xref: /openbmc/linux/mm/migrate.c (revision 5e5dda81)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -thp_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_device_private_page(new))) {
250 			entry = make_device_private_entry(new, pte_write(pte));
251 			pte = swp_entry_to_pte(entry);
252 			if (pte_swp_soft_dirty(*pvmw.pte))
253 				pte = pte_swp_mksoft_dirty(pte);
254 			if (pte_swp_uffd_wp(*pvmw.pte))
255 				pte = pte_swp_mkuffd_wp(pte);
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 
330 	/*
331 	 * Once page cache replacement of page migration started, page_count
332 	 * is zero; but we must not call put_and_wait_on_page_locked() without
333 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	put_and_wait_on_page_locked(page);
339 	return;
340 out:
341 	pte_unmap_unlock(ptep, ptl);
342 }
343 
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 				unsigned long address)
346 {
347 	spinlock_t *ptl = pte_lockptr(mm, pmd);
348 	pte_t *ptep = pte_offset_map(pmd, address);
349 	__migration_entry_wait(mm, ptep, ptl);
350 }
351 
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 		struct mm_struct *mm, pte_t *pte)
354 {
355 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 	__migration_entry_wait(mm, pte, ptl);
357 }
358 
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 	spinlock_t *ptl;
363 	struct page *page;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 	if (!get_page_unless_zero(page))
370 		goto unlock;
371 	spin_unlock(ptl);
372 	put_and_wait_on_page_locked(page);
373 	return;
374 unlock:
375 	spin_unlock(ptl);
376 }
377 #endif
378 
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 	int expected_count = 1;
382 
383 	/*
384 	 * Device private pages have an extra refcount as they are
385 	 * ZONE_DEVICE pages.
386 	 */
387 	expected_count += is_device_private_page(page);
388 	if (mapping)
389 		expected_count += thp_nr_pages(page) + page_has_private(page);
390 
391 	return expected_count;
392 }
393 
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 		struct page *newpage, struct page *page, int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(mapping, page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		struct lruvec *old_lruvec, *new_lruvec;
494 		struct mem_cgroup *memcg;
495 
496 		memcg = page_memcg(page);
497 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499 
500 		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
503 			__dec_lruvec_state(old_lruvec, NR_SHMEM);
504 			__inc_lruvec_state(new_lruvec, NR_SHMEM);
505 		}
506 		if (dirty && mapping_can_writeback(mapping)) {
507 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511 		}
512 	}
513 	local_irq_enable();
514 
515 	return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518 
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524 				   struct page *newpage, struct page *page)
525 {
526 	XA_STATE(xas, &mapping->i_pages, page_index(page));
527 	int expected_count;
528 
529 	xas_lock_irq(&xas);
530 	expected_count = 2 + page_has_private(page);
531 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 		xas_unlock_irq(&xas);
533 		return -EAGAIN;
534 	}
535 
536 	if (!page_ref_freeze(page, expected_count)) {
537 		xas_unlock_irq(&xas);
538 		return -EAGAIN;
539 	}
540 
541 	newpage->index = page->index;
542 	newpage->mapping = page->mapping;
543 
544 	get_page(newpage);
545 
546 	xas_store(&xas, newpage);
547 
548 	page_ref_unfreeze(page, expected_count - 1);
549 
550 	xas_unlock_irq(&xas);
551 
552 	return MIGRATEPAGE_SUCCESS;
553 }
554 
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 				int nr_pages)
562 {
563 	int i;
564 	struct page *dst_base = dst;
565 	struct page *src_base = src;
566 
567 	for (i = 0; i < nr_pages; ) {
568 		cond_resched();
569 		copy_highpage(dst, src);
570 
571 		i++;
572 		dst = mem_map_next(dst, dst_base, i);
573 		src = mem_map_next(src, src_base, i);
574 	}
575 }
576 
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579 	int i;
580 	int nr_pages;
581 
582 	if (PageHuge(src)) {
583 		/* hugetlbfs page */
584 		struct hstate *h = page_hstate(src);
585 		nr_pages = pages_per_huge_page(h);
586 
587 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 			__copy_gigantic_page(dst, src, nr_pages);
589 			return;
590 		}
591 	} else {
592 		/* thp page */
593 		BUG_ON(!PageTransHuge(src));
594 		nr_pages = thp_nr_pages(src);
595 	}
596 
597 	for (i = 0; i < nr_pages; i++) {
598 		cond_resched();
599 		copy_highpage(dst + i, src + i);
600 	}
601 }
602 
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608 	int cpupid;
609 
610 	if (PageError(page))
611 		SetPageError(newpage);
612 	if (PageReferenced(page))
613 		SetPageReferenced(newpage);
614 	if (PageUptodate(page))
615 		SetPageUptodate(newpage);
616 	if (TestClearPageActive(page)) {
617 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 		SetPageActive(newpage);
619 	} else if (TestClearPageUnevictable(page))
620 		SetPageUnevictable(newpage);
621 	if (PageWorkingset(page))
622 		SetPageWorkingset(newpage);
623 	if (PageChecked(page))
624 		SetPageChecked(newpage);
625 	if (PageMappedToDisk(page))
626 		SetPageMappedToDisk(newpage);
627 
628 	/* Move dirty on pages not done by migrate_page_move_mapping() */
629 	if (PageDirty(page))
630 		SetPageDirty(newpage);
631 
632 	if (page_is_young(page))
633 		set_page_young(newpage);
634 	if (page_is_idle(page))
635 		set_page_idle(newpage);
636 
637 	/*
638 	 * Copy NUMA information to the new page, to prevent over-eager
639 	 * future migrations of this same page.
640 	 */
641 	cpupid = page_cpupid_xchg_last(page, -1);
642 	page_cpupid_xchg_last(newpage, cpupid);
643 
644 	ksm_migrate_page(newpage, page);
645 	/*
646 	 * Please do not reorder this without considering how mm/ksm.c's
647 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 	 */
649 	if (PageSwapCache(page))
650 		ClearPageSwapCache(page);
651 	ClearPagePrivate(page);
652 	set_page_private(page, 0);
653 
654 	/*
655 	 * If any waiters have accumulated on the new page then
656 	 * wake them up.
657 	 */
658 	if (PageWriteback(newpage))
659 		end_page_writeback(newpage);
660 
661 	/*
662 	 * PG_readahead shares the same bit with PG_reclaim.  The above
663 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 	 * bit after that.
665 	 */
666 	if (PageReadahead(page))
667 		SetPageReadahead(newpage);
668 
669 	copy_page_owner(page, newpage);
670 
671 	if (!PageHuge(page))
672 		mem_cgroup_migrate(page, newpage);
673 }
674 EXPORT_SYMBOL(migrate_page_states);
675 
676 void migrate_page_copy(struct page *newpage, struct page *page)
677 {
678 	if (PageHuge(page) || PageTransHuge(page))
679 		copy_huge_page(newpage, page);
680 	else
681 		copy_highpage(newpage, page);
682 
683 	migrate_page_states(newpage, page);
684 }
685 EXPORT_SYMBOL(migrate_page_copy);
686 
687 /************************************************************
688  *                    Migration functions
689  ***********************************************************/
690 
691 /*
692  * Common logic to directly migrate a single LRU page suitable for
693  * pages that do not use PagePrivate/PagePrivate2.
694  *
695  * Pages are locked upon entry and exit.
696  */
697 int migrate_page(struct address_space *mapping,
698 		struct page *newpage, struct page *page,
699 		enum migrate_mode mode)
700 {
701 	int rc;
702 
703 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
704 
705 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
706 
707 	if (rc != MIGRATEPAGE_SUCCESS)
708 		return rc;
709 
710 	if (mode != MIGRATE_SYNC_NO_COPY)
711 		migrate_page_copy(newpage, page);
712 	else
713 		migrate_page_states(newpage, page);
714 	return MIGRATEPAGE_SUCCESS;
715 }
716 EXPORT_SYMBOL(migrate_page);
717 
718 #ifdef CONFIG_BLOCK
719 /* Returns true if all buffers are successfully locked */
720 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
721 							enum migrate_mode mode)
722 {
723 	struct buffer_head *bh = head;
724 
725 	/* Simple case, sync compaction */
726 	if (mode != MIGRATE_ASYNC) {
727 		do {
728 			lock_buffer(bh);
729 			bh = bh->b_this_page;
730 
731 		} while (bh != head);
732 
733 		return true;
734 	}
735 
736 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
737 	do {
738 		if (!trylock_buffer(bh)) {
739 			/*
740 			 * We failed to lock the buffer and cannot stall in
741 			 * async migration. Release the taken locks
742 			 */
743 			struct buffer_head *failed_bh = bh;
744 			bh = head;
745 			while (bh != failed_bh) {
746 				unlock_buffer(bh);
747 				bh = bh->b_this_page;
748 			}
749 			return false;
750 		}
751 
752 		bh = bh->b_this_page;
753 	} while (bh != head);
754 	return true;
755 }
756 
757 static int __buffer_migrate_page(struct address_space *mapping,
758 		struct page *newpage, struct page *page, enum migrate_mode mode,
759 		bool check_refs)
760 {
761 	struct buffer_head *bh, *head;
762 	int rc;
763 	int expected_count;
764 
765 	if (!page_has_buffers(page))
766 		return migrate_page(mapping, newpage, page, mode);
767 
768 	/* Check whether page does not have extra refs before we do more work */
769 	expected_count = expected_page_refs(mapping, page);
770 	if (page_count(page) != expected_count)
771 		return -EAGAIN;
772 
773 	head = page_buffers(page);
774 	if (!buffer_migrate_lock_buffers(head, mode))
775 		return -EAGAIN;
776 
777 	if (check_refs) {
778 		bool busy;
779 		bool invalidated = false;
780 
781 recheck_buffers:
782 		busy = false;
783 		spin_lock(&mapping->private_lock);
784 		bh = head;
785 		do {
786 			if (atomic_read(&bh->b_count)) {
787 				busy = true;
788 				break;
789 			}
790 			bh = bh->b_this_page;
791 		} while (bh != head);
792 		if (busy) {
793 			if (invalidated) {
794 				rc = -EAGAIN;
795 				goto unlock_buffers;
796 			}
797 			spin_unlock(&mapping->private_lock);
798 			invalidate_bh_lrus();
799 			invalidated = true;
800 			goto recheck_buffers;
801 		}
802 	}
803 
804 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
805 	if (rc != MIGRATEPAGE_SUCCESS)
806 		goto unlock_buffers;
807 
808 	attach_page_private(newpage, detach_page_private(page));
809 
810 	bh = head;
811 	do {
812 		set_bh_page(bh, newpage, bh_offset(bh));
813 		bh = bh->b_this_page;
814 
815 	} while (bh != head);
816 
817 	if (mode != MIGRATE_SYNC_NO_COPY)
818 		migrate_page_copy(newpage, page);
819 	else
820 		migrate_page_states(newpage, page);
821 
822 	rc = MIGRATEPAGE_SUCCESS;
823 unlock_buffers:
824 	if (check_refs)
825 		spin_unlock(&mapping->private_lock);
826 	bh = head;
827 	do {
828 		unlock_buffer(bh);
829 		bh = bh->b_this_page;
830 
831 	} while (bh != head);
832 
833 	return rc;
834 }
835 
836 /*
837  * Migration function for pages with buffers. This function can only be used
838  * if the underlying filesystem guarantees that no other references to "page"
839  * exist. For example attached buffer heads are accessed only under page lock.
