xref: /openbmc/linux/mm/migrate.c (revision 5f32c314)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Put previously isolated pages back onto the appropriate lists
76  * from where they were once taken off for compaction/migration.
77  *
78  * This function shall be used whenever the isolated pageset has been
79  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80  * and isolate_huge_page().
81  */
82 void putback_movable_pages(struct list_head *l)
83 {
84 	struct page *page;
85 	struct page *page2;
86 
87 	list_for_each_entry_safe(page, page2, l, lru) {
88 		if (unlikely(PageHuge(page))) {
89 			putback_active_hugepage(page);
90 			continue;
91 		}
92 		list_del(&page->lru);
93 		dec_zone_page_state(page, NR_ISOLATED_ANON +
94 				page_is_file_cache(page));
95 		if (unlikely(isolated_balloon_page(page)))
96 			balloon_page_putback(page);
97 		else
98 			putback_lru_page(page);
99 	}
100 }
101 
102 /*
103  * Restore a potential migration pte to a working pte entry
104  */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 				 unsigned long addr, void *old)
107 {
108 	struct mm_struct *mm = vma->vm_mm;
109 	swp_entry_t entry;
110  	pmd_t *pmd;
111 	pte_t *ptep, pte;
112  	spinlock_t *ptl;
113 
114 	if (unlikely(PageHuge(new))) {
115 		ptep = huge_pte_offset(mm, addr);
116 		if (!ptep)
117 			goto out;
118 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 	} else {
120 		pmd = mm_find_pmd(mm, addr);
121 		if (!pmd)
122 			goto out;
123 		if (pmd_trans_huge(*pmd))
124 			goto out;
125 
126 		ptep = pte_offset_map(pmd, addr);
127 
128 		/*
129 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
130 		 * can race mremap's move_ptes(), which skips anon_vma lock.
131 		 */
132 
133 		ptl = pte_lockptr(mm, pmd);
134 	}
135 
136  	spin_lock(ptl);
137 	pte = *ptep;
138 	if (!is_swap_pte(pte))
139 		goto unlock;
140 
141 	entry = pte_to_swp_entry(pte);
142 
143 	if (!is_migration_entry(entry) ||
144 	    migration_entry_to_page(entry) != old)
145 		goto unlock;
146 
147 	get_page(new);
148 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 	if (pte_swp_soft_dirty(*ptep))
150 		pte = pte_mksoft_dirty(pte);
151 	if (is_write_migration_entry(entry))
152 		pte = pte_mkwrite(pte);
153 #ifdef CONFIG_HUGETLB_PAGE
154 	if (PageHuge(new)) {
155 		pte = pte_mkhuge(pte);
156 		pte = arch_make_huge_pte(pte, vma, new, 0);
157 	}
158 #endif
159 	flush_dcache_page(new);
160 	set_pte_at(mm, addr, ptep, pte);
161 
162 	if (PageHuge(new)) {
163 		if (PageAnon(new))
164 			hugepage_add_anon_rmap(new, vma, addr);
165 		else
166 			page_dup_rmap(new);
167 	} else if (PageAnon(new))
168 		page_add_anon_rmap(new, vma, addr);
169 	else
170 		page_add_file_rmap(new);
171 
172 	/* No need to invalidate - it was non-present before */
173 	update_mmu_cache(vma, addr, ptep);
174 unlock:
175 	pte_unmap_unlock(ptep, ptl);
176 out:
177 	return SWAP_AGAIN;
178 }
179 
180 /*
181  * Get rid of all migration entries and replace them by
182  * references to the indicated page.
183  */
184 static void remove_migration_ptes(struct page *old, struct page *new)
185 {
186 	struct rmap_walk_control rwc = {
187 		.rmap_one = remove_migration_pte,
188 		.arg = old,
189 	};
190 
191 	rmap_walk(new, &rwc);
192 }
193 
194 /*
195  * Something used the pte of a page under migration. We need to
196  * get to the page and wait until migration is finished.
197  * When we return from this function the fault will be retried.
198  */
199 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
200 				spinlock_t *ptl)
201 {
202 	pte_t pte;
203 	swp_entry_t entry;
204 	struct page *page;
205 
206 	spin_lock(ptl);
207 	pte = *ptep;
208 	if (!is_swap_pte(pte))
209 		goto out;
210 
211 	entry = pte_to_swp_entry(pte);
212 	if (!is_migration_entry(entry))
213 		goto out;
214 
215 	page = migration_entry_to_page(entry);
216 
217 	/*
218 	 * Once radix-tree replacement of page migration started, page_count
219 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
220 	 * against a page without get_page().
221 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
222 	 * will occur again.
223 	 */
224 	if (!get_page_unless_zero(page))
225 		goto out;
226 	pte_unmap_unlock(ptep, ptl);
227 	wait_on_page_locked(page);
228 	put_page(page);
229 	return;
230 out:
231 	pte_unmap_unlock(ptep, ptl);
232 }
233 
234 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
235 				unsigned long address)
236 {
237 	spinlock_t *ptl = pte_lockptr(mm, pmd);
238 	pte_t *ptep = pte_offset_map(pmd, address);
239 	__migration_entry_wait(mm, ptep, ptl);
240 }
241 
242 void migration_entry_wait_huge(struct vm_area_struct *vma,
243 		struct mm_struct *mm, pte_t *pte)
244 {
245 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
246 	__migration_entry_wait(mm, pte, ptl);
247 }
248 
249 #ifdef CONFIG_BLOCK
250 /* Returns true if all buffers are successfully locked */
251 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
252 							enum migrate_mode mode)
253 {
254 	struct buffer_head *bh = head;
255 
256 	/* Simple case, sync compaction */
257 	if (mode != MIGRATE_ASYNC) {
258 		do {
259 			get_bh(bh);
260 			lock_buffer(bh);
261 			bh = bh->b_this_page;
262 
263 		} while (bh != head);
264 
265 		return true;
266 	}
267 
268 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
269 	do {
270 		get_bh(bh);
271 		if (!trylock_buffer(bh)) {
272 			/*
273 			 * We failed to lock the buffer and cannot stall in
274 			 * async migration. Release the taken locks
275 			 */
276 			struct buffer_head *failed_bh = bh;
277 			put_bh(failed_bh);
278 			bh = head;
279 			while (bh != failed_bh) {
280 				unlock_buffer(bh);
281 				put_bh(bh);
282 				bh = bh->b_this_page;
283 			}
284 			return false;
285 		}
286 
287 		bh = bh->b_this_page;
288 	} while (bh != head);
289 	return true;
290 }
291 #else
292 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
293 							enum migrate_mode mode)
294 {
295 	return true;
296 }
297 #endif /* CONFIG_BLOCK */
298 
299 /*
300  * Replace the page in the mapping.
