xref: /openbmc/linux/mm/migrate.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	__SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	__ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				__ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 				 unsigned long addr, void *old)
176 {
177 	struct page_vma_mapped_walk pvmw = {
178 		.page = old,
179 		.vma = vma,
180 		.address = addr,
181 		.flags = PVMW_SYNC | PVMW_MIGRATION,
182 	};
183 	struct page *new;
184 	pte_t pte;
185 	swp_entry_t entry;
186 
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		if (PageKsm(page))
190 			new = page;
191 		else
192 			new = page - pvmw.page->index +
193 				linear_page_index(vma, pvmw.address);
194 
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 		/* PMD-mapped THP migration entry */
197 		if (!pvmw.pte) {
198 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 			remove_migration_pmd(&pvmw, new);
200 			continue;
201 		}
202 #endif
203 
204 		get_page(new);
205 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 		if (pte_swp_soft_dirty(*pvmw.pte))
207 			pte = pte_mksoft_dirty(pte);
208 
209 		/*
210 		 * Recheck VMA as permissions can change since migration started
211 		 */
212 		entry = pte_to_swp_entry(*pvmw.pte);
213 		if (is_write_migration_entry(entry))
214 			pte = maybe_mkwrite(pte, vma);
215 		else if (pte_swp_uffd_wp(*pvmw.pte))
216 			pte = pte_mkuffd_wp(pte);
217 
218 		if (unlikely(is_device_private_page(new))) {
219 			entry = make_device_private_entry(new, pte_write(pte));
220 			pte = swp_entry_to_pte(entry);
221 			if (pte_swp_soft_dirty(*pvmw.pte))
222 				pte = pte_swp_mksoft_dirty(pte);
223 			if (pte_swp_uffd_wp(*pvmw.pte))
224 				pte = pte_swp_mkuffd_wp(pte);
225 		}
226 
227 #ifdef CONFIG_HUGETLB_PAGE
228 		if (PageHuge(new)) {
229 			pte = pte_mkhuge(pte);
230 			pte = arch_make_huge_pte(pte, vma, new, 0);
231 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232 			if (PageAnon(new))
233 				hugepage_add_anon_rmap(new, vma, pvmw.address);
234 			else
235 				page_dup_rmap(new, true);
236 		} else
237 #endif
238 		{
239 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 
241 			if (PageAnon(new))
242 				page_add_anon_rmap(new, vma, pvmw.address, false);
243 			else
244 				page_add_file_rmap(new, false);
245 		}
246 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 			mlock_vma_page(new);
248 
249 		if (PageTransHuge(page) && PageMlocked(page))
250 			clear_page_mlock(page);
251 
252 		/* No need to invalidate - it was non-present before */
253 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 	}
255 
256 	return true;
257 }
258 
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265 	struct rmap_walk_control rwc = {
266 		.rmap_one = remove_migration_pte,
267 		.arg = old,
268 	};
269 
270 	if (locked)
271 		rmap_walk_locked(new, &rwc);
272 	else
273 		rmap_walk(new, &rwc);
274 }
275 
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282 				spinlock_t *ptl)
283 {
284 	pte_t pte;
285 	swp_entry_t entry;
286 	struct page *page;
287 
288 	spin_lock(ptl);
289 	pte = *ptep;
290 	if (!is_swap_pte(pte))
291 		goto out;
292 
293 	entry = pte_to_swp_entry(pte);
294 	if (!is_migration_entry(entry))
295 		goto out;
296 
297 	page = migration_entry_to_page(entry);
298 
299 	/*
300 	 * Once page cache replacement of page migration started, page_count
301 	 * is zero; but we must not call put_and_wait_on_page_locked() without
302 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
303 	 */
304 	if (!get_page_unless_zero(page))
305 		goto out;
306 	pte_unmap_unlock(ptep, ptl);
307 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
308 	return;
309 out:
310 	pte_unmap_unlock(ptep, ptl);
311 }
312 
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314 				unsigned long address)
315 {
316 	spinlock_t *ptl = pte_lockptr(mm, pmd);
317 	pte_t *ptep = pte_offset_map(pmd, address);
318 	__migration_entry_wait(mm, ptep, ptl);
319 }
320 
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322 		struct mm_struct *mm, pte_t *pte)
323 {
324 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325 	__migration_entry_wait(mm, pte, ptl);
326 }
327 
328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
329 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
330 {
331 	spinlock_t *ptl;
332 	struct page *page;
333 
334 	ptl = pmd_lock(mm, pmd);
335 	if (!is_pmd_migration_entry(*pmd))
336 		goto unlock;
337 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
338 	if (!get_page_unless_zero(page))
339 		goto unlock;
340 	spin_unlock(ptl);
341 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
342 	return;
343 unlock:
344 	spin_unlock(ptl);
345 }
346 #endif
347 
348 static int expected_page_refs(struct address_space *mapping, struct page *page)
349 {
350 	int expected_count = 1;
351 
352 	/*
353 	 * Device private pages have an extra refcount as they are
354 	 * ZONE_DEVICE pages.
355 	 */
356 	expected_count += is_device_private_page(page);
357 	if (mapping)
358 		expected_count += thp_nr_pages(page) + page_has_private(page);
359 
360 	return expected_count;
361 }
362 
363 /*
364  * Replace the page in the mapping.
365  *
366  * The number of remaining references must be:
367  * 1 for anonymous pages without a mapping
368  * 2 for pages with a mapping
369  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
370  */
371 int migrate_page_move_mapping(struct address_space *mapping,
372 		struct page *newpage, struct page *page, int extra_count)
373 {
374 	XA_STATE(xas, &mapping->i_pages, page_index(page));
375 	struct zone *oldzone, *newzone;
376 	int dirty;
377 	int expected_count = expected_page_refs(mapping, page) + extra_count;
378 	int nr = thp_nr_pages(page);
379 
380 	if (!mapping) {
381 		/* Anonymous page without mapping */
382 		if (page_count(page) != expected_count)
383 			return -EAGAIN;
384 
385 		/* No turning back from here */
386 		newpage->index = page->index;
387 		newpage->mapping = page->mapping;
388 		if (PageSwapBacked(page))
389 			__SetPageSwapBacked(newpage);
390 
391 		return MIGRATEPAGE_SUCCESS;
392 	}
393 
394 	oldzone = page_zone(page);
395 	newzone = page_zone(newpage);
396 
397 	xas_lock_irq(&xas);
398 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
399 		xas_unlock_irq(&xas);
400 		return -EAGAIN;
401 	}
402 
403 	if (!page_ref_freeze(page, expected_count)) {
404 		xas_unlock_irq(&xas);
405 		return -EAGAIN;
406 	}
407 
408 	/*
409 	 * Now we know that no one else is looking at the page:
410 	 * no turning back from here.
411 	 */
412 	newpage->index = page->index;
413 	newpage->mapping = page->mapping;
414 	page_ref_add(newpage, nr); /* add cache reference */
415 	if (PageSwapBacked(page)) {
416 		__SetPageSwapBacked(newpage);
417 		if (PageSwapCache(page)) {
418 			SetPageSwapCache(newpage);
419 			set_page_private(newpage, page_private(page));
420 		}
421 	} else {
422 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
423 	}
424 
425 	/* Move dirty while page refs frozen and newpage not yet exposed */
426 	dirty = PageDirty(page);
427 	if (dirty) {
428 		ClearPageDirty(page);
429 		SetPageDirty(newpage);
430 	}
431 
432 	xas_store(&xas, newpage);
433 	if (PageTransHuge(page)) {
434 		int i;
435 
436 		for (i = 1; i < nr; i++) {
437 			xas_next(&xas);
438 			xas_store(&xas, newpage);
439 		}
440 	}
441 
442 	/*
443 	 * Drop cache reference from old page by unfreezing
444 	 * to one less reference.
445 	 * We know this isn't the last reference.
446 	 */
447 	page_ref_unfreeze(page, expected_count - nr);
448 
449 	xas_unlock(&xas);
450 	/* Leave irq disabled to prevent preemption while updating stats */
451 
452 	/*
453 	 * If moved to a different zone then also account
454 	 * the page for that zone. Other VM counters will be
455 	 * taken care of when we establish references to the
456 	 * new page and drop references to the old page.
457 	 *
458 	 * Note that anonymous pages are accounted for
459 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
460 	 * are mapped to swap space.
461 	 */
462 	if (newzone != oldzone) {
463 		struct lruvec *old_lruvec, *new_lruvec;
464 		struct mem_cgroup *memcg;
465 
466 		memcg = page_memcg(page);
467 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
468 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
469 
470 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
471 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
472 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
473 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
474 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
475 		}
476 #ifdef CONFIG_SWAP
477 		if (PageSwapCache(page)) {
478 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
479 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
480 		}
481 #endif
482 		if (dirty && mapping_can_writeback(mapping)) {
483 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
484 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
485 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
486 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
487 		}
488 	}
489 	local_irq_enable();
490 
491 	return MIGRATEPAGE_SUCCESS;
492 }
493 EXPORT_SYMBOL(migrate_page_move_mapping);
494 
495 /*
496  * The expected number of remaining references is the same as that
497  * of migrate_page_move_mapping().
498  */
499 int migrate_huge_page_move_mapping(struct address_space *mapping,
500 				   struct page *newpage, struct page *page)
501 {
502 	XA_STATE(xas, &mapping->i_pages, page_index(page));
503 	int expected_count;
504 
505 	xas_lock_irq(&xas);
506 	expected_count = 2 + page_has_private(page);
507 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
508 		xas_unlock_irq(&xas);
509 		return -EAGAIN;
510 	}
511 
512 	if (!page_ref_freeze(page, expected_count)) {
513 		xas_unlock_irq(&xas);
514 		return -EAGAIN;
515 	}
516 
517 	newpage->index = page->index;
518 	newpage->mapping = page->mapping;
519 
520 	get_page(newpage);
521 
522 	xas_store(&xas, newpage);
523 
524 	page_ref_unfreeze(page, expected_count - 1);
525 
526 	xas_unlock_irq(&xas);
527 
528 	return MIGRATEPAGE_SUCCESS;
529 }
530 
531 /*
532  * Gigantic pages are so large that we do not guarantee that page++ pointer
533  * arithmetic will work across the entire page.  We need something more
534  * specialized.
535  */
536 static void __copy_gigantic_page(struct page *dst, struct page *src,
537 				int nr_pages)
538 {
539 	int i;
540 	struct page *dst_base = dst;
541 	struct page *src_base = src;
542 
543 	for (i = 0; i < nr_pages; ) {
544 		cond_resched();
545 		copy_highpage(dst, src);
546 
547 		i++;
548 		dst = mem_map_next(dst, dst_base, i);
549 		src = mem_map_next(src, src_base, i);
550 	}
551 }
552 
553 static void copy_huge_page(struct page *dst, struct page *src)
554 {
555 	int i;
556 	int nr_pages;
557 
558 	if (PageHuge(src)) {
559 		/* hugetlbfs page */
560 		struct hstate *h = page_hstate(src);
561 		nr_pages = pages_per_huge_page(h);
562 
563 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
564 			__copy_gigantic_page(dst, src, nr_pages);
565 			return;
566 		}
567 	} else {
568 		/* thp page */
569 		BUG_ON(!PageTransHuge(src));
570 		nr_pages = thp_nr_pages(src);
571 	}
572 
573 	for (i = 0; i < nr_pages; i++) {
574 		cond_resched();
575 		copy_highpage(dst + i, src + i);
576 	}
577 }
578 
579 /*
580  * Copy the page to its new location
581  */
582 void migrate_page_states(struct page *newpage, struct page *page)
583 {
584 	int cpupid;
585 
586 	if (PageError(page))
587 		SetPageError(newpage);
588 	if (PageReferenced(page))
589 		SetPageReferenced(newpage);
590 	if (PageUptodate(page))
591 		SetPageUptodate(newpage);
592 	if (TestClearPageActive(page)) {
593 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
594 		SetPageActive(newpage);
595 	} else if (TestClearPageUnevictable(page))
596 		SetPageUnevictable(newpage);
597 	if (PageWorkingset(page))
598 		SetPageWorkingset(newpage);
599 	if (PageChecked(page))
600 		SetPageChecked(newpage);
601 	if (PageMappedToDisk(page))
602 		SetPageMappedToDisk(newpage);
603 
604 	/* Move dirty on pages not done by migrate_page_move_mapping() */
605 	if (PageDirty(page))
606 		SetPageDirty(newpage);
607 
608 	if (page_is_young(page))
609 		set_page_young(newpage);
610 	if (page_is_idle(page))
611 		set_page_idle(newpage);
612 
613 	/*
614 	 * Copy NUMA information to the new page, to prevent over-eager
615 	 * future migrations of this same page.