840  */
841 int buffer_migrate_page(struct address_space *mapping,
842 		struct page *newpage, struct page *page, enum migrate_mode mode)
843 {
844 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
845 }
846 EXPORT_SYMBOL(buffer_migrate_page);
847 
848 /*
849  * Same as above except that this variant is more careful and checks that there
850  * are also no buffer head references. This function is the right one for
851  * mappings where buffer heads are directly looked up and referenced (such as
852  * block device mappings).
853  */
854 int buffer_migrate_page_norefs(struct address_space *mapping,
855 		struct page *newpage, struct page *page, enum migrate_mode mode)
856 {
857 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
858 }
859 #endif
860 
861 /*
862  * Writeback a page to clean the dirty state
863  */
864 static int writeout(struct address_space *mapping, struct page *page)
865 {
866 	struct writeback_control wbc = {
867 		.sync_mode = WB_SYNC_NONE,
868 		.nr_to_write = 1,
869 		.range_start = 0,
870 		.range_end = LLONG_MAX,
871 		.for_reclaim = 1
872 	};
873 	int rc;
874 
875 	if (!mapping->a_ops->writepage)
876 		/* No write method for the address space */
877 		return -EINVAL;
878 
879 	if (!clear_page_dirty_for_io(page))
880 		/* Someone else already triggered a write */
881 		return -EAGAIN;
882 
883 	/*
884 	 * A dirty page may imply that the underlying filesystem has
885 	 * the page on some queue. So the page must be clean for
886 	 * migration. Writeout may mean we loose the lock and the
887 	 * page state is no longer what we checked for earlier.
888 	 * At this point we know that the migration attempt cannot
889 	 * be successful.
890 	 */
891 	remove_migration_ptes(page, page, false);
892 
893 	rc = mapping->a_ops->writepage(page, &wbc);
894 
895 	if (rc != AOP_WRITEPAGE_ACTIVATE)
896 		/* unlocked. Relock */
897 		lock_page(page);
898 
899 	return (rc < 0) ? -EIO : -EAGAIN;
900 }
901 
902 /*
903  * Default handling if a filesystem does not provide a migration function.
904  */
905 static int fallback_migrate_page(struct address_space *mapping,
906 	struct page *newpage, struct page *page, enum migrate_mode mode)
907 {
908 	if (PageDirty(page)) {
909 		/* Only writeback pages in full synchronous migration */
910 		switch (mode) {
911 		case MIGRATE_SYNC:
912 		case MIGRATE_SYNC_NO_COPY:
913 			break;
914 		default:
915 			return -EBUSY;
916 		}
917 		return writeout(mapping, page);
918 	}
919 
920 	/*
921 	 * Buffers may be managed in a filesystem specific way.
922 	 * We must have no buffers or drop them.
923 	 */
924 	if (page_has_private(page) &&
925 	    !try_to_release_page(page, GFP_KERNEL))
926 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
927 
928 	return migrate_page(mapping, newpage, page, mode);
929 }
930 
931 /*
932  * Move a page to a newly allocated page
933  * The page is locked and all ptes have been successfully removed.
934  *
935  * The new page will have replaced the old page if this function
936  * is successful.
937  *
938  * Return value:
939  *   < 0 - error code
940  *  MIGRATEPAGE_SUCCESS - success
941  */
942 static int move_to_new_page(struct page *newpage, struct page *page,
943 				enum migrate_mode mode)
944 {
945 	struct address_space *mapping;
946 	int rc = -EAGAIN;
947 	bool is_lru = !__PageMovable(page);
948 
949 	VM_BUG_ON_PAGE(!PageLocked(page), page);
950 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
951 
952 	mapping = page_mapping(page);
953 
954 	if (likely(is_lru)) {
955 		if (!mapping)
956 			rc = migrate_page(mapping, newpage, page, mode);
957 		else if (mapping->a_ops->migratepage)
958 			/*
959 			 * Most pages have a mapping and most filesystems
960 			 * provide a migratepage callback. Anonymous pages
961 			 * are part of swap space which also has its own
962 			 * migratepage callback. This is the most common path
963 			 * for page migration.
964 			 */
965 			rc = mapping->a_ops->migratepage(mapping, newpage,
966 							page, mode);
967 		else
968 			rc = fallback_migrate_page(mapping, newpage,
969 							page, mode);
970 	} else {
971 		/*
972 		 * In case of non-lru page, it could be released after
973 		 * isolation step. In that case, we shouldn't try migration.
974 		 */
975 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
976 		if (!PageMovable(page)) {
977 			rc = MIGRATEPAGE_SUCCESS;
978 			__ClearPageIsolated(page);
979 			goto out;
980 		}
981 
982 		rc = mapping->a_ops->migratepage(mapping, newpage,
983 						page, mode);
984 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
985 			!PageIsolated(page));
986 	}
987 
988 	/*
989 	 * When successful, old pagecache page->mapping must be cleared before
990 	 * page is freed; but stats require that PageAnon be left as PageAnon.
991 	 */
992 	if (rc == MIGRATEPAGE_SUCCESS) {
993 		if (__PageMovable(page)) {
994 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
995 
996 			/*
997 			 * We clear PG_movable under page_lock so any compactor
998 			 * cannot try to migrate this page.
999 			 */
1000 			__ClearPageIsolated(page);
1001 		}
1002 
1003 		/*
1004 		 * Anonymous and movable page->mapping will be cleared by
1005 		 * free_pages_prepare so don't reset it here for keeping
1006 		 * the type to work PageAnon, for example.
1007 		 */
1008 		if (!PageMappingFlags(page))
1009 			page->mapping = NULL;
1010 
1011 		if (likely(!is_zone_device_page(newpage)))
1012 			flush_dcache_page(newpage);
1013 
1014 	}
1015 out:
1016 	return rc;
1017 }
1018 
1019 static int __unmap_and_move(struct page *page, struct page *newpage,
1020 				int force, enum migrate_mode mode)
1021 {
1022 	int rc = -EAGAIN;
1023 	int page_was_mapped = 0;
1024 	struct anon_vma *anon_vma = NULL;
1025 	bool is_lru = !__PageMovable(page);
1026 
1027 	if (!trylock_page(page)) {
1028 		if (!force || mode == MIGRATE_ASYNC)
1029 			goto out;
1030 
1031 		/*
1032 		 * It's not safe for direct compaction to call lock_page.
1033 		 * For example, during page readahead pages are added locked
1034 		 * to the LRU. Later, when the IO completes the pages are
1035 		 * marked uptodate and unlocked. However, the queueing
1036 		 * could be merging multiple pages for one bio (e.g.
1037 		 * mpage_readahead). If an allocation happens for the
1038 		 * second or third page, the process can end up locking
1039 		 * the same page twice and deadlocking. Rather than
1040 		 * trying to be clever about what pages can be locked,
1041 		 * avoid the use of lock_page for direct compaction
1042 		 * altogether.
1043 		 */
1044 		if (current->flags & PF_MEMALLOC)
1045 			goto out;
1046 
1047 		lock_page(page);
1048 	}
1049 
1050 	if (PageWriteback(page)) {
1051 		/*
1052 		 * Only in the case of a full synchronous migration is it
1053 		 * necessary to wait for PageWriteback. In the async case,
1054 		 * the retry loop is too short and in the sync-light case,
1055 		 * the overhead of stalling is too much
1056 		 */
1057 		switch (mode) {
1058 		case MIGRATE_SYNC:
1059 		case MIGRATE_SYNC_NO_COPY:
1060 			break;
1061 		default:
1062 			rc = -EBUSY;
1063 			goto out_unlock;
1064 		}
1065 		if (!force)
1066 			goto out_unlock;
1067 		wait_on_page_writeback(page);
1068 	}
1069 
1070 	/*
1071 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072 	 * we cannot notice that anon_vma is freed while we migrates a page.
1073 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1074 	 * of migration. File cache pages are no problem because of page_lock()
1075 	 * File Caches may use write_page() or lock_page() in migration, then,
1076 	 * just care Anon page here.
1077 	 *
1078 	 * Only page_get_anon_vma() understands the subtleties of
1079 	 * getting a hold on an anon_vma from outside one of its mms.
1080 	 * But if we cannot get anon_vma, then we won't need it anyway,
1081 	 * because that implies that the anon page is no longer mapped
1082 	 * (and cannot be remapped so long as we hold the page lock).
1083 	 */
1084 	if (PageAnon(page) && !PageKsm(page))
1085 		anon_vma = page_get_anon_vma(page);
1086 
1087 	/*
1088 	 * Block others from accessing the new page when we get around to
1089 	 * establishing additional references. We are usually the only one
1090 	 * holding a reference to newpage at this point. We used to have a BUG
1091 	 * here if trylock_page(newpage) fails, but would like to allow for
1092 	 * cases where there might be a race with the previous use of newpage.
1093 	 * This is much like races on refcount of oldpage: just don't BUG().
1094 	 */
1095 	if (unlikely(!trylock_page(newpage)))
1096 		goto out_unlock;
1097 
1098 	if (unlikely(!is_lru)) {
1099 		rc = move_to_new_page(newpage, page, mode);
1100 		goto out_unlock_both;
1101 	}
1102 
1103 	/*
1104 	 * Corner case handling:
1105 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1106 	 * and treated as swapcache but it has no rmap yet.
1107 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1108 	 * trigger a BUG.  So handle it here.
1109 	 * 2. An orphaned page (see truncate_complete_page) might have
1110 	 * fs-private metadata. The page can be picked up due to memory
1111 	 * offlining.  Everywhere else except page reclaim, the page is
1112 	 * invisible to the vm, so the page can not be migrated.  So try to
1113 	 * free the metadata, so the page can be freed.
