1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 if (PageTransHuge(page) && PageMlocked(page)) 279 clear_page_mlock(page); 280 281 /* No need to invalidate - it was non-present before */ 282 update_mmu_cache(vma, pvmw.address, pvmw.pte); 283 } 284 285 return true; 286 } 287 288 /* 289 * Get rid of all migration entries and replace them by 290 * references to the indicated page. 291 */ 292 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 293 { 294 struct rmap_walk_control rwc = { 295 .rmap_one = remove_migration_pte, 296 .arg = old, 297 }; 298 299 if (locked) 300 rmap_walk_locked(new, &rwc); 301 else 302 rmap_walk(new, &rwc); 303 } 304 305 /* 306 * Something used the pte of a page under migration. We need to 307 * get to the page and wait until migration is finished. 308 * When we return from this function the fault will be retried. 309 */ 310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 311 spinlock_t *ptl) 312 { 313 pte_t pte; 314 swp_entry_t entry; 315 struct page *page; 316 317 spin_lock(ptl); 318 pte = *ptep; 319 if (!is_swap_pte(pte)) 320 goto out; 321 322 entry = pte_to_swp_entry(pte); 323 if (!is_migration_entry(entry)) 324 goto out; 325 326 page = migration_entry_to_page(entry); 327 328 /* 329 * Once page cache replacement of page migration started, page_count 330 * *must* be zero. And, we don't want to call wait_on_page_locked() 331 * against a page without get_page(). 332 * So, we use get_page_unless_zero(), here. Even failed, page fault 333 * will occur again. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 wait_on_page_locked(page); 339 put_page(page); 340 return; 341 out: 342 pte_unmap_unlock(ptep, ptl); 343 } 344 345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 346 unsigned long address) 347 { 348 spinlock_t *ptl = pte_lockptr(mm, pmd); 349 pte_t *ptep = pte_offset_map(pmd, address); 350 __migration_entry_wait(mm, ptep, ptl); 351 } 352 353 void migration_entry_wait_huge(struct vm_area_struct *vma, 354 struct mm_struct *mm, pte_t *pte) 355 { 356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 357 __migration_entry_wait(mm, pte, ptl); 358 } 359 360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 362 { 363 spinlock_t *ptl; 364 struct page *page; 365 366 ptl = pmd_lock(mm, pmd); 367 if (!is_pmd_migration_entry(*pmd)) 368 goto unlock; 369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 370 if (!get_page_unless_zero(page)) 371 goto unlock; 372 spin_unlock(ptl); 373 wait_on_page_locked(page); 374 put_page(page); 375 return; 376 unlock: 377 spin_unlock(ptl); 378 } 379 #endif 380 381 #ifdef CONFIG_BLOCK 382 /* Returns true if all buffers are successfully locked */ 383 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 384 enum migrate_mode mode) 385 { 386 struct buffer_head *bh = head; 387 388 /* Simple case, sync compaction */ 389 if (mode != MIGRATE_ASYNC) { 390 do { 391 get_bh(bh); 392 lock_buffer(bh); 393 bh = bh->b_this_page; 394 395 } while (bh != head); 396 397 return true; 398 } 399 400 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 401 do { 402 get_bh(bh); 403 if (!trylock_buffer(bh)) { 404 /* 405 * We failed to lock the buffer and cannot stall in 406 * async migration. Release the taken locks 407 */ 408 struct buffer_head *failed_bh = bh; 409 put_bh(failed_bh); 410 bh = head; 411 while (bh != failed_bh) { 412 unlock_buffer(bh); 413 put_bh(bh); 414 bh = bh->b_this_page; 415 } 416 return false; 417 } 418 419 bh = bh->b_this_page; 420 } while (bh != head); 421 return true; 422 } 423 #else 424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 425 enum migrate_mode mode) 426 { 427 return true; 428 } 429 #endif /* CONFIG_BLOCK */ 430 431 /* 432 * Replace the page in the mapping. 433 * 434 * The number of remaining references must be: 435 * 1 for anonymous pages without a mapping 436 * 2 for pages with a mapping 437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 438 */ 439 int migrate_page_move_mapping(struct address_space *mapping, 440 struct page *newpage, struct page *page, 441 struct buffer_head *head, enum migrate_mode mode, 442 int extra_count) 443 { 444 XA_STATE(xas, &mapping->i_pages, page_index(page)); 445 struct zone *oldzone, *newzone; 446 int dirty; 447 int expected_count = 1 + extra_count; 448 449 /* 450 * Device public or private pages have an extra refcount as they are 451 * ZONE_DEVICE pages. 452 */ 453 expected_count += is_device_private_page(page); 454 expected_count += is_device_public_page(page); 455 456 if (!mapping) { 457 /* Anonymous page without mapping */ 458 if (page_count(page) != expected_count) 459 return -EAGAIN; 460 461 /* No turning back from here */ 462 newpage->index = page->index; 463 newpage->mapping = page->mapping; 464 if (PageSwapBacked(page)) 465 __SetPageSwapBacked(newpage); 466 467 return MIGRATEPAGE_SUCCESS; 468 } 469 470 oldzone = page_zone(page); 471 newzone = page_zone(newpage); 472 473 xas_lock_irq(&xas); 474 475 expected_count += hpage_nr_pages(page) + page_has_private(page); 476 if (page_count(page) != expected_count || xas_load(&xas) != page) { 477 xas_unlock_irq(&xas); 478 return -EAGAIN; 479 } 480 481 if (!page_ref_freeze(page, expected_count)) { 482 xas_unlock_irq(&xas); 483 return -EAGAIN; 484 } 485 486 /* 487 * In the async migration case of moving a page with buffers, lock the 488 * buffers using trylock before the mapping is moved. If the mapping 489 * was moved, we later failed to lock the buffers and could not move 490 * the mapping back due to an elevated page count, we would have to 491 * block waiting on other references to be dropped. 492 */ 493 if (mode == MIGRATE_ASYNC && head && 494 !buffer_migrate_lock_buffers(head, mode)) { 495 page_ref_unfreeze(page, expected_count); 496 xas_unlock_irq(&xas); 497 return -EAGAIN; 498 } 499 500 /* 501 * Now we know that no one else is looking at the page: 502 * no turning back from here. 503 */ 504 newpage->index = page->index; 505 newpage->mapping = page->mapping; 506 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 507 if (PageSwapBacked(page)) { 508 __SetPageSwapBacked(newpage); 509 if (PageSwapCache(page)) { 510 SetPageSwapCache(newpage); 511 set_page_private(newpage, page_private(page)); 512 } 513 } else { 514 VM_BUG_ON_PAGE(PageSwapCache(page), page); 515 } 516 517 /* Move dirty while page refs frozen and newpage not yet exposed */ 518 dirty = PageDirty(page); 519 if (dirty) { 520 ClearPageDirty(page); 521 SetPageDirty(newpage); 522 } 523 524 xas_store(&xas, newpage); 525 if (PageTransHuge(page)) { 526 int i; 527 528 for (i = 1; i < HPAGE_PMD_NR; i++) { 529 xas_next(&xas); 530 xas_store(&xas, newpage + i); 531 } 532 } 533 534 /* 535 * Drop cache reference from old page by unfreezing 536 * to one less reference. 537 * We know this isn't the last reference. 538 */ 539 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 540 541 xas_unlock(&xas); 542 /* Leave irq disabled to prevent preemption while updating stats */ 543 544 /* 545 * If moved to a different zone then also account 546 * the page for that zone. Other VM counters will be 547 * taken care of when we establish references to the 548 * new page and drop references to the old page. 549 * 550 * Note that anonymous pages are accounted for 551 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 552 * are mapped to swap space. 