616 	 */
617 	cpupid = page_cpupid_xchg_last(page, -1);
618 	page_cpupid_xchg_last(newpage, cpupid);
619 
620 	ksm_migrate_page(newpage, page);
621 	/*
622 	 * Please do not reorder this without considering how mm/ksm.c's
623 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
624 	 */
625 	if (PageSwapCache(page))
626 		ClearPageSwapCache(page);
627 	ClearPagePrivate(page);
628 	set_page_private(page, 0);
629 
630 	/*
631 	 * If any waiters have accumulated on the new page then
632 	 * wake them up.
633 	 */
634 	if (PageWriteback(newpage))
635 		end_page_writeback(newpage);
636 
637 	/*
638 	 * PG_readahead shares the same bit with PG_reclaim.  The above
639 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
640 	 * bit after that.
641 	 */
642 	if (PageReadahead(page))
643 		SetPageReadahead(newpage);
644 
645 	copy_page_owner(page, newpage);
646 
647 	if (!PageHuge(page))
648 		mem_cgroup_migrate(page, newpage);
649 }
650 EXPORT_SYMBOL(migrate_page_states);
651 
652 void migrate_page_copy(struct page *newpage, struct page *page)
653 {
654 	if (PageHuge(page) || PageTransHuge(page))
655 		copy_huge_page(newpage, page);
656 	else
657 		copy_highpage(newpage, page);
658 
659 	migrate_page_states(newpage, page);
660 }
661 EXPORT_SYMBOL(migrate_page_copy);
662 
663 /************************************************************
664  *                    Migration functions
665  ***********************************************************/
666 
667 /*
668  * Common logic to directly migrate a single LRU page suitable for
669  * pages that do not use PagePrivate/PagePrivate2.
670  *
671  * Pages are locked upon entry and exit.
672  */
673 int migrate_page(struct address_space *mapping,
674 		struct page *newpage, struct page *page,
675 		enum migrate_mode mode)
676 {
677 	int rc;
678 
679 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
680 
681 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
682 
683 	if (rc != MIGRATEPAGE_SUCCESS)
684 		return rc;
685 
686 	if (mode != MIGRATE_SYNC_NO_COPY)
687 		migrate_page_copy(newpage, page);
688 	else
689 		migrate_page_states(newpage, page);
690 	return MIGRATEPAGE_SUCCESS;
691 }
692 EXPORT_SYMBOL(migrate_page);
693 
694 #ifdef CONFIG_BLOCK
695 /* Returns true if all buffers are successfully locked */
696 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
697 							enum migrate_mode mode)
698 {
699 	struct buffer_head *bh = head;
700 
701 	/* Simple case, sync compaction */
702 	if (mode != MIGRATE_ASYNC) {
703 		do {
704 			lock_buffer(bh);
705 			bh = bh->b_this_page;
706 
707 		} while (bh != head);
708 
709 		return true;
710 	}
711 
712 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
713 	do {
714 		if (!trylock_buffer(bh)) {
715 			/*
716 			 * We failed to lock the buffer and cannot stall in
717 			 * async migration. Release the taken locks
718 			 */
719 			struct buffer_head *failed_bh = bh;
720 			bh = head;
721 			while (bh != failed_bh) {
722 				unlock_buffer(bh);
723 				bh = bh->b_this_page;
724 			}
725 			return false;
726 		}
727 
728 		bh = bh->b_this_page;
729 	} while (bh != head);
730 	return true;
731 }
732 
733 static int __buffer_migrate_page(struct address_space *mapping,
734 		struct page *newpage, struct page *page, enum migrate_mode mode,
735 		bool check_refs)
736 {
737 	struct buffer_head *bh, *head;
738 	int rc;
739 	int expected_count;
740 
741 	if (!page_has_buffers(page))
742 		return migrate_page(mapping, newpage, page, mode);
743 
744 	/* Check whether page does not have extra refs before we do more work */
745 	expected_count = expected_page_refs(mapping, page);
746 	if (page_count(page) != expected_count)
747 		return -EAGAIN;
748 
749 	head = page_buffers(page);
750 	if (!buffer_migrate_lock_buffers(head, mode))
751 		return -EAGAIN;
752 
753 	if (check_refs) {
754 		bool busy;
755 		bool invalidated = false;
756 
757 recheck_buffers:
758 		busy = false;
759 		spin_lock(&mapping->private_lock);
760 		bh = head;
761 		do {
762 			if (atomic_read(&bh->b_count)) {
763 				busy = true;
764 				break;
765 			}
766 			bh = bh->b_this_page;
767 		} while (bh != head);
768 		if (busy) {
769 			if (invalidated) {
770 				rc = -EAGAIN;
771 				goto unlock_buffers;
772 			}
773 			spin_unlock(&mapping->private_lock);
774 			invalidate_bh_lrus();
775 			invalidated = true;
776 			goto recheck_buffers;
777 		}
778 	}
779 
780 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
781 	if (rc != MIGRATEPAGE_SUCCESS)
782 		goto unlock_buffers;
783 
784 	attach_page_private(newpage, detach_page_private(page));
785 
786 	bh = head;
787 	do {
788 		set_bh_page(bh, newpage, bh_offset(bh));
789 		bh = bh->b_this_page;
790 
791 	} while (bh != head);
792 
793 	if (mode != MIGRATE_SYNC_NO_COPY)
794 		migrate_page_copy(newpage, page);
795 	else
796 		migrate_page_states(newpage, page);
797 
798 	rc = MIGRATEPAGE_SUCCESS;
799 unlock_buffers:
800 	if (check_refs)
801 		spin_unlock(&mapping->private_lock);
802 	bh = head;
803 	do {
804 		unlock_buffer(bh);
805 		bh = bh->b_this_page;
806 
807 	} while (bh != head);
808 
809 	return rc;
810 }
811 
812 /*
813  * Migration function for pages with buffers. This function can only be used
814  * if the underlying filesystem guarantees that no other references to "page"
815  * exist. For example attached buffer heads are accessed only under page lock.
816  */
817 int buffer_migrate_page(struct address_space *mapping,
818 		struct page *newpage, struct page *page, enum migrate_mode mode)
819 {
820 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
821 }
822 EXPORT_SYMBOL(buffer_migrate_page);
823 
824 /*
825  * Same as above except that this variant is more careful and checks that there
826  * are also no buffer head references. This function is the right one for
827  * mappings where buffer heads are directly looked up and referenced (such as
828  * block device mappings).
829  */
830 int buffer_migrate_page_norefs(struct address_space *mapping,
831 		struct page *newpage, struct page *page, enum migrate_mode mode)
832 {
833 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
834 }
835 #endif
836 
837 /*
838  * Writeback a page to clean the dirty state
839  */
840 static int writeout(struct address_space *mapping, struct page *page)
841 {
842 	struct writeback_control wbc = {
843 		.sync_mode = WB_SYNC_NONE,
844 		.nr_to_write = 1,
845 		.range_start = 0,
846 		.range_end = LLONG_MAX,
847 		.for_reclaim = 1
848 	};
849 	int rc;
850 
851 	if (!mapping->a_ops->writepage)
852 		/* No write method for the address space */
853 		return -EINVAL;
854 
855 	if (!clear_page_dirty_for_io(page))
856 		/* Someone else already triggered a write */
857 		return -EAGAIN;
858 
859 	/*
860 	 * A dirty page may imply that the underlying filesystem has
861 	 * the page on some queue. So the page must be clean for
862 	 * migration. Writeout may mean we loose the lock and the
863 	 * page state is no longer what we checked for earlier.
864 	 * At this point we know that the migration attempt cannot
865 	 * be successful.
866 	 */
867 	remove_migration_ptes(page, page, false);
868 
869 	rc = mapping->a_ops->writepage(page, &wbc);
870 
871 	if (rc != AOP_WRITEPAGE_ACTIVATE)
872 		/* unlocked. Relock */
873 		lock_page(page);
874 
875 	return (rc < 0) ? -EIO : -EAGAIN;
876 }
877 
878 /*
879  * Default handling if a filesystem does not provide a migration function.
880  */
881 static int fallback_migrate_page(struct address_space *mapping,
882 	struct page *newpage, struct page *page, enum migrate_mode mode)
883 {
884 	if (PageDirty(page)) {
885 		/* Only writeback pages in full synchronous migration */
886 		switch (mode) {
887 		case MIGRATE_SYNC:
888 		case MIGRATE_SYNC_NO_COPY:
889 			break;
890 		default:
891 			return -EBUSY;
892 		}
893 		return writeout(mapping, page);
894 	}
895 
896 	/*
897 	 * Buffers may be managed in a filesystem specific way.
898 	 * We must have no buffers or drop them.
899 	 */
900 	if (page_has_private(page) &&
901 	    !try_to_release_page(page, GFP_KERNEL))
902 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
903 
904 	return migrate_page(mapping, newpage, page, mode);
905 }
906 
907 /*
908  * Move a page to a newly allocated page
909  * The page is locked and all ptes have been successfully removed.
910  *
911  * The new page will have replaced the old page if this function
912  * is successful.
913  *
914  * Return value:
915  *   < 0 - error code
916  *  MIGRATEPAGE_SUCCESS - success
917  */
918 static int move_to_new_page(struct page *newpage, struct page *page,
919 				enum migrate_mode mode)
920 {
921 	struct address_space *mapping;
922 	int rc = -EAGAIN;
923 	bool is_lru = !__PageMovable(page);
924 
925 	VM_BUG_ON_PAGE(!PageLocked(page), page);
926 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927 
928 	mapping = page_mapping(page);
929 
930 	if (likely(is_lru)) {
931 		if (!mapping)
932 			rc = migrate_page(mapping, newpage, page, mode);
933 		else if (mapping->a_ops->migratepage)
934 			/*
935 			 * Most pages have a mapping and most filesystems
936 			 * provide a migratepage callback. Anonymous pages
937 			 * are part of swap space which also has its own
938 			 * migratepage callback. This is the most common path
939 			 * for page migration.
940 			 */
941 			rc = mapping->a_ops->migratepage(mapping, newpage,
942 							page, mode);
943 		else
944 			rc = fallback_migrate_page(mapping, newpage,
945 							page, mode);
946 	} else {
947 		/*
948 		 * In case of non-lru page, it could be released after
949 		 * isolation step. In that case, we shouldn't try migration.
950 		 */
951 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
952 		if (!PageMovable(page)) {
953 			rc = MIGRATEPAGE_SUCCESS;
954 			__ClearPageIsolated(page);
955 			goto out;
956 		}
957 
958 		rc = mapping->a_ops->migratepage(mapping, newpage,
959 						page, mode);
960 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961 			!PageIsolated(page));
962 	}
963 
964 	/*
965 	 * When successful, old pagecache page->mapping must be cleared before
966 	 * page is freed; but stats require that PageAnon be left as PageAnon.
