nonlinear, shared.nonlinear) { 204 205 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 206 if (addr >= vma->vm_start && addr < vma->vm_end) 207 remove_migration_pte(page, vma, addr, arg); 208 } 209 return SWAP_AGAIN; 210 } 211 212 /* 213 * Get rid of all migration entries and replace them by 214 * references to the indicated page. 215 */ 216 static void remove_migration_ptes(struct page *old, struct page *new) 217 { 218 struct rmap_walk_control rwc = { 219 .rmap_one = remove_migration_pte, 220 .arg = old, 221 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear, 222 }; 223 224 rmap_walk(new, &rwc); 225 } 226 227 /* 228 * Something used the pte of a page under migration. We need to 229 * get to the page and wait until migration is finished. 230 * When we return from this function the fault will be retried. 231 */ 232 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 233 spinlock_t *ptl) 234 { 235 pte_t pte; 236 swp_entry_t entry; 237 struct page *page; 238 239 spin_lock(ptl); 240 pte = *ptep; 241 if (!is_swap_pte(pte)) 242 goto out; 243 244 entry = pte_to_swp_entry(pte); 245 if (!is_migration_entry(entry)) 246 goto out; 247 248 page = migration_entry_to_page(entry); 249 250 /* 251 * Once radix-tree replacement of page migration started, page_count 252 * *must* be zero. And, we don't want to call wait_on_page_locked() 253 * against a page without get_page(). 254 * So, we use get_page_unless_zero(), here. Even failed, page fault 255 * will occur again. 256 */ 257 if (!get_page_unless_zero(page)) 258 goto out; 259 pte_unmap_unlock(ptep, ptl); 260 wait_on_page_locked(page); 261 put_page(page); 262 return; 263 out: 264 pte_unmap_unlock(ptep, ptl); 265 } 266 267 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 268 unsigned long address) 269 { 270 spinlock_t *ptl = pte_lockptr(mm, pmd); 271 pte_t *ptep = pte_offset_map(pmd, address); 272 __migration_entry_wait(mm, ptep, ptl); 273 } 274 275 void migration_entry_wait_huge(struct vm_area_struct *vma, 276 struct mm_struct *mm, pte_t *pte) 277 { 278 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 279 __migration_entry_wait(mm, pte, ptl); 280 } 281 282 #ifdef CONFIG_BLOCK 283 /* Returns true if all buffers are successfully locked */ 284 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 285 enum migrate_mode mode) 286 { 287 struct buffer_head *bh = head; 288 289 /* Simple case, sync compaction */ 290 if (mode != MIGRATE_ASYNC) { 291 do { 292 get_bh(bh); 293 lock_buffer(bh); 294 bh = bh->b_this_page; 295 296 } while (bh != head); 297 298 return true; 299 } 300 301 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 302 do { 303 get_bh(bh); 304 if (!trylock_buffer(bh)) { 305 /* 306 * We failed to lock the buffer and cannot stall in 307 * async migration. Release the taken locks 308 */ 309 struct buffer_head *failed_bh = bh; 310 put_bh(failed_bh); 311 bh = head; 312 while (bh != failed_bh) { 313 unlock_buffer(bh); 314 put_bh(bh); 315 bh = bh->b_this_page; 316 } 317 return false; 318 } 319 320 bh = bh->b_this_page; 321 } while (bh != head); 322 return true; 323 } 324 #else 325 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 326 enum migrate_mode mode) 327 { 328 return true; 329 } 330 #endif /* CONFIG_BLOCK */ 331 332 /* 333 * Replace the page in the mapping. 334 * 335 * The number of remaining references must be: 336 * 1 for anonymous pages without a mapping 337 * 2 for pages with a mapping 338 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 339 */ 340 int migrate_page_move_mapping(struct address_space *mapping, 341 struct page *newpage, struct page *page, 342 struct buffer_head *head, enum migrate_mode mode, 343 int extra_count) 344 { 345 int expected_count = 1 + extra_count; 346 void **pslot; 347 348 if (!mapping) { 349 /* Anonymous page without mapping */ 350 if (page_count(page) != expected_count) 351 return -EAGAIN; 352 return MIGRATEPAGE_SUCCESS; 353 } 354 355 spin_lock_irq(&mapping->tree_lock); 356 357 pslot = radix_tree_lookup_slot(&mapping->page_tree, 358 page_index(page)); 359 360 expected_count += 1 + page_has_private(page); 361 if (page_count(page) != expected_count || 362 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 363 spin_unlock_irq(&mapping->tree_lock); 364 return -EAGAIN; 365 } 366 367 if (!page_freeze_refs(page, expected_count)) { 368 spin_unlock_irq(&mapping->tree_lock); 369 return -EAGAIN; 370 } 371 372 /* 373 * In the async migration case of moving a page with buffers, lock the 374 * buffers using trylock before the mapping is moved. If the mapping 375 * was moved, we later failed to lock the buffers and could not move 376 * the mapping back due to an elevated page count, we would have to 377 * block waiting on other references to be dropped. 378 */ 379 if (mode == MIGRATE_ASYNC && head && 380 !buffer_migrate_lock_buffers(head, mode)) { 381 page_unfreeze_refs(page, expected_count); 382 spin_unlock_irq(&mapping->tree_lock); 383 return -EAGAIN; 384 } 385 386 /* 387 * Now we know that no one else is looking at the page. 388 */ 389 get_page(newpage); /* add cache reference */ 390 if (PageSwapCache(page)) { 391 SetPageSwapCache(newpage); 392 set_page_private(newpage, page_private(page)); 393 } 394 395 radix_tree_replace_slot(pslot, newpage); 396 397 /* 398 * Drop cache reference from old page by unfreezing 399 * to one less reference. 400 * We know this isn't the last reference. 401 */ 402 page_unfreeze_refs(page, expected_count - 1); 403 404 /* 405 * If moved to a different zone then also account 406 * the page for that zone. Other VM counters will be 407 * taken care of when we establish references to the 408 * new page and drop references to the old page. 409 * 410 * Note that anonymous pages are accounted for 411 * via NR_FILE_PAGES and NR_ANON_PAGES if they 412 * are mapped to swap space. 413 */ 414 __dec_zone_page_state(page, NR_FILE_PAGES); 415 __inc_zone_page_state(newpage, NR_FILE_PAGES); 416 if (!PageSwapCache(page) && PageSwapBacked(page)) { 417 __dec_zone_page_state(page, NR_SHMEM); 418 __inc_zone_page_state(newpage, NR_SHMEM); 419 } 420 spin_unlock_irq(&mapping->tree_lock); 421 422 return MIGRATEPAGE_SUCCESS; 423 } 424 425 /* 426 * The expected number of remaining references is the same as that 427 * of migrate_page_move_mapping(). 