553 */ 554 if (newzone != oldzone) { 555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 556 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 557 if (PageSwapBacked(page) && !PageSwapCache(page)) { 558 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 559 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 560 } 561 if (dirty && mapping_cap_account_dirty(mapping)) { 562 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 563 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 564 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 565 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 566 } 567 } 568 local_irq_enable(); 569 570 return MIGRATEPAGE_SUCCESS; 571 } 572 EXPORT_SYMBOL(migrate_page_move_mapping); 573 574 /* 575 * The expected number of remaining references is the same as that 576 * of migrate_page_move_mapping(). 577 */ 578 int migrate_huge_page_move_mapping(struct address_space *mapping, 579 struct page *newpage, struct page *page) 580 { 581 XA_STATE(xas, &mapping->i_pages, page_index(page)); 582 int expected_count; 583 584 xas_lock_irq(&xas); 585 expected_count = 2 + page_has_private(page); 586 if (page_count(page) != expected_count || xas_load(&xas) != page) { 587 xas_unlock_irq(&xas); 588 return -EAGAIN; 589 } 590 591 if (!page_ref_freeze(page, expected_count)) { 592 xas_unlock_irq(&xas); 593 return -EAGAIN; 594 } 595 596 newpage->index = page->index; 597 newpage->mapping = page->mapping; 598 599 get_page(newpage); 600 601 xas_store(&xas, newpage); 602 603 page_ref_unfreeze(page, expected_count - 1); 604 605 xas_unlock_irq(&xas); 606 607 return MIGRATEPAGE_SUCCESS; 608 } 609 610 /* 611 * Gigantic pages are so large that we do not guarantee that page++ pointer 612 * arithmetic will work across the entire page. We need something more 613 * specialized. 614 */ 615 static void __copy_gigantic_page(struct page *dst, struct page *src, 616 int nr_pages) 617 { 618 int i; 619 struct page *dst_base = dst; 620 struct page *src_base = src; 621 622 for (i = 0; i < nr_pages; ) { 623 cond_resched(); 624 copy_highpage(dst, src); 625 626 i++; 627 dst = mem_map_next(dst, dst_base, i); 628 src = mem_map_next(src, src_base, i); 629 } 630 } 631 632 static void copy_huge_page(struct page *dst, struct page *src) 633 { 634 int i; 635 int nr_pages; 636 637 if (PageHuge(src)) { 638 /* hugetlbfs page */ 639 struct hstate *h = page_hstate(src); 640 nr_pages = pages_per_huge_page(h); 641 642 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 643 __copy_gigantic_page(dst, src, nr_pages); 644 return; 645 } 646 } else { 647 /* thp page */ 648 BUG_ON(!PageTransHuge(src)); 649 nr_pages = hpage_nr_pages(src); 650 } 651 652 for (i = 0; i < nr_pages; i++) { 653 cond_resched(); 654 copy_highpage(dst + i, src + i); 655 } 656 } 657 658 /* 659 * Copy the page to its new location 660 */ 661 void migrate_page_states(struct page *newpage, struct page *page) 662 { 663 int cpupid; 664 665 if (PageError(page)) 666 SetPageError(newpage); 667 if (PageReferenced(page)) 668 SetPageReferenced(newpage); 669 if (PageUptodate(page)) 670 SetPageUptodate(newpage); 671 if (TestClearPageActive(page)) { 672 VM_BUG_ON_PAGE(PageUnevictable(page), page); 673 SetPageActive(newpage); 674 } else if (TestClearPageUnevictable(page)) 675 SetPageUnevictable(newpage); 676 if (PageWorkingset(page)) 677 SetPageWorkingset(newpage); 678 if (PageChecked(page)) 679 SetPageChecked(newpage); 680 if (PageMappedToDisk(page)) 681 SetPageMappedToDisk(newpage); 682 683 /* Move dirty on pages not done by migrate_page_move_mapping() */ 684 if (PageDirty(page)) 685 SetPageDirty(newpage); 686 687 if (page_is_young(page)) 688 set_page_young(newpage); 689 if (page_is_idle(page)) 690 set_page_idle(newpage); 691 692 /* 693 * Copy NUMA information to the new page, to prevent over-eager 694 * future migrations of this same page. 695 */ 696 cpupid = page_cpupid_xchg_last(page, -1); 697 page_cpupid_xchg_last(newpage, cpupid); 698 699 ksm_migrate_page(newpage, page); 700 /* 701 * Please do not reorder this without considering how mm/ksm.c's 702 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 703 */ 704 if (PageSwapCache(page)) 705 ClearPageSwapCache(page); 706 ClearPagePrivate(page); 707 set_page_private(page, 0); 708 709 /* 710 * If any waiters have accumulated on the new page then 711 * wake them up. 712 */ 713 if (PageWriteback(newpage)) 714 end_page_writeback(newpage); 715 716 copy_page_owner(page, newpage); 717 718 mem_cgroup_migrate(page, newpage); 719 } 720 EXPORT_SYMBOL(migrate_page_states); 721 722 void migrate_page_copy(struct page *newpage, struct page *page) 723 { 724 if (PageHuge(page) || PageTransHuge(page)) 725 copy_huge_page(newpage, page); 726 else 727 copy_highpage(newpage, page); 728 729 migrate_page_states(newpage, page); 730 } 731 EXPORT_SYMBOL(migrate_page_copy); 732 733 /************************************************************ 734 * Migration functions 735 ***********************************************************/ 736 737 /* 738 * Common logic to directly migrate a single LRU page suitable for 739 * pages that do not use PagePrivate/PagePrivate2. 740 * 741 * Pages are locked upon entry and exit. 742 */ 743 int migrate_page(struct address_space *mapping, 744 struct page *newpage, struct page *page, 745 enum migrate_mode mode) 746 { 747 int rc; 748 749 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 750 751 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 752 753 if (rc != MIGRATEPAGE_SUCCESS) 754 return rc; 755 756 if (mode != MIGRATE_SYNC_NO_COPY) 757 migrate_page_copy(newpage, page); 758 else 759 migrate_page_states(newpage, page); 760 return MIGRATEPAGE_SUCCESS; 761 } 762 EXPORT_SYMBOL(migrate_page); 763 764 #ifdef CONFIG_BLOCK 765 /* 766 * Migration function for pages with buffers. This function can only be used 767 * if the underlying filesystem guarantees that no other references to "page" 768 * exist. 769 */ 770 int buffer_migrate_page(struct address_space *mapping, 771 struct page *newpage, struct page *page, enum migrate_mode mode) 772 { 773 struct buffer_head *bh, *head; 774 int rc; 775 776 if (!page_has_buffers(page)) 777 return migrate_page(mapping, newpage, page, mode); 778 779 head = page_buffers(page); 780 781 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 782 783 if (rc != MIGRATEPAGE_SUCCESS) 784 return rc; 785 786 /* 787 * In the async case, migrate_page_move_mapping locked the buffers 788 * with an IRQ-safe spinlock held. In the sync case, the buffers 789 * need to be locked now 790 */ 791 if (mode != MIGRATE_ASYNC) 792 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 793 794 ClearPagePrivate(page); 795 set_page_private(newpage, page_private(page)); 796 set_page_private(page, 0); 797 put_page(page); 798 get_page(newpage); 799 800 bh = head; 801 do { 802 set_bh_page(bh, newpage, bh_offset(bh)); 803 bh = bh->b_this_page; 804 805 } while (bh != head); 806 807 SetPagePrivate(newpage); 808 809 if (mode != MIGRATE_SYNC_NO_COPY) 810 migrate_page_copy(newpage, page); 811 else 812 migrate_page_states(newpage, page); 813 814 bh = head; 815 do { 816 unlock_buffer(bh); 817 put_bh(bh); 818 bh = bh->b_this_page; 819 820 } while (bh != head); 821 822 return MIGRATEPAGE_SUCCESS; 823 } 824 EXPORT_SYMBOL(buffer_migrate_page); 825 #endif 826 827 /* 828 * Writeback a page to clean the dirty state 829 */ 830 static int writeout(struct address_space *mapping, struct page *page) 831 { 832 struct writeback_control wbc = { 833 .sync_mode = WB_SYNC_NONE, 834 .nr_to_write = 1, 835 .range_start = 0, 836 .range_end = LLONG_MAX, 837 .for_reclaim = 1 838 }; 839 int rc; 840 841 if (!mapping->a_ops->writepage) 842 /* No write method for the address space */ 843 return -EINVAL; 844 845 if (!clear_page_dirty_for_io(page)) 846 /* Someone else already triggered a write */ 847 return -EAGAIN; 848 849 /* 850 * A dirty page may imply that the underlying filesystem has 851 * the page on some queue. So the page must be clean for 852 * migration. Writeout may mean we loose the lock and the 853 * page state is no longer what we checked for earlier. 