967 	 */
968 	if (rc == MIGRATEPAGE_SUCCESS) {
969 		if (__PageMovable(page)) {
970 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
971 
972 			/*
973 			 * We clear PG_movable under page_lock so any compactor
974 			 * cannot try to migrate this page.
975 			 */
976 			__ClearPageIsolated(page);
977 		}
978 
979 		/*
980 		 * Anonymous and movable page->mapping will be cleared by
981 		 * free_pages_prepare so don't reset it here for keeping
982 		 * the type to work PageAnon, for example.
983 		 */
984 		if (!PageMappingFlags(page))
985 			page->mapping = NULL;
986 
987 		if (likely(!is_zone_device_page(newpage)))
988 			flush_dcache_page(newpage);
989 
990 	}
991 out:
992 	return rc;
993 }
994 
995 static int __unmap_and_move(struct page *page, struct page *newpage,
996 				int force, enum migrate_mode mode)
997 {
998 	int rc = -EAGAIN;
999 	int page_was_mapped = 0;
1000 	struct anon_vma *anon_vma = NULL;
1001 	bool is_lru = !__PageMovable(page);
1002 
1003 	if (!trylock_page(page)) {
1004 		if (!force || mode == MIGRATE_ASYNC)
1005 			goto out;
1006 
1007 		/*
1008 		 * It's not safe for direct compaction to call lock_page.
1009 		 * For example, during page readahead pages are added locked
1010 		 * to the LRU. Later, when the IO completes the pages are
1011 		 * marked uptodate and unlocked. However, the queueing
1012 		 * could be merging multiple pages for one bio (e.g.
1013 		 * mpage_readahead). If an allocation happens for the
1014 		 * second or third page, the process can end up locking
1015 		 * the same page twice and deadlocking. Rather than
1016 		 * trying to be clever about what pages can be locked,
1017 		 * avoid the use of lock_page for direct compaction
1018 		 * altogether.
1019 		 */
1020 		if (current->flags & PF_MEMALLOC)
1021 			goto out;
1022 
1023 		lock_page(page);
1024 	}
1025 
1026 	if (PageWriteback(page)) {
1027 		/*
1028 		 * Only in the case of a full synchronous migration is it
1029 		 * necessary to wait for PageWriteback. In the async case,
1030 		 * the retry loop is too short and in the sync-light case,
1031 		 * the overhead of stalling is too much
1032 		 */
1033 		switch (mode) {
1034 		case MIGRATE_SYNC:
1035 		case MIGRATE_SYNC_NO_COPY:
1036 			break;
1037 		default:
1038 			rc = -EBUSY;
1039 			goto out_unlock;
1040 		}
1041 		if (!force)
1042 			goto out_unlock;
1043 		wait_on_page_writeback(page);
1044 	}
1045 
1046 	/*
1047 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1048 	 * we cannot notice that anon_vma is freed while we migrates a page.
1049 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1050 	 * of migration. File cache pages are no problem because of page_lock()
1051 	 * File Caches may use write_page() or lock_page() in migration, then,
1052 	 * just care Anon page here.
1053 	 *
1054 	 * Only page_get_anon_vma() understands the subtleties of
1055 	 * getting a hold on an anon_vma from outside one of its mms.
1056 	 * But if we cannot get anon_vma, then we won't need it anyway,
1057 	 * because that implies that the anon page is no longer mapped
1058 	 * (and cannot be remapped so long as we hold the page lock).
1059 	 */
1060 	if (PageAnon(page) && !PageKsm(page))
1061 		anon_vma = page_get_anon_vma(page);
1062 
1063 	/*
1064 	 * Block others from accessing the new page when we get around to
1065 	 * establishing additional references. We are usually the only one
1066 	 * holding a reference to newpage at this point. We used to have a BUG
1067 	 * here if trylock_page(newpage) fails, but would like to allow for
1068 	 * cases where there might be a race with the previous use of newpage.
1069 	 * This is much like races on refcount of oldpage: just don't BUG().
1070 	 */
1071 	if (unlikely(!trylock_page(newpage)))
1072 		goto out_unlock;
1073 
1074 	if (unlikely(!is_lru)) {
1075 		rc = move_to_new_page(newpage, page, mode);
1076 		goto out_unlock_both;
1077 	}
1078 
1079 	/*
1080 	 * Corner case handling:
1081 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1082 	 * and treated as swapcache but it has no rmap yet.
1083 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1084 	 * trigger a BUG.  So handle it here.
1085 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1086 	 * fs-private metadata. The page can be picked up due to memory
1087 	 * offlining.  Everywhere else except page reclaim, the page is
1088 	 * invisible to the vm, so the page can not be migrated.  So try to
1089 	 * free the metadata, so the page can be freed.
1090 	 */
1091 	if (!page->mapping) {
1092 		VM_BUG_ON_PAGE(PageAnon(page), page);
1093 		if (page_has_private(page)) {
1094 			try_to_free_buffers(page);
1095 			goto out_unlock_both;
1096 		}
1097 	} else if (page_mapped(page)) {
1098 		/* Establish migration ptes */
1099 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1100 				page);
1101 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1102 		page_was_mapped = 1;
1103 	}
1104 
1105 	if (!page_mapped(page))
1106 		rc = move_to_new_page(newpage, page, mode);
1107 
1108 	if (page_was_mapped)
1109 		remove_migration_ptes(page,
1110 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1111 
1112 out_unlock_both:
1113 	unlock_page(newpage);
1114 out_unlock:
1115 	/* Drop an anon_vma reference if we took one */
1116 	if (anon_vma)
1117 		put_anon_vma(anon_vma);
1118 	unlock_page(page);
1119 out:
1120 	/*
1121 	 * If migration is successful, decrease refcount of the newpage
1122 	 * which will not free the page because new page owner increased
1123 	 * refcounter. As well, if it is LRU page, add the page to LRU
1124 	 * list in here. Use the old state of the isolated source page to
1125 	 * determine if we migrated a LRU page. newpage was already unlocked
1126 	 * and possibly modified by its owner - don't rely on the page
1127 	 * state.
1128 	 */
1129 	if (rc == MIGRATEPAGE_SUCCESS) {
1130 		if (unlikely(!is_lru))
1131 			put_page(newpage);
1132 		else
1133 			putback_lru_page(newpage);
1134 	}
1135 
1136 	return rc;
1137 }
1138 
1139 /*
1140  * Obtain the lock on page, remove all ptes and migrate the page
1141  * to the newly allocated page in newpage.
1142  */
1143 static int unmap_and_move(new_page_t get_new_page,
1144 				   free_page_t put_new_page,
1145 				   unsigned long private, struct page *page,
1146 				   int force, enum migrate_mode mode,
1147 				   enum migrate_reason reason,
1148 				   struct list_head *ret)
1149 {
1150 	int rc = MIGRATEPAGE_SUCCESS;
1151 	struct page *newpage = NULL;
1152 
1153 	if (!thp_migration_supported() && PageTransHuge(page))
1154 		return -ENOSYS;
1155 
1156 	if (page_count(page) == 1) {
1157 		/* page was freed from under us. So we are done. */
1158 		ClearPageActive(page);
1159 		ClearPageUnevictable(page);
1160 		if (unlikely(__PageMovable(page))) {
1161 			lock_page(page);
1162 			if (!PageMovable(page))
1163 				__ClearPageIsolated(page);
1164 			unlock_page(page);
1165 		}
1166 		goto out;
1167 	}
1168 
1169 	newpage = get_new_page(page, private);
1170 	if (!newpage)
1171 		return -ENOMEM;
1172 
1173 	rc = __unmap_and_move(page, newpage, force, mode);
1174 	if (rc == MIGRATEPAGE_SUCCESS)
1175 		set_page_owner_migrate_reason(newpage, reason);
1176 
1177 out:
1178 	if (rc != -EAGAIN) {
1179 		/*
1180 		 * A page that has been migrated has all references
1181 		 * removed and will be freed. A page that has not been
1182 		 * migrated will have kept its references and be restored.
1183 		 */
1184 		list_del(&page->lru);
1185 	}
1186 
1187 	/*
1188 	 * If migration is successful, releases reference grabbed during
1189 	 * isolation. Otherwise, restore the page to right list unless
1190 	 * we want to retry.
1191 	 */
1192 	if (rc == MIGRATEPAGE_SUCCESS) {
1193 		/*
1194 		 * Compaction can migrate also non-LRU pages which are
1195 		 * not accounted to NR_ISOLATED_*. They can be recognized
1196 		 * as __PageMovable
1197 		 */
1198 		if (likely(!__PageMovable(page)))
1199 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200 					page_is_file_lru(page), -thp_nr_pages(page));
1201 
1202 		if (reason != MR_MEMORY_FAILURE)
1203 			/*
1204 			 * We release the page in page_handle_poison.
1205 			 */
1206 			put_page(page);
1207 	} else {
1208 		if (rc != -EAGAIN)
1209 			list_add_tail(&page->lru, ret);
1210 
1211 		if (put_new_page)
1212 			put_new_page(newpage, private);
1213 		else
1214 			put_page(newpage);
1215 	}
1216 
1217 	return rc;
1218 }
1219 
1220 /*
1221  * Counterpart of unmap_and_move_page() for hugepage migration.
1222  *
1223  * This function doesn't wait the completion of hugepage I/O
1224  * because there is no race between I/O and migration for hugepage.
1225  * Note that currently hugepage I/O occurs only in direct I/O
1226  * where no lock is held and PG_writeback is irrelevant,
1227  * and writeback status of all subpages are counted in the reference
1228  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1229  * under direct I/O, the reference of the head page is 512 and a bit more.)
1230  * This means that when we try to migrate hugepage whose subpages are
1231  * doing direct I/O, some references remain after try_to_unmap() and
1232  * hugepage migration fails without data corruption.
1233  *
1234  * There is also no race when direct I/O is issued on the page under migration,
1235  * because then pte is replaced with migration swap entry and direct I/O code
1236  * will wait in the page fault for migration to complete.
1237  */
1238 static int unmap_and_move_huge_page(new_page_t get_new_page,
1239 				free_page_t put_new_page, unsigned long private,
1240 				struct page *hpage, int force,
1241 				enum migrate_mode mode, int reason,
1242 				struct list_head *ret)
1243 {
1244 	int rc = -EAGAIN;
1245 	int page_was_mapped = 0;
1246 	struct page *new_hpage;
1247 	struct anon_vma *anon_vma = NULL;
1248 	struct address_space *mapping = NULL;
1249 
1250 	/*
1251 	 * Migratability of hugepages depends on architectures and their size.
1252 	 * This check is necessary because some callers of hugepage migration
1253 	 * like soft offline and memory hotremove don't walk through page
1254 	 * tables or check whether the hugepage is pmd-based or not before
1255 	 * kicking migration.
1256 	 */
1257 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1258 		list_move_tail(&hpage->lru, ret);
1259 		return -ENOSYS;
1260 	}
1261 
1262 	if (page_count(hpage) == 1) {
1263 		/* page was freed from under us. So we are done. */
1264 		putback_active_hugepage(hpage);
1265 		return MIGRATEPAGE_SUCCESS;
1266 	}
1267 
1268 	new_hpage = get_new_page(hpage, private);
1269 	if (!new_hpage)
1270 		return -ENOMEM;
1271 
1272 	if (!trylock_page(hpage)) {
1273 		if (!force)
1274 			goto out;
1275 		switch (mode) {
1276 		case MIGRATE_SYNC:
1277 		case MIGRATE_SYNC_NO_COPY:
1278 			break;
1279 		default:
1280 			goto out;
1281 		}
1282 		lock_page(hpage);
1283 	}
1284 
1285 	/*
1286 	 * Check for pages which are in the process of being freed.  Without
1287 	 * page_mapping() set, hugetlbfs specific move page routine will not
1288 	 * be called and we could leak usage counts for subpools.