301  *
302  * The number of remaining references must be:
303  * 1 for anonymous pages without a mapping
304  * 2 for pages with a mapping
305  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
306  */
307 int migrate_page_move_mapping(struct address_space *mapping,
308 		struct page *newpage, struct page *page,
309 		struct buffer_head *head, enum migrate_mode mode,
310 		int extra_count)
311 {
312 	int expected_count = 1 + extra_count;
313 	void **pslot;
314 
315 	if (!mapping) {
316 		/* Anonymous page without mapping */
317 		if (page_count(page) != expected_count)
318 			return -EAGAIN;
319 		return MIGRATEPAGE_SUCCESS;
320 	}
321 
322 	spin_lock_irq(&mapping->tree_lock);
323 
324 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
325  					page_index(page));
326 
327 	expected_count += 1 + page_has_private(page);
328 	if (page_count(page) != expected_count ||
329 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
330 		spin_unlock_irq(&mapping->tree_lock);
331 		return -EAGAIN;
332 	}
333 
334 	if (!page_freeze_refs(page, expected_count)) {
335 		spin_unlock_irq(&mapping->tree_lock);
336 		return -EAGAIN;
337 	}
338 
339 	/*
340 	 * In the async migration case of moving a page with buffers, lock the
341 	 * buffers using trylock before the mapping is moved. If the mapping
342 	 * was moved, we later failed to lock the buffers and could not move
343 	 * the mapping back due to an elevated page count, we would have to
344 	 * block waiting on other references to be dropped.
345 	 */
346 	if (mode == MIGRATE_ASYNC && head &&
347 			!buffer_migrate_lock_buffers(head, mode)) {
348 		page_unfreeze_refs(page, expected_count);
349 		spin_unlock_irq(&mapping->tree_lock);
350 		return -EAGAIN;
351 	}
352 
353 	/*
354 	 * Now we know that no one else is looking at the page.
355 	 */
356 	get_page(newpage);	/* add cache reference */
357 	if (PageSwapCache(page)) {
358 		SetPageSwapCache(newpage);
359 		set_page_private(newpage, page_private(page));
360 	}
361 
362 	radix_tree_replace_slot(pslot, newpage);
363 
364 	/*
365 	 * Drop cache reference from old page by unfreezing
366 	 * to one less reference.
367 	 * We know this isn't the last reference.
368 	 */
369 	page_unfreeze_refs(page, expected_count - 1);
370 
371 	/*
372 	 * If moved to a different zone then also account
373 	 * the page for that zone. Other VM counters will be
374 	 * taken care of when we establish references to the
375 	 * new page and drop references to the old page.
376 	 *
377 	 * Note that anonymous pages are accounted for
378 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
379 	 * are mapped to swap space.
380 	 */
381 	__dec_zone_page_state(page, NR_FILE_PAGES);
382 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
383 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
384 		__dec_zone_page_state(page, NR_SHMEM);
385 		__inc_zone_page_state(newpage, NR_SHMEM);
386 	}
387 	spin_unlock_irq(&mapping->tree_lock);
388 
389 	return MIGRATEPAGE_SUCCESS;
390 }
391 
392 /*
393  * The expected number of remaining references is the same as that
394  * of migrate_page_move_mapping().
395  */
396 int migrate_huge_page_move_mapping(struct address_space *mapping,
397 				   struct page *newpage, struct page *page)
398 {
399 	int expected_count;
400 	void **pslot;
401 
402 	if (!mapping) {
403 		if (page_count(page) != 1)
404 			return -EAGAIN;
405 		return MIGRATEPAGE_SUCCESS;
406 	}
407 
408 	spin_lock_irq(&mapping->tree_lock);
409 
410 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
411 					page_index(page));
412 
413 	expected_count = 2 + page_has_private(page);
414 	if (page_count(page) != expected_count ||
415 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
416 		spin_unlock_irq(&mapping->tree_lock);
417 		return -EAGAIN;
418 	}
419 
420 	if (!page_freeze_refs(page, expected_count)) {
421 		spin_unlock_irq(&mapping->tree_lock);
422 		return -EAGAIN;
423 	}
424 
425 	get_page(newpage);
426 
427 	radix_tree_replace_slot(pslot, newpage);
428 
429 	page_unfreeze_refs(page, expected_count - 1);
430 
431 	spin_unlock_irq(&mapping->tree_lock);
432 	return MIGRATEPAGE_SUCCESS;
433 }
434 
435 /*
436  * Gigantic pages are so large that we do not guarantee that page++ pointer
437  * arithmetic will work across the entire page.  We need something more
438  * specialized.
439  */
440 static void __copy_gigantic_page(struct page *dst, struct page *src,
441 				int nr_pages)
442 {
443 	int i;
444 	struct page *dst_base = dst;
445 	struct page *src_base = src;
446 
447 	for (i = 0; i < nr_pages; ) {
448 		cond_resched();
449 		copy_highpage(dst, src);
450 
451 		i++;
452 		dst = mem_map_next(dst, dst_base, i);
453 		src = mem_map_next(src, src_base, i);
454 	}
455 }
456 
457 static void copy_huge_page(struct page *dst, struct page *src)
458 {
459 	int i;
460 	int nr_pages;
461 
462 	if (PageHuge(src)) {
463 		/* hugetlbfs page */
464 		struct hstate *h = page_hstate(src);
465 		nr_pages = pages_per_huge_page(h);
466 
467 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
468 			__copy_gigantic_page(dst, src, nr_pages);
469 			return;
470 		}
471 	} else {
472 		/* thp page */
473 		BUG_ON(!PageTransHuge(src));
474 		nr_pages = hpage_nr_pages(src);
475 	}
476 
477 	for (i = 0; i < nr_pages; i++) {
478 		cond_resched();
479 		copy_highpage(dst + i, src + i);
480 	}
481 }
482 
483 /*
484  * Copy the page to its new location
485  */
486 void migrate_page_copy(struct page *newpage, struct page *page)
487 {
488 	int cpupid;
489 
490 	if (PageHuge(page) || PageTransHuge(page))
491 		copy_huge_page(newpage, page);
492 	else
493 		copy_highpage(newpage, page);
494 
495 	if (PageError(page))
496 		SetPageError(newpage);
497 	if (PageReferenced(page))
498 		SetPageReferenced(newpage);
499 	if (PageUptodate(page))
500 		SetPageUptodate(newpage);
501 	if (TestClearPageActive(page)) {
502 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
503 		SetPageActive(newpage);
504 	} else if (TestClearPageUnevictable(page))
505 		SetPageUnevictable(newpage);
506 	if (PageChecked(page))
507 		SetPageChecked(newpage);
508 	if (PageMappedToDisk(page))
509 		SetPageMappedToDisk(newpage);
510 
511 	if (PageDirty(page)) {
512 		clear_page_dirty_for_io(page);
513 		/*
514 		 * Want to mark the page and the radix tree as dirty, and
515 		 * redo the accounting that clear_page_dirty_for_io undid,
516 		 * but we can't use set_page_dirty because that function
517 		 * is actually a signal that all of the page has become dirty.
518 		 * Whereas only part of our page may be dirty.
519 		 */
520 		if (PageSwapBacked(page))
521 			SetPageDirty(newpage);
522 		else
523 			__set_page_dirty_nobuffers(newpage);
524  	}
525 
526 	/*
527 	 * Copy NUMA information to the new page, to prevent over-eager
528 	 * future migrations of this same page.
