xref: /openbmc/linux/mm/migrate.c (revision 5b5c7120)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/buffer_head.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/rmap.h>
23 #include <linux/topology.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/swapops.h>
27 
28 #include "internal.h"
29 
30 /* The maximum number of pages to take off the LRU for migration */
31 #define MIGRATE_CHUNK_SIZE 256
32 
33 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
34 
35 /*
36  * Isolate one page from the LRU lists. If successful put it onto
37  * the indicated list with elevated page count.
38  *
39  * Result:
40  *  -EBUSY: page not on LRU list
41  *  0: page removed from LRU list and added to the specified list.
42  */
43 int isolate_lru_page(struct page *page, struct list_head *pagelist)
44 {
45 	int ret = -EBUSY;
46 
47 	if (PageLRU(page)) {
48 		struct zone *zone = page_zone(page);
49 
50 		spin_lock_irq(&zone->lru_lock);
51 		if (PageLRU(page)) {
52 			ret = 0;
53 			get_page(page);
54 			ClearPageLRU(page);
55 			if (PageActive(page))
56 				del_page_from_active_list(zone, page);
57 			else
58 				del_page_from_inactive_list(zone, page);
59 			list_add_tail(&page->lru, pagelist);
60 		}
61 		spin_unlock_irq(&zone->lru_lock);
62 	}
63 	return ret;
64 }
65 
66 /*
67  * migrate_prep() needs to be called after we have compiled the list of pages
68  * to be migrated using isolate_lru_page() but before we begin a series of calls
69  * to migrate_pages().
70  */
71 int migrate_prep(void)
72 {
73 	/* Must have swap device for migration */
74 	if (nr_swap_pages <= 0)
75 		return -ENODEV;
76 
77 	/*
78 	 * Clear the LRU lists so pages can be isolated.
79 	 * Note that pages may be moved off the LRU after we have
80 	 * drained them. Those pages will fail to migrate like other
81 	 * pages that may be busy.
82 	 */
83 	lru_add_drain_all();
84 
85 	return 0;
86 }
87 
88 static inline void move_to_lru(struct page *page)
89 {
90 	list_del(&page->lru);
91 	if (PageActive(page)) {
92 		/*
93 		 * lru_cache_add_active checks that
94 		 * the PG_active bit is off.
95 		 */
96 		ClearPageActive(page);
97 		lru_cache_add_active(page);
98 	} else {
99 		lru_cache_add(page);
100 	}
101 	put_page(page);
102 }
103 
104 /*
105  * Add isolated pages on the list back to the LRU.
106  *
107  * returns the number of pages put back.
108  */
109 int putback_lru_pages(struct list_head *l)
110 {
111 	struct page *page;
112 	struct page *page2;
113 	int count = 0;
114 
115 	list_for_each_entry_safe(page, page2, l, lru) {
116 		move_to_lru(page);
117 		count++;
118 	}
119 	return count;
120 }
121 
122 /*
123  * swapout a single page
124  * page is locked upon entry, unlocked on exit
125  */
126 static int swap_page(struct page *page)
127 {
128 	struct address_space *mapping = page_mapping(page);
129 
130 	if (page_mapped(page) && mapping)
131 		if (try_to_unmap(page, 1) != SWAP_SUCCESS)
132 			goto unlock_retry;
133 
134 	if (PageDirty(page)) {
135 		/* Page is dirty, try to write it out here */
136 		switch(pageout(page, mapping)) {
137 		case PAGE_KEEP:
138 		case PAGE_ACTIVATE:
139 			goto unlock_retry;
140 
141 		case PAGE_SUCCESS:
142 			goto retry;
143 
144 		case PAGE_CLEAN:
145 			; /* try to free the page below */
146 		}
147 	}
148 
149 	if (PagePrivate(page)) {
150 		if (!try_to_release_page(page, GFP_KERNEL) ||
151 		    (!mapping && page_count(page) == 1))
152 			goto unlock_retry;
153 	}
154 
155 	if (remove_mapping(mapping, page)) {
156 		/* Success */
157 		unlock_page(page);
158 		return 0;
159 	}
160 
161 unlock_retry:
162 	unlock_page(page);
163 
164 retry:
165 	return -EAGAIN;
166 }
167 
168 /*
169  * Remove references for a page and establish the new page with the correct
170  * basic settings to be able to stop accesses to the page.