1289 	 */
1290 	if (page_private(hpage) && !page_mapping(hpage)) {
1291 		rc = -EBUSY;
1292 		goto out_unlock;
1293 	}
1294 
1295 	if (PageAnon(hpage))
1296 		anon_vma = page_get_anon_vma(hpage);
1297 
1298 	if (unlikely(!trylock_page(new_hpage)))
1299 		goto put_anon;
1300 
1301 	if (page_mapped(hpage)) {
1302 		bool mapping_locked = false;
1303 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1304 
1305 		if (!PageAnon(hpage)) {
1306 			/*
1307 			 * In shared mappings, try_to_unmap could potentially
1308 			 * call huge_pmd_unshare.  Because of this, take
1309 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1310 			 * to let lower levels know we have taken the lock.
1311 			 */
1312 			mapping = hugetlb_page_mapping_lock_write(hpage);
1313 			if (unlikely(!mapping))
1314 				goto unlock_put_anon;
1315 
1316 			mapping_locked = true;
1317 			ttu |= TTU_RMAP_LOCKED;
1318 		}
1319 
1320 		try_to_unmap(hpage, ttu);
1321 		page_was_mapped = 1;
1322 
1323 		if (mapping_locked)
1324 			i_mmap_unlock_write(mapping);
1325 	}
1326 
1327 	if (!page_mapped(hpage))
1328 		rc = move_to_new_page(new_hpage, hpage, mode);
1329 
1330 	if (page_was_mapped)
1331 		remove_migration_ptes(hpage,
1332 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1333 
1334 unlock_put_anon:
1335 	unlock_page(new_hpage);
1336 
1337 put_anon:
1338 	if (anon_vma)
1339 		put_anon_vma(anon_vma);
1340 
1341 	if (rc == MIGRATEPAGE_SUCCESS) {
1342 		move_hugetlb_state(hpage, new_hpage, reason);
1343 		put_new_page = NULL;
1344 	}
1345 
1346 out_unlock:
1347 	unlock_page(hpage);
1348 out:
1349 	if (rc == MIGRATEPAGE_SUCCESS)
1350 		putback_active_hugepage(hpage);
1351 	else if (rc != -EAGAIN)
1352 		list_move_tail(&hpage->lru, ret);
1353 
1354 	/*
1355 	 * If migration was not successful and there's a freeing callback, use
1356 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1357 	 * isolation.
1358 	 */
1359 	if (put_new_page)
1360 		put_new_page(new_hpage, private);
1361 	else
1362 		putback_active_hugepage(new_hpage);
1363 
1364 	return rc;
1365 }
1366 
1367 static inline int try_split_thp(struct page *page, struct page **page2,
1368 				struct list_head *from)
1369 {
1370 	int rc = 0;
1371 
1372 	lock_page(page);
1373 	rc = split_huge_page_to_list(page, from);
1374 	unlock_page(page);
1375 	if (!rc)
1376 		list_safe_reset_next(page, *page2, lru);
1377 
1378 	return rc;
1379 }
1380 
1381 /*
1382  * migrate_pages - migrate the pages specified in a list, to the free pages
1383  *		   supplied as the target for the page migration
1384  *
1385  * @from:		The list of pages to be migrated.
1386  * @get_new_page:	The function used to allocate free pages to be used
1387  *			as the target of the page migration.
1388  * @put_new_page:	The function used to free target pages if migration
1389  *			fails, or NULL if no special handling is necessary.
1390  * @private:		Private data to be passed on to get_new_page()
1391  * @mode:		The migration mode that specifies the constraints for
1392  *			page migration, if any.
1393  * @reason:		The reason for page migration.
1394  *
1395  * The function returns after 10 attempts or if no pages are movable any more
1396  * because the list has become empty or no retryable pages exist any more.
1397  * It is caller's responsibility to call putback_movable_pages() to return pages
1398  * to the LRU or free list only if ret != 0.
1399  *
1400  * Returns the number of pages that were not migrated, or an error code.
1401  */
1402 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1403 		free_page_t put_new_page, unsigned long private,
1404 		enum migrate_mode mode, int reason)
1405 {
1406 	int retry = 1;
1407 	int thp_retry = 1;
1408 	int nr_failed = 0;
1409 	int nr_succeeded = 0;
1410 	int nr_thp_succeeded = 0;
1411 	int nr_thp_failed = 0;
1412 	int nr_thp_split = 0;
1413 	int pass = 0;
1414 	bool is_thp = false;
1415 	struct page *page;
1416 	struct page *page2;
1417 	int swapwrite = current->flags & PF_SWAPWRITE;
1418 	int rc, nr_subpages;
1419 	LIST_HEAD(ret_pages);
1420 
1421 	trace_mm_migrate_pages_start(mode, reason);
1422 
1423 	if (!swapwrite)
1424 		current->flags |= PF_SWAPWRITE;
1425 
1426 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1427 		retry = 0;
1428 		thp_retry = 0;
1429 
1430 		list_for_each_entry_safe(page, page2, from, lru) {
1431 retry:
1432 			/*
1433 			 * THP statistics is based on the source huge page.
1434 			 * Capture required information that might get lost
1435 			 * during migration.
1436 			 */
1437 			is_thp = PageTransHuge(page) && !PageHuge(page);
1438 			nr_subpages = thp_nr_pages(page);
1439 			cond_resched();
1440 
1441 			if (PageHuge(page))
1442 				rc = unmap_and_move_huge_page(get_new_page,
1443 						put_new_page, private, page,
1444 						pass > 2, mode, reason,
1445 						&ret_pages);
1446 			else
1447 				rc = unmap_and_move(get_new_page, put_new_page,
1448 						private, page, pass > 2, mode,
1449 						reason, &ret_pages);
1450 			/*
1451 			 * The rules are:
1452 			 *	Success: non hugetlb page will be freed, hugetlb
1453 			 *		 page will be put back
1454 			 *	-EAGAIN: stay on the from list
1455 			 *	-ENOMEM: stay on the from list
1456 			 *	Other errno: put on ret_pages list then splice to
1457 			 *		     from list
1458 			 */
1459 			switch(rc) {
1460 			/*
1461 			 * THP migration might be unsupported or the
1462 			 * allocation could've failed so we should
1463 			 * retry on the same page with the THP split
1464 			 * to base pages.
1465 			 *
1466 			 * Head page is retried immediately and tail
1467 			 * pages are added to the tail of the list so
1468 			 * we encounter them after the rest of the list
1469 			 * is processed.
1470 			 */
1471 			case -ENOSYS:
1472 				/* THP migration is unsupported */
1473 				if (is_thp) {
1474 					if (!try_split_thp(page, &page2, from)) {
1475 						nr_thp_split++;
1476 						goto retry;
1477 					}
1478 
1479 					nr_thp_failed++;
1480 					nr_failed += nr_subpages;
1481 					break;
1482 				}
1483 
1484 				/* Hugetlb migration is unsupported */
1485 				nr_failed++;
1486 				break;
1487 			case -ENOMEM:
1488 				/*
1489 				 * When memory is low, don't bother to try to migrate
1490 				 * other pages, just exit.
1491 				 */
1492 				if (is_thp) {
1493 					if (!try_split_thp(page, &page2, from)) {
1494 						nr_thp_split++;
1495 						goto retry;
1496 					}
1497 
1498 					nr_thp_failed++;
1499 					nr_failed += nr_subpages;
1500 					goto out;
1501 				}
1502 				nr_failed++;
1503 				goto out;
1504 			case -EAGAIN:
1505 				if (is_thp) {
1506 					thp_retry++;
1507 					break;
1508 				}
1509 				retry++;
1510 				break;
1511 			case MIGRATEPAGE_SUCCESS:
1512 				if (is_thp) {
1513 					nr_thp_succeeded++;
1514 					nr_succeeded += nr_subpages;
1515 					break;
1516 				}
1517 				nr_succeeded++;
1518 				break;
1519 			default:
1520 				/*
1521 				 * Permanent failure (-EBUSY, etc.):
1522 				 * unlike -EAGAIN case, the failed page is
1523 				 * removed from migration page list and not
1524 				 * retried in the next outer loop.
1525 				 */
1526 				if (is_thp) {
1527 					nr_thp_failed++;
1528 					nr_failed += nr_subpages;
1529 					break;
1530 				}
1531 				nr_failed++;
1532 				break;
1533 			}
1534 		}
1535 	}
1536 	nr_failed += retry + thp_retry;
1537 	nr_thp_failed += thp_retry;
1538 	rc = nr_failed;
1539 out:
1540 	/*
1541 	 * Put the permanent failure page back to migration list, they
1542 	 * will be put back to the right list by the caller.
1543 	 */
1544 	list_splice(&ret_pages, from);
1545 
1546 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1547 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1548 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1549 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1550 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1551 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1552 			       nr_thp_failed, nr_thp_split, mode, reason);
1553 
1554 	if (!swapwrite)
1555 		current->flags &= ~PF_SWAPWRITE;
1556 
1557 	return rc;
1558 }
1559 
1560 struct page *alloc_migration_target(struct page *page, unsigned long private)
1561 {
1562 	struct migration_target_control *mtc;
1563 	gfp_t gfp_mask;
1564 	unsigned int order = 0;
1565 	struct page *new_page = NULL;
1566 	int nid;
1567 	int zidx;
1568 
1569 	mtc = (struct migration_target_control *)private;
1570 	gfp_mask = mtc->gfp_mask;
1571 	nid = mtc->nid;
1572 	if (nid == NUMA_NO_NODE)
1573 		nid = page_to_nid(page);
1574 
1575 	if (PageHuge(page)) {
1576 		struct hstate *h = page_hstate(compound_head(page));
1577 
1578 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1579 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1580 	}
1581 
1582 	if (PageTransHuge(page)) {
1583 		/*
1584 		 * clear __GFP_RECLAIM to make the migration callback
1585 		 * consistent with regular THP allocations.
1586 		 */
1587 		gfp_mask &= ~__GFP_RECLAIM;
1588 		gfp_mask |= GFP_TRANSHUGE;
1589 		order = HPAGE_PMD_ORDER;
1590 	}
1591 	zidx = zone_idx(page_zone(page));
1592 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1593 		gfp_mask |= __GFP_HIGHMEM;
1594 
1595 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1596 
1597 	if (new_page && PageTransHuge(new_page))
1598 		prep_transhuge_page(new_page);
1599 
1600 	return new_page;
1601 }
1602 
1603 #ifdef CONFIG_NUMA
1604 
1605 static int store_status(int __user *status, int start, int value, int nr)
1606 {
1607 	while (nr-- > 0) {
1608 		if (put_user(value, status + start))
1609 			return -EFAULT;
1610 		start++;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static int do_move_pages_to_node(struct mm_struct *mm,
1617 		struct list_head *pagelist, int node)
1618 {
1619 	int err;
1620 	struct migration_target_control mtc = {
1621 		.nid = node,
1622 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1623 	};
1624 
1625 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1626 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1627 	if (err)
1628 		putback_movable_pages(pagelist);
1629 	return err;
1630 }
1631 
1632 /*
1633  * Resolves the given address to a struct page, isolates it from the LRU and
1634  * puts it to the given pagelist.