529 	 */
530 	cpupid = page_cpupid_xchg_last(page, -1);
531 	page_cpupid_xchg_last(newpage, cpupid);
532 
533 	mlock_migrate_page(newpage, page);
534 	ksm_migrate_page(newpage, page);
535 	/*
536 	 * Please do not reorder this without considering how mm/ksm.c's
537 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
538 	 */
539 	ClearPageSwapCache(page);
540 	ClearPagePrivate(page);
541 	set_page_private(page, 0);
542 
543 	/*
544 	 * If any waiters have accumulated on the new page then
545 	 * wake them up.
546 	 */
547 	if (PageWriteback(newpage))
548 		end_page_writeback(newpage);
549 }
550 
551 /************************************************************
552  *                    Migration functions
553  ***********************************************************/
554 
555 /*
556  * Common logic to directly migrate a single page suitable for
557  * pages that do not use PagePrivate/PagePrivate2.
558  *
559  * Pages are locked upon entry and exit.
560  */
561 int migrate_page(struct address_space *mapping,
562 		struct page *newpage, struct page *page,
563 		enum migrate_mode mode)
564 {
565 	int rc;
566 
567 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
568 
569 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
570 
571 	if (rc != MIGRATEPAGE_SUCCESS)
572 		return rc;
573 
574 	migrate_page_copy(newpage, page);
575 	return MIGRATEPAGE_SUCCESS;
576 }
577 EXPORT_SYMBOL(migrate_page);
578 
579 #ifdef CONFIG_BLOCK
580 /*
581  * Migration function for pages with buffers. This function can only be used
582  * if the underlying filesystem guarantees that no other references to "page"
583  * exist.
584  */
585 int buffer_migrate_page(struct address_space *mapping,
586 		struct page *newpage, struct page *page, enum migrate_mode mode)
587 {
588 	struct buffer_head *bh, *head;
589 	int rc;
590 
591 	if (!page_has_buffers(page))
592 		return migrate_page(mapping, newpage, page, mode);
593 
594 	head = page_buffers(page);
595 
596 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
597 
598 	if (rc != MIGRATEPAGE_SUCCESS)
599 		return rc;
600 
601 	/*
602 	 * In the async case, migrate_page_move_mapping locked the buffers
603 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
604 	 * need to be locked now
605 	 */
606 	if (mode != MIGRATE_ASYNC)
607 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
608 
609 	ClearPagePrivate(page);
610 	set_page_private(newpage, page_private(page));
611 	set_page_private(page, 0);
612 	put_page(page);
613 	get_page(newpage);
614 
615 	bh = head;
616 	do {
617 		set_bh_page(bh, newpage, bh_offset(bh));
618 		bh = bh->b_this_page;
619 
620 	} while (bh != head);
621 
622 	SetPagePrivate(newpage);
623 
624 	migrate_page_copy(newpage, page);
625 
626 	bh = head;
627 	do {
628 		unlock_buffer(bh);
629  		put_bh(bh);
630 		bh = bh->b_this_page;
631 
632 	} while (bh != head);
633 
634 	return MIGRATEPAGE_SUCCESS;
635 }
636 EXPORT_SYMBOL(buffer_migrate_page);
637 #endif
638 
639 /*
640  * Writeback a page to clean the dirty state
641  */
642 static int writeout(struct address_space *mapping, struct page *page)
643 {
644 	struct writeback_control wbc = {
645 		.sync_mode = WB_SYNC_NONE,
646 		.nr_to_write = 1,
647 		.range_start = 0,
648 		.range_end = LLONG_MAX,
649 		.for_reclaim = 1
650 	};
651 	int rc;
652 
653 	if (!mapping->a_ops->writepage)
654 		/* No write method for the address space */
655 		return -EINVAL;
656 
657 	if (!clear_page_dirty_for_io(page))
658 		/* Someone else already triggered a write */
659 		return -EAGAIN;
660 
661 	/*
662 	 * A dirty page may imply that the underlying filesystem has
663 	 * the page on some queue. So the page must be clean for
664 	 * migration. Writeout may mean we loose the lock and the
665 	 * page state is no longer what we checked for earlier.
666 	 * At this point we know that the migration attempt cannot
667 	 * be successful.
668 	 */
669 	remove_migration_ptes(page, page);
670 
671 	rc = mapping->a_ops->writepage(page, &wbc);
672 
673 	if (rc != AOP_WRITEPAGE_ACTIVATE)
674 		/* unlocked. Relock */
675 		lock_page(page);
676 
677 	return (rc < 0) ? -EIO : -EAGAIN;
678 }
679 
680 /*
681  * Default handling if a filesystem does not provide a migration function.
682  */
683 static int fallback_migrate_page(struct address_space *mapping,
684 	struct page *newpage, struct page *page, enum migrate_mode mode)
685 {
686 	if (PageDirty(page)) {
687 		/* Only writeback pages in full synchronous migration */
688 		if (mode != MIGRATE_SYNC)
689 			return -EBUSY;
690 		return writeout(mapping, page);
691 	}
692 
693 	/*
694 	 * Buffers may be managed in a filesystem specific way.
695 	 * We must have no buffers or drop them.
696 	 */
697 	if (page_has_private(page) &&
698 	    !try_to_release_page(page, GFP_KERNEL))
699 		return -EAGAIN;
700 
701 	return migrate_page(mapping, newpage, page, mode);
702 }
703 
704 /*
705  * Move a page to a newly allocated page
706  * The page is locked and all ptes have been successfully removed.
707  *
708  * The new page will have replaced the old page if this function
709  * is successful.
710  *
711  * Return value:
712  *   < 0 - error code
713  *  MIGRATEPAGE_SUCCESS - success
714  */
715 static int move_to_new_page(struct page *newpage, struct page *page,
716 				int remap_swapcache, enum migrate_mode mode)
717 {
718 	struct address_space *mapping;
719 	int rc;
720 
721 	/*
722 	 * Block others from accessing the page when we get around to
723 	 * establishing additional references. We are the only one
724 	 * holding a reference to the new page at this point.
725 	 */
726 	if (!trylock_page(newpage))
727 		BUG();
728 
729 	/* Prepare mapping for the new page.*/
730 	newpage->index = page->index;
731 	newpage->mapping = page->mapping;
732 	if (PageSwapBacked(page))
733 		SetPageSwapBacked(newpage);
734 
735 	mapping = page_mapping(page);
736 	if (!mapping)
737 		rc = migrate_page(mapping, newpage, page, mode);
738 	else if (mapping->a_ops->migratepage)
739 		/*
740 		 * Most pages have a mapping and most filesystems provide a
741 		 * migratepage callback. Anonymous pages are part of swap
742 		 * space which also has its own migratepage callback. This
743 		 * is the most common path for page migration.