854 * At this point we know that the migration attempt cannot 855 * be successful. 856 */ 857 remove_migration_ptes(page, page, false); 858 859 rc = mapping->a_ops->writepage(page, &wbc); 860 861 if (rc != AOP_WRITEPAGE_ACTIVATE) 862 /* unlocked. Relock */ 863 lock_page(page); 864 865 return (rc < 0) ? -EIO : -EAGAIN; 866 } 867 868 /* 869 * Default handling if a filesystem does not provide a migration function. 870 */ 871 static int fallback_migrate_page(struct address_space *mapping, 872 struct page *newpage, struct page *page, enum migrate_mode mode) 873 { 874 if (PageDirty(page)) { 875 /* Only writeback pages in full synchronous migration */ 876 switch (mode) { 877 case MIGRATE_SYNC: 878 case MIGRATE_SYNC_NO_COPY: 879 break; 880 default: 881 return -EBUSY; 882 } 883 return writeout(mapping, page); 884 } 885 886 /* 887 * Buffers may be managed in a filesystem specific way. 888 * We must have no buffers or drop them. 889 */ 890 if (page_has_private(page) && 891 !try_to_release_page(page, GFP_KERNEL)) 892 return -EAGAIN; 893 894 return migrate_page(mapping, newpage, page, mode); 895 } 896 897 /* 898 * Move a page to a newly allocated page 899 * The page is locked and all ptes have been successfully removed. 900 * 901 * The new page will have replaced the old page if this function 902 * is successful. 903 * 904 * Return value: 905 * < 0 - error code 906 * MIGRATEPAGE_SUCCESS - success 907 */ 908 static int move_to_new_page(struct page *newpage, struct page *page, 909 enum migrate_mode mode) 910 { 911 struct address_space *mapping; 912 int rc = -EAGAIN; 913 bool is_lru = !__PageMovable(page); 914 915 VM_BUG_ON_PAGE(!PageLocked(page), page); 916 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 917 918 mapping = page_mapping(page); 919 920 if (likely(is_lru)) { 921 if (!mapping) 922 rc = migrate_page(mapping, newpage, page, mode); 923 else if (mapping->a_ops->migratepage) 924 /* 925 * Most pages have a mapping and most filesystems 926 * provide a migratepage callback. Anonymous pages 927 * are part of swap space which also has its own 928 * migratepage callback. This is the most common path 929 * for page migration. 930 */ 931 rc = mapping->a_ops->migratepage(mapping, newpage, 932 page, mode); 933 else 934 rc = fallback_migrate_page(mapping, newpage, 935 page, mode); 936 } else { 937 /* 938 * In case of non-lru page, it could be released after 939 * isolation step. In that case, we shouldn't try migration. 940 */ 941 VM_BUG_ON_PAGE(!PageIsolated(page), page); 942 if (!PageMovable(page)) { 943 rc = MIGRATEPAGE_SUCCESS; 944 __ClearPageIsolated(page); 945 goto out; 946 } 947 948 rc = mapping->a_ops->migratepage(mapping, newpage, 949 page, mode); 950 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 951 !PageIsolated(page)); 952 } 953 954 /* 955 * When successful, old pagecache page->mapping must be cleared before 956 * page is freed; but stats require that PageAnon be left as PageAnon. 957 */ 958 if (rc == MIGRATEPAGE_SUCCESS) { 959 if (__PageMovable(page)) { 960 VM_BUG_ON_PAGE(!PageIsolated(page), page); 961 962 /* 963 * We clear PG_movable under page_lock so any compactor 964 * cannot try to migrate this page. 965 */ 966 __ClearPageIsolated(page); 967 } 968 969 /* 970 * Anonymous and movable page->mapping will be cleard by 971 * free_pages_prepare so don't reset it here for keeping 972 * the type to work PageAnon, for example. 973 */ 974 if (!PageMappingFlags(page)) 975 page->mapping = NULL; 976 } 977 out: 978 return rc; 979 } 980 981 static int __unmap_and_move(struct page *page, struct page *newpage, 982 int force, enum migrate_mode mode) 983 { 984 int rc = -EAGAIN; 985 int page_was_mapped = 0; 986 struct anon_vma *anon_vma = NULL; 987 bool is_lru = !__PageMovable(page); 988 989 if (!trylock_page(page)) { 990 if (!force || mode == MIGRATE_ASYNC) 991 goto out; 992 993 /* 994 * It's not safe for direct compaction to call lock_page. 995 * For example, during page readahead pages are added locked 996 * to the LRU. Later, when the IO completes the pages are 997 * marked uptodate and unlocked. However, the queueing 998 * could be merging multiple pages for one bio (e.g. 999 * mpage_readpages). If an allocation happens for the 1000 * second or third page, the process can end up locking 1001 * the same page twice and deadlocking. Rather than 1002 * trying to be clever about what pages can be locked, 1003 * avoid the use of lock_page for direct compaction 1004 * altogether. 1005 */ 1006 if (current->flags & PF_MEMALLOC) 1007 goto out; 1008 1009 lock_page(page); 1010 } 1011 1012 if (PageWriteback(page)) { 1013 /* 1014 * Only in the case of a full synchronous migration is it 1015 * necessary to wait for PageWriteback. In the async case, 1016 * the retry loop is too short and in the sync-light case, 1017 * the overhead of stalling is too much 1018 */ 1019 switch (mode) { 1020 case MIGRATE_SYNC: 1021 case MIGRATE_SYNC_NO_COPY: 1022 break; 1023 default: 1024 rc = -EBUSY; 1025 goto out_unlock; 1026 } 1027 if (!force) 1028 goto out_unlock; 1029 wait_on_page_writeback(page); 1030 } 1031 1032 /* 1033 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1034 * we cannot notice that anon_vma is freed while we migrates a page. 1035 * This get_anon_vma() delays freeing anon_vma pointer until the end 1036 * of migration. File cache pages are no problem because of page_lock() 1037 * File Caches may use write_page() or lock_page() in migration, then, 1038 * just care Anon page here. 1039 * 1040 * Only page_get_anon_vma() understands the subtleties of 1041 * getting a hold on an anon_vma from outside one of its mms. 1042 * But if we cannot get anon_vma, then we won't need it anyway, 1043 * because that implies that the anon page is no longer mapped 1044 * (and cannot be remapped so long as we hold the page lock). 1045 */ 1046 if (PageAnon(page) && !PageKsm(page)) 1047 anon_vma = page_get_anon_vma(page); 1048 1049 /* 1050 * Block others from accessing the new page when we get around to 1051 * establishing additional references. We are usually the only one 1052 * holding a reference to newpage at this point. We used to have a BUG 1053 * here if trylock_page(newpage) fails, but would like to allow for 1054 * cases where there might be a race with the previous use of newpage. 1055 * This is much like races on refcount of oldpage: just don't BUG(). 1056 */ 1057 if (unlikely(!trylock_page(newpage))) 1058 goto out_unlock; 1059 1060 if (unlikely(!is_lru)) { 1061 rc = move_to_new_page(newpage, page, mode); 1062 goto out_unlock_both; 1063 } 1064 1065 /* 1066 * Corner case handling: 1067 * 1. When a new swap-cache page is read into, it is added to the LRU 1068 * and treated as swapcache but it has no rmap yet. 1069 * Calling try_to_unmap() against a page->mapping==NULL page will 1070 * trigger a BUG. So handle it here. 1071 * 2. An orphaned page (see truncate_complete_page) might have 1072 * fs-private metadata. The page can be picked up due to memory 1073 * offlining. Everywhere else except page reclaim, the page is 1074 * invisible to the vm, so the page can not be migrated. So try to 1075 * free the metadata, so the page can be freed. 