1635  * Returns:
1636  *     errno - if the page cannot be found/isolated
1637  *     0 - when it doesn't have to be migrated because it is already on the
1638  *         target node
1639  *     1 - when it has been queued
1640  */
1641 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1642 		int node, struct list_head *pagelist, bool migrate_all)
1643 {
1644 	struct vm_area_struct *vma;
1645 	struct page *page;
1646 	unsigned int follflags;
1647 	int err;
1648 
1649 	mmap_read_lock(mm);
1650 	err = -EFAULT;
1651 	vma = find_vma(mm, addr);
1652 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1653 		goto out;
1654 
1655 	/* FOLL_DUMP to ignore special (like zero) pages */
1656 	follflags = FOLL_GET | FOLL_DUMP;
1657 	page = follow_page(vma, addr, follflags);
1658 
1659 	err = PTR_ERR(page);
1660 	if (IS_ERR(page))
1661 		goto out;
1662 
1663 	err = -ENOENT;
1664 	if (!page)
1665 		goto out;
1666 
1667 	err = 0;
1668 	if (page_to_nid(page) == node)
1669 		goto out_putpage;
1670 
1671 	err = -EACCES;
1672 	if (page_mapcount(page) > 1 && !migrate_all)
1673 		goto out_putpage;
1674 
1675 	if (PageHuge(page)) {
1676 		if (PageHead(page)) {
1677 			isolate_huge_page(page, pagelist);
1678 			err = 1;
1679 		}
1680 	} else {
1681 		struct page *head;
1682 
1683 		head = compound_head(page);
1684 		err = isolate_lru_page(head);
1685 		if (err)
1686 			goto out_putpage;
1687 
1688 		err = 1;
1689 		list_add_tail(&head->lru, pagelist);
1690 		mod_node_page_state(page_pgdat(head),
1691 			NR_ISOLATED_ANON + page_is_file_lru(head),
1692 			thp_nr_pages(head));
1693 	}
1694 out_putpage:
1695 	/*
1696 	 * Either remove the duplicate refcount from
1697 	 * isolate_lru_page() or drop the page ref if it was
1698 	 * not isolated.
1699 	 */
1700 	put_page(page);
1701 out:
1702 	mmap_read_unlock(mm);
1703 	return err;
1704 }
1705 
1706 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1707 		struct list_head *pagelist, int __user *status,
1708 		int start, int i, unsigned long nr_pages)
1709 {
1710 	int err;
1711 
1712 	if (list_empty(pagelist))
1713 		return 0;
1714 
1715 	err = do_move_pages_to_node(mm, pagelist, node);
1716 	if (err) {
1717 		/*
1718 		 * Positive err means the number of failed
1719 		 * pages to migrate.  Since we are going to
1720 		 * abort and return the number of non-migrated
1721 		 * pages, so need to include the rest of the
1722 		 * nr_pages that have not been attempted as
1723 		 * well.
1724 		 */
1725 		if (err > 0)
1726 			err += nr_pages - i - 1;
1727 		return err;
1728 	}
1729 	return store_status(status, start, node, i - start);
1730 }
1731 
1732 /*
1733  * Migrate an array of page address onto an array of nodes and fill
1734  * the corresponding array of status.
1735  */
1736 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1737 			 unsigned long nr_pages,
1738 			 const void __user * __user *pages,
1739 			 const int __user *nodes,
1740 			 int __user *status, int flags)
1741 {
1742 	int current_node = NUMA_NO_NODE;
1743 	LIST_HEAD(pagelist);
1744 	int start, i;
1745 	int err = 0, err1;
1746 
1747 	lru_cache_disable();
1748 
1749 	for (i = start = 0; i < nr_pages; i++) {
1750 		const void __user *p;
1751 		unsigned long addr;
1752 		int node;
1753 
1754 		err = -EFAULT;
1755 		if (get_user(p, pages + i))
1756 			goto out_flush;
1757 		if (get_user(node, nodes + i))
1758 			goto out_flush;
1759 		addr = (unsigned long)untagged_addr(p);
1760 
1761 		err = -ENODEV;
1762 		if (node < 0 || node >= MAX_NUMNODES)
1763 			goto out_flush;
1764 		if (!node_state(node, N_MEMORY))
1765 			goto out_flush;
1766 
1767 		err = -EACCES;
1768 		if (!node_isset(node, task_nodes))
1769 			goto out_flush;
1770 
1771 		if (current_node == NUMA_NO_NODE) {
1772 			current_node = node;
1773 			start = i;
1774 		} else if (node != current_node) {
1775 			err = move_pages_and_store_status(mm, current_node,
1776 					&pagelist, status, start, i, nr_pages);
1777 			if (err)
1778 				goto out;
1779 			start = i;
1780 			current_node = node;
1781 		}
1782 
1783 		/*
1784 		 * Errors in the page lookup or isolation are not fatal and we simply
1785 		 * report them via status
1786 		 */
1787 		err = add_page_for_migration(mm, addr, current_node,
1788 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1789 
1790 		if (err > 0) {
1791 			/* The page is successfully queued for migration */
1792 			continue;
1793 		}
1794 
1795 		/*
1796 		 * If the page is already on the target node (!err), store the
1797 		 * node, otherwise, store the err.
1798 		 */
1799 		err = store_status(status, i, err ? : current_node, 1);
1800 		if (err)
1801 			goto out_flush;
1802 
1803 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1804 				status, start, i, nr_pages);
1805 		if (err)
1806 			goto out;
1807 		current_node = NUMA_NO_NODE;
1808 	}
1809 out_flush:
1810 	/* Make sure we do not overwrite the existing error */
1811 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1812 				status, start, i, nr_pages);
1813 	if (err >= 0)
1814 		err = err1;
1815 out:
1816 	lru_cache_enable();
1817 	return err;
1818 }
1819 
1820 /*
1821  * Determine the nodes of an array of pages and store it in an array of status.
1822  */
1823 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1824 				const void __user **pages, int *status)
1825 {
1826 	unsigned long i;
1827 
1828 	mmap_read_lock(mm);
1829 
1830 	for (i = 0; i < nr_pages; i++) {
1831 		unsigned long addr = (unsigned long)(*pages);
1832 		struct vm_area_struct *vma;
1833 		struct page *page;
1834 		int err = -EFAULT;
1835 
1836 		vma = find_vma(mm, addr);
1837 		if (!vma || addr < vma->vm_start)
1838 			goto set_status;
1839 
1840 		/* FOLL_DUMP to ignore special (like zero) pages */
1841 		page = follow_page(vma, addr, FOLL_DUMP);
1842 
1843 		err = PTR_ERR(page);
1844 		if (IS_ERR(page))
1845 			goto set_status;
1846 
1847 		err = page ? page_to_nid(page) : -ENOENT;
1848 set_status:
1849 		*status = err;
1850 
1851 		pages++;
1852 		status++;
1853 	}
1854 
1855 	mmap_read_unlock(mm);
1856 }
1857 
1858 /*
1859  * Determine the nodes of a user array of pages and store it in
1860  * a user array of status.
1861  */
1862 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1863 			 const void __user * __user *pages,
1864 			 int __user *status)
1865 {
1866 #define DO_PAGES_STAT_CHUNK_NR 16
1867 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1868 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1869 
1870 	while (nr_pages) {
1871 		unsigned long chunk_nr;
1872 
1873 		chunk_nr = nr_pages;
1874 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1875 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1876 
1877 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1878 			break;
1879 
1880 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1881 
1882 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1883 			break;
1884 
1885 		pages += chunk_nr;
1886 		status += chunk_nr;
1887 		nr_pages -= chunk_nr;
1888 	}
1889 	return nr_pages ? -EFAULT : 0;
1890 }
1891 
1892 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1893 {
1894 	struct task_struct *task;
1895 	struct mm_struct *mm;
1896 
1897 	/*
1898 	 * There is no need to check if current process has the right to modify
1899 	 * the specified process when they are same.
1900 	 */
1901 	if (!pid) {
1902 		mmget(current->mm);
1903 		*mem_nodes = cpuset_mems_allowed(current);
1904 		return current->mm;
1905 	}
1906 
1907 	/* Find the mm_struct */
1908 	rcu_read_lock();
1909 	task = find_task_by_vpid(pid);
1910 	if (!task) {
1911 		rcu_read_unlock();
1912 		return ERR_PTR(-ESRCH);
1913 	}
1914 	get_task_struct(task);
1915 
1916 	/*
1917 	 * Check if this process has the right to modify the specified
1918 	 * process. Use the regular "ptrace_may_access()" checks.
1919 	 */
1920 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1921 		rcu_read_unlock();
1922 		mm = ERR_PTR(-EPERM);
1923 		goto out;
1924 	}
1925 	rcu_read_unlock();
1926 
1927 	mm = ERR_PTR(security_task_movememory(task));
1928 	if (IS_ERR(mm))
1929 		goto out;
1930 	*mem_nodes = cpuset_mems_allowed(task);
1931 	mm = get_task_mm(task);
1932 out:
1933 	put_task_struct(task);
1934 	if (!mm)
1935 		mm = ERR_PTR(-EINVAL);
1936 	return mm;
1937 }
1938 
1939 /*
1940  * Move a list of pages in the address space of the currently executing
1941  * process.
1942  */
1943 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1944 			     const void __user * __user *pages,
1945 			     const int __user *nodes,
1946 			     int __user *status, int flags)
1947 {
1948 	struct mm_struct *mm;
1949 	int err;
1950 	nodemask_t task_nodes;
1951 
1952 	/* Check flags */
1953 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1954 		return -EINVAL;
1955 
1956 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1957 		return -EPERM;
1958 
1959 	mm = find_mm_struct(pid, &task_nodes);
1960 	if (IS_ERR(mm))
1961 		return PTR_ERR(mm);
1962 
1963 	if (nodes)
1964 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1965 				    nodes, status, flags);
1966 	else
1967 		err = do_pages_stat(mm, nr_pages, pages, status);
1968 
1969 	mmput(mm);
1970 	return err;
1971 }
1972 
1973 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1974 		const void __user * __user *, pages,
1975 		const int __user *, nodes,
1976 		int __user *, status, int, flags)
1977 {
1978 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1979 }
1980 
1981 #ifdef CONFIG_COMPAT
1982 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1983 		       compat_uptr_t __user *, pages32,
1984 		       const int __user *, nodes,
1985 		       int __user *, status,
1986 		       int, flags)
1987 {
1988 	const void __user * __user *pages;
1989 	int i;
1990 
1991 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1992 	for (i = 0; i < nr_pages; i++) {
1993 		compat_uptr_t p;
1994 
1995 		if (get_user(p, pages32 + i) ||
1996 			put_user(compat_ptr(p), pages + i))
1997 			return -EFAULT;
1998 	}
1999 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2000 }
2001 #endif /* CONFIG_COMPAT */
2002 
2003 #ifdef CONFIG_NUMA_BALANCING
2004 /*
2005  * Returns true if this is a safe migration target node for misplaced NUMA
2006  * pages. Currently it only checks the watermarks which crude
2007  */
2008 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2009 				   unsigned long nr_migrate_pages)
2010 {
2011 	int z;
2012 
2013 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2014 		struct zone *zone = pgdat->node_zones + z;
2015 
2016 		if (!populated_zone(zone))
2017 			continue;
2018 
2019 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2020 		if (!zone_watermark_ok(zone, 0,
2021 				       high_wmark_pages(zone) +
2022 				       nr_migrate_pages,
2023 				       ZONE_MOVABLE, 0))
2024 			continue;
2025 		return true;
2026 	}
2027 	return false;
2028 }
2029 
2030 static struct page *alloc_misplaced_dst_page(struct page *page,
2031 					   unsigned long data)
2032 {
2033 	int nid = (int) data;
2034 	struct page *newpage;
2035 
2036 	newpage = __alloc_pages_node(nid,
2037 					 (GFP_HIGHUSER_MOVABLE |
2038 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2039 					  __GFP_NORETRY | __GFP_NOWARN) &
2040 					 ~__GFP_RECLAIM, 0);
2041 
2042 	return newpage;
2043 }
2044 
2045 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2046 {
2047 	int page_lru;
2048 
2049 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2050 
2051 	/* Avoid migrating to a node that is nearly full */
2052 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2053 		return 0;
2054 
2055 	if (isolate_lru_page(page))
2056 		return 0;
2057 
2058 	/*
2059 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2060 	 * check on page_count(), so we must do it here, now that the page
2061 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2062 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2063 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2064 	 */
2065 	if (PageTransHuge(page) && page_count(page) != 3) {
2066 		putback_lru_page(page);
2067 		return 0;
2068 	}
2069 
2070 	page_lru = page_is_file_lru(page);
2071 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2072 				thp_nr_pages(page));
2073 
2074 	/*
2075 	 * Isolating the page has taken another reference, so the
2076 	 * caller's reference can be safely dropped without the page
2077 	 * disappearing underneath us during migration.