744 		 */
745 		rc = mapping->a_ops->migratepage(mapping,
746 						newpage, page, mode);
747 	else
748 		rc = fallback_migrate_page(mapping, newpage, page, mode);
749 
750 	if (rc != MIGRATEPAGE_SUCCESS) {
751 		newpage->mapping = NULL;
752 	} else {
753 		if (remap_swapcache)
754 			remove_migration_ptes(page, newpage);
755 		page->mapping = NULL;
756 	}
757 
758 	unlock_page(newpage);
759 
760 	return rc;
761 }
762 
763 static int __unmap_and_move(struct page *page, struct page *newpage,
764 				int force, enum migrate_mode mode)
765 {
766 	int rc = -EAGAIN;
767 	int remap_swapcache = 1;
768 	struct mem_cgroup *mem;
769 	struct anon_vma *anon_vma = NULL;
770 
771 	if (!trylock_page(page)) {
772 		if (!force || mode == MIGRATE_ASYNC)
773 			goto out;
774 
775 		/*
776 		 * It's not safe for direct compaction to call lock_page.
777 		 * For example, during page readahead pages are added locked
778 		 * to the LRU. Later, when the IO completes the pages are
779 		 * marked uptodate and unlocked. However, the queueing
780 		 * could be merging multiple pages for one bio (e.g.
781 		 * mpage_readpages). If an allocation happens for the
782 		 * second or third page, the process can end up locking
783 		 * the same page twice and deadlocking. Rather than
784 		 * trying to be clever about what pages can be locked,
785 		 * avoid the use of lock_page for direct compaction
786 		 * altogether.
787 		 */
788 		if (current->flags & PF_MEMALLOC)
789 			goto out;
790 
791 		lock_page(page);
792 	}
793 
794 	/* charge against new page */
795 	mem_cgroup_prepare_migration(page, newpage, &mem);
796 
797 	if (PageWriteback(page)) {
798 		/*
799 		 * Only in the case of a full synchronous migration is it
800 		 * necessary to wait for PageWriteback. In the async case,
801 		 * the retry loop is too short and in the sync-light case,
802 		 * the overhead of stalling is too much
803 		 */
804 		if (mode != MIGRATE_SYNC) {
805 			rc = -EBUSY;
806 			goto uncharge;
807 		}
808 		if (!force)
809 			goto uncharge;
810 		wait_on_page_writeback(page);
811 	}
812 	/*
813 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
814 	 * we cannot notice that anon_vma is freed while we migrates a page.
815 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
816 	 * of migration. File cache pages are no problem because of page_lock()
817 	 * File Caches may use write_page() or lock_page() in migration, then,
818 	 * just care Anon page here.
819 	 */
820 	if (PageAnon(page) && !PageKsm(page)) {
821 		/*
822 		 * Only page_lock_anon_vma_read() understands the subtleties of
823 		 * getting a hold on an anon_vma from outside one of its mms.
824 		 */
825 		anon_vma = page_get_anon_vma(page);
826 		if (anon_vma) {
827 			/*
828 			 * Anon page
829 			 */
830 		} else if (PageSwapCache(page)) {
831 			/*
832 			 * We cannot be sure that the anon_vma of an unmapped
833 			 * swapcache page is safe to use because we don't
834 			 * know in advance if the VMA that this page belonged
835 			 * to still exists. If the VMA and others sharing the
836 			 * data have been freed, then the anon_vma could
837 			 * already be invalid.
838 			 *
839 			 * To avoid this possibility, swapcache pages get
840 			 * migrated but are not remapped when migration
841 			 * completes
842 			 */
843 			remap_swapcache = 0;
844 		} else {
845 			goto uncharge;
846 		}
847 	}
848 
849 	if (unlikely(balloon_page_movable(page))) {
850 		/*
851 		 * A ballooned page does not need any special attention from
852 		 * physical to virtual reverse mapping procedures.
853 		 * Skip any attempt to unmap PTEs or to remap swap cache,
854 		 * in order to avoid burning cycles at rmap level, and perform
855 		 * the page migration right away (proteced by page lock).
856 		 */
857 		rc = balloon_page_migrate(newpage, page, mode);
858 		goto uncharge;
859 	}
860 
861 	/*
862 	 * Corner case handling:
863 	 * 1. When a new swap-cache page is read into, it is added to the LRU
864 	 * and treated as swapcache but it has no rmap yet.
865 	 * Calling try_to_unmap() against a page->mapping==NULL page will
866 	 * trigger a BUG.  So handle it here.
867 	 * 2. An orphaned page (see truncate_complete_page) might have
868 	 * fs-private metadata. The page can be picked up due to memory
869 	 * offlining.  Everywhere else except page reclaim, the page is
870 	 * invisible to the vm, so the page can not be migrated.  So try to
871 	 * free the metadata, so the page can be freed.
872 	 */
873 	if (!page->mapping) {
874 		VM_BUG_ON_PAGE(PageAnon(page), page);
875 		if (page_has_private(page)) {
876 			try_to_free_buffers(page);
877 			goto uncharge;
878 		}
879 		goto skip_unmap;
880 	}
881 
882 	/* Establish migration ptes or remove ptes */
883 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
884 
885 skip_unmap:
886 	if (!page_mapped(page))
887 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
888 
889 	if (rc && remap_swapcache)
890 		remove_migration_ptes(page, page);
891 
892 	/* Drop an anon_vma reference if we took one */
893 	if (anon_vma)
894 		put_anon_vma(anon_vma);
895 
896 uncharge:
897 	mem_cgroup_end_migration(mem, page, newpage,
898 				 (rc == MIGRATEPAGE_SUCCESS ||
899 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
900 	unlock_page(page);
901 out:
902 	return rc;
903 }
904 
905 /*
906  * Obtain the lock on page, remove all ptes and migrate the page
907  * to the newly allocated page in newpage.
908  */
909 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
910 			struct page *page, int force, enum migrate_mode mode)
911 {
912 	int rc = 0;
913 	int *result = NULL;
914 	struct page *newpage = get_new_page(page, private, &result);
915 
916 	if (!newpage)
917 		return -ENOMEM;
918 
919 	if (page_count(page) == 1) {
920 		/* page was freed from under us. So we are done. */
921 		goto out;
922 	}
923 
924 	if (unlikely(PageTransHuge(page)))
925 		if (unlikely(split_huge_page(page)))
926 			goto out;
927 
928 	rc = __unmap_and_move(page, newpage, force, mode);
929 
930 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
931 		/*
932 		 * A ballooned page has been migrated already.
933 		 * Now, it's the time to wrap-up counters,
934 		 * handle the page back to Buddy and return.
935 		 */
936 		dec_zone_page_state(page, NR_ISOLATED_ANON +
937 				    page_is_file_cache(page));
938 		balloon_page_free(page);
939 		return MIGRATEPAGE_SUCCESS;
940 	}
941 out:
942 	if (rc != -EAGAIN) {
943 		/*
944 		 * A page that has been migrated has all references
945 		 * removed and will be freed. A page that has not been
946 		 * migrated will have kepts its references and be
947 		 * restored.
948 		 */
949 		list_del(&page->lru);
950 		dec_zone_page_state(page, NR_ISOLATED_ANON +
951 				page_is_file_cache(page));
952 		putback_lru_page(page);
953 	}
954 	/*
955 	 * Move the new page to the LRU. If migration was not successful
956 	 * then this will free the page.
957 	 */
958 	putback_lru_page(newpage);
959 	if (result) {
960 		if (rc)
961 			*result = rc;
962 		else
963 			*result = page_to_nid(newpage);
964 	}
965 	return rc;
966 }
967 
968 /*
969  * Counterpart of unmap_and_move_page() for hugepage migration.