1076 */ 1077 if (!page->mapping) { 1078 VM_BUG_ON_PAGE(PageAnon(page), page); 1079 if (page_has_private(page)) { 1080 try_to_free_buffers(page); 1081 goto out_unlock_both; 1082 } 1083 } else if (page_mapped(page)) { 1084 /* Establish migration ptes */ 1085 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1086 page); 1087 try_to_unmap(page, 1088 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1089 page_was_mapped = 1; 1090 } 1091 1092 if (!page_mapped(page)) 1093 rc = move_to_new_page(newpage, page, mode); 1094 1095 if (page_was_mapped) 1096 remove_migration_ptes(page, 1097 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1098 1099 out_unlock_both: 1100 unlock_page(newpage); 1101 out_unlock: 1102 /* Drop an anon_vma reference if we took one */ 1103 if (anon_vma) 1104 put_anon_vma(anon_vma); 1105 unlock_page(page); 1106 out: 1107 /* 1108 * If migration is successful, decrease refcount of the newpage 1109 * which will not free the page because new page owner increased 1110 * refcounter. As well, if it is LRU page, add the page to LRU 1111 * list in here. 1112 */ 1113 if (rc == MIGRATEPAGE_SUCCESS) { 1114 if (unlikely(__PageMovable(newpage))) 1115 put_page(newpage); 1116 else 1117 putback_lru_page(newpage); 1118 } 1119 1120 return rc; 1121 } 1122 1123 /* 1124 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1125 * around it. 1126 */ 1127 #if defined(CONFIG_ARM) && \ 1128 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1129 #define ICE_noinline noinline 1130 #else 1131 #define ICE_noinline 1132 #endif 1133 1134 /* 1135 * Obtain the lock on page, remove all ptes and migrate the page 1136 * to the newly allocated page in newpage. 1137 */ 1138 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1139 free_page_t put_new_page, 1140 unsigned long private, struct page *page, 1141 int force, enum migrate_mode mode, 1142 enum migrate_reason reason) 1143 { 1144 int rc = MIGRATEPAGE_SUCCESS; 1145 struct page *newpage; 1146 1147 if (!thp_migration_supported() && PageTransHuge(page)) 1148 return -ENOMEM; 1149 1150 newpage = get_new_page(page, private); 1151 if (!newpage) 1152 return -ENOMEM; 1153 1154 if (page_count(page) == 1) { 1155 /* page was freed from under us. So we are done. */ 1156 ClearPageActive(page); 1157 ClearPageUnevictable(page); 1158 if (unlikely(__PageMovable(page))) { 1159 lock_page(page); 1160 if (!PageMovable(page)) 1161 __ClearPageIsolated(page); 1162 unlock_page(page); 1163 } 1164 if (put_new_page) 1165 put_new_page(newpage, private); 1166 else 1167 put_page(newpage); 1168 goto out; 1169 } 1170 1171 rc = __unmap_and_move(page, newpage, force, mode); 1172 if (rc == MIGRATEPAGE_SUCCESS) 1173 set_page_owner_migrate_reason(newpage, reason); 1174 1175 out: 1176 if (rc != -EAGAIN) { 1177 /* 1178 * A page that has been migrated has all references 1179 * removed and will be freed. A page that has not been 1180 * migrated will have kepts its references and be 1181 * restored. 1182 */ 1183 list_del(&page->lru); 1184 1185 /* 1186 * Compaction can migrate also non-LRU pages which are 1187 * not accounted to NR_ISOLATED_*. They can be recognized 1188 * as __PageMovable 1189 */ 1190 if (likely(!__PageMovable(page))) 1191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1192 page_is_file_cache(page), -hpage_nr_pages(page)); 1193 } 1194 1195 /* 1196 * If migration is successful, releases reference grabbed during 1197 * isolation. Otherwise, restore the page to right list unless 1198 * we want to retry. 1199 */ 1200 if (rc == MIGRATEPAGE_SUCCESS) { 1201 put_page(page); 1202 if (reason == MR_MEMORY_FAILURE) { 1203 /* 1204 * Set PG_HWPoison on just freed page 1205 * intentionally. Although it's rather weird, 1206 * it's how HWPoison flag works at the moment. 1207 */ 1208 if (set_hwpoison_free_buddy_page(page)) 1209 num_poisoned_pages_inc(); 1210 } 1211 } else { 1212 if (rc != -EAGAIN) { 1213 if (likely(!__PageMovable(page))) { 1214 putback_lru_page(page); 1215 goto put_new; 1216 } 1217 1218 lock_page(page); 1219 if (PageMovable(page)) 1220 putback_movable_page(page); 1221 else 1222 __ClearPageIsolated(page); 1223 unlock_page(page); 1224 put_page(page); 1225 } 1226 put_new: 1227 if (put_new_page) 1228 put_new_page(newpage, private); 1229 else 1230 put_page(newpage); 1231 } 1232 1233 return rc; 1234 } 1235 1236 /* 1237 * Counterpart of unmap_and_move_page() for hugepage migration. 1238 * 1239 * This function doesn't wait the completion of hugepage I/O 1240 * because there is no race between I/O and migration for hugepage. 1241 * Note that currently hugepage I/O occurs only in direct I/O 1242 * where no lock is held and PG_writeback is irrelevant, 1243 * and writeback status of all subpages are counted in the reference 1244 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1245 * under direct I/O, the reference of the head page is 512 and a bit more.) 1246 * This means that when we try to migrate hugepage whose subpages are 1247 * doing direct I/O, some references remain after try_to_unmap() and 1248 * hugepage migration fails without data corruption. 1249 * 1250 * There is also no race when direct I/O is issued on the page under migration, 1251 * because then pte is replaced with migration swap entry and direct I/O code 1252 * will wait in the page fault for migration to complete. 1253 */ 1254 static int unmap_and_move_huge_page(new_page_t get_new_page, 1255 free_page_t put_new_page, unsigned long private, 1256 struct page *hpage, int force, 1257 enum migrate_mode mode, int reason) 1258 { 1259 int rc = -EAGAIN; 1260 int page_was_mapped = 0; 1261 struct page *new_hpage; 1262 struct anon_vma *anon_vma = NULL; 1263 1264 /* 1265 * Movability of hugepages depends on architectures and hugepage size. 1266 * This check is necessary because some callers of hugepage migration 1267 * like soft offline and memory hotremove don't walk through page 1268 * tables or check whether the hugepage is pmd-based or not before 1269 * kicking migration. 1270 */ 1271 if (!hugepage_migration_supported(page_hstate(hpage))) { 1272 putback_active_hugepage(hpage); 1273 return -ENOSYS; 1274 } 1275 1276 new_hpage = get_new_page(hpage, private); 1277 if (!new_hpage) 1278 return -ENOMEM; 1279 1280 if (!trylock_page(hpage)) { 1281 if (!force) 1282 goto out; 1283 switch (mode) { 1284 case MIGRATE_SYNC: 1285 case MIGRATE_SYNC_NO_COPY: 1286 break; 1287 default: 1288 goto out; 1289 } 1290 lock_page(hpage); 1291 } 1292 1293 if (PageAnon(hpage)) 1294 anon_vma = page_get_anon_vma(hpage); 1295 1296 if (unlikely(!trylock_page(new_hpage))) 1297 goto put_anon; 1298 1299 if (page_mapped(hpage)) { 1300 try_to_unmap(hpage, 1301 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1302 page_was_mapped = 1; 1303 } 1304 1305 if (!page_mapped(hpage)) 1306 rc = move_to_new_page(new_hpage, hpage, mode); 1307 1308 if (page_was_mapped) 1309 remove_migration_ptes(hpage, 1310 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1311 1312 unlock_page(new_hpage); 1313 1314 put_anon: 1315 if (anon_vma) 1316 put_anon_vma(anon_vma); 1317 1318 if (rc == MIGRATEPAGE_SUCCESS) { 1319 move_hugetlb_state(hpage, new_hpage, reason); 1320 put_new_page = NULL; 1321 } 1322 1323 unlock_page(hpage); 1324 out: 1325 if (rc != -EAGAIN) 1326 putback_active_hugepage(hpage); 1327 1328 /* 1329 * If migration was not successful and there's a freeing callback, use 1330 * it. Otherwise, put_page() will drop the reference grabbed during 1331 * isolation. 