1114 	 */
1115 	if (!page->mapping) {
1116 		VM_BUG_ON_PAGE(PageAnon(page), page);
1117 		if (page_has_private(page)) {
1118 			try_to_free_buffers(page);
1119 			goto out_unlock_both;
1120 		}
1121 	} else if (page_mapped(page)) {
1122 		/* Establish migration ptes */
1123 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124 				page);
1125 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1126 		page_was_mapped = 1;
1127 	}
1128 
1129 	if (!page_mapped(page))
1130 		rc = move_to_new_page(newpage, page, mode);
1131 
1132 	if (page_was_mapped)
1133 		remove_migration_ptes(page,
1134 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135 
1136 out_unlock_both:
1137 	unlock_page(newpage);
1138 out_unlock:
1139 	/* Drop an anon_vma reference if we took one */
1140 	if (anon_vma)
1141 		put_anon_vma(anon_vma);
1142 	unlock_page(page);
1143 out:
1144 	/*
1145 	 * If migration is successful, decrease refcount of the newpage
1146 	 * which will not free the page because new page owner increased
1147 	 * refcounter. As well, if it is LRU page, add the page to LRU
1148 	 * list in here. Use the old state of the isolated source page to
1149 	 * determine if we migrated a LRU page. newpage was already unlocked
1150 	 * and possibly modified by its owner - don't rely on the page
1151 	 * state.
1152 	 */
1153 	if (rc == MIGRATEPAGE_SUCCESS) {
1154 		if (unlikely(!is_lru))
1155 			put_page(newpage);
1156 		else
1157 			putback_lru_page(newpage);
1158 	}
1159 
1160 	return rc;
1161 }
1162 
1163 /*
1164  * Obtain the lock on page, remove all ptes and migrate the page
1165  * to the newly allocated page in newpage.
1166  */
1167 static int unmap_and_move(new_page_t get_new_page,
1168 				   free_page_t put_new_page,
1169 				   unsigned long private, struct page *page,
1170 				   int force, enum migrate_mode mode,
1171 				   enum migrate_reason reason)
1172 {
1173 	int rc = MIGRATEPAGE_SUCCESS;
1174 	struct page *newpage = NULL;
1175 
1176 	if (!thp_migration_supported() && PageTransHuge(page))
1177 		return -ENOMEM;
1178 
1179 	if (page_count(page) == 1) {
1180 		/* page was freed from under us. So we are done. */
1181 		ClearPageActive(page);
1182 		ClearPageUnevictable(page);
1183 		if (unlikely(__PageMovable(page))) {
1184 			lock_page(page);
1185 			if (!PageMovable(page))
1186 				__ClearPageIsolated(page);
1187 			unlock_page(page);
1188 		}
1189 		goto out;
1190 	}
1191 
1192 	newpage = get_new_page(page, private);
1193 	if (!newpage)
1194 		return -ENOMEM;
1195 
1196 	rc = __unmap_and_move(page, newpage, force, mode);
1197 	if (rc == MIGRATEPAGE_SUCCESS)
1198 		set_page_owner_migrate_reason(newpage, reason);
1199 
1200 out:
1201 	if (rc != -EAGAIN) {
1202 		/*
1203 		 * A page that has been migrated has all references
1204 		 * removed and will be freed. A page that has not been
1205 		 * migrated will have kept its references and be restored.
1206 		 */
1207 		list_del(&page->lru);
1208 
1209 		/*
1210 		 * Compaction can migrate also non-LRU pages which are
1211 		 * not accounted to NR_ISOLATED_*. They can be recognized
1212 		 * as __PageMovable
1213 		 */
1214 		if (likely(!__PageMovable(page)))
1215 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216 					page_is_file_lru(page), -thp_nr_pages(page));
1217 	}
1218 
1219 	/*
1220 	 * If migration is successful, releases reference grabbed during
1221 	 * isolation. Otherwise, restore the page to right list unless
1222 	 * we want to retry.
1223 	 */
1224 	if (rc == MIGRATEPAGE_SUCCESS) {
1225 		if (reason != MR_MEMORY_FAILURE)
1226 			/*
1227 			 * We release the page in page_handle_poison.
1228 			 */
1229 			put_page(page);
1230 	} else {
1231 		if (rc != -EAGAIN) {
1232 			if (likely(!__PageMovable(page))) {
1233 				putback_lru_page(page);
1234 				goto put_new;
1235 			}
1236 
1237 			lock_page(page);
1238 			if (PageMovable(page))
1239 				putback_movable_page(page);
1240 			else
1241 				__ClearPageIsolated(page);
1242 			unlock_page(page);
1243 			put_page(page);
1244 		}
1245 put_new:
1246 		if (put_new_page)
1247 			put_new_page(newpage, private);
1248 		else
1249 			put_page(newpage);
1250 	}
1251 
1252 	return rc;
1253 }
1254 
1255 /*
1256  * Counterpart of unmap_and_move_page() for hugepage migration.
1257  *
1258  * This function doesn't wait the completion of hugepage I/O
1259  * because there is no race between I/O and migration for hugepage.
1260  * Note that currently hugepage I/O occurs only in direct I/O
1261  * where no lock is held and PG_writeback is irrelevant,
1262  * and writeback status of all subpages are counted in the reference
1263  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1264  * under direct I/O, the reference of the head page is 512 and a bit more.)
1265  * This means that when we try to migrate hugepage whose subpages are
1266  * doing direct I/O, some references remain after try_to_unmap() and
1267  * hugepage migration fails without data corruption.
1268  *
1269  * There is also no race when direct I/O is issued on the page under migration,
1270  * because then pte is replaced with migration swap entry and direct I/O code
1271  * will wait in the page fault for migration to complete.
1272  */
1273 static int unmap_and_move_huge_page(new_page_t get_new_page,
1274 				free_page_t put_new_page, unsigned long private,
1275 				struct page *hpage, int force,
1276 				enum migrate_mode mode, int reason)
1277 {
1278 	int rc = -EAGAIN;
1279 	int page_was_mapped = 0;
1280 	struct page *new_hpage;
1281 	struct anon_vma *anon_vma = NULL;
1282 	struct address_space *mapping = NULL;
1283 
1284 	/*
1285 	 * Migratability of hugepages depends on architectures and their size.
1286 	 * This check is necessary because some callers of hugepage migration
1287 	 * like soft offline and memory hotremove don't walk through page
1288 	 * tables or check whether the hugepage is pmd-based or not before
1289 	 * kicking migration.
1290 	 */
1291 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1292 		putback_active_hugepage(hpage);
1293 		return -ENOSYS;
1294 	}
1295 
1296 	new_hpage = get_new_page(hpage, private);
1297 	if (!new_hpage)
1298 		return -ENOMEM;
1299 
1300 	if (!trylock_page(hpage)) {
1301 		if (!force)
1302 			goto out;
1303 		switch (mode) {
1304 		case MIGRATE_SYNC:
1305 		case MIGRATE_SYNC_NO_COPY:
1306 			break;
1307 		default:
1308 			goto out;
1309 		}
1310 		lock_page(hpage);
1311 	}
1312 
1313 	/*
1314 	 * Check for pages which are in the process of being freed.  Without
1315 	 * page_mapping() set, hugetlbfs specific move page routine will not
1316 	 * be called and we could leak usage counts for subpools.
1317 	 */
1318 	if (page_private(hpage) && !page_mapping(hpage)) {
1319 		rc = -EBUSY;
1320 		goto out_unlock;
1321 	}
1322 
1323 	if (PageAnon(hpage))
1324 		anon_vma = page_get_anon_vma(hpage);
1325 
1326 	if (unlikely(!trylock_page(new_hpage)))
1327 		goto put_anon;
1328 
1329 	if (page_mapped(hpage)) {
1330 		bool mapping_locked = false;
1331 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1332 
1333 		if (!PageAnon(hpage)) {
1334 			/*
1335 			 * In shared mappings, try_to_unmap could potentially
1336 			 * call huge_pmd_unshare.  Because of this, take
1337 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1338 			 * to let lower levels know we have taken the lock.
1339 			 */
1340 			mapping = hugetlb_page_mapping_lock_write(hpage);
1341 			if (unlikely(!mapping))
1342 				goto unlock_put_anon;
1343 
1344 			mapping_locked = true;
1345 			ttu |= TTU_RMAP_LOCKED;
1346 		}
1347 
1348 		try_to_unmap(hpage, ttu);
1349 		page_was_mapped = 1;
1350 
1351 		if (mapping_locked)
1352 			i_mmap_unlock_write(mapping);
1353 	}
1354 
1355 	if (!page_mapped(hpage))
1356 		rc = move_to_new_page(new_hpage, hpage, mode);
1357 
1358 	if (page_was_mapped)
1359 		remove_migration_ptes(hpage,
1360 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1361 
1362 unlock_put_anon:
1363 	unlock_page(new_hpage);
1364 
1365 put_anon:
1366 	if (anon_vma)
1367 		put_anon_vma(anon_vma);
1368 
1369 	if (rc == MIGRATEPAGE_SUCCESS) {
1370 		move_hugetlb_state(hpage, new_hpage, reason);
1371 		put_new_page = NULL;
1372 	}
1373 
1374 out_unlock:
1375 	unlock_page(hpage);
1376 out:
1377 	if (rc != -EAGAIN)
1378 		putback_active_hugepage(hpage);
1379 
1380 	/*
1381 	 * If migration was not successful and there's a freeing callback, use
1382 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1383 	 * isolation.
1384 	 */
1385 	if (put_new_page)
1386 		put_new_page(new_hpage, private);
1387 	else
1388 		putback_active_hugepage(new_hpage);
1389 
1390 	return rc;
1391 }
1392 
1393 /*
1394  * migrate_pages - migrate the pages specified in a list, to the free pages
1395  *		   supplied as the target for the page migration
1396  *
1397  * @from:		The list of pages to be migrated.
1398  * @get_new_page:	The function used to allocate free pages to be used
1399  *			as the target of the page migration.
1400  * @put_new_page:	The function used to free target pages if migration
1401  *			fails, or NULL if no special handling is necessary.
1402  * @private:		Private data to be passed on to get_new_page()
1403  * @mode:		The migration mode that specifies the constraints for
1404  *			page migration, if any.
1405  * @reason:		The reason for page migration.
1406  *
1407  * The function returns after 10 attempts or if no pages are movable any more
1408  * because the list has become empty or no retryable pages exist any more.
1409  * The caller should call putback_movable_pages() to return pages to the LRU
1410  * or free list only if ret != 0.
1411  *
1412  * Returns the number of pages that were not migrated, or an error code.