970  *
971  * This function doesn't wait the completion of hugepage I/O
972  * because there is no race between I/O and migration for hugepage.
973  * Note that currently hugepage I/O occurs only in direct I/O
974  * where no lock is held and PG_writeback is irrelevant,
975  * and writeback status of all subpages are counted in the reference
976  * count of the head page (i.e. if all subpages of a 2MB hugepage are
977  * under direct I/O, the reference of the head page is 512 and a bit more.)
978  * This means that when we try to migrate hugepage whose subpages are
979  * doing direct I/O, some references remain after try_to_unmap() and
980  * hugepage migration fails without data corruption.
981  *
982  * There is also no race when direct I/O is issued on the page under migration,
983  * because then pte is replaced with migration swap entry and direct I/O code
984  * will wait in the page fault for migration to complete.
985  */
986 static int unmap_and_move_huge_page(new_page_t get_new_page,
987 				unsigned long private, struct page *hpage,
988 				int force, enum migrate_mode mode)
989 {
990 	int rc = 0;
991 	int *result = NULL;
992 	struct page *new_hpage;
993 	struct anon_vma *anon_vma = NULL;
994 
995 	/*
996 	 * Movability of hugepages depends on architectures and hugepage size.
997 	 * This check is necessary because some callers of hugepage migration
998 	 * like soft offline and memory hotremove don't walk through page
999 	 * tables or check whether the hugepage is pmd-based or not before
1000 	 * kicking migration.
1001 	 */
1002 	if (!hugepage_migration_support(page_hstate(hpage))) {
1003 		putback_active_hugepage(hpage);
1004 		return -ENOSYS;
1005 	}
1006 
1007 	new_hpage = get_new_page(hpage, private, &result);
1008 	if (!new_hpage)
1009 		return -ENOMEM;
1010 
1011 	rc = -EAGAIN;
1012 
1013 	if (!trylock_page(hpage)) {
1014 		if (!force || mode != MIGRATE_SYNC)
1015 			goto out;
1016 		lock_page(hpage);
1017 	}
1018 
1019 	if (PageAnon(hpage))
1020 		anon_vma = page_get_anon_vma(hpage);
1021 
1022 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1023 
1024 	if (!page_mapped(hpage))
1025 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1026 
1027 	if (rc)
1028 		remove_migration_ptes(hpage, hpage);
1029 
1030 	if (anon_vma)
1031 		put_anon_vma(anon_vma);
1032 
1033 	if (!rc)
1034 		hugetlb_cgroup_migrate(hpage, new_hpage);
1035 
1036 	unlock_page(hpage);
1037 out:
1038 	if (rc != -EAGAIN)
1039 		putback_active_hugepage(hpage);
1040 	put_page(new_hpage);
1041 	if (result) {
1042 		if (rc)
1043 			*result = rc;
1044 		else
1045 			*result = page_to_nid(new_hpage);
1046 	}
1047 	return rc;
1048 }
1049 
1050 /*
1051  * migrate_pages - migrate the pages specified in a list, to the free pages
1052  *		   supplied as the target for the page migration
1053  *
1054  * @from:		The list of pages to be migrated.
1055  * @get_new_page:	The function used to allocate free pages to be used
1056  *			as the target of the page migration.
1057  * @private:		Private data to be passed on to get_new_page()
1058  * @mode:		The migration mode that specifies the constraints for
1059  *			page migration, if any.
1060  * @reason:		The reason for page migration.
1061  *
1062  * The function returns after 10 attempts or if no pages are movable any more
1063  * because the list has become empty or no retryable pages exist any more.
1064  * The caller should call putback_lru_pages() to return pages to the LRU
1065  * or free list only if ret != 0.
1066  *
1067  * Returns the number of pages that were not migrated, or an error code.
1068  */
1069 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1070 		unsigned long private, enum migrate_mode mode, int reason)
1071 {
1072 	int retry = 1;
1073 	int nr_failed = 0;
1074 	int nr_succeeded = 0;
1075 	int pass = 0;
1076 	struct page *page;
1077 	struct page *page2;
1078 	int swapwrite = current->flags & PF_SWAPWRITE;
1079 	int rc;
1080 
1081 	if (!swapwrite)
1082 		current->flags |= PF_SWAPWRITE;
1083 
1084 	for(pass = 0; pass < 10 && retry; pass++) {
1085 		retry = 0;
1086 
1087 		list_for_each_entry_safe(page, page2, from, lru) {
1088 			cond_resched();
1089 
1090 			if (PageHuge(page))
1091 				rc = unmap_and_move_huge_page(get_new_page,
1092 						private, page, pass > 2, mode);
1093 			else
1094 				rc = unmap_and_move(get_new_page, private,
1095 						page, pass > 2, mode);
1096 
1097 			switch(rc) {
1098 			case -ENOMEM:
1099 				goto out;
1100 			case -EAGAIN:
1101 				retry++;
1102 				break;
1103 			case MIGRATEPAGE_SUCCESS:
1104 				nr_succeeded++;
1105 				break;
1106 			default:
1107 				/*
1108 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1109 				 * unlike -EAGAIN case, the failed page is
1110 				 * removed from migration page list and not
1111 				 * retried in the next outer loop.
1112 				 */
1113 				nr_failed++;
1114 				break;
1115 			}
1116 		}
1117 	}
1118 	rc = nr_failed + retry;
1119 out:
1120 	if (nr_succeeded)
1121 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1122 	if (nr_failed)
1123 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1124 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1125 
1126 	if (!swapwrite)
1127 		current->flags &= ~PF_SWAPWRITE;
1128 
1129 	return rc;
1130 }
1131 
1132 #ifdef CONFIG_NUMA
1133 /*
1134  * Move a list of individual pages
1135  */
1136 struct page_to_node {
1137 	unsigned long addr;
1138 	struct page *page;
1139 	int node;
1140 	int status;
1141 };
1142 
1143 static struct page *new_page_node(struct page *p, unsigned long private,
1144 		int **result)
1145 {
1146 	struct page_to_node *pm = (struct page_to_node *)private;
1147 
1148 	while (pm->node != MAX_NUMNODES && pm->page != p)
1149 		pm++;
1150 
1151 	if (pm->node == MAX_NUMNODES)
1152 		return NULL;
1153 
1154 	*result = &pm->status;
1155 
1156 	if (PageHuge(p))
1157 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1158 					pm->node);
1159 	else
1160 		return alloc_pages_exact_node(pm->node,
1161 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1162 }
1163 
1164 /*
1165  * Move a set of pages as indicated in the pm array. The addr
1166  * field must be set to the virtual address of the page to be moved
1167  * and the node number must contain a valid target node.
1168  * The pm array ends with node = MAX_NUMNODES.