428 */ 429 int migrate_huge_page_move_mapping(struct address_space *mapping, 430 struct page *newpage, struct page *page) 431 { 432 int expected_count; 433 void **pslot; 434 435 if (!mapping) { 436 if (page_count(page) != 1) 437 return -EAGAIN; 438 return MIGRATEPAGE_SUCCESS; 439 } 440 441 spin_lock_irq(&mapping->tree_lock); 442 443 pslot = radix_tree_lookup_slot(&mapping->page_tree, 444 page_index(page)); 445 446 expected_count = 2 + page_has_private(page); 447 if (page_count(page) != expected_count || 448 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 449 spin_unlock_irq(&mapping->tree_lock); 450 return -EAGAIN; 451 } 452 453 if (!page_freeze_refs(page, expected_count)) { 454 spin_unlock_irq(&mapping->tree_lock); 455 return -EAGAIN; 456 } 457 458 get_page(newpage); 459 460 radix_tree_replace_slot(pslot, newpage); 461 462 page_unfreeze_refs(page, expected_count - 1); 463 464 spin_unlock_irq(&mapping->tree_lock); 465 return MIGRATEPAGE_SUCCESS; 466 } 467 468 /* 469 * Gigantic pages are so large that we do not guarantee that page++ pointer 470 * arithmetic will work across the entire page. We need something more 471 * specialized. 472 */ 473 static void __copy_gigantic_page(struct page *dst, struct page *src, 474 int nr_pages) 475 { 476 int i; 477 struct page *dst_base = dst; 478 struct page *src_base = src; 479 480 for (i = 0; i < nr_pages; ) { 481 cond_resched(); 482 copy_highpage(dst, src); 483 484 i++; 485 dst = mem_map_next(dst, dst_base, i); 486 src = mem_map_next(src, src_base, i); 487 } 488 } 489 490 static void copy_huge_page(struct page *dst, struct page *src) 491 { 492 int i; 493 int nr_pages; 494 495 if (PageHuge(src)) { 496 /* hugetlbfs page */ 497 struct hstate *h = page_hstate(src); 498 nr_pages = pages_per_huge_page(h); 499 500 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 501 __copy_gigantic_page(dst, src, nr_pages); 502 return; 503 } 504 } else { 505 /* thp page */ 506 BUG_ON(!PageTransHuge(src)); 507 nr_pages = hpage_nr_pages(src); 508 } 509 510 for (i = 0; i < nr_pages; i++) { 511 cond_resched(); 512 copy_highpage(dst + i, src + i); 513 } 514 } 515 516 /* 517 * Copy the page to its new location 518 */ 519 void migrate_page_copy(struct page *newpage, struct page *page) 520 { 521 int cpupid; 522 523 if (PageHuge(page) || PageTransHuge(page)) 524 copy_huge_page(newpage, page); 525 else 526 copy_highpage(newpage, page); 527 528 if (PageError(page)) 529 SetPageError(newpage); 530 if (PageReferenced(page)) 531 SetPageReferenced(newpage); 532 if (PageUptodate(page)) 533 SetPageUptodate(newpage); 534 if (TestClearPageActive(page)) { 535 VM_BUG_ON_PAGE(PageUnevictable(page), page); 536 SetPageActive(newpage); 537 } else if (TestClearPageUnevictable(page)) 538 SetPageUnevictable(newpage); 539 if (PageChecked(page)) 540 SetPageChecked(newpage); 541 if (PageMappedToDisk(page)) 542 SetPageMappedToDisk(newpage); 543 544 if (PageDirty(page)) { 545 clear_page_dirty_for_io(page); 546 /* 547 * Want to mark the page and the radix tree as dirty, and 548 * redo the accounting that clear_page_dirty_for_io undid, 549 * but we can't use set_page_dirty because that function 550 * is actually a signal that all of the page has become dirty. 551 * Whereas only part of our page may be dirty. 552 */ 553 if (PageSwapBacked(page)) 554 SetPageDirty(newpage); 555 else 556 __set_page_dirty_nobuffers(newpage); 557 } 558 559 /* 560 * Copy NUMA information to the new page, to prevent over-eager 561 * future migrations of this same page. 562 */ 563 cpupid = page_cpupid_xchg_last(page, -1); 564 page_cpupid_xchg_last(newpage, cpupid); 565 566 mlock_migrate_page(newpage, page); 567 ksm_migrate_page(newpage, page); 568 /* 569 * Please do not reorder this without considering how mm/ksm.c's 570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 571 */ 572 ClearPageSwapCache(page); 573 ClearPagePrivate(page); 574 set_page_private(page, 0); 575 576 /* 577 * If any waiters have accumulated on the new page then 578 * wake them up. 579 */ 580 if (PageWriteback(newpage)) 581 end_page_writeback(newpage); 582 } 583 584 /************************************************************ 585 * Migration functions 586 ***********************************************************/ 587 588 /* 589 * Common logic to directly migrate a single page suitable for 590 * pages that do not use PagePrivate/PagePrivate2. 591 * 592 * Pages are locked upon entry and exit. 593 */ 594 int migrate_page(struct address_space *mapping, 595 struct page *newpage, struct page *page, 596 enum migrate_mode mode) 597 { 598 int rc; 599 600 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 601 602 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 603 604 if (rc != MIGRATEPAGE_SUCCESS) 605 return rc; 606 607 migrate_page_copy(newpage, page); 608 return MIGRATEPAGE_SUCCESS; 609 } 610 EXPORT_SYMBOL(migrate_page); 611 612 #ifdef CONFIG_BLOCK 613 /* 614 * Migration function for pages with buffers. This function can only be used 615 * if the underlying filesystem guarantees that no other references to "page" 616 * exist. 