1332 */ 1333 if (put_new_page) 1334 put_new_page(new_hpage, private); 1335 else 1336 putback_active_hugepage(new_hpage); 1337 1338 return rc; 1339 } 1340 1341 /* 1342 * migrate_pages - migrate the pages specified in a list, to the free pages 1343 * supplied as the target for the page migration 1344 * 1345 * @from: The list of pages to be migrated. 1346 * @get_new_page: The function used to allocate free pages to be used 1347 * as the target of the page migration. 1348 * @put_new_page: The function used to free target pages if migration 1349 * fails, or NULL if no special handling is necessary. 1350 * @private: Private data to be passed on to get_new_page() 1351 * @mode: The migration mode that specifies the constraints for 1352 * page migration, if any. 1353 * @reason: The reason for page migration. 1354 * 1355 * The function returns after 10 attempts or if no pages are movable any more 1356 * because the list has become empty or no retryable pages exist any more. 1357 * The caller should call putback_movable_pages() to return pages to the LRU 1358 * or free list only if ret != 0. 1359 * 1360 * Returns the number of pages that were not migrated, or an error code. 1361 */ 1362 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1363 free_page_t put_new_page, unsigned long private, 1364 enum migrate_mode mode, int reason) 1365 { 1366 int retry = 1; 1367 int nr_failed = 0; 1368 int nr_succeeded = 0; 1369 int pass = 0; 1370 struct page *page; 1371 struct page *page2; 1372 int swapwrite = current->flags & PF_SWAPWRITE; 1373 int rc; 1374 1375 if (!swapwrite) 1376 current->flags |= PF_SWAPWRITE; 1377 1378 for(pass = 0; pass < 10 && retry; pass++) { 1379 retry = 0; 1380 1381 list_for_each_entry_safe(page, page2, from, lru) { 1382 retry: 1383 cond_resched(); 1384 1385 if (PageHuge(page)) 1386 rc = unmap_and_move_huge_page(get_new_page, 1387 put_new_page, private, page, 1388 pass > 2, mode, reason); 1389 else 1390 rc = unmap_and_move(get_new_page, put_new_page, 1391 private, page, pass > 2, mode, 1392 reason); 1393 1394 switch(rc) { 1395 case -ENOMEM: 1396 /* 1397 * THP migration might be unsupported or the 1398 * allocation could've failed so we should 1399 * retry on the same page with the THP split 1400 * to base pages. 1401 * 1402 * Head page is retried immediately and tail 1403 * pages are added to the tail of the list so 1404 * we encounter them after the rest of the list 1405 * is processed. 1406 */ 1407 if (PageTransHuge(page) && !PageHuge(page)) { 1408 lock_page(page); 1409 rc = split_huge_page_to_list(page, from); 1410 unlock_page(page); 1411 if (!rc) { 1412 list_safe_reset_next(page, page2, lru); 1413 goto retry; 1414 } 1415 } 1416 nr_failed++; 1417 goto out; 1418 case -EAGAIN: 1419 retry++; 1420 break; 1421 case MIGRATEPAGE_SUCCESS: 1422 nr_succeeded++; 1423 break; 1424 default: 1425 /* 1426 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1427 * unlike -EAGAIN case, the failed page is 1428 * removed from migration page list and not 1429 * retried in the next outer loop. 1430 */ 1431 nr_failed++; 1432 break; 1433 } 1434 } 1435 } 1436 nr_failed += retry; 1437 rc = nr_failed; 1438 out: 1439 if (nr_succeeded) 1440 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1441 if (nr_failed) 1442 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1443 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1444 1445 if (!swapwrite) 1446 current->flags &= ~PF_SWAPWRITE; 1447 1448 return rc; 1449 } 1450 1451 #ifdef CONFIG_NUMA 1452 1453 static int store_status(int __user *status, int start, int value, int nr) 1454 { 1455 while (nr-- > 0) { 1456 if (put_user(value, status + start)) 1457 return -EFAULT; 1458 start++; 1459 } 1460 1461 return 0; 1462 } 1463 1464 static int do_move_pages_to_node(struct mm_struct *mm, 1465 struct list_head *pagelist, int node) 1466 { 1467 int err; 1468 1469 if (list_empty(pagelist)) 1470 return 0; 1471 1472 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1473 MIGRATE_SYNC, MR_SYSCALL); 1474 if (err) 1475 putback_movable_pages(pagelist); 1476 return err; 1477 } 1478 1479 /* 1480 * Resolves the given address to a struct page, isolates it from the LRU and 1481 * puts it to the given pagelist. 1482 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1483 * queued or the page doesn't need to be migrated because it is already on 1484 * the target node 1485 */ 1486 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1487 int node, struct list_head *pagelist, bool migrate_all) 1488 { 1489 struct vm_area_struct *vma; 1490 struct page *page; 1491 unsigned int follflags; 1492 int err; 1493 1494 down_read(&mm->mmap_sem); 1495 err = -EFAULT; 1496 vma = find_vma(mm, addr); 1497 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1498 goto out; 1499 1500 /* FOLL_DUMP to ignore special (like zero) pages */ 1501 follflags = FOLL_GET | FOLL_DUMP; 1502 page = follow_page(vma, addr, follflags); 1503 1504 err = PTR_ERR(page); 1505 if (IS_ERR(page)) 1506 goto out; 1507 1508 err = -ENOENT; 1509 if (!page) 1510 goto out; 1511 1512 err = 0; 1513 if (page_to_nid(page) == node) 1514 goto out_putpage; 1515 1516 err = -EACCES; 1517 if (page_mapcount(page) > 1 && !migrate_all) 1518 goto out_putpage; 1519 1520 if (PageHuge(page)) { 1521 if (PageHead(page)) { 1522 isolate_huge_page(page, pagelist); 1523 err = 0; 1524 } 1525 } else { 1526 struct page *head; 1527 1528 head = compound_head(page); 1529 err = isolate_lru_page(head); 1530 if (err) 1531 goto out_putpage; 1532 1533 err = 0; 1534 list_add_tail(&head->lru, pagelist); 1535 mod_node_page_state(page_pgdat(head), 1536 NR_ISOLATED_ANON + page_is_file_cache(head), 1537 hpage_nr_pages(head)); 1538 } 1539 out_putpage: 1540 /* 1541 * Either remove the duplicate refcount from 1542 * isolate_lru_page() or drop the page ref if it was 1543 * not isolated. 1544 */ 1545 put_page(page); 1546 out: 1547 up_read(&mm->mmap_sem); 1548 return err; 1549 } 1550 1551 /* 1552 * Migrate an array of page address onto an array of nodes and fill 1553 * the corresponding array of status. 