171  *
172  * The number of remaining references must be:
173  * 1 for anonymous pages without a mapping
174  * 2 for pages with a mapping
175  * 3 for pages with a mapping and PagePrivate set.
176  */
177 static int migrate_page_remove_references(struct page *newpage,
178 				struct page *page)
179 {
180 	struct address_space *mapping = page_mapping(page);
181 	struct page **radix_pointer;
182 
183 	if (!mapping)
184 		return -EAGAIN;
185 
186 	/*
187 	 * Establish swap ptes for anonymous pages or destroy pte
188 	 * maps for files.
189 	 *
190 	 * In order to reestablish file backed mappings the fault handlers
191 	 * will take the radix tree_lock which may then be used to stop
192   	 * processses from accessing this page until the new page is ready.
193 	 *
194 	 * A process accessing via a swap pte (an anonymous page) will take a
195 	 * page_lock on the old page which will block the process until the
196 	 * migration attempt is complete. At that time the PageSwapCache bit
197 	 * will be examined. If the page was migrated then the PageSwapCache
198 	 * bit will be clear and the operation to retrieve the page will be
199 	 * retried which will find the new page in the radix tree. Then a new
200 	 * direct mapping may be generated based on the radix tree contents.
201 	 *
202 	 * If the page was not migrated then the PageSwapCache bit
203 	 * is still set and the operation may continue.
204 	 */
205 	if (try_to_unmap(page, 1) == SWAP_FAIL)
206 		/* A vma has VM_LOCKED set -> permanent failure */
207 		return -EPERM;
208 
209 	/*
210 	 * Give up if we were unable to remove all mappings.
211 	 */
212 	if (page_mapcount(page))
213 		return -EAGAIN;
214 
215 	write_lock_irq(&mapping->tree_lock);
216 
217 	radix_pointer = (struct page **)radix_tree_lookup_slot(
218 						&mapping->page_tree,
219 						page_index(page));
220 
221 	if (!page_mapping(page) ||
222 			page_count(page) != 2 + !!PagePrivate(page) ||
223 			*radix_pointer != page) {
224 		write_unlock_irq(&mapping->tree_lock);
225 		return -EAGAIN;
226 	}
227 
228 	/*
229 	 * Now we know that no one else is looking at the page.
230 	 *
231 	 * Certain minimal information about a page must be available
232 	 * in order for other subsystems to properly handle the page if they
233 	 * find it through the radix tree update before we are finished
234 	 * copying the page.
235 	 */
236 	get_page(newpage);
237 	newpage->index = page->index;
238 	newpage->mapping = page->mapping;
239 	if (PageSwapCache(page)) {
240 		SetPageSwapCache(newpage);
241 		set_page_private(newpage, page_private(page));
242 	}
243 
244 	*radix_pointer = newpage;
245 	__put_page(page);
246 	write_unlock_irq(&mapping->tree_lock);
247 
248 	return 0;
249 }
250 
251 /*
252  * Copy the page to its new location
253  */
254 static void migrate_page_copy(struct page *newpage, struct page *page)
255 {
256 	copy_highpage(newpage, page);
257 
258 	if (PageError(page))
259 		SetPageError(newpage);
260 	if (PageReferenced(page))
261 		SetPageReferenced(newpage);
262 	if (PageUptodate(page))
263 		SetPageUptodate(newpage);
264 	if (PageActive(page))
265 		SetPageActive(newpage);
266 	if (PageChecked(page))
267 		SetPageChecked(newpage);
268 	if (PageMappedToDisk(page))
269 		SetPageMappedToDisk(newpage);
270 
271 	if (PageDirty(page)) {
272 		clear_page_dirty_for_io(page);
273 		set_page_dirty(newpage);
274  	}
275 
276 	ClearPageSwapCache(page);
277 	ClearPageActive(page);
278 	ClearPagePrivate(page);
279 	set_page_private(page, 0);
280 	page->mapping = NULL;
281 
282 	/*
283 	 * If any waiters have accumulated on the new page then
284 	 * wake them up.