2078 	 */
2079 	put_page(page);
2080 	return 1;
2081 }
2082 
2083 bool pmd_trans_migrating(pmd_t pmd)
2084 {
2085 	struct page *page = pmd_page(pmd);
2086 	return PageLocked(page);
2087 }
2088 
2089 /*
2090  * Attempt to migrate a misplaced page to the specified destination
2091  * node. Caller is expected to have an elevated reference count on
2092  * the page that will be dropped by this function before returning.
2093  */
2094 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2095 			   int node)
2096 {
2097 	pg_data_t *pgdat = NODE_DATA(node);
2098 	int isolated;
2099 	int nr_remaining;
2100 	LIST_HEAD(migratepages);
2101 
2102 	/*
2103 	 * Don't migrate file pages that are mapped in multiple processes
2104 	 * with execute permissions as they are probably shared libraries.
2105 	 */
2106 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2107 	    (vma->vm_flags & VM_EXEC))
2108 		goto out;
2109 
2110 	/*
2111 	 * Also do not migrate dirty pages as not all filesystems can move
2112 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2113 	 */
2114 	if (page_is_file_lru(page) && PageDirty(page))
2115 		goto out;
2116 
2117 	isolated = numamigrate_isolate_page(pgdat, page);
2118 	if (!isolated)
2119 		goto out;
2120 
2121 	list_add(&page->lru, &migratepages);
2122 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2123 				     NULL, node, MIGRATE_ASYNC,
2124 				     MR_NUMA_MISPLACED);
2125 	if (nr_remaining) {
2126 		if (!list_empty(&migratepages)) {
2127 			list_del(&page->lru);
2128 			dec_node_page_state(page, NR_ISOLATED_ANON +
2129 					page_is_file_lru(page));
2130 			putback_lru_page(page);
2131 		}
2132 		isolated = 0;
2133 	} else
2134 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2135 	BUG_ON(!list_empty(&migratepages));
2136 	return isolated;
2137 
2138 out:
2139 	put_page(page);
2140 	return 0;
2141 }
2142 #endif /* CONFIG_NUMA_BALANCING */
2143 
2144 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2145 /*
2146  * Migrates a THP to a given target node. page must be locked and is unlocked
2147  * before returning.
2148  */
2149 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2150 				struct vm_area_struct *vma,
2151 				pmd_t *pmd, pmd_t entry,
2152 				unsigned long address,
2153 				struct page *page, int node)
2154 {
2155 	spinlock_t *ptl;
2156 	pg_data_t *pgdat = NODE_DATA(node);
2157 	int isolated = 0;
2158 	struct page *new_page = NULL;
2159 	int page_lru = page_is_file_lru(page);
2160 	unsigned long start = address & HPAGE_PMD_MASK;
2161 
2162 	new_page = alloc_pages_node(node,
2163 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2164 		HPAGE_PMD_ORDER);
2165 	if (!new_page)
2166 		goto out_fail;
2167 	prep_transhuge_page(new_page);
2168 
2169 	isolated = numamigrate_isolate_page(pgdat, page);
2170 	if (!isolated) {
2171 		put_page(new_page);
2172 		goto out_fail;
2173 	}
2174 
2175 	/* Prepare a page as a migration target */
2176 	__SetPageLocked(new_page);
2177 	if (PageSwapBacked(page))
2178 		__SetPageSwapBacked(new_page);
2179 
2180 	/* anon mapping, we can simply copy page->mapping to the new page: */
2181 	new_page->mapping = page->mapping;
2182 	new_page->index = page->index;
2183 	/* flush the cache before copying using the kernel virtual address */
2184 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2185 	migrate_page_copy(new_page, page);
2186 	WARN_ON(PageLRU(new_page));
2187 
2188 	/* Recheck the target PMD */
2189 	ptl = pmd_lock(mm, pmd);
2190 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2191 		spin_unlock(ptl);
2192 
2193 		/* Reverse changes made by migrate_page_copy() */
2194 		if (TestClearPageActive(new_page))
2195 			SetPageActive(page);
2196 		if (TestClearPageUnevictable(new_page))
2197 			SetPageUnevictable(page);
2198 
2199 		unlock_page(new_page);
2200 		put_page(new_page);		/* Free it */
2201 
2202 		/* Retake the callers reference and putback on LRU */
2203 		get_page(page);
2204 		putback_lru_page(page);
2205 		mod_node_page_state(page_pgdat(page),
2206 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2207 
2208 		goto out_unlock;
2209 	}
2210 
2211 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2212 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2213 
2214 	/*
2215 	 * Overwrite the old entry under pagetable lock and establish
2216 	 * the new PTE. Any parallel GUP will either observe the old
2217 	 * page blocking on the page lock, block on the page table
2218 	 * lock or observe the new page. The SetPageUptodate on the
2219 	 * new page and page_add_new_anon_rmap guarantee the copy is
2220 	 * visible before the pagetable update.
2221 	 */
2222 	page_add_anon_rmap(new_page, vma, start, true);
2223 	/*
2224 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2225 	 * has already been flushed globally.  So no TLB can be currently
2226 	 * caching this non present pmd mapping.  There's no need to clear the
2227 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2228 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2229 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2230 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2231 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2232 	 * pmd.
2233 	 */
2234 	set_pmd_at(mm, start, pmd, entry);
2235 	update_mmu_cache_pmd(vma, address, &entry);
2236 
2237 	page_ref_unfreeze(page, 2);
2238 	mlock_migrate_page(new_page, page);
2239 	page_remove_rmap(page, true);
2240 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2241 
2242 	spin_unlock(ptl);
2243 
2244 	/* Take an "isolate" reference and put new page on the LRU. */
2245 	get_page(new_page);
2246 	putback_lru_page(new_page);
2247 
2248 	unlock_page(new_page);
2249 	unlock_page(page);
2250 	put_page(page);			/* Drop the rmap reference */
2251 	put_page(page);			/* Drop the LRU isolation reference */
2252 
2253 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2254 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2255 
2256 	mod_node_page_state(page_pgdat(page),
2257 			NR_ISOLATED_ANON + page_lru,
2258 			-HPAGE_PMD_NR);
2259 	return isolated;
2260 
2261 out_fail:
2262 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2263 	ptl = pmd_lock(mm, pmd);
2264 	if (pmd_same(*pmd, entry)) {
2265 		entry = pmd_modify(entry, vma->vm_page_prot);
2266 		set_pmd_at(mm, start, pmd, entry);
2267 		update_mmu_cache_pmd(vma, address, &entry);
2268 	}
2269 	spin_unlock(ptl);
2270 
2271 out_unlock:
2272 	unlock_page(page);
2273 	put_page(page);
2274 	return 0;
2275 }
2276 #endif /* CONFIG_NUMA_BALANCING */
2277 
2278 #endif /* CONFIG_NUMA */
2279 
2280 #ifdef CONFIG_DEVICE_PRIVATE
2281 static int migrate_vma_collect_skip(unsigned long start,
2282 				    unsigned long end,
2283 				    struct mm_walk *walk)
2284 {
2285 	struct migrate_vma *migrate = walk->private;
2286 	unsigned long addr;
2287 
2288 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2289 		migrate->dst[migrate->npages] = 0;
2290 		migrate->src[migrate->npages++] = 0;
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 static int migrate_vma_collect_hole(unsigned long start,
2297 				    unsigned long end,
2298 				    __always_unused int depth,
2299 				    struct mm_walk *walk)
2300 {
2301 	struct migrate_vma *migrate = walk->private;
2302 	unsigned long addr;
2303 
2304 	/* Only allow populating anonymous memory. */
2305 	if (!vma_is_anonymous(walk->vma))
2306 		return migrate_vma_collect_skip(start, end, walk);
2307 
2308 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2309 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2310 		migrate->dst[migrate->npages] = 0;
2311 		migrate->npages++;
2312 		migrate->cpages++;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2319 				   unsigned long start,
2320 				   unsigned long end,
2321 				   struct mm_walk *walk)
2322 {
2323 	struct migrate_vma *migrate = walk->private;
2324 	struct vm_area_struct *vma = walk->vma;
2325 	struct mm_struct *mm = vma->vm_mm;
2326 	unsigned long addr = start, unmapped = 0;
2327 	spinlock_t *ptl;
2328 	pte_t *ptep;
2329 
2330 again:
2331 	if (pmd_none(*pmdp))
2332 		return migrate_vma_collect_hole(start, end, -1, walk);
2333 
2334 	if (pmd_trans_huge(*pmdp)) {
2335 		struct page *page;
2336 
2337 		ptl = pmd_lock(mm, pmdp);
2338 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2339 			spin_unlock(ptl);
2340 			goto again;
2341 		}
2342 
2343 		page = pmd_page(*pmdp);
2344 		if (is_huge_zero_page(page)) {
2345 			spin_unlock(ptl);
2346 			split_huge_pmd(vma, pmdp, addr);
2347 			if (pmd_trans_unstable(pmdp))
2348 				return migrate_vma_collect_skip(start, end,
2349 								walk);
2350 		} else {
2351 			int ret;
2352 
2353 			get_page(page);
2354 			spin_unlock(ptl);
2355 			if (unlikely(!trylock_page(page)))
2356 				return migrate_vma_collect_skip(start, end,
2357 								walk);
2358 			ret = split_huge_page(page);
2359 			unlock_page(page);
2360 			put_page(page);
2361 			if (ret)
2362 				return migrate_vma_collect_skip(start, end,
2363 								walk);
2364 			if (pmd_none(*pmdp))
2365 				return migrate_vma_collect_hole(start, end, -1,
2366 								walk);
2367 		}
2368 	}
2369 
2370 	if (unlikely(pmd_bad(*pmdp)))
2371 		return migrate_vma_collect_skip(start, end, walk);
2372 
2373 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2374 	arch_enter_lazy_mmu_mode();
2375 
2376 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2377 		unsigned long mpfn = 0, pfn;
2378 		struct page *page;
2379 		swp_entry_t entry;
2380 		pte_t pte;
2381 
2382 		pte = *ptep;
2383 
2384 		if (pte_none(pte)) {
2385 			if (vma_is_anonymous(vma)) {
2386 				mpfn = MIGRATE_PFN_MIGRATE;
2387 				migrate->cpages++;
2388 			}
2389 			goto next;
2390 		}
2391 
2392 		if (!pte_present(pte)) {
2393 			/*
2394 			 * Only care about unaddressable device page special
2395 			 * page table entry. Other special swap entries are not
2396 			 * migratable, and we ignore regular swapped page.