1554 */ 1555 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1556 unsigned long nr_pages, 1557 const void __user * __user *pages, 1558 const int __user *nodes, 1559 int __user *status, int flags) 1560 { 1561 int current_node = NUMA_NO_NODE; 1562 LIST_HEAD(pagelist); 1563 int start, i; 1564 int err = 0, err1; 1565 1566 migrate_prep(); 1567 1568 for (i = start = 0; i < nr_pages; i++) { 1569 const void __user *p; 1570 unsigned long addr; 1571 int node; 1572 1573 err = -EFAULT; 1574 if (get_user(p, pages + i)) 1575 goto out_flush; 1576 if (get_user(node, nodes + i)) 1577 goto out_flush; 1578 addr = (unsigned long)p; 1579 1580 err = -ENODEV; 1581 if (node < 0 || node >= MAX_NUMNODES) 1582 goto out_flush; 1583 if (!node_state(node, N_MEMORY)) 1584 goto out_flush; 1585 1586 err = -EACCES; 1587 if (!node_isset(node, task_nodes)) 1588 goto out_flush; 1589 1590 if (current_node == NUMA_NO_NODE) { 1591 current_node = node; 1592 start = i; 1593 } else if (node != current_node) { 1594 err = do_move_pages_to_node(mm, &pagelist, current_node); 1595 if (err) 1596 goto out; 1597 err = store_status(status, start, current_node, i - start); 1598 if (err) 1599 goto out; 1600 start = i; 1601 current_node = node; 1602 } 1603 1604 /* 1605 * Errors in the page lookup or isolation are not fatal and we simply 1606 * report them via status 1607 */ 1608 err = add_page_for_migration(mm, addr, current_node, 1609 &pagelist, flags & MPOL_MF_MOVE_ALL); 1610 if (!err) 1611 continue; 1612 1613 err = store_status(status, i, err, 1); 1614 if (err) 1615 goto out_flush; 1616 1617 err = do_move_pages_to_node(mm, &pagelist, current_node); 1618 if (err) 1619 goto out; 1620 if (i > start) { 1621 err = store_status(status, start, current_node, i - start); 1622 if (err) 1623 goto out; 1624 } 1625 current_node = NUMA_NO_NODE; 1626 } 1627 out_flush: 1628 if (list_empty(&pagelist)) 1629 return err; 1630 1631 /* Make sure we do not overwrite the existing error */ 1632 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1633 if (!err1) 1634 err1 = store_status(status, start, current_node, i - start); 1635 if (!err) 1636 err = err1; 1637 out: 1638 return err; 1639 } 1640 1641 /* 1642 * Determine the nodes of an array of pages and store it in an array of status. 1643 */ 1644 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1645 const void __user **pages, int *status) 1646 { 1647 unsigned long i; 1648 1649 down_read(&mm->mmap_sem); 1650 1651 for (i = 0; i < nr_pages; i++) { 1652 unsigned long addr = (unsigned long)(*pages); 1653 struct vm_area_struct *vma; 1654 struct page *page; 1655 int err = -EFAULT; 1656 1657 vma = find_vma(mm, addr); 1658 if (!vma || addr < vma->vm_start) 1659 goto set_status; 1660 1661 /* FOLL_DUMP to ignore special (like zero) pages */ 1662 page = follow_page(vma, addr, FOLL_DUMP); 1663 1664 err = PTR_ERR(page); 1665 if (IS_ERR(page)) 1666 goto set_status; 1667 1668 err = page ? page_to_nid(page) : -ENOENT; 1669 set_status: 1670 *status = err; 1671 1672 pages++; 1673 status++; 1674 } 1675 1676 up_read(&mm->mmap_sem); 1677 } 1678 1679 /* 1680 * Determine the nodes of a user array of pages and store it in 1681 * a user array of status. 1682 */ 1683 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1684 const void __user * __user *pages, 1685 int __user *status) 1686 { 1687 #define DO_PAGES_STAT_CHUNK_NR 16 1688 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1689 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1690 1691 while (nr_pages) { 1692 unsigned long chunk_nr; 1693 1694 chunk_nr = nr_pages; 1695 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1696 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1697 1698 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1699 break; 1700 1701 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1702 1703 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1704 break; 1705 1706 pages += chunk_nr; 1707 status += chunk_nr; 1708 nr_pages -= chunk_nr; 1709 } 1710 return nr_pages ? -EFAULT : 0; 1711 } 1712 1713 /* 1714 * Move a list of pages in the address space of the currently executing 1715 * process. 1716 */ 1717 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1718 const void __user * __user *pages, 1719 const int __user *nodes, 1720 int __user *status, int flags) 1721 { 1722 struct task_struct *task; 1723 struct mm_struct *mm; 1724 int err; 1725 nodemask_t task_nodes; 1726 1727 /* Check flags */ 1728 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1729 return -EINVAL; 1730 1731 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1732 return -EPERM; 1733 1734 /* Find the mm_struct */ 1735 rcu_read_lock(); 1736 task = pid ? find_task_by_vpid(pid) : current; 1737 if (!task) { 1738 rcu_read_unlock(); 1739 return -ESRCH; 1740 } 1741 get_task_struct(task); 1742 1743 /* 1744 * Check if this process has the right to modify the specified 1745 * process. Use the regular "ptrace_may_access()" checks. 1746 */ 1747 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1748 rcu_read_unlock(); 1749 err = -EPERM; 1750 goto out; 1751 } 1752 rcu_read_unlock(); 1753 1754 err = security_task_movememory(task); 1755 if (err) 1756 goto out; 1757 1758 task_nodes = cpuset_mems_allowed(task); 1759 mm = get_task_mm(task); 1760 put_task_struct(task); 1761 1762 if (!mm) 1763 return -EINVAL; 1764 1765 if (nodes) 1766 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1767 nodes, status, flags); 1768 else 1769 err = do_pages_stat(mm, nr_pages, pages, status); 1770 1771 mmput(mm); 1772 return err; 1773 1774 out: 1775 put_task_struct(task); 1776 return err; 1777 } 1778 1779 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1780 const void __user * __user *, pages, 1781 const int __user *, nodes, 1782 int __user *, status, int, flags) 1783 { 1784 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1785 } 1786 1787 #ifdef CONFIG_COMPAT 1788 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1789 compat_uptr_t __user *, pages32, 1790 const int __user *, nodes, 1791 int __user *, status, 1792 int, flags) 1793 { 1794 const void __user * __user *pages; 1795 int i; 1796 1797 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1798 for (i = 0; i < nr_pages; i++) { 1799 compat_uptr_t p; 1800 1801 if (get_user(p, pages32 + i) || 1802 put_user(compat_ptr(p), pages + i)) 1803 return -EFAULT; 1804 } 1805 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1806 } 1807 #endif /* CONFIG_COMPAT */ 1808 1809 #ifdef CONFIG_NUMA_BALANCING 1810 /* 1811 * Returns true if this is a safe migration target node for misplaced NUMA 1812 * pages. Currently it only checks the watermarks which crude 1813 */ 1814 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1815 unsigned long nr_migrate_pages) 1816 { 1817 int z; 1818 1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1820 struct zone *zone = pgdat->node_zones + z; 1821 1822 if (!populated_zone(zone)) 1823 continue; 1824 1825 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1826 if (!zone_watermark_ok(zone, 0, 1827 high_wmark_pages(zone) + 1828 nr_migrate_pages, 1829 0, 0)) 1830 continue; 1831 return true; 1832 } 1833 return false; 1834 } 1835 1836 static struct page *alloc_misplaced_dst_page(struct page *page, 1837 unsigned long data) 1838 { 1839 int nid = (int) data; 1840 struct page *newpage; 1841 1842 newpage = __alloc_pages_node(nid, 1843 (GFP_HIGHUSER_MOVABLE | 1844 __GFP_THISNODE | __GFP_NOMEMALLOC | 1845 __GFP_NORETRY | __GFP_NOWARN) & 1846 ~__GFP_RECLAIM, 0); 1847 1848 return newpage; 1849 } 1850 1851 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1852 { 1853 int page_lru; 1854 1855 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1856 1857 /* Avoid migrating to a node that is nearly full */ 1858 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1859 return 0; 1860 1861 if (isolate_lru_page(page)) 1862 return 0; 1863 1864 /* 1865 * migrate_misplaced_transhuge_page() skips page migration's usual 1866 * check on page_count(), so we must do it here, now that the page 1867 * has been isolated: a GUP pin, or any other pin, prevents migration. 1868 * The expected page count is 3: 1 for page's mapcount and 1 for the 1869 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1870 */ 1871 if (PageTransHuge(page) && page_count(page) != 3) { 1872 putback_lru_page(page); 1873 return 0; 1874 } 1875 1876 page_lru = page_is_file_cache(page); 1877 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1878 hpage_nr_pages(page)); 1879 1880 /* 1881 * Isolating the page has taken another reference, so the 1882 * caller's reference can be safely dropped without the page 1883 * disappearing underneath us during migration. 