617 */ 618 int buffer_migrate_page(struct address_space *mapping, 619 struct page *newpage, struct page *page, enum migrate_mode mode) 620 { 621 struct buffer_head *bh, *head; 622 int rc; 623 624 if (!page_has_buffers(page)) 625 return migrate_page(mapping, newpage, page, mode); 626 627 head = page_buffers(page); 628 629 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 630 631 if (rc != MIGRATEPAGE_SUCCESS) 632 return rc; 633 634 /* 635 * In the async case, migrate_page_move_mapping locked the buffers 636 * with an IRQ-safe spinlock held. In the sync case, the buffers 637 * need to be locked now 638 */ 639 if (mode != MIGRATE_ASYNC) 640 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 641 642 ClearPagePrivate(page); 643 set_page_private(newpage, page_private(page)); 644 set_page_private(page, 0); 645 put_page(page); 646 get_page(newpage); 647 648 bh = head; 649 do { 650 set_bh_page(bh, newpage, bh_offset(bh)); 651 bh = bh->b_this_page; 652 653 } while (bh != head); 654 655 SetPagePrivate(newpage); 656 657 migrate_page_copy(newpage, page); 658 659 bh = head; 660 do { 661 unlock_buffer(bh); 662 put_bh(bh); 663 bh = bh->b_this_page; 664 665 } while (bh != head); 666 667 return MIGRATEPAGE_SUCCESS; 668 } 669 EXPORT_SYMBOL(buffer_migrate_page); 670 #endif 671 672 /* 673 * Writeback a page to clean the dirty state 674 */ 675 static int writeout(struct address_space *mapping, struct page *page) 676 { 677 struct writeback_control wbc = { 678 .sync_mode = WB_SYNC_NONE, 679 .nr_to_write = 1, 680 .range_start = 0, 681 .range_end = LLONG_MAX, 682 .for_reclaim = 1 683 }; 684 int rc; 685 686 if (!mapping->a_ops->writepage) 687 /* No write method for the address space */ 688 return -EINVAL; 689 690 if (!clear_page_dirty_for_io(page)) 691 /* Someone else already triggered a write */ 692 return -EAGAIN; 693 694 /* 695 * A dirty page may imply that the underlying filesystem has 696 * the page on some queue. So the page must be clean for 697 * migration. Writeout may mean we loose the lock and the 698 * page state is no longer what we checked for earlier. 699 * At this point we know that the migration attempt cannot 700 * be successful. 701 */ 702 remove_migration_ptes(page, page); 703 704 rc = mapping->a_ops->writepage(page, &wbc); 705 706 if (rc != AOP_WRITEPAGE_ACTIVATE) 707 /* unlocked. Relock */ 708 lock_page(page); 709 710 return (rc < 0) ? -EIO : -EAGAIN; 711 } 712 713 /* 714 * Default handling if a filesystem does not provide a migration function. 715 */ 716 static int fallback_migrate_page(struct address_space *mapping, 717 struct page *newpage, struct page *page, enum migrate_mode mode) 718 { 719 if (PageDirty(page)) { 720 /* Only writeback pages in full synchronous migration */ 721 if (mode != MIGRATE_SYNC) 722 return -EBUSY; 723 return writeout(mapping, page); 724 } 725 726 /* 727 * Buffers may be managed in a filesystem specific way. 728 * We must have no buffers or drop them. 729 */ 730 if (page_has_private(page) && 731 !try_to_release_page(page, GFP_KERNEL)) 732 return -EAGAIN; 733 734 return migrate_page(mapping, newpage, page, mode); 735 } 736 737 /* 738 * Move a page to a newly allocated page 739 * The page is locked and all ptes have been successfully removed. 740 * 741 * The new page will have replaced the old page if this function 742 * is successful. 743 * 744 * Return value: 745 * < 0 - error code 746 * MIGRATEPAGE_SUCCESS - success 747 */ 748 static int move_to_new_page(struct page *newpage, struct page *page, 749 int remap_swapcache, enum migrate_mode mode) 750 { 751 struct address_space *mapping; 752 int rc; 753 754 /* 755 * Block others from accessing the page when we get around to 756 * establishing additional references. We are the only one 757 * holding a reference to the new page at this point. 758 */ 759 if (!trylock_page(newpage)) 760 BUG(); 761 762 /* Prepare mapping for the new page.*/ 763 newpage->index = page->index; 764 newpage->mapping = page->mapping; 765 if (PageSwapBacked(page)) 766 SetPageSwapBacked(newpage); 767 768 mapping = page_mapping(page); 769 if (!mapping) 770 rc = migrate_page(mapping, newpage, page, mode); 771 else if (mapping->a_ops->migratepage) 772 /* 773 * Most pages have a mapping and most filesystems provide a 774 * migratepage callback. Anonymous pages are part of swap 775 * space which also has its own migratepage callback. This 776 * is the most common path for page migration. 777 */ 778 rc = mapping->a_ops->migratepage(mapping, 779 newpage, page, mode); 780 else 781 rc = fallback_migrate_page(mapping, newpage, page, mode); 782 783 if (rc != MIGRATEPAGE_SUCCESS) { 784 newpage->mapping = NULL; 785 } else { 786 mem_cgroup_migrate(page, newpage, false); 787 if (remap_swapcache) 788 remove_migration_ptes(page, newpage); 789 page->mapping = NULL; 790 } 791 792 unlock_page(newpage); 793 794 return rc; 795 } 796 797 static int __unmap_and_move(struct page *page, struct page *newpage, 798 int force, enum migrate_mode mode) 799 { 800 int rc = -EAGAIN; 801 int remap_swapcache = 1; 802 struct anon_vma *anon_vma = NULL; 803 804 if (!trylock_page(page)) { 805 if (!force || mode == MIGRATE_ASYNC) 806 goto out; 807 808 /* 809 * It's not safe for direct compaction to call lock_page. 810 * For example, during page readahead pages are added locked 811 * to the LRU. Later, when the IO completes the pages are 812 * marked uptodate and unlocked. However, the queueing 813 * could be merging multiple pages for one bio (e.g. 814 * mpage_readpages). If an allocation happens for the 815 * second or third page, the process can end up locking 816 * the same page twice and deadlocking. Rather than 817 * trying to be clever about what pages can be locked, 818 * avoid the use of lock_page for direct compaction 819 * altogether. 820 */ 821 if (current->flags & PF_MEMALLOC) 822 goto out; 823 824 lock_page(page); 825 } 826 827 if (PageWriteback(page)) { 828 /* 829 * Only in the case of a full synchronous migration is it 830 * necessary to wait for PageWriteback. In the async case, 831 * the retry loop is too short and in the sync-light case, 832 * the overhead of stalling is too much 833 */ 834 if (mode != MIGRATE_SYNC) { 835 rc = -EBUSY; 836 goto out_unlock; 837 } 838 if (!force) 839 goto out_unlock; 840 wait_on_page_writeback(page); 841 } 842 /* 843 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 844 * we cannot notice that anon_vma is freed while we migrates a page. 845 * This get_anon_vma() delays freeing anon_vma pointer until the end 846 * of migration. File cache pages are no problem because of page_lock() 847 * File Caches may use write_page() or lock_page() in migration, then, 848 * just care Anon page here. 849 */ 850 if (PageAnon(page) && !PageKsm(page)) { 851 /* 852 * Only page_lock_anon_vma_read() understands the subtleties of 853 * getting a hold on an anon_vma from outside one of its mms. 854 */ 855 anon_vma = page_get_anon_vma(page); 856 if (anon_vma) { 857 /* 858 * Anon page 859 */ 860 } else if (PageSwapCache(page)) { 861 /* 862 * We cannot be sure that the anon_vma of an unmapped 863 * swapcache page is safe to use because we don't 864 * know in advance if the VMA that this page belonged 865 * to still exists. If the VMA and others sharing the 866 * data have been freed, then the anon_vma could 867 * already be invalid. 