2397 			 */
2398 			entry = pte_to_swp_entry(pte);
2399 			if (!is_device_private_entry(entry))
2400 				goto next;
2401 
2402 			page = device_private_entry_to_page(entry);
2403 			if (!(migrate->flags &
2404 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2405 			    page->pgmap->owner != migrate->pgmap_owner)
2406 				goto next;
2407 
2408 			mpfn = migrate_pfn(page_to_pfn(page)) |
2409 					MIGRATE_PFN_MIGRATE;
2410 			if (is_write_device_private_entry(entry))
2411 				mpfn |= MIGRATE_PFN_WRITE;
2412 		} else {
2413 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2414 				goto next;
2415 			pfn = pte_pfn(pte);
2416 			if (is_zero_pfn(pfn)) {
2417 				mpfn = MIGRATE_PFN_MIGRATE;
2418 				migrate->cpages++;
2419 				goto next;
2420 			}
2421 			page = vm_normal_page(migrate->vma, addr, pte);
2422 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2423 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2424 		}
2425 
2426 		/* FIXME support THP */
2427 		if (!page || !page->mapping || PageTransCompound(page)) {
2428 			mpfn = 0;
2429 			goto next;
2430 		}
2431 
2432 		/*
2433 		 * By getting a reference on the page we pin it and that blocks
2434 		 * any kind of migration. Side effect is that it "freezes" the
2435 		 * pte.
2436 		 *
2437 		 * We drop this reference after isolating the page from the lru
2438 		 * for non device page (device page are not on the lru and thus
2439 		 * can't be dropped from it).
2440 		 */
2441 		get_page(page);
2442 		migrate->cpages++;
2443 
2444 		/*
2445 		 * Optimize for the common case where page is only mapped once
2446 		 * in one process. If we can lock the page, then we can safely
2447 		 * set up a special migration page table entry now.
2448 		 */
2449 		if (trylock_page(page)) {
2450 			pte_t swp_pte;
2451 
2452 			mpfn |= MIGRATE_PFN_LOCKED;
2453 			ptep_get_and_clear(mm, addr, ptep);
2454 
2455 			/* Setup special migration page table entry */
2456 			entry = make_migration_entry(page, mpfn &
2457 						     MIGRATE_PFN_WRITE);
2458 			swp_pte = swp_entry_to_pte(entry);
2459 			if (pte_present(pte)) {
2460 				if (pte_soft_dirty(pte))
2461 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2462 				if (pte_uffd_wp(pte))
2463 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2464 			} else {
2465 				if (pte_swp_soft_dirty(pte))
2466 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2467 				if (pte_swp_uffd_wp(pte))
2468 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2469 			}
2470 			set_pte_at(mm, addr, ptep, swp_pte);
2471 
2472 			/*
2473 			 * This is like regular unmap: we remove the rmap and
2474 			 * drop page refcount. Page won't be freed, as we took
2475 			 * a reference just above.
2476 			 */
2477 			page_remove_rmap(page, false);
2478 			put_page(page);
2479 
2480 			if (pte_present(pte))
2481 				unmapped++;
2482 		}
2483 
2484 next:
2485 		migrate->dst[migrate->npages] = 0;
2486 		migrate->src[migrate->npages++] = mpfn;
2487 	}
2488 	arch_leave_lazy_mmu_mode();
2489 	pte_unmap_unlock(ptep - 1, ptl);
2490 
2491 	/* Only flush the TLB if we actually modified any entries */
2492 	if (unmapped)
2493 		flush_tlb_range(walk->vma, start, end);
2494 
2495 	return 0;
2496 }
2497 
2498 static const struct mm_walk_ops migrate_vma_walk_ops = {
2499 	.pmd_entry		= migrate_vma_collect_pmd,
2500 	.pte_hole		= migrate_vma_collect_hole,
2501 };
2502 
2503 /*
2504  * migrate_vma_collect() - collect pages over a range of virtual addresses
2505  * @migrate: migrate struct containing all migration information
2506  *
2507  * This will walk the CPU page table. For each virtual address backed by a
2508  * valid page, it updates the src array and takes a reference on the page, in
2509  * order to pin the page until we lock it and unmap it.
2510  */
2511 static void migrate_vma_collect(struct migrate_vma *migrate)
2512 {
2513 	struct mmu_notifier_range range;
2514 
2515 	/*
2516 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2517 	 * that the registered device driver can skip invalidating device
2518 	 * private page mappings that won't be migrated.
2519 	 */
2520 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2521 		migrate->vma->vm_mm, migrate->start, migrate->end,
2522 		migrate->pgmap_owner);
2523 	mmu_notifier_invalidate_range_start(&range);
2524 
2525 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2526 			&migrate_vma_walk_ops, migrate);
2527 
2528 	mmu_notifier_invalidate_range_end(&range);
2529 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2530 }
2531 
2532 /*
2533  * migrate_vma_check_page() - check if page is pinned or not
2534  * @page: struct page to check
2535  *
2536  * Pinned pages cannot be migrated. This is the same test as in
2537  * migrate_page_move_mapping(), except that here we allow migration of a
2538  * ZONE_DEVICE page.
2539  */
2540 static bool migrate_vma_check_page(struct page *page)
2541 {
2542 	/*
2543 	 * One extra ref because caller holds an extra reference, either from
2544 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2545 	 * a device page.
2546 	 */
2547 	int extra = 1;
2548 
2549 	/*
2550 	 * FIXME support THP (transparent huge page), it is bit more complex to
2551 	 * check them than regular pages, because they can be mapped with a pmd
2552 	 * or with a pte (split pte mapping).
2553 	 */
2554 	if (PageCompound(page))
2555 		return false;
2556 
2557 	/* Page from ZONE_DEVICE have one extra reference */
2558 	if (is_zone_device_page(page)) {
2559 		/*
2560 		 * Private page can never be pin as they have no valid pte and
2561 		 * GUP will fail for those. Yet if there is a pending migration
2562 		 * a thread might try to wait on the pte migration entry and
2563 		 * will bump the page reference count. Sadly there is no way to
2564 		 * differentiate a regular pin from migration wait. Hence to
2565 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2566 		 * infinite loop (one stopping migration because the other is
2567 		 * waiting on pte migration entry). We always return true here.
2568 		 *
2569 		 * FIXME proper solution is to rework migration_entry_wait() so
2570 		 * it does not need to take a reference on page.
2571 		 */
2572 		return is_device_private_page(page);
2573 	}
2574 
2575 	/* For file back page */
2576 	if (page_mapping(page))
2577 		extra += 1 + page_has_private(page);
2578 
2579 	if ((page_count(page) - extra) > page_mapcount(page))
2580 		return false;
2581 
2582 	return true;
2583 }
2584 
2585 /*
2586  * migrate_vma_prepare() - lock pages and isolate them from the lru
2587  * @migrate: migrate struct containing all migration information
2588  *
2589  * This locks pages that have been collected by migrate_vma_collect(). Once each
2590  * page is locked it is isolated from the lru (for non-device pages). Finally,
2591  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2592  * migrated by concurrent kernel threads.
2593  */
2594 static void migrate_vma_prepare(struct migrate_vma *migrate)
2595 {
2596 	const unsigned long npages = migrate->npages;
2597 	const unsigned long start = migrate->start;
2598 	unsigned long addr, i, restore = 0;
2599 	bool allow_drain = true;
2600 
2601 	lru_add_drain();
2602 
2603 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2604 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2605 		bool remap = true;
2606 
2607 		if (!page)
2608 			continue;
2609 
2610 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2611 			/*
2612 			 * Because we are migrating several pages there can be
2613 			 * a deadlock between 2 concurrent migration where each
2614 			 * are waiting on each other page lock.
2615 			 *
2616 			 * Make migrate_vma() a best effort thing and backoff
2617 			 * for any page we can not lock right away.
2618 			 */
2619 			if (!trylock_page(page)) {
2620 				migrate->src[i] = 0;
2621 				migrate->cpages--;
2622 				put_page(page);
2623 				continue;
2624 			}
2625 			remap = false;
2626 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2627 		}
2628 
2629 		/* ZONE_DEVICE pages are not on LRU */
2630 		if (!is_zone_device_page(page)) {
2631 			if (!PageLRU(page) && allow_drain) {
2632 				/* Drain CPU's pagevec */
2633 				lru_add_drain_all();
2634 				allow_drain = false;
2635 			}
2636 
2637 			if (isolate_lru_page(page)) {
2638 				if (remap) {
2639 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2640 					migrate->cpages--;
2641 					restore++;
2642 				} else {
2643 					migrate->src[i] = 0;
2644 					unlock_page(page);
2645 					migrate->cpages--;
2646 					put_page(page);
2647 				}
2648 				continue;
2649 			}
2650 
2651 			/* Drop the reference we took in collect */
2652 			put_page(page);
2653 		}
2654 
2655 		if (!migrate_vma_check_page(page)) {
2656 			if (remap) {
2657 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2658 				migrate->cpages--;
2659 				restore++;
2660 
2661 				if (!is_zone_device_page(page)) {
2662 					get_page(page);
2663 					putback_lru_page(page);
2664 				}
2665 			} else {
2666 				migrate->src[i] = 0;
2667 				unlock_page(page);
2668 				migrate->cpages--;
2669 
2670 				if (!is_zone_device_page(page))
2671 					putback_lru_page(page);
2672 				else
2673 					put_page(page);
2674 			}
2675 		}
2676 	}
2677 
2678 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2679 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2680 
2681 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2682 			continue;
2683 
2684 		remove_migration_pte(page, migrate->vma, addr, page);
2685 
2686 		migrate->src[i] = 0;
2687 		unlock_page(page);
2688 		put_page(page);
2689 		restore--;
2690 	}
2691 }
2692 
2693 /*
2694  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2695  * @migrate: migrate struct containing all migration information
2696  *
2697  * Replace page mapping (CPU page table pte) with a special migration pte entry
2698  * and check again if it has been pinned. Pinned pages are restored because we
2699  * cannot migrate them.
2700  *
2701  * This is the last step before we call the device driver callback to allocate
2702  * destination memory and copy contents of original page over to new page.
2703  */
2704 static void migrate_vma_unmap(struct migrate_vma *migrate)
2705 {
2706 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2707 	const unsigned long npages = migrate->npages;
2708 	const unsigned long start = migrate->start;
2709 	unsigned long addr, i, restore = 0;
2710 
2711 	for (i = 0; i < npages; i++) {
2712 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2713 
2714 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2715 			continue;
2716 
2717 		if (page_mapped(page)) {
2718 			try_to_unmap(page, flags);
2719 			if (page_mapped(page))
2720 				goto restore;
2721 		}
2722 
2723 		if (migrate_vma_check_page(page))
2724 			continue;
2725 
2726 restore:
2727 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2728 		migrate->cpages--;
2729 		restore++;
2730 	}
2731 
2732 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2733 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2734 
2735 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2736 			continue;
2737 
2738 		remove_migration_ptes(page, page, false);
2739 
2740 		migrate->src[i] = 0;
2741 		unlock_page(page);
2742 		restore--;
2743 
2744 		if (is_zone_device_page(page))
2745 			put_page(page);
2746 		else
2747 			putback_lru_page(page);
2748 	}
2749 }
2750 
2751 /**
2752  * migrate_vma_setup() - prepare to migrate a range of memory
2753  * @args: contains the vma, start, and pfns arrays for the migration
2754  *
2755  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2756  * without an error.
2757  *
2758  * Prepare to migrate a range of memory virtual address range by collecting all
2759  * the pages backing each virtual address in the range, saving them inside the
2760  * src array.  Then lock those pages and unmap them. Once the pages are locked
2761  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2762  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2763  * corresponding src array entry.  Then restores any pages that are pinned, by
2764  * remapping and unlocking those pages.
2765  *
2766  * The caller should then allocate destination memory and copy source memory to
2767  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2768  * flag set).  Once these are allocated and copied, the caller must update each
2769  * corresponding entry in the dst array with the pfn value of the destination
2770  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2771  * (destination pages must have their struct pages locked, via lock_page()).