1884 */ 1885 put_page(page); 1886 return 1; 1887 } 1888 1889 bool pmd_trans_migrating(pmd_t pmd) 1890 { 1891 struct page *page = pmd_page(pmd); 1892 return PageLocked(page); 1893 } 1894 1895 /* 1896 * Attempt to migrate a misplaced page to the specified destination 1897 * node. Caller is expected to have an elevated reference count on 1898 * the page that will be dropped by this function before returning. 1899 */ 1900 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1901 int node) 1902 { 1903 pg_data_t *pgdat = NODE_DATA(node); 1904 int isolated; 1905 int nr_remaining; 1906 LIST_HEAD(migratepages); 1907 1908 /* 1909 * Don't migrate file pages that are mapped in multiple processes 1910 * with execute permissions as they are probably shared libraries. 1911 */ 1912 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1913 (vma->vm_flags & VM_EXEC)) 1914 goto out; 1915 1916 /* 1917 * Also do not migrate dirty pages as not all filesystems can move 1918 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1919 */ 1920 if (page_is_file_cache(page) && PageDirty(page)) 1921 goto out; 1922 1923 isolated = numamigrate_isolate_page(pgdat, page); 1924 if (!isolated) 1925 goto out; 1926 1927 list_add(&page->lru, &migratepages); 1928 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1929 NULL, node, MIGRATE_ASYNC, 1930 MR_NUMA_MISPLACED); 1931 if (nr_remaining) { 1932 if (!list_empty(&migratepages)) { 1933 list_del(&page->lru); 1934 dec_node_page_state(page, NR_ISOLATED_ANON + 1935 page_is_file_cache(page)); 1936 putback_lru_page(page); 1937 } 1938 isolated = 0; 1939 } else 1940 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1941 BUG_ON(!list_empty(&migratepages)); 1942 return isolated; 1943 1944 out: 1945 put_page(page); 1946 return 0; 1947 } 1948 #endif /* CONFIG_NUMA_BALANCING */ 1949 1950 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1951 /* 1952 * Migrates a THP to a given target node. page must be locked and is unlocked 1953 * before returning. 1954 */ 1955 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1956 struct vm_area_struct *vma, 1957 pmd_t *pmd, pmd_t entry, 1958 unsigned long address, 1959 struct page *page, int node) 1960 { 1961 spinlock_t *ptl; 1962 pg_data_t *pgdat = NODE_DATA(node); 1963 int isolated = 0; 1964 struct page *new_page = NULL; 1965 int page_lru = page_is_file_cache(page); 1966 unsigned long start = address & HPAGE_PMD_MASK; 1967 1968 new_page = alloc_pages_node(node, 1969 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1970 HPAGE_PMD_ORDER); 1971 if (!new_page) 1972 goto out_fail; 1973 prep_transhuge_page(new_page); 1974 1975 isolated = numamigrate_isolate_page(pgdat, page); 1976 if (!isolated) { 1977 put_page(new_page); 1978 goto out_fail; 1979 } 1980 1981 /* Prepare a page as a migration target */ 1982 __SetPageLocked(new_page); 1983 if (PageSwapBacked(page)) 1984 __SetPageSwapBacked(new_page); 1985 1986 /* anon mapping, we can simply copy page->mapping to the new page: */ 1987 new_page->mapping = page->mapping; 1988 new_page->index = page->index; 1989 /* flush the cache before copying using the kernel virtual address */ 1990 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 1991 migrate_page_copy(new_page, page); 1992 WARN_ON(PageLRU(new_page)); 1993 1994 /* Recheck the target PMD */ 1995 ptl = pmd_lock(mm, pmd); 1996 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 1997 spin_unlock(ptl); 1998 1999 /* Reverse changes made by migrate_page_copy() */ 2000 if (TestClearPageActive(new_page)) 2001 SetPageActive(page); 2002 if (TestClearPageUnevictable(new_page)) 2003 SetPageUnevictable(page); 2004 2005 unlock_page(new_page); 2006 put_page(new_page); /* Free it */ 2007 2008 /* Retake the callers reference and putback on LRU */ 2009 get_page(page); 2010 putback_lru_page(page); 2011 mod_node_page_state(page_pgdat(page), 2012 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2013 2014 goto out_unlock; 2015 } 2016 2017 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2018 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2019 2020 /* 2021 * Overwrite the old entry under pagetable lock and establish 2022 * the new PTE. Any parallel GUP will either observe the old 2023 * page blocking on the page lock, block on the page table 2024 * lock or observe the new page. The SetPageUptodate on the 2025 * new page and page_add_new_anon_rmap guarantee the copy is 2026 * visible before the pagetable update. 2027 */ 2028 page_add_anon_rmap(new_page, vma, start, true); 2029 /* 2030 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2031 * has already been flushed globally. So no TLB can be currently 2032 * caching this non present pmd mapping. There's no need to clear the 2033 * pmd before doing set_pmd_at(), nor to flush the TLB after 2034 * set_pmd_at(). Clearing the pmd here would introduce a race 2035 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2036 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2037 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2038 * pmd. 2039 */ 2040 set_pmd_at(mm, start, pmd, entry); 2041 update_mmu_cache_pmd(vma, address, &entry); 2042 2043 page_ref_unfreeze(page, 2); 2044 mlock_migrate_page(new_page, page); 2045 page_remove_rmap(page, true); 2046 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2047 2048 spin_unlock(ptl); 2049 2050 /* Take an "isolate" reference and put new page on the LRU. */ 2051 get_page(new_page); 2052 putback_lru_page(new_page); 2053 2054 unlock_page(new_page); 2055 unlock_page(page); 2056 put_page(page); /* Drop the rmap reference */ 2057 put_page(page); /* Drop the LRU isolation reference */ 2058 2059 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2060 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2061 2062 mod_node_page_state(page_pgdat(page), 2063 NR_ISOLATED_ANON + page_lru, 2064 -HPAGE_PMD_NR); 2065 return isolated; 2066 2067 out_fail: 2068 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2069 ptl = pmd_lock(mm, pmd); 2070 if (pmd_same(*pmd, entry)) { 2071 entry = pmd_modify(entry, vma->vm_page_prot); 2072 set_pmd_at(mm, start, pmd, entry); 2073 update_mmu_cache_pmd(vma, address, &entry); 2074 } 2075 spin_unlock(ptl); 2076 2077 out_unlock: 2078 unlock_page(page); 2079 put_page(page); 2080 return 0; 2081 } 2082 #endif /* CONFIG_NUMA_BALANCING */ 2083 2084 #endif /* CONFIG_NUMA */ 2085 2086 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2087 struct migrate_vma { 2088 struct vm_area_struct *vma; 2089 unsigned long *dst; 2090 unsigned long *src; 2091 unsigned long cpages; 2092 unsigned long npages; 2093 unsigned long start; 2094 unsigned long end; 2095 }; 2096 2097 static int migrate_vma_collect_hole(unsigned long start, 2098 unsigned long end, 2099 struct mm_walk *walk) 2100 { 2101 struct migrate_vma *migrate = walk->private; 2102 unsigned long addr; 2103 2104 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2105 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2106 migrate->dst[migrate->npages] = 0; 2107 migrate->npages++; 2108 migrate->cpages++; 2109 } 2110 2111 return 0; 2112 } 2113 2114 static int migrate_vma_collect_skip(unsigned long start, 2115 unsigned long end, 2116 struct mm_walk *walk) 2117 { 2118 struct migrate_vma *migrate = walk->private; 