868 * 869 * To avoid this possibility, swapcache pages get 870 * migrated but are not remapped when migration 871 * completes 872 */ 873 remap_swapcache = 0; 874 } else { 875 goto out_unlock; 876 } 877 } 878 879 if (unlikely(isolated_balloon_page(page))) { 880 /* 881 * A ballooned page does not need any special attention from 882 * physical to virtual reverse mapping procedures. 883 * Skip any attempt to unmap PTEs or to remap swap cache, 884 * in order to avoid burning cycles at rmap level, and perform 885 * the page migration right away (proteced by page lock). 886 */ 887 rc = balloon_page_migrate(newpage, page, mode); 888 goto out_unlock; 889 } 890 891 /* 892 * Corner case handling: 893 * 1. When a new swap-cache page is read into, it is added to the LRU 894 * and treated as swapcache but it has no rmap yet. 895 * Calling try_to_unmap() against a page->mapping==NULL page will 896 * trigger a BUG. So handle it here. 897 * 2. An orphaned page (see truncate_complete_page) might have 898 * fs-private metadata. The page can be picked up due to memory 899 * offlining. Everywhere else except page reclaim, the page is 900 * invisible to the vm, so the page can not be migrated. So try to 901 * free the metadata, so the page can be freed. 902 */ 903 if (!page->mapping) { 904 VM_BUG_ON_PAGE(PageAnon(page), page); 905 if (page_has_private(page)) { 906 try_to_free_buffers(page); 907 goto out_unlock; 908 } 909 goto skip_unmap; 910 } 911 912 /* Establish migration ptes or remove ptes */ 913 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 914 915 skip_unmap: 916 if (!page_mapped(page)) 917 rc = move_to_new_page(newpage, page, remap_swapcache, mode); 918 919 if (rc && remap_swapcache) 920 remove_migration_ptes(page, page); 921 922 /* Drop an anon_vma reference if we took one */ 923 if (anon_vma) 924 put_anon_vma(anon_vma); 925 926 out_unlock: 927 unlock_page(page); 928 out: 929 return rc; 930 } 931 932 /* 933 * Obtain the lock on page, remove all ptes and migrate the page 934 * to the newly allocated page in newpage. 935 */ 936 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page, 937 unsigned long private, struct page *page, int force, 938 enum migrate_mode mode) 939 { 940 int rc = 0; 941 int *result = NULL; 942 struct page *newpage = get_new_page(page, private, &result); 943 944 if (!newpage) 945 return -ENOMEM; 946 947 if (page_count(page) == 1) { 948 /* page was freed from under us. So we are done. */ 949 goto out; 950 } 951 952 if (unlikely(PageTransHuge(page))) 953 if (unlikely(split_huge_page(page))) 954 goto out; 955 956 rc = __unmap_and_move(page, newpage, force, mode); 957 958 out: 959 if (rc != -EAGAIN) { 960 /* 961 * A page that has been migrated has all references 962 * removed and will be freed. A page that has not been 963 * migrated will have kepts its references and be 964 * restored. 965 */ 966 list_del(&page->lru); 967 dec_zone_page_state(page, NR_ISOLATED_ANON + 968 page_is_file_cache(page)); 969 putback_lru_page(page); 970 } 971 972 /* 973 * If migration was not successful and there's a freeing callback, use 974 * it. Otherwise, putback_lru_page() will drop the reference grabbed 975 * during isolation. 976 */ 977 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 978 ClearPageSwapBacked(newpage); 979 put_new_page(newpage, private); 980 } else if (unlikely(__is_movable_balloon_page(newpage))) { 981 /* drop our reference, page already in the balloon */ 982 put_page(newpage); 983 } else 984 putback_lru_page(newpage); 985 986 if (result) { 987 if (rc) 988 *result = rc; 989 else 990 *result = page_to_nid(newpage); 991 } 992 return rc; 993 } 994 995 /* 996 * Counterpart of unmap_and_move_page() for hugepage migration. 997 * 998 * This function doesn't wait the completion of hugepage I/O 999 * because there is no race between I/O and migration for hugepage. 1000 * Note that currently hugepage I/O occurs only in direct I/O 1001 * where no lock is held and PG_writeback is irrelevant, 1002 * and writeback status of all subpages are counted in the reference 1003 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1004 * under direct I/O, the reference of the head page is 512 and a bit more.) 1005 * This means that when we try to migrate hugepage whose subpages are 1006 * doing direct I/O, some references remain after try_to_unmap() and 1007 * hugepage migration fails without data corruption. 1008 * 1009 * There is also no race when direct I/O is issued on the page under migration, 1010 * because then pte is replaced with migration swap entry and direct I/O code 1011 * will wait in the page fault for migration to complete. 1012 */ 1013 static int unmap_and_move_huge_page(new_page_t get_new_page, 1014 free_page_t put_new_page, unsigned long private, 1015 struct page *hpage, int force, 1016 enum migrate_mode mode) 1017 { 1018 int rc = 0; 1019 int *result = NULL; 1020 struct page *new_hpage; 1021 struct anon_vma *anon_vma = NULL; 1022 1023 /* 1024 * Movability of hugepages depends on architectures and hugepage size. 1025 * This check is necessary because some callers of hugepage migration 1026 * like soft offline and memory hotremove don't walk through page 1027 * tables or check whether the hugepage is pmd-based or not before 1028 * kicking migration. 