1169  */
1170 static int do_move_page_to_node_array(struct mm_struct *mm,
1171 				      struct page_to_node *pm,
1172 				      int migrate_all)
1173 {
1174 	int err;
1175 	struct page_to_node *pp;
1176 	LIST_HEAD(pagelist);
1177 
1178 	down_read(&mm->mmap_sem);
1179 
1180 	/*
1181 	 * Build a list of pages to migrate
1182 	 */
1183 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1184 		struct vm_area_struct *vma;
1185 		struct page *page;
1186 
1187 		err = -EFAULT;
1188 		vma = find_vma(mm, pp->addr);
1189 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1190 			goto set_status;
1191 
1192 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1193 
1194 		err = PTR_ERR(page);
1195 		if (IS_ERR(page))
1196 			goto set_status;
1197 
1198 		err = -ENOENT;
1199 		if (!page)
1200 			goto set_status;
1201 
1202 		/* Use PageReserved to check for zero page */
1203 		if (PageReserved(page))
1204 			goto put_and_set;
1205 
1206 		pp->page = page;
1207 		err = page_to_nid(page);
1208 
1209 		if (err == pp->node)
1210 			/*
1211 			 * Node already in the right place
1212 			 */
1213 			goto put_and_set;
1214 
1215 		err = -EACCES;
1216 		if (page_mapcount(page) > 1 &&
1217 				!migrate_all)
1218 			goto put_and_set;
1219 
1220 		if (PageHuge(page)) {
1221 			isolate_huge_page(page, &pagelist);
1222 			goto put_and_set;
1223 		}
1224 
1225 		err = isolate_lru_page(page);
1226 		if (!err) {
1227 			list_add_tail(&page->lru, &pagelist);
1228 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1229 					    page_is_file_cache(page));
1230 		}
1231 put_and_set:
1232 		/*
1233 		 * Either remove the duplicate refcount from
1234 		 * isolate_lru_page() or drop the page ref if it was
1235 		 * not isolated.
1236 		 */
1237 		put_page(page);
1238 set_status:
1239 		pp->status = err;
1240 	}
1241 
1242 	err = 0;
1243 	if (!list_empty(&pagelist)) {
1244 		err = migrate_pages(&pagelist, new_page_node,
1245 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1246 		if (err)
1247 			putback_movable_pages(&pagelist);
1248 	}
1249 
1250 	up_read(&mm->mmap_sem);
1251 	return err;
1252 }
1253 
1254 /*
1255  * Migrate an array of page address onto an array of nodes and fill
1256  * the corresponding array of status.
1257  */
1258 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1259 			 unsigned long nr_pages,
1260 			 const void __user * __user *pages,
1261 			 const int __user *nodes,
1262 			 int __user *status, int flags)
1263 {
1264 	struct page_to_node *pm;
1265 	unsigned long chunk_nr_pages;
1266 	unsigned long chunk_start;
1267 	int err;
1268 
1269 	err = -ENOMEM;
1270 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1271 	if (!pm)
1272 		goto out;
1273 
1274 	migrate_prep();
1275 
1276 	/*
1277 	 * Store a chunk of page_to_node array in a page,
1278 	 * but keep the last one as a marker
1279 	 */
1280 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1281 
1282 	for (chunk_start = 0;
1283 	     chunk_start < nr_pages;
1284 	     chunk_start += chunk_nr_pages) {
1285 		int j;
1286 
1287 		if (chunk_start + chunk_nr_pages > nr_pages)
1288 			chunk_nr_pages = nr_pages - chunk_start;
1289 
1290 		/* fill the chunk pm with addrs and nodes from user-space */
1291 		for (j = 0; j < chunk_nr_pages; j++) {
1292 			const void __user *p;
1293 			int node;
1294 
1295 			err = -EFAULT;
1296 			if (get_user(p, pages + j + chunk_start))
1297 				goto out_pm;
1298 			pm[j].addr = (unsigned long) p;
1299 
1300 			if (get_user(node, nodes + j + chunk_start))
1301 				goto out_pm;
1302 
1303 			err = -ENODEV;
1304 			if (node < 0 || node >= MAX_NUMNODES)
1305 				goto out_pm;
1306 
1307 			if (!node_state(node, N_MEMORY))
1308 				goto out_pm;
1309 
1310 			err = -EACCES;
1311 			if (!node_isset(node, task_nodes))
1312 				goto out_pm;
1313 
1314 			pm[j].node = node;
1315 		}
1316 
1317 		/* End marker for this chunk */
1318 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1319 
1320 		/* Migrate this chunk */
1321 		err = do_move_page_to_node_array(mm, pm,
1322 						 flags & MPOL_MF_MOVE_ALL);
1323 		if (err < 0)
1324 			goto out_pm;
1325 
1326 		/* Return status information */
1327 		for (j = 0; j < chunk_nr_pages; j++)
1328 			if (put_user(pm[j].status, status + j + chunk_start)) {
1329 				err = -EFAULT;
1330 				goto out_pm;
1331 			}
1332 	}
1333 	err = 0;
1334 
1335 out_pm:
1336 	free_page((unsigned long)pm);
1337 out:
1338 	return err;
1339 }
1340 
1341 /*
1342  * Determine the nodes of an array of pages and store it in an array of status.
1343  */
1344 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1345 				const void __user **pages, int *status)
1346 {
1347 	unsigned long i;
1348 
1349 	down_read(&mm->mmap_sem);
1350 
1351 	for (i = 0; i < nr_pages; i++) {
1352 		unsigned long addr = (unsigned long)(*pages);
1353 		struct vm_area_struct *vma;
1354 		struct page *page;
1355 		int err = -EFAULT;
1356 
1357 		vma = find_vma(mm, addr);
1358 		if (!vma || addr < vma->vm_start)
1359 			goto set_status;
1360 
1361 		page = follow_page(vma, addr, 0);
1362 
1363 		err = PTR_ERR(page);
1364 		if (IS_ERR(page))
1365 			goto set_status;
1366 
1367 		err = -ENOENT;
1368 		/* Use PageReserved to check for zero page */
1369 		if (!page || PageReserved(page))
1370 			goto set_status;
1371 
1372 		err = page_to_nid(page);
1373 set_status:
1374 		*status = err;
1375 
1376 		pages++;
1377 		status++;
1378 	}
1379 
1380 	up_read(&mm->mmap_sem);
1381 }
1382 
1383 /*
1384  * Determine the nodes of a user array of pages and store it in
1385  * a user array of status.
1386  */
1387 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1388 			 const void __user * __user *pages,
1389 			 int __user *status)
1390 {
1391 #define DO_PAGES_STAT_CHUNK_NR 16
1392 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1393 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1394 
1395 	while (nr_pages) {
1396 		unsigned long chunk_nr;
1397 
1398 		chunk_nr = nr_pages;
1399 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1400 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1401 
1402 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1403 			break;
1404 
1405 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1406 
1407 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1408 			break;
1409 
1410 		pages += chunk_nr;
1411 		status += chunk_nr;
1412 		nr_pages -= chunk_nr;
1413 	}
1414 	return nr_pages ? -EFAULT : 0;
1415 }
1416 
1417 /*
1418  * Move a list of pages in the address space of the currently executing
1419  * process.