285 	 */
286 	if (PageWriteback(newpage))
287 		end_page_writeback(newpage);
288 }
289 
290 /************************************************************
291  *                    Migration functions
292  ***********************************************************/
293 
294 /* Always fail migration. Used for mappings that are not movable */
295 int fail_migrate_page(struct page *newpage, struct page *page)
296 {
297 	return -EIO;
298 }
299 EXPORT_SYMBOL(fail_migrate_page);
300 
301 /*
302  * Common logic to directly migrate a single page suitable for
303  * pages that do not use PagePrivate.
304  *
305  * Pages are locked upon entry and exit.
306  */
307 int migrate_page(struct page *newpage, struct page *page)
308 {
309 	int rc;
310 
311 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
312 
313 	rc = migrate_page_remove_references(newpage, page);
314 
315 	if (rc)
316 		return rc;
317 
318 	migrate_page_copy(newpage, page);
319 
320 	/*
321 	 * Remove auxiliary swap entries and replace
322 	 * them with real ptes.
323 	 *
324 	 * Note that a real pte entry will allow processes that are not
325 	 * waiting on the page lock to use the new page via the page tables
326 	 * before the new page is unlocked.
327 	 */
328 	remove_from_swap(newpage);
329 	return 0;
330 }
331 EXPORT_SYMBOL(migrate_page);
332 
333 /*
334  * Migration function for pages with buffers. This function can only be used
335  * if the underlying filesystem guarantees that no other references to "page"
336  * exist.
337  */
338 int buffer_migrate_page(struct page *newpage, struct page *page)
339 {
340 	struct address_space *mapping = page->mapping;
341 	struct buffer_head *bh, *head;
342 	int rc;
343 
344 	if (!mapping)
345 		return -EAGAIN;
346 
347 	if (!page_has_buffers(page))
348 		return migrate_page(newpage, page);
349 
350 	head = page_buffers(page);
351 
352 	rc = migrate_page_remove_references(newpage, page);
353 
354 	if (rc)
355 		return rc;
356 
357 	bh = head;
358 	do {
359 		get_bh(bh);
360 		lock_buffer(bh);
361 		bh = bh->b_this_page;
362 
363 	} while (bh != head);
364 
365 	ClearPagePrivate(page);
366 	set_page_private(newpage, page_private(page));
367 	set_page_private(page, 0);
368 	put_page(page);
369 	get_page(newpage);
370 
371 	bh = head;
372 	do {
373 		set_bh_page(bh, newpage, bh_offset(bh));
374 		bh = bh->b_this_page;
375 
376 	} while (bh != head);
377 
378 	SetPagePrivate(newpage);
379 
380 	migrate_page_copy(newpage, page);
381 
382 	bh = head;
383 	do {
384 		unlock_buffer(bh);
385  		put_bh(bh);
386 		bh = bh->b_this_page;
387 
388 	} while (bh != head);
389 
390 	return 0;
391 }
392 EXPORT_SYMBOL(buffer_migrate_page);
393 
394 /*
395  * migrate_pages
396  *
397  * Two lists are passed to this function. The first list
398  * contains the pages isolated from the LRU to be migrated.
399  * The second list contains new pages that the pages isolated
400  * can be moved to. If the second list is NULL then all
401  * pages are swapped out.
402  *
403  * The function returns after 10 attempts or if no pages
404  * are movable anymore because to has become empty
405  * or no retryable pages exist anymore.