1029 */ 1030 if (!hugepage_migration_supported(page_hstate(hpage))) { 1031 putback_active_hugepage(hpage); 1032 return -ENOSYS; 1033 } 1034 1035 new_hpage = get_new_page(hpage, private, &result); 1036 if (!new_hpage) 1037 return -ENOMEM; 1038 1039 rc = -EAGAIN; 1040 1041 if (!trylock_page(hpage)) { 1042 if (!force || mode != MIGRATE_SYNC) 1043 goto out; 1044 lock_page(hpage); 1045 } 1046 1047 if (PageAnon(hpage)) 1048 anon_vma = page_get_anon_vma(hpage); 1049 1050 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1051 1052 if (!page_mapped(hpage)) 1053 rc = move_to_new_page(new_hpage, hpage, 1, mode); 1054 1055 if (rc != MIGRATEPAGE_SUCCESS) 1056 remove_migration_ptes(hpage, hpage); 1057 1058 if (anon_vma) 1059 put_anon_vma(anon_vma); 1060 1061 if (rc == MIGRATEPAGE_SUCCESS) 1062 hugetlb_cgroup_migrate(hpage, new_hpage); 1063 1064 unlock_page(hpage); 1065 out: 1066 if (rc != -EAGAIN) 1067 putback_active_hugepage(hpage); 1068 1069 /* 1070 * If migration was not successful and there's a freeing callback, use 1071 * it. Otherwise, put_page() will drop the reference grabbed during 1072 * isolation. 1073 */ 1074 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1075 put_new_page(new_hpage, private); 1076 else 1077 put_page(new_hpage); 1078 1079 if (result) { 1080 if (rc) 1081 *result = rc; 1082 else 1083 *result = page_to_nid(new_hpage); 1084 } 1085 return rc; 1086 } 1087 1088 /* 1089 * migrate_pages - migrate the pages specified in a list, to the free pages 1090 * supplied as the target for the page migration 1091 * 1092 * @from: The list of pages to be migrated. 1093 * @get_new_page: The function used to allocate free pages to be used 1094 * as the target of the page migration. 1095 * @put_new_page: The function used to free target pages if migration 1096 * fails, or NULL if no special handling is necessary. 1097 * @private: Private data to be passed on to get_new_page() 1098 * @mode: The migration mode that specifies the constraints for 1099 * page migration, if any. 1100 * @reason: The reason for page migration. 1101 * 1102 * The function returns after 10 attempts or if no pages are movable any more 1103 * because the list has become empty or no retryable pages exist any more. 1104 * The caller should call putback_lru_pages() to return pages to the LRU 1105 * or free list only if ret != 0. 1106 * 1107 * Returns the number of pages that were not migrated, or an error code. 1108 */ 1109 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1110 free_page_t put_new_page, unsigned long private, 1111 enum migrate_mode mode, int reason) 1112 { 1113 int retry = 1; 1114 int nr_failed = 0; 1115 int nr_succeeded = 0; 1116 int pass = 0; 1117 struct page *page; 1118 struct page *page2; 1119 int swapwrite = current->flags & PF_SWAPWRITE; 1120 int rc; 1121 1122 if (!swapwrite) 1123 current->flags |= PF_SWAPWRITE; 1124 1125 for(pass = 0; pass < 10 && retry; pass++) { 1126 retry = 0; 1127 1128 list_for_each_entry_safe(page, page2, from, lru) { 1129 cond_resched(); 1130 1131 if (PageHuge(page)) 1132 rc = unmap_and_move_huge_page(get_new_page, 1133 put_new_page, private, page, 1134 pass > 2, mode); 1135 else 1136 rc = unmap_and_move(get_new_page, put_new_page, 1137 private, page, pass > 2, mode); 1138 1139 switch(rc) { 1140 case -ENOMEM: 1141 goto out; 1142 case -EAGAIN: 1143 retry++; 1144 break; 1145 case MIGRATEPAGE_SUCCESS: 1146 nr_succeeded++; 1147 break; 1148 default: 1149 /* 1150 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1151 * unlike -EAGAIN case, the failed page is 1152 * removed from migration page list and not 1153 * retried in the next outer loop. 1154 */ 1155 nr_failed++; 1156 break; 1157 } 1158 } 1159 } 1160 rc = nr_failed + retry; 1161 out: 1162 if (nr_succeeded) 1163 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1164 if (nr_failed) 1165 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1166 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1167 1168 if (!swapwrite) 1169 current->flags &= ~PF_SWAPWRITE; 1170 1171 return rc; 1172 } 1173 1174 #ifdef CONFIG_NUMA 1175 /* 1176 * Move a list of individual pages 1177 */ 1178 struct page_to_node { 1179 unsigned long addr; 1180 struct page *page; 1181 int node; 1182 int status; 1183 }; 1184 1185 static struct page *new_page_node(struct page *p, unsigned long private, 1186 int **result) 1187 { 1188 struct page_to_node *pm = (struct page_to_node *)private; 1189 1190 while (pm->node != MAX_NUMNODES && pm->page != p) 1191 pm++; 1192 1193 if (pm->node == MAX_NUMNODES) 1194 return NULL; 1195 1196 *result = &pm->status; 1197 1198 if (PageHuge(p)) 1199 return alloc_huge_page_node(page_hstate(compound_head(p)), 1200 pm->node); 1201 else 1202 return alloc_pages_exact_node(pm->node, 1203 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1204 } 1205 1206 /* 1207 * Move a set of pages as indicated in the pm array. The addr 1208 * field must be set to the virtual address of the page to be moved 1209 * and the node number must contain a valid target node. 1210 * The pm array ends with node = MAX_NUMNODES. 1211 */ 1212 static int do_move_page_to_node_array(struct mm_struct *mm, 1213 struct page_to_node *pm, 1214 int migrate_all) 1215 { 1216 int err; 1217 struct page_to_node *pp; 1218 LIST_HEAD(pagelist); 1219 1220 down_read(&mm->mmap_sem); 1221 1222 /* 1223 * Build a list of pages to migrate 1224 */ 1225 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1226 struct vm_area_struct *vma; 1227 struct page *page; 1228 1229 err = -EFAULT; 1230 vma = find_vma(mm, pp->addr); 1231 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1232 goto set_status; 1233 1234 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1235 1236 err = PTR_ERR(page); 1237 if (IS_ERR(page)) 1238 goto set_status; 1239 1240 err = -ENOENT; 1241 if (!page) 1242 goto set_status; 1243 1244 /* Use PageReserved to check for zero page */ 1245 if (PageReserved(page)) 1246 goto put_and_set; 1247 1248 pp->page = page; 1249 err = page_to_nid(page); 1250 1251 if (err == pp->node) 1252 /* 1253 * Node already in the right place 1254 */ 1255 goto put_and_set; 1256 1257 err = -EACCES; 1258 if (page_mapcount(page) > 1 && 1259 !migrate_all) 1260 goto put_and_set; 1261 1262 if (PageHuge(page)) { 1263 isolate_huge_page(page, &pagelist); 1264 goto put_and_set; 1265 } 1266 1267 err = isolate_lru_page(page); 1268 if (!err) { 1269 list_add_tail(&page->lru, &pagelist); 1270 inc_zone_page_state(page, NR_ISOLATED_ANON + 1271 page_is_file_cache(page)); 1272 } 1273 put_and_set: 1274 /* 1275 * Either remove the duplicate refcount from 1276 * isolate_lru_page() or drop the page ref if it was 1277 * not isolated. 