2772  *
2773  * Note that the caller does not have to migrate all the pages that are marked
2774  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2775  * device memory to system memory.  If the caller cannot migrate a device page
2776  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2777  * consequences for the userspace process, so it must be avoided if at all
2778  * possible.
2779  *
2780  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2781  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2782  * allowing the caller to allocate device memory for those unbacked virtual
2783  * addresses.  For this the caller simply has to allocate device memory and
2784  * properly set the destination entry like for regular migration.  Note that
2785  * this can still fail, and thus inside the device driver you must check if the
2786  * migration was successful for those entries after calling migrate_vma_pages(),
2787  * just like for regular migration.
2788  *
2789  * After that, the callers must call migrate_vma_pages() to go over each entry
2790  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2791  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2792  * then migrate_vma_pages() to migrate struct page information from the source
2793  * struct page to the destination struct page.  If it fails to migrate the
2794  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2795  * src array.
2796  *
2797  * At this point all successfully migrated pages have an entry in the src
2798  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2799  * array entry with MIGRATE_PFN_VALID flag set.
2800  *
2801  * Once migrate_vma_pages() returns the caller may inspect which pages were
2802  * successfully migrated, and which were not.  Successfully migrated pages will
2803  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2804  *
2805  * It is safe to update device page table after migrate_vma_pages() because
2806  * both destination and source page are still locked, and the mmap_lock is held
2807  * in read mode (hence no one can unmap the range being migrated).
2808  *
2809  * Once the caller is done cleaning up things and updating its page table (if it
2810  * chose to do so, this is not an obligation) it finally calls
2811  * migrate_vma_finalize() to update the CPU page table to point to new pages
2812  * for successfully migrated pages or otherwise restore the CPU page table to
2813  * point to the original source pages.
2814  */
2815 int migrate_vma_setup(struct migrate_vma *args)
2816 {
2817 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2818 
2819 	args->start &= PAGE_MASK;
2820 	args->end &= PAGE_MASK;
2821 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2822 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2823 		return -EINVAL;
2824 	if (nr_pages <= 0)
2825 		return -EINVAL;
2826 	if (args->start < args->vma->vm_start ||
2827 	    args->start >= args->vma->vm_end)
2828 		return -EINVAL;
2829 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2830 		return -EINVAL;
2831 	if (!args->src || !args->dst)
2832 		return -EINVAL;
2833 
2834 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2835 	args->cpages = 0;
2836 	args->npages = 0;
2837 
2838 	migrate_vma_collect(args);
2839 
2840 	if (args->cpages)
2841 		migrate_vma_prepare(args);
2842 	if (args->cpages)
2843 		migrate_vma_unmap(args);
2844 
2845 	/*
2846 	 * At this point pages are locked and unmapped, and thus they have
2847 	 * stable content and can safely be copied to destination memory that
2848 	 * is allocated by the drivers.
2849 	 */
2850 	return 0;
2851 
2852 }
2853 EXPORT_SYMBOL(migrate_vma_setup);
2854 
2855 /*
2856  * This code closely matches the code in:
2857  *   __handle_mm_fault()
2858  *     handle_pte_fault()
2859  *       do_anonymous_page()
2860  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2861  * private page.
2862  */
2863 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2864 				    unsigned long addr,
2865 				    struct page *page,
2866 				    unsigned long *src)
2867 {
2868 	struct vm_area_struct *vma = migrate->vma;
2869 	struct mm_struct *mm = vma->vm_mm;
2870 	bool flush = false;
2871 	spinlock_t *ptl;
2872 	pte_t entry;
2873 	pgd_t *pgdp;
2874 	p4d_t *p4dp;
2875 	pud_t *pudp;
2876 	pmd_t *pmdp;
2877 	pte_t *ptep;
2878 
2879 	/* Only allow populating anonymous memory */
2880 	if (!vma_is_anonymous(vma))
2881 		goto abort;
2882 
2883 	pgdp = pgd_offset(mm, addr);
2884 	p4dp = p4d_alloc(mm, pgdp, addr);
2885 	if (!p4dp)
2886 		goto abort;
2887 	pudp = pud_alloc(mm, p4dp, addr);
2888 	if (!pudp)
2889 		goto abort;
2890 	pmdp = pmd_alloc(mm, pudp, addr);
2891 	if (!pmdp)
2892 		goto abort;
2893 
2894 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2895 		goto abort;
2896 
2897 	/*
2898 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2899 	 * pte_offset_map() on pmds where a huge pmd might be created
2900 	 * from a different thread.
2901 	 *
2902 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2903 	 * parallel threads are excluded by other means.
2904 	 *
2905 	 * Here we only have mmap_read_lock(mm).
2906 	 */
2907 	if (pte_alloc(mm, pmdp))
2908 		goto abort;
2909 
2910 	/* See the comment in pte_alloc_one_map() */
2911 	if (unlikely(pmd_trans_unstable(pmdp)))
2912 		goto abort;
2913 
2914 	if (unlikely(anon_vma_prepare(vma)))
2915 		goto abort;
2916 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2917 		goto abort;
2918 
2919 	/*
2920 	 * The memory barrier inside __SetPageUptodate makes sure that
2921 	 * preceding stores to the page contents become visible before
2922 	 * the set_pte_at() write.
2923 	 */
2924 	__SetPageUptodate(page);
2925 
2926 	if (is_zone_device_page(page)) {
2927 		if (is_device_private_page(page)) {
2928 			swp_entry_t swp_entry;
2929 
2930 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2931 			entry = swp_entry_to_pte(swp_entry);
2932 		} else {
2933 			/*
2934 			 * For now we only support migrating to un-addressable
2935 			 * device memory.
2936 			 */
2937 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2938 			goto abort;
2939 		}
2940 	} else {
2941 		entry = mk_pte(page, vma->vm_page_prot);
2942 		if (vma->vm_flags & VM_WRITE)
2943 			entry = pte_mkwrite(pte_mkdirty(entry));
2944 	}
2945 
2946 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2947 
2948 	if (check_stable_address_space(mm))
2949 		goto unlock_abort;
2950 
2951 	if (pte_present(*ptep)) {
2952 		unsigned long pfn = pte_pfn(*ptep);
2953 
2954 		if (!is_zero_pfn(pfn))
2955 			goto unlock_abort;
2956 		flush = true;
2957 	} else if (!pte_none(*ptep))
2958 		goto unlock_abort;
2959 
2960 	/*
2961 	 * Check for userfaultfd but do not deliver the fault. Instead,
2962 	 * just back off.
2963 	 */
2964 	if (userfaultfd_missing(vma))
2965 		goto unlock_abort;
2966 
2967 	inc_mm_counter(mm, MM_ANONPAGES);
2968 	page_add_new_anon_rmap(page, vma, addr, false);
2969 	if (!is_zone_device_page(page))
2970 		lru_cache_add_inactive_or_unevictable(page, vma);
2971 	get_page(page);
2972 
2973 	if (flush) {
2974 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2975 		ptep_clear_flush_notify(vma, addr, ptep);
2976 		set_pte_at_notify(mm, addr, ptep, entry);
2977 		update_mmu_cache(vma, addr, ptep);
2978 	} else {
2979 		/* No need to invalidate - it was non-present before */
2980 		set_pte_at(mm, addr, ptep, entry);
2981 		update_mmu_cache(vma, addr, ptep);
2982 	}
2983 
2984 	pte_unmap_unlock(ptep, ptl);
2985 	*src = MIGRATE_PFN_MIGRATE;
2986 	return;
2987 
2988 unlock_abort:
2989 	pte_unmap_unlock(ptep, ptl);
2990 abort:
2991 	*src &= ~MIGRATE_PFN_MIGRATE;
2992 }
2993 
2994 /**
2995  * migrate_vma_pages() - migrate meta-data from src page to dst page
2996  * @migrate: migrate struct containing all migration information
2997  *
2998  * This migrates struct page meta-data from source struct page to destination
2999  * struct page. This effectively finishes the migration from source page to the
3000  * destination page.
3001  */
3002 void migrate_vma_pages(struct migrate_vma *migrate)
3003 {
3004 	const unsigned long npages = migrate->npages;
3005 	const unsigned long start = migrate->start;
3006 	struct mmu_notifier_range range;
3007 	unsigned long addr, i;
3008 	bool notified = false;
3009 
3010 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3011 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3012 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3013 		struct address_space *mapping;
3014 		int r;
3015 
3016 		if (!newpage) {
3017 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3018 			continue;
3019 		}
3020 
3021 		if (!page) {
3022 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3023 				continue;
3024 			if (!notified) {
3025 				notified = true;
3026 
3027 				mmu_notifier_range_init_migrate(&range, 0,
3028 					migrate->vma, migrate->vma->vm_mm,
3029 					addr, migrate->end,
3030 					migrate->pgmap_owner);
3031 				mmu_notifier_invalidate_range_start(&range);
3032 			}
3033 			migrate_vma_insert_page(migrate, addr, newpage,
3034 						&migrate->src[i]);
3035 			continue;
3036 		}
3037 
3038 		mapping = page_mapping(page);
3039 
3040 		if (is_zone_device_page(newpage)) {
3041 			if (is_device_private_page(newpage)) {
3042 				/*
3043 				 * For now only support private anonymous when
3044 				 * migrating to un-addressable device memory.
3045 				 */
3046 				if (mapping) {
3047 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3048 					continue;
3049 				}
3050 			} else {
3051 				/*
3052 				 * Other types of ZONE_DEVICE page are not
3053 				 * supported.
3054 				 */
3055 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3056 				continue;
3057 			}
3058 		}
3059 
3060 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3061 		if (r != MIGRATEPAGE_SUCCESS)
3062 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3063 	}
3064 
3065 	/*
3066 	 * No need to double call mmu_notifier->invalidate_range() callback as
3067 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3068 	 * did already call it.
3069 	 */
3070 	if (notified)
3071 		mmu_notifier_invalidate_range_only_end(&range);
3072 }
3073 EXPORT_SYMBOL(migrate_vma_pages);
3074 
3075 /**
3076  * migrate_vma_finalize() - restore CPU page table entry
3077  * @migrate: migrate struct containing all migration information
3078  *
3079  * This replaces the special migration pte entry with either a mapping to the
3080  * new page if migration was successful for that page, or to the original page
3081  * otherwise.
3082  *
3083  * This also unlocks the pages and puts them back on the lru, or drops the extra
3084  * refcount, for device pages.
3085  */
3086 void migrate_vma_finalize(struct migrate_vma *migrate)
3087 {
3088 	const unsigned long npages = migrate->npages;
3089 	unsigned long i;
3090 
3091 	for (i = 0; i < npages; i++) {
3092 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3093 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3094 
3095 		if (!page) {
3096 			if (newpage) {
3097 				unlock_page(newpage);
3098 				put_page(newpage);
3099 			}
3100 			continue;
3101 		}
3102 
3103 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3104 			if (newpage) {
3105 				unlock_page(newpage);
3106 				put_page(newpage);
3107 			}
3108 			newpage = page;
3109 		}
3110 
3111 		remove_migration_ptes(page, newpage, false);
3112 		unlock_page(page);
3113 
3114 		if (is_zone_device_page(page))
3115 			put_page(page);
3116 		else
3117 			putback_lru_page(page);
3118 
3119 		if (newpage != page) {
3120 			unlock_page(newpage);
3121 			if (is_zone_device_page(newpage))
3122 				put_page(newpage);
3123 			else
3124 				putback_lru_page(newpage);
3125 		}
3126 	}
3127 }
3128 EXPORT_SYMBOL(migrate_vma_finalize);
3129 #endif /* CONFIG_DEVICE_PRIVATE */
3130