1420  */
1421 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1422 		const void __user * __user *, pages,
1423 		const int __user *, nodes,
1424 		int __user *, status, int, flags)
1425 {
1426 	const struct cred *cred = current_cred(), *tcred;
1427 	struct task_struct *task;
1428 	struct mm_struct *mm;
1429 	int err;
1430 	nodemask_t task_nodes;
1431 
1432 	/* Check flags */
1433 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1434 		return -EINVAL;
1435 
1436 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1437 		return -EPERM;
1438 
1439 	/* Find the mm_struct */
1440 	rcu_read_lock();
1441 	task = pid ? find_task_by_vpid(pid) : current;
1442 	if (!task) {
1443 		rcu_read_unlock();
1444 		return -ESRCH;
1445 	}
1446 	get_task_struct(task);
1447 
1448 	/*
1449 	 * Check if this process has the right to modify the specified
1450 	 * process. The right exists if the process has administrative
1451 	 * capabilities, superuser privileges or the same
1452 	 * userid as the target process.
1453 	 */
1454 	tcred = __task_cred(task);
1455 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1456 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1457 	    !capable(CAP_SYS_NICE)) {
1458 		rcu_read_unlock();
1459 		err = -EPERM;
1460 		goto out;
1461 	}
1462 	rcu_read_unlock();
1463 
1464  	err = security_task_movememory(task);
1465  	if (err)
1466 		goto out;
1467 
1468 	task_nodes = cpuset_mems_allowed(task);
1469 	mm = get_task_mm(task);
1470 	put_task_struct(task);
1471 
1472 	if (!mm)
1473 		return -EINVAL;
1474 
1475 	if (nodes)
1476 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1477 				    nodes, status, flags);
1478 	else
1479 		err = do_pages_stat(mm, nr_pages, pages, status);
1480 
1481 	mmput(mm);
1482 	return err;
1483 
1484 out:
1485 	put_task_struct(task);
1486 	return err;
1487 }
1488 
1489 /*
1490  * Call migration functions in the vma_ops that may prepare
1491  * memory in a vm for migration. migration functions may perform
1492  * the migration for vmas that do not have an underlying page struct.
1493  */
1494 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1495 	const nodemask_t *from, unsigned long flags)
1496 {
1497  	struct vm_area_struct *vma;
1498  	int err = 0;
1499 
1500 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1501  		if (vma->vm_ops && vma->vm_ops->migrate) {
1502  			err = vma->vm_ops->migrate(vma, to, from, flags);
1503  			if (err)
1504  				break;
1505  		}
1506  	}
1507  	return err;
1508 }
1509 
1510 #ifdef CONFIG_NUMA_BALANCING
1511 /*
1512  * Returns true if this is a safe migration target node for misplaced NUMA
1513  * pages. Currently it only checks the watermarks which crude
1514  */
1515 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1516 				   unsigned long nr_migrate_pages)
1517 {
1518 	int z;
1519 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1520 		struct zone *zone = pgdat->node_zones + z;
1521 
1522 		if (!populated_zone(zone))
1523 			continue;
1524 
1525 		if (!zone_reclaimable(zone))
1526 			continue;
1527 
1528 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1529 		if (!zone_watermark_ok(zone, 0,
1530 				       high_wmark_pages(zone) +
1531 				       nr_migrate_pages,
1532 				       0, 0))
1533 			continue;
1534 		return true;
1535 	}
1536 	return false;
1537 }
1538 
1539 static struct page *alloc_misplaced_dst_page(struct page *page,
1540 					   unsigned long data,
1541 					   int **result)
1542 {
1543 	int nid = (int) data;
1544 	struct page *newpage;
1545 
1546 	newpage = alloc_pages_exact_node(nid,
1547 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1548 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1549 					  __GFP_NOWARN) &
1550 					 ~GFP_IOFS, 0);
1551 
1552 	return newpage;
1553 }
1554 
1555 /*
1556  * page migration rate limiting control.
1557  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1558  * window of time. Default here says do not migrate more than 1280M per second.
1559  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1560  * as it is faults that reset the window, pte updates will happen unconditionally
1561  * if there has not been a fault since @pteupdate_interval_millisecs after the
1562  * throttle window closed.
1563  */
1564 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1565 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1566 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1567 
1568 /* Returns true if NUMA migration is currently rate limited */
1569 bool migrate_ratelimited(int node)
1570 {
1571 	pg_data_t *pgdat = NODE_DATA(node);
1572 
1573 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1574 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1575 		return false;
1576 
1577 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1578 		return false;
1579 
1580 	return true;
1581 }
1582 
1583 /* Returns true if the node is migrate rate-limited after the update */
1584 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1585 					unsigned long nr_pages)
1586 {
1587 	/*
1588 	 * Rate-limit the amount of data that is being migrated to a node.
1589 	 * Optimal placement is no good if the memory bus is saturated and
1590 	 * all the time is being spent migrating!
1591 	 */
1592 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1593 		spin_lock(&pgdat->numabalancing_migrate_lock);
1594 		pgdat->numabalancing_migrate_nr_pages = 0;
1595 		pgdat->numabalancing_migrate_next_window = jiffies +
1596 			msecs_to_jiffies(migrate_interval_millisecs);
1597 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1598 	}
1599 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1600 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1601 								nr_pages);
1602 		return true;
1603 	}
1604 
1605 	/*
1606 	 * This is an unlocked non-atomic update so errors are possible.
1607 	 * The consequences are failing to migrate when we potentiall should
1608 	 * have which is not severe enough to warrant locking. If it is ever
1609 	 * a problem, it can be converted to a per-cpu counter.
1610 	 */
1611 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1612 	return false;
1613 }
1614 
1615 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1616 {
1617 	int page_lru;
1618 
1619 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1620 
1621 	/* Avoid migrating to a node that is nearly full */
1622 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1623 		return 0;
1624 
1625 	if (isolate_lru_page(page))
1626 		return 0;
1627 
1628 	/*
1629 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1630 	 * check on page_count(), so we must do it here, now that the page
1631 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1632 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1633 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1634 	 */
1635 	if (PageTransHuge(page) && page_count(page) != 3) {
1636 		putback_lru_page(page);
1637 		return 0;
1638 	}
1639 
1640 	page_lru = page_is_file_cache(page);
1641 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1642 				hpage_nr_pages(page));
1643 
1644 	/*
1645 	 * Isolating the page has taken another reference, so the
1646 	 * caller's reference can be safely dropped without the page
1647 	 * disappearing underneath us during migration.
1648 	 */
1649 	put_page(page);
1650 	return 1;
1651 }
1652 
1653 bool pmd_trans_migrating(pmd_t pmd)
1654 {
1655 	struct page *page = pmd_page(pmd);
1656 	return PageLocked(page);
1657 }
1658 
1659 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1660 {
1661 	struct page *page = pmd_page(*pmd);
1662 	wait_on_page_locked(page);
1663 }
1664 
1665 /*
1666  * Attempt to migrate a misplaced page to the specified destination
1667  * node. Caller is expected to have an elevated reference count on
1668  * the page that will be dropped by this function before returning.
1669  */
1670 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1671 			   int node)
1672 {
1673 	pg_data_t *pgdat = NODE_DATA(node);
1674 	int isolated;
1675 	int nr_remaining;
1676 	LIST_HEAD(migratepages);
1677 
1678 	/*
1679 	 * Don't migrate file pages that are mapped in multiple processes
1680 	 * with execute permissions as they are probably shared libraries.