1413  */
1414 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1415 		free_page_t put_new_page, unsigned long private,
1416 		enum migrate_mode mode, int reason)
1417 {
1418 	int retry = 1;
1419 	int thp_retry = 1;
1420 	int nr_failed = 0;
1421 	int nr_succeeded = 0;
1422 	int nr_thp_succeeded = 0;
1423 	int nr_thp_failed = 0;
1424 	int nr_thp_split = 0;
1425 	int pass = 0;
1426 	bool is_thp = false;
1427 	struct page *page;
1428 	struct page *page2;
1429 	int swapwrite = current->flags & PF_SWAPWRITE;
1430 	int rc, nr_subpages;
1431 
1432 	if (!swapwrite)
1433 		current->flags |= PF_SWAPWRITE;
1434 
1435 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1436 		retry = 0;
1437 		thp_retry = 0;
1438 
1439 		list_for_each_entry_safe(page, page2, from, lru) {
1440 retry:
1441 			/*
1442 			 * THP statistics is based on the source huge page.
1443 			 * Capture required information that might get lost
1444 			 * during migration.
1445 			 */
1446 			is_thp = PageTransHuge(page) && !PageHuge(page);
1447 			nr_subpages = thp_nr_pages(page);
1448 			cond_resched();
1449 
1450 			if (PageHuge(page))
1451 				rc = unmap_and_move_huge_page(get_new_page,
1452 						put_new_page, private, page,
1453 						pass > 2, mode, reason);
1454 			else
1455 				rc = unmap_and_move(get_new_page, put_new_page,
1456 						private, page, pass > 2, mode,
1457 						reason);
1458 
1459 			switch(rc) {
1460 			case -ENOMEM:
1461 				/*
1462 				 * THP migration might be unsupported or the
1463 				 * allocation could've failed so we should
1464 				 * retry on the same page with the THP split
1465 				 * to base pages.
1466 				 *
1467 				 * Head page is retried immediately and tail
1468 				 * pages are added to the tail of the list so
1469 				 * we encounter them after the rest of the list
1470 				 * is processed.
1471 				 */
1472 				if (is_thp) {
1473 					lock_page(page);
1474 					rc = split_huge_page_to_list(page, from);
1475 					unlock_page(page);
1476 					if (!rc) {
1477 						list_safe_reset_next(page, page2, lru);
1478 						nr_thp_split++;
1479 						goto retry;
1480 					}
1481 
1482 					nr_thp_failed++;
1483 					nr_failed += nr_subpages;
1484 					goto out;
1485 				}
1486 				nr_failed++;
1487 				goto out;
1488 			case -EAGAIN:
1489 				if (is_thp) {
1490 					thp_retry++;
1491 					break;
1492 				}
1493 				retry++;
1494 				break;
1495 			case MIGRATEPAGE_SUCCESS:
1496 				if (is_thp) {
1497 					nr_thp_succeeded++;
1498 					nr_succeeded += nr_subpages;
1499 					break;
1500 				}
1501 				nr_succeeded++;
1502 				break;
1503 			default:
1504 				/*
1505 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1506 				 * unlike -EAGAIN case, the failed page is
1507 				 * removed from migration page list and not
1508 				 * retried in the next outer loop.
1509 				 */
1510 				if (is_thp) {
1511 					nr_thp_failed++;
1512 					nr_failed += nr_subpages;
1513 					break;
1514 				}
1515 				nr_failed++;
1516 				break;
1517 			}
1518 		}
1519 	}
1520 	nr_failed += retry + thp_retry;
1521 	nr_thp_failed += thp_retry;
1522 	rc = nr_failed;
1523 out:
1524 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1525 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1526 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1527 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1528 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1529 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1530 			       nr_thp_failed, nr_thp_split, mode, reason);
1531 
1532 	if (!swapwrite)
1533 		current->flags &= ~PF_SWAPWRITE;
1534 
1535 	return rc;
1536 }
1537 
1538 struct page *alloc_migration_target(struct page *page, unsigned long private)
1539 {
1540 	struct migration_target_control *mtc;
1541 	gfp_t gfp_mask;
1542 	unsigned int order = 0;
1543 	struct page *new_page = NULL;
1544 	int nid;
1545 	int zidx;
1546 
1547 	mtc = (struct migration_target_control *)private;
1548 	gfp_mask = mtc->gfp_mask;
1549 	nid = mtc->nid;
1550 	if (nid == NUMA_NO_NODE)
1551 		nid = page_to_nid(page);
1552 
1553 	if (PageHuge(page)) {
1554 		struct hstate *h = page_hstate(compound_head(page));
1555 
1556 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1557 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1558 	}
1559 
1560 	if (PageTransHuge(page)) {
1561 		/*
1562 		 * clear __GFP_RECLAIM to make the migration callback
1563 		 * consistent with regular THP allocations.
1564 		 */
1565 		gfp_mask &= ~__GFP_RECLAIM;
1566 		gfp_mask |= GFP_TRANSHUGE;
1567 		order = HPAGE_PMD_ORDER;
1568 	}
1569 	zidx = zone_idx(page_zone(page));
1570 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1571 		gfp_mask |= __GFP_HIGHMEM;
1572 
1573 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1574 
1575 	if (new_page && PageTransHuge(new_page))
1576 		prep_transhuge_page(new_page);
1577 
1578 	return new_page;
1579 }
1580 
1581 #ifdef CONFIG_NUMA
1582 
1583 static int store_status(int __user *status, int start, int value, int nr)
1584 {
1585 	while (nr-- > 0) {
1586 		if (put_user(value, status + start))
1587 			return -EFAULT;
1588 		start++;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 static int do_move_pages_to_node(struct mm_struct *mm,
1595 		struct list_head *pagelist, int node)
1596 {
1597 	int err;
1598 	struct migration_target_control mtc = {
1599 		.nid = node,
1600 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1601 	};
1602 
1603 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1604 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1605 	if (err)
1606 		putback_movable_pages(pagelist);
1607 	return err;
1608 }
1609 
1610 /*
1611  * Resolves the given address to a struct page, isolates it from the LRU and
1612  * puts it to the given pagelist.
1613  * Returns:
1614  *     errno - if the page cannot be found/isolated
1615  *     0 - when it doesn't have to be migrated because it is already on the
1616  *         target node
1617  *     1 - when it has been queued
1618  */
1619 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1620 		int node, struct list_head *pagelist, bool migrate_all)
1621 {
1622 	struct vm_area_struct *vma;
1623 	struct page *page;
1624 	unsigned int follflags;
1625 	int err;
1626 
1627 	mmap_read_lock(mm);
1628 	err = -EFAULT;
1629 	vma = find_vma(mm, addr);
1630 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1631 		goto out;
1632 
1633 	/* FOLL_DUMP to ignore special (like zero) pages */
1634 	follflags = FOLL_GET | FOLL_DUMP;
1635 	page = follow_page(vma, addr, follflags);
1636 
1637 	err = PTR_ERR(page);
1638 	if (IS_ERR(page))
1639 		goto out;
1640 
1641 	err = -ENOENT;
1642 	if (!page)
1643 		goto out;
1644 
1645 	err = 0;
1646 	if (page_to_nid(page) == node)
1647 		goto out_putpage;
1648 
1649 	err = -EACCES;
1650 	if (page_mapcount(page) > 1 && !migrate_all)
1651 		goto out_putpage;
1652 
1653 	if (PageHuge(page)) {
1654 		if (PageHead(page)) {
1655 			isolate_huge_page(page, pagelist);
1656 			err = 1;
1657 		}
1658 	} else {
1659 		struct page *head;
1660 
1661 		head = compound_head(page);
1662 		err = isolate_lru_page(head);
1663 		if (err)
1664 			goto out_putpage;
1665 
1666 		err = 1;
1667 		list_add_tail(&head->lru, pagelist);
1668 		mod_node_page_state(page_pgdat(head),
1669 			NR_ISOLATED_ANON + page_is_file_lru(head),
1670 			thp_nr_pages(head));
1671 	}
1672 out_putpage:
1673 	/*
1674 	 * Either remove the duplicate refcount from
1675 	 * isolate_lru_page() or drop the page ref if it was
1676 	 * not isolated.
1677 	 */
1678 	put_page(page);
1679 out:
1680 	mmap_read_unlock(mm);
1681 	return err;
1682 }
1683 
1684 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1685 		struct list_head *pagelist, int __user *status,
1686 		int start, int i, unsigned long nr_pages)
1687 {
1688 	int err;
1689 
1690 	if (list_empty(pagelist))
1691 		return 0;
1692 
1693 	err = do_move_pages_to_node(mm, pagelist, node);
1694 	if (err) {
1695 		/*
1696 		 * Positive err means the number of failed
1697 		 * pages to migrate.  Since we are going to
1698 		 * abort and return the number of non-migrated
1699 		 * pages, so need to include the rest of the
1700 		 * nr_pages that have not been attempted as
1701 		 * well.
1702 		 */
1703 		if (err > 0)
1704 			err += nr_pages - i - 1;
1705 		return err;
1706 	}
1707 	return store_status(status, start, node, i - start);
1708 }
1709 
1710 /*
1711  * Migrate an array of page address onto an array of nodes and fill
1712  * the corresponding array of status.
1713  */
1714 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1715 			 unsigned long nr_pages,
1716 			 const void __user * __user *pages,
1717 			 const int __user *nodes,
1718 			 int __user *status, int flags)
1719 {
1720 	int current_node = NUMA_NO_NODE;
1721 	LIST_HEAD(pagelist);
1722 	int start, i;
1723 	int err = 0, err1;
1724 
1725 	migrate_prep();
1726 
1727 	for (i = start = 0; i < nr_pages; i++) {
1728 		const void __user *p;
1729 		unsigned long addr;
1730 		int node;
1731 
1732 		err = -EFAULT;
1733 		if (get_user(p, pages + i))
1734 			goto out_flush;
1735 		if (get_user(node, nodes + i))
1736 			goto out_flush;
1737 		addr = (unsigned long)untagged_addr(p);
1738 
1739 		err = -ENODEV;
1740 		if (node < 0 || node >= MAX_NUMNODES)
1741 			goto out_flush;
1742 		if (!node_state(node, N_MEMORY))
1743 			goto out_flush;
1744 
1745 		err = -EACCES;
1746 		if (!node_isset(node, task_nodes))
1747 			goto out_flush;
1748 
1749 		if (current_node == NUMA_NO_NODE) {
1750 			current_node = node;
1751 			start = i;
1752 		} else if (node != current_node) {
1753 			err = move_pages_and_store_status(mm, current_node,
1754 					&pagelist, status, start, i, nr_pages);
1755 			if (err)
1756 				goto out;
1757 			start = i;
1758 			current_node = node;
1759 		}
1760 
1761 		/*
1762 		 * Errors in the page lookup or isolation are not fatal and we simply
1763 		 * report them via status
1764 		 */
1765 		err = add_page_for_migration(mm, addr, current_node,
1766 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1767 
1768 		if (err > 0) {
1769 			/* The page is successfully queued for migration */
1770 			continue;
1771 		}
1772 
1773 		/*
1774 		 * If the page is already on the target node (!err), store the
1775 		 * node, otherwise, store the err.