1278 */ 1279 put_page(page); 1280 set_status: 1281 pp->status = err; 1282 } 1283 1284 err = 0; 1285 if (!list_empty(&pagelist)) { 1286 err = migrate_pages(&pagelist, new_page_node, NULL, 1287 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1288 if (err) 1289 putback_movable_pages(&pagelist); 1290 } 1291 1292 up_read(&mm->mmap_sem); 1293 return err; 1294 } 1295 1296 /* 1297 * Migrate an array of page address onto an array of nodes and fill 1298 * the corresponding array of status. 1299 */ 1300 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1301 unsigned long nr_pages, 1302 const void __user * __user *pages, 1303 const int __user *nodes, 1304 int __user *status, int flags) 1305 { 1306 struct page_to_node *pm; 1307 unsigned long chunk_nr_pages; 1308 unsigned long chunk_start; 1309 int err; 1310 1311 err = -ENOMEM; 1312 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1313 if (!pm) 1314 goto out; 1315 1316 migrate_prep(); 1317 1318 /* 1319 * Store a chunk of page_to_node array in a page, 1320 * but keep the last one as a marker 1321 */ 1322 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1323 1324 for (chunk_start = 0; 1325 chunk_start < nr_pages; 1326 chunk_start += chunk_nr_pages) { 1327 int j; 1328 1329 if (chunk_start + chunk_nr_pages > nr_pages) 1330 chunk_nr_pages = nr_pages - chunk_start; 1331 1332 /* fill the chunk pm with addrs and nodes from user-space */ 1333 for (j = 0; j < chunk_nr_pages; j++) { 1334 const void __user *p; 1335 int node; 1336 1337 err = -EFAULT; 1338 if (get_user(p, pages + j + chunk_start)) 1339 goto out_pm; 1340 pm[j].addr = (unsigned long) p; 1341 1342 if (get_user(node, nodes + j + chunk_start)) 1343 goto out_pm; 1344 1345 err = -ENODEV; 1346 if (node < 0 || node >= MAX_NUMNODES) 1347 goto out_pm; 1348 1349 if (!node_state(node, N_MEMORY)) 1350 goto out_pm; 1351 1352 err = -EACCES; 1353 if (!node_isset(node, task_nodes)) 1354 goto out_pm; 1355 1356 pm[j].node = node; 1357 } 1358 1359 /* End marker for this chunk */ 1360 pm[chunk_nr_pages].node = MAX_NUMNODES; 1361 1362 /* Migrate this chunk */ 1363 err = do_move_page_to_node_array(mm, pm, 1364 flags & MPOL_MF_MOVE_ALL); 1365 if (err < 0) 1366 goto out_pm; 1367 1368 /* Return status information */ 1369 for (j = 0; j < chunk_nr_pages; j++) 1370 if (put_user(pm[j].status, status + j + chunk_start)) { 1371 err = -EFAULT; 1372 goto out_pm; 1373 } 1374 } 1375 err = 0; 1376 1377 out_pm: 1378 free_page((unsigned long)pm); 1379 out: 1380 return err; 1381 } 1382 1383 /* 1384 * Determine the nodes of an array of pages and store it in an array of status. 1385 */ 1386 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1387 const void __user **pages, int *status) 1388 { 1389 unsigned long i; 1390 1391 down_read(&mm->mmap_sem); 1392 1393 for (i = 0; i < nr_pages; i++) { 1394 unsigned long addr = (unsigned long)(*pages); 1395 struct vm_area_struct *vma; 1396 struct page *page; 1397 int err = -EFAULT; 1398 1399 vma = find_vma(mm, addr); 1400 if (!vma || addr < vma->vm_start) 1401 goto set_status; 1402 1403 page = follow_page(vma, addr, 0); 1404 1405 err = PTR_ERR(page); 1406 if (IS_ERR(page)) 1407 goto set_status; 1408 1409 err = -ENOENT; 1410 /* Use PageReserved to check for zero page */ 1411 if (!page || PageReserved(page)) 1412 goto set_status; 1413 1414 err = page_to_nid(page); 1415 set_status: 1416 *status = err; 1417 1418 pages++; 1419 status++; 1420 } 1421 1422 up_read(&mm->mmap_sem); 1423 } 1424 1425 /* 1426 * Determine the nodes of a user array of pages and store it in 1427 * a user array of status. 1428 */ 1429 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1430 const void __user * __user *pages, 1431 int __user *status) 1432 { 1433 #define DO_PAGES_STAT_CHUNK_NR 16 1434 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1435 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1436 1437 while (nr_pages) { 1438 unsigned long chunk_nr; 1439 1440 chunk_nr = nr_pages; 1441 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1442 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1443 1444 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1445 break; 1446 1447 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1448 1449 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1450 break; 1451 1452 pages += chunk_nr; 1453 status += chunk_nr; 1454 nr_pages -= chunk_nr; 1455 } 1456 return nr_pages ? -EFAULT : 0; 1457 } 1458 1459 /* 1460 * Move a list of pages in the address space of the currently executing 1461 * process. 1462 */ 1463 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1464 const void __user * __user *, pages, 1465 const int __user *, nodes, 1466 int __user *, status, int, flags) 1467 { 1468 const struct cred *cred = current_cred(), *tcred; 1469 struct task_struct *task; 1470 struct mm_struct *mm; 1471 int err; 1472 nodemask_t task_nodes; 1473 1474 /* Check flags */ 1475 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1476 return -EINVAL; 1477 1478 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1479 return -EPERM; 1480 1481 /* Find the mm_struct */ 1482 rcu_read_lock(); 1483 task = pid ? find_task_by_vpid(pid) : current; 1484 if (!task) { 1485 rcu_read_unlock(); 1486 return -ESRCH; 1487 } 1488 get_task_struct(task); 1489 1490 /* 1491 * Check if this process has the right to modify the specified 1492 * process. The right exists if the process has administrative 1493 * capabilities, superuser privileges or the same 1494 * userid as the target process. 1495 */ 1496 tcred = __task_cred(task); 1497 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1498 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1499 !capable(CAP_SYS_NICE)) { 1500 rcu_read_unlock(); 1501 err = -EPERM; 1502 goto out; 1503 } 1504 rcu_read_unlock(); 1505 1506 err = security_task_movememory(task); 1507 if (err) 1508 goto out; 1509 1510 task_nodes = cpuset_mems_allowed(task); 1511 mm = get_task_mm(task); 1512 put_task_struct(task); 1513 1514 if (!mm) 1515 return -EINVAL; 1516 1517 if (nodes) 1518 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1519 nodes, status, flags); 1520 else 1521 err = do_pages_stat(mm, nr_pages, pages, status); 1522 1523 mmput(mm); 1524 return err; 1525 1526 out: 1527 put_task_struct(task); 1528 return err; 1529 } 1530 1531 /* 1532 * Call migration functions in the vma_ops that may prepare 1533 * memory in a vm for migration. migration functions may perform 1534 * the migration for vmas that do not have an underlying page struct. 