1681 	 */
1682 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1683 	    (vma->vm_flags & VM_EXEC))
1684 		goto out;
1685 
1686 	/*
1687 	 * Rate-limit the amount of data that is being migrated to a node.
1688 	 * Optimal placement is no good if the memory bus is saturated and
1689 	 * all the time is being spent migrating!
1690 	 */
1691 	if (numamigrate_update_ratelimit(pgdat, 1))
1692 		goto out;
1693 
1694 	isolated = numamigrate_isolate_page(pgdat, page);
1695 	if (!isolated)
1696 		goto out;
1697 
1698 	list_add(&page->lru, &migratepages);
1699 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1700 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1701 	if (nr_remaining) {
1702 		if (!list_empty(&migratepages)) {
1703 			list_del(&page->lru);
1704 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1705 					page_is_file_cache(page));
1706 			putback_lru_page(page);
1707 		}
1708 		isolated = 0;
1709 	} else
1710 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1711 	BUG_ON(!list_empty(&migratepages));
1712 	return isolated;
1713 
1714 out:
1715 	put_page(page);
1716 	return 0;
1717 }
1718 #endif /* CONFIG_NUMA_BALANCING */
1719 
1720 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1721 /*
1722  * Migrates a THP to a given target node. page must be locked and is unlocked
1723  * before returning.
1724  */
1725 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1726 				struct vm_area_struct *vma,
1727 				pmd_t *pmd, pmd_t entry,
1728 				unsigned long address,
1729 				struct page *page, int node)
1730 {
1731 	spinlock_t *ptl;
1732 	pg_data_t *pgdat = NODE_DATA(node);
1733 	int isolated = 0;
1734 	struct page *new_page = NULL;
1735 	struct mem_cgroup *memcg = NULL;
1736 	int page_lru = page_is_file_cache(page);
1737 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1738 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1739 	pmd_t orig_entry;
1740 
1741 	/*
1742 	 * Rate-limit the amount of data that is being migrated to a node.
1743 	 * Optimal placement is no good if the memory bus is saturated and
1744 	 * all the time is being spent migrating!
1745 	 */
1746 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1747 		goto out_dropref;
1748 
1749 	new_page = alloc_pages_node(node,
1750 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1751 	if (!new_page)
1752 		goto out_fail;
1753 
1754 	isolated = numamigrate_isolate_page(pgdat, page);
1755 	if (!isolated) {
1756 		put_page(new_page);
1757 		goto out_fail;
1758 	}
1759 
1760 	if (mm_tlb_flush_pending(mm))
1761 		flush_tlb_range(vma, mmun_start, mmun_end);
1762 
1763 	/* Prepare a page as a migration target */
1764 	__set_page_locked(new_page);
1765 	SetPageSwapBacked(new_page);
1766 
1767 	/* anon mapping, we can simply copy page->mapping to the new page: */
1768 	new_page->mapping = page->mapping;
1769 	new_page->index = page->index;
1770 	migrate_page_copy(new_page, page);
1771 	WARN_ON(PageLRU(new_page));
1772 
1773 	/* Recheck the target PMD */
1774 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1775 	ptl = pmd_lock(mm, pmd);
1776 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1777 fail_putback:
1778 		spin_unlock(ptl);
1779 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1780 
1781 		/* Reverse changes made by migrate_page_copy() */
1782 		if (TestClearPageActive(new_page))
1783 			SetPageActive(page);
1784 		if (TestClearPageUnevictable(new_page))
1785 			SetPageUnevictable(page);
1786 		mlock_migrate_page(page, new_page);
1787 
1788 		unlock_page(new_page);
1789 		put_page(new_page);		/* Free it */
1790 
1791 		/* Retake the callers reference and putback on LRU */
1792 		get_page(page);
1793 		putback_lru_page(page);
1794 		mod_zone_page_state(page_zone(page),
1795 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1796 
1797 		goto out_unlock;
1798 	}
1799 
1800 	/*
1801 	 * Traditional migration needs to prepare the memcg charge
1802 	 * transaction early to prevent the old page from being
1803 	 * uncharged when installing migration entries.  Here we can
1804 	 * save the potential rollback and start the charge transfer
1805 	 * only when migration is already known to end successfully.
1806 	 */
1807 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1808 
1809 	orig_entry = *pmd;
1810 	entry = mk_pmd(new_page, vma->vm_page_prot);
1811 	entry = pmd_mkhuge(entry);
1812 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1813 
1814 	/*
1815 	 * Clear the old entry under pagetable lock and establish the new PTE.
1816 	 * Any parallel GUP will either observe the old page blocking on the
1817 	 * page lock, block on the page table lock or observe the new page.
1818 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1819 	 * guarantee the copy is visible before the pagetable update.
1820 	 */
1821 	flush_cache_range(vma, mmun_start, mmun_end);
1822 	page_add_new_anon_rmap(new_page, vma, mmun_start);
1823 	pmdp_clear_flush(vma, mmun_start, pmd);
1824 	set_pmd_at(mm, mmun_start, pmd, entry);
1825 	flush_tlb_range(vma, mmun_start, mmun_end);
1826 	update_mmu_cache_pmd(vma, address, &entry);
1827 
1828 	if (page_count(page) != 2) {
1829 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1830 		flush_tlb_range(vma, mmun_start, mmun_end);
1831 		update_mmu_cache_pmd(vma, address, &entry);
1832 		page_remove_rmap(new_page);
1833 		goto fail_putback;
1834 	}
1835 
1836 	page_remove_rmap(page);
1837 
1838 	/*
1839 	 * Finish the charge transaction under the page table lock to
1840 	 * prevent split_huge_page() from dividing up the charge
1841 	 * before it's fully transferred to the new page.
1842 	 */
1843 	mem_cgroup_end_migration(memcg, page, new_page, true);
1844 	spin_unlock(ptl);
1845 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1846 
1847 	unlock_page(new_page);
1848 	unlock_page(page);
1849 	put_page(page);			/* Drop the rmap reference */
1850 	put_page(page);			/* Drop the LRU isolation reference */
1851 
1852 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1853 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1854 
1855 	mod_zone_page_state(page_zone(page),
1856 			NR_ISOLATED_ANON + page_lru,
1857 			-HPAGE_PMD_NR);
1858 	return isolated;
1859 
1860 out_fail:
1861 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1862 out_dropref:
1863 	ptl = pmd_lock(mm, pmd);
1864 	if (pmd_same(*pmd, entry)) {
1865 		entry = pmd_mknonnuma(entry);
1866 		set_pmd_at(mm, mmun_start, pmd, entry);
1867 		update_mmu_cache_pmd(vma, address, &entry);
1868 	}
1869 	spin_unlock(ptl);
1870 
1871 out_unlock:
1872 	unlock_page(page);
1873 	put_page(page);
1874 	return 0;
1875 }
1876 #endif /* CONFIG_NUMA_BALANCING */
1877 
1878 #endif /* CONFIG_NUMA */
1879