1776 		 */
1777 		err = store_status(status, i, err ? : current_node, 1);
1778 		if (err)
1779 			goto out_flush;
1780 
1781 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1782 				status, start, i, nr_pages);
1783 		if (err)
1784 			goto out;
1785 		current_node = NUMA_NO_NODE;
1786 	}
1787 out_flush:
1788 	/* Make sure we do not overwrite the existing error */
1789 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1790 				status, start, i, nr_pages);
1791 	if (err >= 0)
1792 		err = err1;
1793 out:
1794 	return err;
1795 }
1796 
1797 /*
1798  * Determine the nodes of an array of pages and store it in an array of status.
1799  */
1800 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1801 				const void __user **pages, int *status)
1802 {
1803 	unsigned long i;
1804 
1805 	mmap_read_lock(mm);
1806 
1807 	for (i = 0; i < nr_pages; i++) {
1808 		unsigned long addr = (unsigned long)(*pages);
1809 		struct vm_area_struct *vma;
1810 		struct page *page;
1811 		int err = -EFAULT;
1812 
1813 		vma = find_vma(mm, addr);
1814 		if (!vma || addr < vma->vm_start)
1815 			goto set_status;
1816 
1817 		/* FOLL_DUMP to ignore special (like zero) pages */
1818 		page = follow_page(vma, addr, FOLL_DUMP);
1819 
1820 		err = PTR_ERR(page);
1821 		if (IS_ERR(page))
1822 			goto set_status;
1823 
1824 		err = page ? page_to_nid(page) : -ENOENT;
1825 set_status:
1826 		*status = err;
1827 
1828 		pages++;
1829 		status++;
1830 	}
1831 
1832 	mmap_read_unlock(mm);
1833 }
1834 
1835 /*
1836  * Determine the nodes of a user array of pages and store it in
1837  * a user array of status.
1838  */
1839 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1840 			 const void __user * __user *pages,
1841 			 int __user *status)
1842 {
1843 #define DO_PAGES_STAT_CHUNK_NR 16
1844 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1845 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1846 
1847 	while (nr_pages) {
1848 		unsigned long chunk_nr;
1849 
1850 		chunk_nr = nr_pages;
1851 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1852 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1853 
1854 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1855 			break;
1856 
1857 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1858 
1859 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1860 			break;
1861 
1862 		pages += chunk_nr;
1863 		status += chunk_nr;
1864 		nr_pages -= chunk_nr;
1865 	}
1866 	return nr_pages ? -EFAULT : 0;
1867 }
1868 
1869 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1870 {
1871 	struct task_struct *task;
1872 	struct mm_struct *mm;
1873 
1874 	/*
1875 	 * There is no need to check if current process has the right to modify
1876 	 * the specified process when they are same.
1877 	 */
1878 	if (!pid) {
1879 		mmget(current->mm);
1880 		*mem_nodes = cpuset_mems_allowed(current);
1881 		return current->mm;
1882 	}
1883 
1884 	/* Find the mm_struct */
1885 	rcu_read_lock();
1886 	task = find_task_by_vpid(pid);
1887 	if (!task) {
1888 		rcu_read_unlock();
1889 		return ERR_PTR(-ESRCH);
1890 	}
1891 	get_task_struct(task);
1892 
1893 	/*
1894 	 * Check if this process has the right to modify the specified
1895 	 * process. Use the regular "ptrace_may_access()" checks.
1896 	 */
1897 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1898 		rcu_read_unlock();
1899 		mm = ERR_PTR(-EPERM);
1900 		goto out;
1901 	}
1902 	rcu_read_unlock();
1903 
1904 	mm = ERR_PTR(security_task_movememory(task));
1905 	if (IS_ERR(mm))
1906 		goto out;
1907 	*mem_nodes = cpuset_mems_allowed(task);
1908 	mm = get_task_mm(task);
1909 out:
1910 	put_task_struct(task);
1911 	if (!mm)
1912 		mm = ERR_PTR(-EINVAL);
1913 	return mm;
1914 }
1915 
1916 /*
1917  * Move a list of pages in the address space of the currently executing
1918  * process.
1919  */
1920 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1921 			     const void __user * __user *pages,
1922 			     const int __user *nodes,
1923 			     int __user *status, int flags)
1924 {
1925 	struct mm_struct *mm;
1926 	int err;
1927 	nodemask_t task_nodes;
1928 
1929 	/* Check flags */
1930 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1931 		return -EINVAL;
1932 
1933 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1934 		return -EPERM;
1935 
1936 	mm = find_mm_struct(pid, &task_nodes);
1937 	if (IS_ERR(mm))
1938 		return PTR_ERR(mm);
1939 
1940 	if (nodes)
1941 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1942 				    nodes, status, flags);
1943 	else
1944 		err = do_pages_stat(mm, nr_pages, pages, status);
1945 
1946 	mmput(mm);
1947 	return err;
1948 }
1949 
1950 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1951 		const void __user * __user *, pages,
1952 		const int __user *, nodes,
1953 		int __user *, status, int, flags)
1954 {
1955 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1956 }
1957 
1958 #ifdef CONFIG_COMPAT
1959 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1960 		       compat_uptr_t __user *, pages32,
1961 		       const int __user *, nodes,
1962 		       int __user *, status,
1963 		       int, flags)
1964 {
1965 	const void __user * __user *pages;
1966 	int i;
1967 
1968 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1969 	for (i = 0; i < nr_pages; i++) {
1970 		compat_uptr_t p;
1971 
1972 		if (get_user(p, pages32 + i) ||
1973 			put_user(compat_ptr(p), pages + i))
1974 			return -EFAULT;
1975 	}
1976 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1977 }
1978 #endif /* CONFIG_COMPAT */
1979 
1980 #ifdef CONFIG_NUMA_BALANCING
1981 /*
1982  * Returns true if this is a safe migration target node for misplaced NUMA
1983  * pages. Currently it only checks the watermarks which crude
1984  */
1985 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1986 				   unsigned long nr_migrate_pages)
1987 {
1988 	int z;
1989 
1990 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1991 		struct zone *zone = pgdat->node_zones + z;
1992 
1993 		if (!populated_zone(zone))
1994 			continue;
1995 
1996 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1997 		if (!zone_watermark_ok(zone, 0,
1998 				       high_wmark_pages(zone) +
1999 				       nr_migrate_pages,
2000 				       ZONE_MOVABLE, 0))
2001 			continue;
2002 		return true;
2003 	}
2004 	return false;
2005 }
2006 
2007 static struct page *alloc_misplaced_dst_page(struct page *page,
2008 					   unsigned long data)
2009 {
2010 	int nid = (int) data;
2011 	struct page *newpage;
2012 
2013 	newpage = __alloc_pages_node(nid,
2014 					 (GFP_HIGHUSER_MOVABLE |
2015 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2016 					  __GFP_NORETRY | __GFP_NOWARN) &
2017 					 ~__GFP_RECLAIM, 0);
2018 
2019 	return newpage;
2020 }
2021 
2022 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2023 {
2024 	int page_lru;
2025 
2026 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2027 
2028 	/* Avoid migrating to a node that is nearly full */
2029 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2030 		return 0;
2031 
2032 	if (isolate_lru_page(page))
2033 		return 0;
2034 
2035 	/*
2036 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2037 	 * check on page_count(), so we must do it here, now that the page
2038 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2039 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2040 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2041 	 */
2042 	if (PageTransHuge(page) && page_count(page) != 3) {
2043 		putback_lru_page(page);
2044 		return 0;
2045 	}
2046 
2047 	page_lru = page_is_file_lru(page);
2048 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2049 				thp_nr_pages(page));
2050 
2051 	/*
2052 	 * Isolating the page has taken another reference, so the
2053 	 * caller's reference can be safely dropped without the page
2054 	 * disappearing underneath us during migration.
2055 	 */
2056 	put_page(page);
2057 	return 1;
2058 }
2059 
2060 bool pmd_trans_migrating(pmd_t pmd)
2061 {
2062 	struct page *page = pmd_page(pmd);
2063 	return PageLocked(page);
2064 }
2065 
2066 /*
2067  * Attempt to migrate a misplaced page to the specified destination
2068  * node. Caller is expected to have an elevated reference count on
2069  * the page that will be dropped by this function before returning.
2070  */
2071 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2072 			   int node)
2073 {
2074 	pg_data_t *pgdat = NODE_DATA(node);
2075 	int isolated;
2076 	int nr_remaining;
2077 	LIST_HEAD(migratepages);
2078 
2079 	/*
2080 	 * Don't migrate file pages that are mapped in multiple processes
2081 	 * with execute permissions as they are probably shared libraries.
2082 	 */
2083 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2084 	    (vma->vm_flags & VM_EXEC))
2085 		goto out;
2086 
2087 	/*
2088 	 * Also do not migrate dirty pages as not all filesystems can move
2089 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2090 	 */
2091 	if (page_is_file_lru(page) && PageDirty(page))
2092 		goto out;
2093 
2094 	isolated = numamigrate_isolate_page(pgdat, page);
2095 	if (!isolated)
2096 		goto out;
2097 
2098 	list_add(&page->lru, &migratepages);
2099 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2100 				     NULL, node, MIGRATE_ASYNC,
2101 				     MR_NUMA_MISPLACED);
2102 	if (nr_remaining) {
2103 		if (!list_empty(&migratepages)) {
2104 			list_del(&page->lru);
2105 			dec_node_page_state(page, NR_ISOLATED_ANON +
2106 					page_is_file_lru(page));
2107 			putback_lru_page(page);
2108 		}
2109 		isolated = 0;
2110 	} else
2111 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2112 	BUG_ON(!list_empty(&migratepages));
2113 	return isolated;
2114 
2115 out:
2116 	put_page(page);
2117 	return 0;
2118 }
2119 #endif /* CONFIG_NUMA_BALANCING */
2120 
2121 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2122 /*
2123  * Migrates a THP to a given target node. page must be locked and is unlocked
2124  * before returning.