406  *
407  * Return: Number of pages not migrated when "to" ran empty.
408  */
409 int migrate_pages(struct list_head *from, struct list_head *to,
410 		  struct list_head *moved, struct list_head *failed)
411 {
412 	int retry;
413 	int nr_failed = 0;
414 	int pass = 0;
415 	struct page *page;
416 	struct page *page2;
417 	int swapwrite = current->flags & PF_SWAPWRITE;
418 	int rc;
419 
420 	if (!swapwrite)
421 		current->flags |= PF_SWAPWRITE;
422 
423 redo:
424 	retry = 0;
425 
426 	list_for_each_entry_safe(page, page2, from, lru) {
427 		struct page *newpage = NULL;
428 		struct address_space *mapping;
429 
430 		cond_resched();
431 
432 		rc = 0;
433 		if (page_count(page) == 1)
434 			/* page was freed from under us. So we are done. */
435 			goto next;
436 
437 		if (to && list_empty(to))
438 			break;
439 
440 		/*
441 		 * Skip locked pages during the first two passes to give the
442 		 * functions holding the lock time to release the page. Later we
443 		 * use lock_page() to have a higher chance of acquiring the
444 		 * lock.
445 		 */
446 		rc = -EAGAIN;
447 		if (pass > 2)
448 			lock_page(page);
449 		else
450 			if (TestSetPageLocked(page))
451 				goto next;
452 
453 		/*
454 		 * Only wait on writeback if we have already done a pass where
455 		 * we we may have triggered writeouts for lots of pages.
456 		 */
457 		if (pass > 0) {
458 			wait_on_page_writeback(page);
459 		} else {
460 			if (PageWriteback(page))
461 				goto unlock_page;
462 		}
463 
464 		/*
465 		 * Anonymous pages must have swap cache references otherwise
466 		 * the information contained in the page maps cannot be
467 		 * preserved.
468 		 */
469 		if (PageAnon(page) && !PageSwapCache(page)) {
470 			if (!add_to_swap(page, GFP_KERNEL)) {
471 				rc = -ENOMEM;
472 				goto unlock_page;
473 			}
474 		}
475 
476 		if (!to) {
477 			rc = swap_page(page);
478 			goto next;
479 		}
480 
481 		newpage = lru_to_page(to);
482 		lock_page(newpage);
483 
484 		/*
485 		 * Pages are properly locked and writeback is complete.
486 		 * Try to migrate the page.
487 		 */
488 		mapping = page_mapping(page);
489 		if (!mapping)
490 			goto unlock_both;
491 
492 		if (mapping->a_ops->migratepage) {
493 			/*
494 			 * Most pages have a mapping and most filesystems
495 			 * should provide a migration function. Anonymous
496 			 * pages are part of swap space which also has its
497 			 * own migration function. This is the most common
498 			 * path for page migration.
499 			 */
500 			rc = mapping->a_ops->migratepage(newpage, page);
501 			goto unlock_both;
502                 }
503 
504 		/* Make sure the dirty bit is up to date */
505 		if (try_to_unmap(page, 1) == SWAP_FAIL) {
506 			rc = -EPERM;
507 			goto unlock_both;
508 		}
509 
510 		if (page_mapcount(page)) {
511 			rc = -EAGAIN;
512 			goto unlock_both;
513 		}
514 
515 		/*
516 		 * Default handling if a filesystem does not provide
517 		 * a migration function. We can only migrate clean
518 		 * pages so try to write out any dirty pages first.
519 		 */
520 		if (PageDirty(page)) {
521 			switch (pageout(page, mapping)) {
522 			case PAGE_KEEP:
523 			case PAGE_ACTIVATE:
524 				goto unlock_both;
525 
526 			case PAGE_SUCCESS:
527 				unlock_page(newpage);
528 				goto next;
529 
530 			case PAGE_CLEAN:
531 				; /* try to migrate the page below */
532 			}
533                 }
534 
535 		/*
536 		 * Buffers are managed in a filesystem specific way.