1535 */ 1536 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1537 const nodemask_t *from, unsigned long flags) 1538 { 1539 struct vm_area_struct *vma; 1540 int err = 0; 1541 1542 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1543 if (vma->vm_ops && vma->vm_ops->migrate) { 1544 err = vma->vm_ops->migrate(vma, to, from, flags); 1545 if (err) 1546 break; 1547 } 1548 } 1549 return err; 1550 } 1551 1552 #ifdef CONFIG_NUMA_BALANCING 1553 /* 1554 * Returns true if this is a safe migration target node for misplaced NUMA 1555 * pages. Currently it only checks the watermarks which crude 1556 */ 1557 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1558 unsigned long nr_migrate_pages) 1559 { 1560 int z; 1561 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1562 struct zone *zone = pgdat->node_zones + z; 1563 1564 if (!populated_zone(zone)) 1565 continue; 1566 1567 if (!zone_reclaimable(zone)) 1568 continue; 1569 1570 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1571 if (!zone_watermark_ok(zone, 0, 1572 high_wmark_pages(zone) + 1573 nr_migrate_pages, 1574 0, 0)) 1575 continue; 1576 return true; 1577 } 1578 return false; 1579 } 1580 1581 static struct page *alloc_misplaced_dst_page(struct page *page, 1582 unsigned long data, 1583 int **result) 1584 { 1585 int nid = (int) data; 1586 struct page *newpage; 1587 1588 newpage = alloc_pages_exact_node(nid, 1589 (GFP_HIGHUSER_MOVABLE | 1590 __GFP_THISNODE | __GFP_NOMEMALLOC | 1591 __GFP_NORETRY | __GFP_NOWARN) & 1592 ~GFP_IOFS, 0); 1593 1594 return newpage; 1595 } 1596 1597 /* 1598 * page migration rate limiting control. 1599 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1600 * window of time. Default here says do not migrate more than 1280M per second. 1601 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However 1602 * as it is faults that reset the window, pte updates will happen unconditionally 1603 * if there has not been a fault since @pteupdate_interval_millisecs after the 1604 * throttle window closed. 1605 */ 1606 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1607 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; 1608 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1609 1610 /* Returns true if NUMA migration is currently rate limited */ 1611 bool migrate_ratelimited(int node) 1612 { 1613 pg_data_t *pgdat = NODE_DATA(node); 1614 1615 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + 1616 msecs_to_jiffies(pteupdate_interval_millisecs))) 1617 return false; 1618 1619 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) 1620 return false; 1621 1622 return true; 1623 } 1624 1625 /* Returns true if the node is migrate rate-limited after the update */ 1626 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1627 unsigned long nr_pages) 1628 { 1629 /* 1630 * Rate-limit the amount of data that is being migrated to a node. 1631 * Optimal placement is no good if the memory bus is saturated and 1632 * all the time is being spent migrating! 1633 */ 1634 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1635 spin_lock(&pgdat->numabalancing_migrate_lock); 1636 pgdat->numabalancing_migrate_nr_pages = 0; 1637 pgdat->numabalancing_migrate_next_window = jiffies + 1638 msecs_to_jiffies(migrate_interval_millisecs); 1639 spin_unlock(&pgdat->numabalancing_migrate_lock); 1640 } 1641 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1642 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1643 nr_pages); 1644 return true; 1645 } 1646 1647 /* 1648 * This is an unlocked non-atomic update so errors are possible. 1649 * The consequences are failing to migrate when we potentiall should 1650 * have which is not severe enough to warrant locking. If it is ever 1651 * a problem, it can be converted to a per-cpu counter. 1652 */ 1653 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1654 return false; 1655 } 1656 1657 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1658 { 1659 int page_lru; 1660 1661 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1662 1663 /* Avoid migrating to a node that is nearly full */ 1664 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1665 return 0; 1666 1667 if (isolate_lru_page(page)) 1668 return 0; 1669 1670 /* 1671 * migrate_misplaced_transhuge_page() skips page migration's usual 1672 * check on page_count(), so we must do it here, now that the page 1673 * has been isolated: a GUP pin, or any other pin, prevents migration. 1674 * The expected page count is 3: 1 for page's mapcount and 1 for the 1675 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1676 */ 1677 if (PageTransHuge(page) && page_count(page) != 3) { 1678 putback_lru_page(page); 1679 return 0; 1680 } 1681 1682 page_lru = page_is_file_cache(page); 1683 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1684 hpage_nr_pages(page)); 1685 1686 /* 1687 * Isolating the page has taken another reference, so the 1688 * caller's reference can be safely dropped without the page 1689 * disappearing underneath us during migration. 1690 */ 1691 put_page(page); 1692 return 1; 1693 } 1694 1695 bool pmd_trans_migrating(pmd_t pmd) 1696 { 1697 struct page *page = pmd_page(pmd); 1698 return PageLocked(page); 1699 } 1700 1701 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd) 1702 { 1703 struct page *page = pmd_page(*pmd); 1704 wait_on_page_locked(page); 1705 } 1706 1707 /* 1708 * Attempt to migrate a misplaced page to the specified destination 1709 * node. Caller is expected to have an elevated reference count on 1710 * the page that will be dropped by this function before returning. 1711 */ 1712 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1713 int node) 1714 { 1715 pg_data_t *pgdat = NODE_DATA(node); 1716 int isolated; 1717 int nr_remaining; 1718 LIST_HEAD(migratepages); 1719 1720 /* 1721 * Don't migrate file pages that are mapped in multiple processes 1722 * with execute permissions as they are probably shared libraries. 