2125  */
2126 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2127 				struct vm_area_struct *vma,
2128 				pmd_t *pmd, pmd_t entry,
2129 				unsigned long address,
2130 				struct page *page, int node)
2131 {
2132 	spinlock_t *ptl;
2133 	pg_data_t *pgdat = NODE_DATA(node);
2134 	int isolated = 0;
2135 	struct page *new_page = NULL;
2136 	int page_lru = page_is_file_lru(page);
2137 	unsigned long start = address & HPAGE_PMD_MASK;
2138 
2139 	new_page = alloc_pages_node(node,
2140 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2141 		HPAGE_PMD_ORDER);
2142 	if (!new_page)
2143 		goto out_fail;
2144 	prep_transhuge_page(new_page);
2145 
2146 	isolated = numamigrate_isolate_page(pgdat, page);
2147 	if (!isolated) {
2148 		put_page(new_page);
2149 		goto out_fail;
2150 	}
2151 
2152 	/* Prepare a page as a migration target */
2153 	__SetPageLocked(new_page);
2154 	if (PageSwapBacked(page))
2155 		__SetPageSwapBacked(new_page);
2156 
2157 	/* anon mapping, we can simply copy page->mapping to the new page: */
2158 	new_page->mapping = page->mapping;
2159 	new_page->index = page->index;
2160 	/* flush the cache before copying using the kernel virtual address */
2161 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2162 	migrate_page_copy(new_page, page);
2163 	WARN_ON(PageLRU(new_page));
2164 
2165 	/* Recheck the target PMD */
2166 	ptl = pmd_lock(mm, pmd);
2167 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2168 		spin_unlock(ptl);
2169 
2170 		/* Reverse changes made by migrate_page_copy() */
2171 		if (TestClearPageActive(new_page))
2172 			SetPageActive(page);
2173 		if (TestClearPageUnevictable(new_page))
2174 			SetPageUnevictable(page);
2175 
2176 		unlock_page(new_page);
2177 		put_page(new_page);		/* Free it */
2178 
2179 		/* Retake the callers reference and putback on LRU */
2180 		get_page(page);
2181 		putback_lru_page(page);
2182 		mod_node_page_state(page_pgdat(page),
2183 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2184 
2185 		goto out_unlock;
2186 	}
2187 
2188 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2189 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2190 
2191 	/*
2192 	 * Overwrite the old entry under pagetable lock and establish
2193 	 * the new PTE. Any parallel GUP will either observe the old
2194 	 * page blocking on the page lock, block on the page table
2195 	 * lock or observe the new page. The SetPageUptodate on the
2196 	 * new page and page_add_new_anon_rmap guarantee the copy is
2197 	 * visible before the pagetable update.
2198 	 */
2199 	page_add_anon_rmap(new_page, vma, start, true);
2200 	/*
2201 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2202 	 * has already been flushed globally.  So no TLB can be currently
2203 	 * caching this non present pmd mapping.  There's no need to clear the
2204 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2205 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2206 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2207 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2208 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2209 	 * pmd.
2210 	 */
2211 	set_pmd_at(mm, start, pmd, entry);
2212 	update_mmu_cache_pmd(vma, address, &entry);
2213 
2214 	page_ref_unfreeze(page, 2);
2215 	mlock_migrate_page(new_page, page);
2216 	page_remove_rmap(page, true);
2217 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2218 
2219 	spin_unlock(ptl);
2220 
2221 	/* Take an "isolate" reference and put new page on the LRU. */
2222 	get_page(new_page);
2223 	putback_lru_page(new_page);
2224 
2225 	unlock_page(new_page);
2226 	unlock_page(page);
2227 	put_page(page);			/* Drop the rmap reference */
2228 	put_page(page);			/* Drop the LRU isolation reference */
2229 
2230 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2231 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2232 
2233 	mod_node_page_state(page_pgdat(page),
2234 			NR_ISOLATED_ANON + page_lru,
2235 			-HPAGE_PMD_NR);
2236 	return isolated;
2237 
2238 out_fail:
2239 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2240 	ptl = pmd_lock(mm, pmd);
2241 	if (pmd_same(*pmd, entry)) {
2242 		entry = pmd_modify(entry, vma->vm_page_prot);
2243 		set_pmd_at(mm, start, pmd, entry);
2244 		update_mmu_cache_pmd(vma, address, &entry);
2245 	}
2246 	spin_unlock(ptl);
2247 
2248 out_unlock:
2249 	unlock_page(page);
2250 	put_page(page);
2251 	return 0;
2252 }
2253 #endif /* CONFIG_NUMA_BALANCING */
2254 
2255 #endif /* CONFIG_NUMA */
2256 
2257 #ifdef CONFIG_DEVICE_PRIVATE
2258 static int migrate_vma_collect_hole(unsigned long start,
2259 				    unsigned long end,
2260 				    __always_unused int depth,
2261 				    struct mm_walk *walk)
2262 {
2263 	struct migrate_vma *migrate = walk->private;
2264 	unsigned long addr;
2265 
2266 	/* Only allow populating anonymous memory. */
2267 	if (!vma_is_anonymous(walk->vma)) {
2268 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2269 			migrate->src[migrate->npages] = 0;
2270 			migrate->dst[migrate->npages] = 0;
2271 			migrate->npages++;
2272 		}
2273 		return 0;
2274 	}
2275 
2276 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2277 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2278 		migrate->dst[migrate->npages] = 0;
2279 		migrate->npages++;
2280 		migrate->cpages++;
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 static int migrate_vma_collect_skip(unsigned long start,
2287 				    unsigned long end,
2288 				    struct mm_walk *walk)
2289 {
2290 	struct migrate_vma *migrate = walk->private;
2291 	unsigned long addr;
2292 
2293 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2294 		migrate->dst[migrate->npages] = 0;
2295 		migrate->src[migrate->npages++] = 0;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2302 				   unsigned long start,
2303 				   unsigned long end,
2304 				   struct mm_walk *walk)
2305 {
2306 	struct migrate_vma *migrate = walk->private;
2307 	struct vm_area_struct *vma = walk->vma;
2308 	struct mm_struct *mm = vma->vm_mm;
2309 	unsigned long addr = start, unmapped = 0;
2310 	spinlock_t *ptl;
2311 	pte_t *ptep;
2312 
2313 again:
2314 	if (pmd_none(*pmdp))
2315 		return migrate_vma_collect_hole(start, end, -1, walk);
2316 
2317 	if (pmd_trans_huge(*pmdp)) {
2318 		struct page *page;
2319 
2320 		ptl = pmd_lock(mm, pmdp);
2321 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2322 			spin_unlock(ptl);
2323 			goto again;
2324 		}
2325 
2326 		page = pmd_page(*pmdp);
2327 		if (is_huge_zero_page(page)) {
2328 			spin_unlock(ptl);
2329 			split_huge_pmd(vma, pmdp, addr);
2330 			if (pmd_trans_unstable(pmdp))
2331 				return migrate_vma_collect_skip(start, end,
2332 								walk);
2333 		} else {
2334 			int ret;
2335 
2336 			get_page(page);
2337 			spin_unlock(ptl);
2338 			if (unlikely(!trylock_page(page)))
2339 				return migrate_vma_collect_skip(start, end,
2340 								walk);
2341 			ret = split_huge_page(page);
2342 			unlock_page(page);
2343 			put_page(page);
2344 			if (ret)
2345 				return migrate_vma_collect_skip(start, end,
2346 								walk);
2347 			if (pmd_none(*pmdp))
2348 				return migrate_vma_collect_hole(start, end, -1,
2349 								walk);
2350 		}
2351 	}
2352 
2353 	if (unlikely(pmd_bad(*pmdp)))
2354 		return migrate_vma_collect_skip(start, end, walk);
2355 
2356 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2357 	arch_enter_lazy_mmu_mode();
2358 
2359 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2360 		unsigned long mpfn = 0, pfn;
2361 		struct page *page;
2362 		swp_entry_t entry;
2363 		pte_t pte;
2364 
2365 		pte = *ptep;
2366 
2367 		if (pte_none(pte)) {
2368 			if (vma_is_anonymous(vma)) {
2369 				mpfn = MIGRATE_PFN_MIGRATE;
2370 				migrate->cpages++;
2371 			}
2372 			goto next;
2373 		}
2374 
2375 		if (!pte_present(pte)) {
2376 			/*
2377 			 * Only care about unaddressable device page special
2378 			 * page table entry. Other special swap entries are not
2379 			 * migratable, and we ignore regular swapped page.
2380 			 */
2381 			entry = pte_to_swp_entry(pte);
2382 			if (!is_device_private_entry(entry))
2383 				goto next;
2384 
2385 			page = device_private_entry_to_page(entry);
2386 			if (!(migrate->flags &
2387 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2388 			    page->pgmap->owner != migrate->pgmap_owner)
2389 				goto next;
2390 
2391 			mpfn = migrate_pfn(page_to_pfn(page)) |
2392 					MIGRATE_PFN_MIGRATE;
2393 			if (is_write_device_private_entry(entry))
2394 				mpfn |= MIGRATE_PFN_WRITE;
2395 		} else {
2396 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2397 				goto next;
2398 			pfn = pte_pfn(pte);
2399 			if (is_zero_pfn(pfn)) {
2400 				mpfn = MIGRATE_PFN_MIGRATE;
2401 				migrate->cpages++;
2402 				goto next;
2403 			}
2404 			page = vm_normal_page(migrate->vma, addr, pte);
2405 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2406 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2407 		}
2408 
2409 		/* FIXME support THP */
2410 		if (!page || !page->mapping || PageTransCompound(page)) {
2411 			mpfn = 0;
2412 			goto next;
2413 		}
2414 
2415 		/*
2416 		 * By getting a reference on the page we pin it and that blocks
2417 		 * any kind of migration. Side effect is that it "freezes" the
2418 		 * pte.
2419 		 *
2420 		 * We drop this reference after isolating the page from the lru
2421 		 * for non device page (device page are not on the lru and thus
2422 		 * can't be dropped from it).
2423 		 */
2424 		get_page(page);
2425 		migrate->cpages++;
2426 
2427 		/*
2428 		 * Optimize for the common case where page is only mapped once
2429 		 * in one process. If we can lock the page, then we can safely
2430 		 * set up a special migration page table entry now.
2431 		 */
2432 		if (trylock_page(page)) {
2433 			pte_t swp_pte;
2434 
2435 			mpfn |= MIGRATE_PFN_LOCKED;
2436 			ptep_get_and_clear(mm, addr, ptep);
2437 
2438 			/* Setup special migration page table entry */
2439 			entry = make_migration_entry(page, mpfn &
2440 						     MIGRATE_PFN_WRITE);
2441 			swp_pte = swp_entry_to_pte(entry);
2442 			if (pte_present(pte)) {
2443 				if (pte_soft_dirty(pte))
2444 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2445 				if (pte_uffd_wp(pte))
2446 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2447 			} else {
2448 				if (pte_swp_soft_dirty(pte))
2449 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2450 				if (pte_swp_uffd_wp(pte))
2451 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2452 			}
2453 			set_pte_at(mm, addr, ptep, swp_pte);
2454 
2455 			/*
2456 			 * This is like regular unmap: we remove the rmap and
2457 			 * drop page refcount. Page won't be freed, as we took
2458 			 * a reference just above.