537 		 * We must have no buffers or drop them.
538 		 */
539 		if (!page_has_buffers(page) ||
540 		    try_to_release_page(page, GFP_KERNEL)) {
541 			rc = migrate_page(newpage, page);
542 			goto unlock_both;
543 		}
544 
545 		/*
546 		 * On early passes with mapped pages simply
547 		 * retry. There may be a lock held for some
548 		 * buffers that may go away. Later
549 		 * swap them out.
550 		 */
551 		if (pass > 4) {
552 			/*
553 			 * Persistently unable to drop buffers..... As a
554 			 * measure of last resort we fall back to
555 			 * swap_page().
556 			 */
557 			unlock_page(newpage);
558 			newpage = NULL;
559 			rc = swap_page(page);
560 			goto next;
561 		}
562 
563 unlock_both:
564 		unlock_page(newpage);
565 
566 unlock_page:
567 		unlock_page(page);
568 
569 next:
570 		if (rc == -EAGAIN) {
571 			retry++;
572 		} else if (rc) {
573 			/* Permanent failure */
574 			list_move(&page->lru, failed);
575 			nr_failed++;
576 		} else {
577 			if (newpage) {
578 				/* Successful migration. Return page to LRU */
579 				move_to_lru(newpage);
580 			}
581 			list_move(&page->lru, moved);
582 		}
583 	}
584 	if (retry && pass++ < 10)
585 		goto redo;
586 
587 	if (!swapwrite)
588 		current->flags &= ~PF_SWAPWRITE;
589 
590 	return nr_failed + retry;
591 }
592 
593 /*
594  * Migrate the list 'pagelist' of pages to a certain destination.
595  *
596  * Specify destination with either non-NULL vma or dest_node >= 0
597  * Return the number of pages not migrated or error code
598  */
599 int migrate_pages_to(struct list_head *pagelist,
600 			struct vm_area_struct *vma, int dest)
601 {
602 	LIST_HEAD(newlist);
603 	LIST_HEAD(moved);
604 	LIST_HEAD(failed);
605 	int err = 0;
606 	unsigned long offset = 0;
607 	int nr_pages;
608 	struct page *page;
609 	struct list_head *p;
610 
611 redo:
612 	nr_pages = 0;
613 	list_for_each(p, pagelist) {
614 		if (vma) {
615 			/*
616 			 * The address passed to alloc_page_vma is used to
617 			 * generate the proper interleave behavior. We fake
618 			 * the address here by an increasing offset in order
619 			 * to get the proper distribution of pages.
620 			 *
621 			 * No decision has been made as to which page
622 			 * a certain old page is moved to so we cannot
623 			 * specify the correct address.
624 			 */
625 			page = alloc_page_vma(GFP_HIGHUSER, vma,
626 					offset + vma->vm_start);
627 			offset += PAGE_SIZE;
628 		}
629 		else
630 			page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
631 
632 		if (!page) {
633 			err = -ENOMEM;
634 			goto out;
635 		}
636 		list_add_tail(&page->lru, &newlist);
637 		nr_pages++;
638 		if (nr_pages > MIGRATE_CHUNK_SIZE)
639 			break;
640 	}
641 	err = migrate_pages(pagelist, &newlist, &moved, &failed);
642 
643 	putback_lru_pages(&moved);	/* Call release pages instead ?? */
644 
645 	if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
646 		goto redo;
647 out:
648 	/* Return leftover allocated pages */
649 	while (!list_empty(&newlist)) {
650 		page = list_entry(newlist.next, struct page, lru);
651 		list_del(&page->lru);
652 		__free_page(page);
653 	}
654 	list_splice(&failed, pagelist);
655 	if (err < 0)
656 		return err;
657 
658 	/* Calculate number of leftover pages */
659 	nr_pages = 0;
660 	list_for_each(p, pagelist)
661 		nr_pages++;
662 	return nr_pages;
663 }
664