1723 */ 1724 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1725 (vma->vm_flags & VM_EXEC)) 1726 goto out; 1727 1728 /* 1729 * Rate-limit the amount of data that is being migrated to a node. 1730 * Optimal placement is no good if the memory bus is saturated and 1731 * all the time is being spent migrating! 1732 */ 1733 if (numamigrate_update_ratelimit(pgdat, 1)) 1734 goto out; 1735 1736 isolated = numamigrate_isolate_page(pgdat, page); 1737 if (!isolated) 1738 goto out; 1739 1740 list_add(&page->lru, &migratepages); 1741 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1742 NULL, node, MIGRATE_ASYNC, 1743 MR_NUMA_MISPLACED); 1744 if (nr_remaining) { 1745 if (!list_empty(&migratepages)) { 1746 list_del(&page->lru); 1747 dec_zone_page_state(page, NR_ISOLATED_ANON + 1748 page_is_file_cache(page)); 1749 putback_lru_page(page); 1750 } 1751 isolated = 0; 1752 } else 1753 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1754 BUG_ON(!list_empty(&migratepages)); 1755 return isolated; 1756 1757 out: 1758 put_page(page); 1759 return 0; 1760 } 1761 #endif /* CONFIG_NUMA_BALANCING */ 1762 1763 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1764 /* 1765 * Migrates a THP to a given target node. page must be locked and is unlocked 1766 * before returning. 1767 */ 1768 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1769 struct vm_area_struct *vma, 1770 pmd_t *pmd, pmd_t entry, 1771 unsigned long address, 1772 struct page *page, int node) 1773 { 1774 spinlock_t *ptl; 1775 pg_data_t *pgdat = NODE_DATA(node); 1776 int isolated = 0; 1777 struct page *new_page = NULL; 1778 int page_lru = page_is_file_cache(page); 1779 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1780 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1781 pmd_t orig_entry; 1782 1783 /* 1784 * Rate-limit the amount of data that is being migrated to a node. 1785 * Optimal placement is no good if the memory bus is saturated and 1786 * all the time is being spent migrating! 1787 */ 1788 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1789 goto out_dropref; 1790 1791 new_page = alloc_pages_node(node, 1792 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1793 HPAGE_PMD_ORDER); 1794 if (!new_page) 1795 goto out_fail; 1796 1797 isolated = numamigrate_isolate_page(pgdat, page); 1798 if (!isolated) { 1799 put_page(new_page); 1800 goto out_fail; 1801 } 1802 1803 if (mm_tlb_flush_pending(mm)) 1804 flush_tlb_range(vma, mmun_start, mmun_end); 1805 1806 /* Prepare a page as a migration target */ 1807 __set_page_locked(new_page); 1808 SetPageSwapBacked(new_page); 1809 1810 /* anon mapping, we can simply copy page->mapping to the new page: */ 1811 new_page->mapping = page->mapping; 1812 new_page->index = page->index; 1813 migrate_page_copy(new_page, page); 1814 WARN_ON(PageLRU(new_page)); 1815 1816 /* Recheck the target PMD */ 1817 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1818 ptl = pmd_lock(mm, pmd); 1819 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1820 fail_putback: 1821 spin_unlock(ptl); 1822 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1823 1824 /* Reverse changes made by migrate_page_copy() */ 1825 if (TestClearPageActive(new_page)) 1826 SetPageActive(page); 1827 if (TestClearPageUnevictable(new_page)) 1828 SetPageUnevictable(page); 1829 mlock_migrate_page(page, new_page); 1830 1831 unlock_page(new_page); 1832 put_page(new_page); /* Free it */ 1833 1834 /* Retake the callers reference and putback on LRU */ 1835 get_page(page); 1836 putback_lru_page(page); 1837 mod_zone_page_state(page_zone(page), 1838 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1839 1840 goto out_unlock; 1841 } 1842 1843 orig_entry = *pmd; 1844 entry = mk_pmd(new_page, vma->vm_page_prot); 1845 entry = pmd_mkhuge(entry); 1846 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1847 1848 /* 1849 * Clear the old entry under pagetable lock and establish the new PTE. 1850 * Any parallel GUP will either observe the old page blocking on the 1851 * page lock, block on the page table lock or observe the new page. 1852 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1853 * guarantee the copy is visible before the pagetable update. 1854 */ 1855 flush_cache_range(vma, mmun_start, mmun_end); 1856 page_add_anon_rmap(new_page, vma, mmun_start); 1857 pmdp_clear_flush(vma, mmun_start, pmd); 1858 set_pmd_at(mm, mmun_start, pmd, entry); 1859 flush_tlb_range(vma, mmun_start, mmun_end); 1860 update_mmu_cache_pmd(vma, address, &entry); 1861 1862 if (page_count(page) != 2) { 1863 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1864 flush_tlb_range(vma, mmun_start, mmun_end); 1865 update_mmu_cache_pmd(vma, address, &entry); 1866 page_remove_rmap(new_page); 1867 goto fail_putback; 1868 } 1869 1870 mem_cgroup_migrate(page, new_page, false); 1871 1872 page_remove_rmap(page); 1873 1874 spin_unlock(ptl); 1875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1876 1877 /* Take an "isolate" reference and put new page on the LRU. */ 1878 get_page(new_page); 1879 putback_lru_page(new_page); 1880 1881 unlock_page(new_page); 1882 unlock_page(page); 1883 put_page(page); /* Drop the rmap reference */ 1884 put_page(page); /* Drop the LRU isolation reference */ 1885 1886 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1887 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1888 1889 mod_zone_page_state(page_zone(page), 1890 NR_ISOLATED_ANON + page_lru, 1891 -HPAGE_PMD_NR); 1892 return isolated; 1893 1894 out_fail: 1895 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1896 out_dropref: 1897 ptl = pmd_lock(mm, pmd); 1898 if (pmd_same(*pmd, entry)) { 1899 entry = pmd_mknonnuma(entry); 1900 set_pmd_at(mm, mmun_start, pmd, entry); 1901 update_mmu_cache_pmd(vma, address, &entry); 1902 } 1903 spin_unlock(ptl); 1904 1905 out_unlock: 1906 unlock_page(page); 1907 put_page(page); 1908 return 0; 1909 } 1910 #endif /* CONFIG_NUMA_BALANCING */ 1911 1912 #endif /* CONFIG_NUMA */ 1913