2459 			 */
2460 			page_remove_rmap(page, false);
2461 			put_page(page);
2462 
2463 			if (pte_present(pte))
2464 				unmapped++;
2465 		}
2466 
2467 next:
2468 		migrate->dst[migrate->npages] = 0;
2469 		migrate->src[migrate->npages++] = mpfn;
2470 	}
2471 	arch_leave_lazy_mmu_mode();
2472 	pte_unmap_unlock(ptep - 1, ptl);
2473 
2474 	/* Only flush the TLB if we actually modified any entries */
2475 	if (unmapped)
2476 		flush_tlb_range(walk->vma, start, end);
2477 
2478 	return 0;
2479 }
2480 
2481 static const struct mm_walk_ops migrate_vma_walk_ops = {
2482 	.pmd_entry		= migrate_vma_collect_pmd,
2483 	.pte_hole		= migrate_vma_collect_hole,
2484 };
2485 
2486 /*
2487  * migrate_vma_collect() - collect pages over a range of virtual addresses
2488  * @migrate: migrate struct containing all migration information
2489  *
2490  * This will walk the CPU page table. For each virtual address backed by a
2491  * valid page, it updates the src array and takes a reference on the page, in
2492  * order to pin the page until we lock it and unmap it.
2493  */
2494 static void migrate_vma_collect(struct migrate_vma *migrate)
2495 {
2496 	struct mmu_notifier_range range;
2497 
2498 	/*
2499 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2500 	 * that the registered device driver can skip invalidating device
2501 	 * private page mappings that won't be migrated.
2502 	 */
2503 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2504 		migrate->vma->vm_mm, migrate->start, migrate->end,
2505 		migrate->pgmap_owner);
2506 	mmu_notifier_invalidate_range_start(&range);
2507 
2508 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2509 			&migrate_vma_walk_ops, migrate);
2510 
2511 	mmu_notifier_invalidate_range_end(&range);
2512 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2513 }
2514 
2515 /*
2516  * migrate_vma_check_page() - check if page is pinned or not
2517  * @page: struct page to check
2518  *
2519  * Pinned pages cannot be migrated. This is the same test as in
2520  * migrate_page_move_mapping(), except that here we allow migration of a
2521  * ZONE_DEVICE page.
2522  */
2523 static bool migrate_vma_check_page(struct page *page)
2524 {
2525 	/*
2526 	 * One extra ref because caller holds an extra reference, either from
2527 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2528 	 * a device page.
2529 	 */
2530 	int extra = 1;
2531 
2532 	/*
2533 	 * FIXME support THP (transparent huge page), it is bit more complex to
2534 	 * check them than regular pages, because they can be mapped with a pmd
2535 	 * or with a pte (split pte mapping).
2536 	 */
2537 	if (PageCompound(page))
2538 		return false;
2539 
2540 	/* Page from ZONE_DEVICE have one extra reference */
2541 	if (is_zone_device_page(page)) {
2542 		/*
2543 		 * Private page can never be pin as they have no valid pte and
2544 		 * GUP will fail for those. Yet if there is a pending migration
2545 		 * a thread might try to wait on the pte migration entry and
2546 		 * will bump the page reference count. Sadly there is no way to
2547 		 * differentiate a regular pin from migration wait. Hence to
2548 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2549 		 * infinite loop (one stoping migration because the other is
2550 		 * waiting on pte migration entry). We always return true here.
2551 		 *
2552 		 * FIXME proper solution is to rework migration_entry_wait() so
2553 		 * it does not need to take a reference on page.
2554 		 */
2555 		return is_device_private_page(page);
2556 	}
2557 
2558 	/* For file back page */
2559 	if (page_mapping(page))
2560 		extra += 1 + page_has_private(page);
2561 
2562 	if ((page_count(page) - extra) > page_mapcount(page))
2563 		return false;
2564 
2565 	return true;
2566 }
2567 
2568 /*
2569  * migrate_vma_prepare() - lock pages and isolate them from the lru
2570  * @migrate: migrate struct containing all migration information
2571  *
2572  * This locks pages that have been collected by migrate_vma_collect(). Once each
2573  * page is locked it is isolated from the lru (for non-device pages). Finally,
2574  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2575  * migrated by concurrent kernel threads.
2576  */
2577 static void migrate_vma_prepare(struct migrate_vma *migrate)
2578 {
2579 	const unsigned long npages = migrate->npages;
2580 	const unsigned long start = migrate->start;
2581 	unsigned long addr, i, restore = 0;
2582 	bool allow_drain = true;
2583 
2584 	lru_add_drain();
2585 
2586 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2587 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2588 		bool remap = true;
2589 
2590 		if (!page)
2591 			continue;
2592 
2593 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2594 			/*
2595 			 * Because we are migrating several pages there can be
2596 			 * a deadlock between 2 concurrent migration where each
2597 			 * are waiting on each other page lock.
2598 			 *
2599 			 * Make migrate_vma() a best effort thing and backoff
2600 			 * for any page we can not lock right away.
2601 			 */
2602 			if (!trylock_page(page)) {
2603 				migrate->src[i] = 0;
2604 				migrate->cpages--;
2605 				put_page(page);
2606 				continue;
2607 			}
2608 			remap = false;
2609 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2610 		}
2611 
2612 		/* ZONE_DEVICE pages are not on LRU */
2613 		if (!is_zone_device_page(page)) {
2614 			if (!PageLRU(page) && allow_drain) {
2615 				/* Drain CPU's pagevec */
2616 				lru_add_drain_all();
2617 				allow_drain = false;
2618 			}
2619 
2620 			if (isolate_lru_page(page)) {
2621 				if (remap) {
2622 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2623 					migrate->cpages--;
2624 					restore++;
2625 				} else {
2626 					migrate->src[i] = 0;
2627 					unlock_page(page);
2628 					migrate->cpages--;
2629 					put_page(page);
2630 				}
2631 				continue;
2632 			}
2633 
2634 			/* Drop the reference we took in collect */
2635 			put_page(page);
2636 		}
2637 
2638 		if (!migrate_vma_check_page(page)) {
2639 			if (remap) {
2640 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2641 				migrate->cpages--;
2642 				restore++;
2643 
2644 				if (!is_zone_device_page(page)) {
2645 					get_page(page);
2646 					putback_lru_page(page);
2647 				}
2648 			} else {
2649 				migrate->src[i] = 0;
2650 				unlock_page(page);
2651 				migrate->cpages--;
2652 
2653 				if (!is_zone_device_page(page))
2654 					putback_lru_page(page);
2655 				else
2656 					put_page(page);
2657 			}
2658 		}
2659 	}
2660 
2661 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2662 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2663 
2664 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2665 			continue;
2666 
2667 		remove_migration_pte(page, migrate->vma, addr, page);
2668 
2669 		migrate->src[i] = 0;
2670 		unlock_page(page);
2671 		put_page(page);
2672 		restore--;
2673 	}
2674 }
2675 
2676 /*
2677  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2678  * @migrate: migrate struct containing all migration information
2679  *
2680  * Replace page mapping (CPU page table pte) with a special migration pte entry
2681  * and check again if it has been pinned. Pinned pages are restored because we
2682  * cannot migrate them.
2683  *
2684  * This is the last step before we call the device driver callback to allocate
2685  * destination memory and copy contents of original page over to new page.
2686  */
2687 static void migrate_vma_unmap(struct migrate_vma *migrate)
2688 {
2689 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2690 	const unsigned long npages = migrate->npages;
2691 	const unsigned long start = migrate->start;
2692 	unsigned long addr, i, restore = 0;
2693 
2694 	for (i = 0; i < npages; i++) {
2695 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2696 
2697 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2698 			continue;
2699 
2700 		if (page_mapped(page)) {
2701 			try_to_unmap(page, flags);
2702 			if (page_mapped(page))
2703 				goto restore;
2704 		}
2705 
2706 		if (migrate_vma_check_page(page))
2707 			continue;
2708 
2709 restore:
2710 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2711 		migrate->cpages--;
2712 		restore++;
2713 	}
2714 
2715 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2716 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2717 
2718 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2719 			continue;
2720 
2721 		remove_migration_ptes(page, page, false);
2722 
2723 		migrate->src[i] = 0;
2724 		unlock_page(page);
2725 		restore--;
2726 
2727 		if (is_zone_device_page(page))
2728 			put_page(page);
2729 		else
2730 			putback_lru_page(page);
2731 	}
2732 }
2733 
2734 /**
2735  * migrate_vma_setup() - prepare to migrate a range of memory
2736  * @args: contains the vma, start, and pfns arrays for the migration
2737  *
2738  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2739  * without an error.
2740  *
2741  * Prepare to migrate a range of memory virtual address range by collecting all
2742  * the pages backing each virtual address in the range, saving them inside the
2743  * src array.  Then lock those pages and unmap them. Once the pages are locked
2744  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2745  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2746  * corresponding src array entry.  Then restores any pages that are pinned, by
2747  * remapping and unlocking those pages.
2748  *
2749  * The caller should then allocate destination memory and copy source memory to
2750  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2751  * flag set).  Once these are allocated and copied, the caller must update each
2752  * corresponding entry in the dst array with the pfn value of the destination
2753  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2754  * (destination pages must have their struct pages locked, via lock_page()).
2755  *
2756  * Note that the caller does not have to migrate all the pages that are marked
2757  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2758  * device memory to system memory.  If the caller cannot migrate a device page
2759  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2760  * consequences for the userspace process, so it must be avoided if at all
2761  * possible.
2762  *
2763  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2764  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2765  * allowing the caller to allocate device memory for those unback virtual
2766  * address.  For this the caller simply has to allocate device memory and
2767  * properly set the destination entry like for regular migration.  Note that
2768  * this can still fails and thus inside the device driver must check if the
2769  * migration was successful for those entries after calling migrate_vma_pages()
2770  * just like for regular migration.
2771  *
2772  * After that, the callers must call migrate_vma_pages() to go over each entry
2773  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2774  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2775  * then migrate_vma_pages() to migrate struct page information from the source
2776  * struct page to the destination struct page.  If it fails to migrate the
2777  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2778  * src array.
2779  *
2780  * At this point all successfully migrated pages have an entry in the src
2781  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2782  * array entry with MIGRATE_PFN_VALID flag set.
2783  *
2784  * Once migrate_vma_pages() returns the caller may inspect which pages were
2785  * successfully migrated, and which were not.  Successfully migrated pages will
2786  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2787  *
2788  * It is safe to update device page table after migrate_vma_pages() because
2789  * both destination and source page are still locked, and the mmap_lock is held
2790  * in read mode (hence no one can unmap the range being migrated).
2791  *
2792  * Once the caller is done cleaning up things and updating its page table (if it
2793  * chose to do so, this is not an obligation) it finally calls
2794  * migrate_vma_finalize() to update the CPU page table to point to new pages
2795  * for successfully migrated pages or otherwise restore the CPU page table to
2796  * point to the original source pages.
2797  */
2798 int migrate_vma_setup(struct migrate_vma *args)
2799 {
2800 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2801 
2802 	args->start &= PAGE_MASK;
2803 	args->end &= PAGE_MASK;
2804 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2805 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2806 		return -EINVAL;
2807 	if (nr_pages <= 0)
2808 		return -EINVAL;
2809 	if (args->start < args->vma->vm_start ||
2810 	    args->start >= args->vma->vm_end)
2811 		return -EINVAL;
2812 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2813 		return -EINVAL;
2814 	if (!args->src || !args->dst)
2815 		return -EINVAL;
2816 
2817 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2818 	args->cpages = 0;
2819 	args->npages = 0;
2820 
2821 	migrate_vma_collect(args);
2822 
2823 	if (args->cpages)
2824 		migrate_vma_prepare(args);
2825 	if (args->cpages)
2826 		migrate_vma_unmap(args);
2827 
2828 	/*
2829 	 * At this point pages are locked and unmapped, and thus they have
2830 	 * stable content and can safely be copied to destination memory that
2831 	 * is allocated by the drivers.
2832 	 */
2833 	return 0;
2834 
2835 }
2836 EXPORT_SYMBOL(migrate_vma_setup);
2837 
2838 /*
2839  * This code closely matches the code in:
2840  *   __handle_mm_fault()
2841  *     handle_pte_fault()
2842  *       do_anonymous_page()
2843  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2844  * private page.
2845  */
2846 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2847 				    unsigned long addr,
2848 				    struct page *page,
2849 				    unsigned long *src,
2850 				    unsigned long *dst)
2851 {
2852 	struct vm_area_struct *vma = migrate->vma;
2853 	struct mm_struct *mm = vma->vm_mm;
2854 	bool flush = false;
2855 	spinlock_t *ptl;
2856 	pte_t entry;
2857 	pgd_t *pgdp;
2858 	p4d_t *p4dp;
2859 	pud_t *pudp;
2860 	pmd_t *pmdp;
2861 	pte_t *ptep;
2862 
2863 	/* Only allow populating anonymous memory */
2864 	if (!vma_is_anonymous(vma))
2865 		goto abort;
2866 
2867 	pgdp = pgd_offset(mm, addr);
2868 	p4dp = p4d_alloc(mm, pgdp, addr);
2869 	if (!p4dp)
2870 		goto abort;
2871 	pudp = pud_alloc(mm, p4dp, addr);
2872 	if (!pudp)
2873 		goto abort;
2874 	pmdp = pmd_alloc(mm, pudp, addr);
2875 	if (!pmdp)
2876 		goto abort;
2877 
2878 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2879 		goto abort;
2880 
2881 	/*
2882 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2883 	 * pte_offset_map() on pmds where a huge pmd might be created
2884 	 * from a different thread.
2885 	 *
2886 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2887 	 * parallel threads are excluded by other means.
2888 	 *
2889 	 * Here we only have mmap_read_lock(mm).
2890 	 */
2891 	if (pte_alloc(mm, pmdp))
2892 		goto abort;
2893 
2894 	/* See the comment in pte_alloc_one_map() */
2895 	if (unlikely(pmd_trans_unstable(pmdp)))
2896 		goto abort;
2897 
2898 	if (unlikely(anon_vma_prepare(vma)))
2899 		goto abort;
2900 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2901 		goto abort;
2902 
2903 	/*
2904 	 * The memory barrier inside __SetPageUptodate makes sure that
2905 	 * preceding stores to the page contents become visible before
2906 	 * the set_pte_at() write.
2907 	 */
2908 	__SetPageUptodate(page);
2909 
2910 	if (is_zone_device_page(page)) {
2911 		if (is_device_private_page(page)) {
2912 			swp_entry_t swp_entry;
2913 
2914 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2915 			entry = swp_entry_to_pte(swp_entry);
2916 		}
2917 	} else {
2918 		entry = mk_pte(page, vma->vm_page_prot);
2919 		if (vma->vm_flags & VM_WRITE)
2920 			entry = pte_mkwrite(pte_mkdirty(entry));
2921 	}
2922 
2923 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2924 
2925 	if (check_stable_address_space(mm))
2926 		goto unlock_abort;
2927 
2928 	if (pte_present(*ptep)) {
2929 		unsigned long pfn = pte_pfn(*ptep);
2930 
2931 		if (!is_zero_pfn(pfn))
2932 			goto unlock_abort;
2933 		flush = true;
2934 	} else if (!pte_none(*ptep))
2935 		goto unlock_abort;
2936 
2937 	/*
2938 	 * Check for userfaultfd but do not deliver the fault. Instead,
2939 	 * just back off.
2940 	 */
2941 	if (userfaultfd_missing(vma))
2942 		goto unlock_abort;
2943 
2944 	inc_mm_counter(mm, MM_ANONPAGES);
2945 	page_add_new_anon_rmap(page, vma, addr, false);
2946 	if (!is_zone_device_page(page))
2947 		lru_cache_add_inactive_or_unevictable(page, vma);
2948 	get_page(page);
2949 
2950 	if (flush) {
2951 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2952 		ptep_clear_flush_notify(vma, addr, ptep);
2953 		set_pte_at_notify(mm, addr, ptep, entry);
2954 		update_mmu_cache(vma, addr, ptep);
2955 	} else {
2956 		/* No need to invalidate - it was non-present before */
2957 		set_pte_at(mm, addr, ptep, entry);
2958 		update_mmu_cache(vma, addr, ptep);
2959 	}
2960 
2961 	pte_unmap_unlock(ptep, ptl);
2962 	*src = MIGRATE_PFN_MIGRATE;
2963 	return;
2964 
2965 unlock_abort:
2966 	pte_unmap_unlock(ptep, ptl);
2967 abort:
2968 	*src &= ~MIGRATE_PFN_MIGRATE;
2969 }
2970 
2971 /**
2972  * migrate_vma_pages() - migrate meta-data from src page to dst page
2973  * @migrate: migrate struct containing all migration information
2974  *
2975  * This migrates struct page meta-data from source struct page to destination
2976  * struct page. This effectively finishes the migration from source page to the
2977  * destination page.
2978  */
2979 void migrate_vma_pages(struct migrate_vma *migrate)
2980 {
2981 	const unsigned long npages = migrate->npages;
2982 	const unsigned long start = migrate->start;
2983 	struct mmu_notifier_range range;
2984 	unsigned long addr, i;
2985 	bool notified = false;
2986 
2987 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2988 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2989 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2990 		struct address_space *mapping;
2991 		int r;
2992 
2993 		if (!newpage) {
2994 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2995 			continue;
2996 		}
2997 
2998 		if (!page) {
2999 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3000 				continue;
3001 			if (!notified) {
3002 				notified = true;
3003 
3004 				mmu_notifier_range_init_migrate(&range, 0,
3005 					migrate->vma, migrate->vma->vm_mm,
3006 					addr, migrate->end,
3007 					migrate->pgmap_owner);
3008 				mmu_notifier_invalidate_range_start(&range);
3009 			}
3010 			migrate_vma_insert_page(migrate, addr, newpage,
3011 						&migrate->src[i],
3012 						&migrate->dst[i]);
3013 			continue;
3014 		}
3015 
3016 		mapping = page_mapping(page);
3017 
3018 		if (is_zone_device_page(newpage)) {
3019 			if (is_device_private_page(newpage)) {
3020 				/*
3021 				 * For now only support private anonymous when
3022 				 * migrating to un-addressable device memory.
3023 				 */
3024 				if (mapping) {
3025 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3026 					continue;
3027 				}
3028 			} else {
3029 				/*
3030 				 * Other types of ZONE_DEVICE page are not
3031 				 * supported.
3032 				 */
3033 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3034 				continue;
3035 			}
3036 		}
3037 
3038 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3039 		if (r != MIGRATEPAGE_SUCCESS)
3040 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3041 	}
3042 
3043 	/*
3044 	 * No need to double call mmu_notifier->invalidate_range() callback as
3045 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3046 	 * did already call it.
3047 	 */
3048 	if (notified)
3049 		mmu_notifier_invalidate_range_only_end(&range);
3050 }
3051 EXPORT_SYMBOL(migrate_vma_pages);
3052 
3053 /**
3054  * migrate_vma_finalize() - restore CPU page table entry
3055  * @migrate: migrate struct containing all migration information
3056  *
3057  * This replaces the special migration pte entry with either a mapping to the
3058  * new page if migration was successful for that page, or to the original page
3059  * otherwise.
3060  *
3061  * This also unlocks the pages and puts them back on the lru, or drops the extra
3062  * refcount, for device pages.
3063  */
3064 void migrate_vma_finalize(struct migrate_vma *migrate)
3065 {
3066 	const unsigned long npages = migrate->npages;
3067 	unsigned long i;
3068 
3069 	for (i = 0; i < npages; i++) {
3070 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3071 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3072 
3073 		if (!page) {
3074 			if (newpage) {
3075 				unlock_page(newpage);
3076 				put_page(newpage);
3077 			}
3078 			continue;
3079 		}
3080 
3081 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3082 			if (newpage) {
3083 				unlock_page(newpage);
3084 				put_page(newpage);
3085 			}
3086 			newpage = page;
3087 		}
3088 
3089 		remove_migration_ptes(page, newpage, false);
3090 		unlock_page(page);
3091 
3092 		if (is_zone_device_page(page))
3093 			put_page(page);
3094 		else
3095 			putback_lru_page(page);
3096 
3097 		if (newpage != page) {
3098 			unlock_page(newpage);
3099 			if (is_zone_device_page(newpage))
3100 				put_page(newpage);
3101 			else
3102 				putback_lru_page(newpage);
3103 		}
3104 	}
3105 }
3106 EXPORT_SYMBOL(migrate_vma_finalize);
3107 #endif /* CONFIG_DEVICE_PRIVATE */
3108