2119 unsigned long addr; 2120 2121 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2122 migrate->dst[migrate->npages] = 0; 2123 migrate->src[migrate->npages++] = 0; 2124 } 2125 2126 return 0; 2127 } 2128 2129 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2130 unsigned long start, 2131 unsigned long end, 2132 struct mm_walk *walk) 2133 { 2134 struct migrate_vma *migrate = walk->private; 2135 struct vm_area_struct *vma = walk->vma; 2136 struct mm_struct *mm = vma->vm_mm; 2137 unsigned long addr = start, unmapped = 0; 2138 spinlock_t *ptl; 2139 pte_t *ptep; 2140 2141 again: 2142 if (pmd_none(*pmdp)) 2143 return migrate_vma_collect_hole(start, end, walk); 2144 2145 if (pmd_trans_huge(*pmdp)) { 2146 struct page *page; 2147 2148 ptl = pmd_lock(mm, pmdp); 2149 if (unlikely(!pmd_trans_huge(*pmdp))) { 2150 spin_unlock(ptl); 2151 goto again; 2152 } 2153 2154 page = pmd_page(*pmdp); 2155 if (is_huge_zero_page(page)) { 2156 spin_unlock(ptl); 2157 split_huge_pmd(vma, pmdp, addr); 2158 if (pmd_trans_unstable(pmdp)) 2159 return migrate_vma_collect_skip(start, end, 2160 walk); 2161 } else { 2162 int ret; 2163 2164 get_page(page); 2165 spin_unlock(ptl); 2166 if (unlikely(!trylock_page(page))) 2167 return migrate_vma_collect_skip(start, end, 2168 walk); 2169 ret = split_huge_page(page); 2170 unlock_page(page); 2171 put_page(page); 2172 if (ret) 2173 return migrate_vma_collect_skip(start, end, 2174 walk); 2175 if (pmd_none(*pmdp)) 2176 return migrate_vma_collect_hole(start, end, 2177 walk); 2178 } 2179 } 2180 2181 if (unlikely(pmd_bad(*pmdp))) 2182 return migrate_vma_collect_skip(start, end, walk); 2183 2184 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2185 arch_enter_lazy_mmu_mode(); 2186 2187 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2188 unsigned long mpfn, pfn; 2189 struct page *page; 2190 swp_entry_t entry; 2191 pte_t pte; 2192 2193 pte = *ptep; 2194 pfn = pte_pfn(pte); 2195 2196 if (pte_none(pte)) { 2197 mpfn = MIGRATE_PFN_MIGRATE; 2198 migrate->cpages++; 2199 pfn = 0; 2200 goto next; 2201 } 2202 2203 if (!pte_present(pte)) { 2204 mpfn = pfn = 0; 2205 2206 /* 2207 * Only care about unaddressable device page special 2208 * page table entry. Other special swap entries are not 2209 * migratable, and we ignore regular swapped page. 2210 */ 2211 entry = pte_to_swp_entry(pte); 2212 if (!is_device_private_entry(entry)) 2213 goto next; 2214 2215 page = device_private_entry_to_page(entry); 2216 mpfn = migrate_pfn(page_to_pfn(page))| 2217 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2218 if (is_write_device_private_entry(entry)) 2219 mpfn |= MIGRATE_PFN_WRITE; 2220 } else { 2221 if (is_zero_pfn(pfn)) { 2222 mpfn = MIGRATE_PFN_MIGRATE; 2223 migrate->cpages++; 2224 pfn = 0; 2225 goto next; 2226 } 2227 page = _vm_normal_page(migrate->vma, addr, pte, true); 2228 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2229 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2230 } 2231 2232 /* FIXME support THP */ 2233 if (!page || !page->mapping || PageTransCompound(page)) { 2234 mpfn = pfn = 0; 2235 goto next; 2236 } 2237 pfn = page_to_pfn(page); 2238 2239 /* 2240 * By getting a reference on the page we pin it and that blocks 2241 * any kind of migration. Side effect is that it "freezes" the 2242 * pte. 2243 * 2244 * We drop this reference after isolating the page from the lru 2245 * for non device page (device page are not on the lru and thus 2246 * can't be dropped from it). 2247 */ 2248 get_page(page); 2249 migrate->cpages++; 2250 2251 /* 2252 * Optimize for the common case where page is only mapped once 2253 * in one process. If we can lock the page, then we can safely 2254 * set up a special migration page table entry now. 2255 */ 2256 if (trylock_page(page)) { 2257 pte_t swp_pte; 2258 2259 mpfn |= MIGRATE_PFN_LOCKED; 2260 ptep_get_and_clear(mm, addr, ptep); 2261 2262 /* Setup special migration page table entry */ 2263 entry = make_migration_entry(page, mpfn & 2264 MIGRATE_PFN_WRITE); 2265 swp_pte = swp_entry_to_pte(entry); 2266 if (pte_soft_dirty(pte)) 2267 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2268 set_pte_at(mm, addr, ptep, swp_pte); 2269 2270 /* 2271 * This is like regular unmap: we remove the rmap and 2272 * drop page refcount. Page won't be freed, as we took 2273 * a reference just above. 2274 */ 2275 page_remove_rmap(page, false); 2276 put_page(page); 2277 2278 if (pte_present(pte)) 2279 unmapped++; 2280 } 2281 2282 next: 2283 migrate->dst[migrate->npages] = 0; 2284 migrate->src[migrate->npages++] = mpfn; 2285 } 2286 arch_leave_lazy_mmu_mode(); 2287 pte_unmap_unlock(ptep - 1, ptl); 2288 2289 /* Only flush the TLB if we actually modified any entries */ 2290 if (unmapped) 2291 flush_tlb_range(walk->vma, start, end); 2292 2293 return 0; 2294 } 2295 2296 /* 2297 * migrate_vma_collect() - collect pages over a range of virtual addresses 2298 * @migrate: migrate struct containing all migration information 2299 * 2300 * This will walk the CPU page table. For each virtual address backed by a 2301 * valid page, it updates the src array and takes a reference on the page, in 2302 * order to pin the page until we lock it and unmap it. 2303 */ 2304 static void migrate_vma_collect(struct migrate_vma *migrate) 2305 { 2306 struct mm_walk mm_walk; 2307 2308 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2309 mm_walk.pte_entry = NULL; 2310 mm_walk.pte_hole = migrate_vma_collect_hole; 2311 mm_walk.hugetlb_entry = NULL; 2312 mm_walk.test_walk = NULL; 2313 mm_walk.vma = migrate->vma; 2314 mm_walk.mm = migrate->vma->vm_mm; 2315 mm_walk.private = migrate; 2316 2317 mmu_notifier_invalidate_range_start(mm_walk.mm, 2318 migrate->start, 2319 migrate->end); 2320 walk_page_range(migrate->start, migrate->end, &mm_walk); 2321 mmu_notifier_invalidate_range_end(mm_walk.mm, 2322 migrate->start, 2323 migrate->end); 2324 2325 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2326 } 2327 2328 /* 2329 * migrate_vma_check_page() - check if page is pinned or not 2330 * @page: struct page to check 2331 * 2332 * Pinned pages cannot be migrated. This is the same test as in 2333 * migrate_page_move_mapping(), except that here we allow migration of a 2334 * ZONE_DEVICE page. 2335 */ 2336 static bool migrate_vma_check_page(struct page *page) 2337 { 2338 /* 2339 * One extra ref because caller holds an extra reference, either from 2340 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2341 * a device page. 2342 */ 2343 int extra = 1; 2344 2345 /* 2346 * FIXME support THP (transparent huge page), it is bit more complex to 2347 * check them than regular pages, because they can be mapped with a pmd 2348 * or with a pte (split pte mapping). 2349 */ 2350 if (PageCompound(page)) 2351 return false; 2352 2353 /* Page from ZONE_DEVICE have one extra reference */ 2354 if (is_zone_device_page(page)) { 2355 /* 2356 * Private page can never be pin as they have no valid pte and 2357 * GUP will fail for those. Yet if there is a pending migration 2358 * a thread might try to wait on the pte migration entry and 2359 * will bump the page reference count. Sadly there is no way to 2360 * differentiate a regular pin from migration wait. Hence to 2361 * avoid 2 racing thread trying to migrate back to CPU to enter 2362 * infinite loop (one stoping migration because the other is 2363 * waiting on pte migration entry). We always return true here. 2364 * 2365 * FIXME proper solution is to rework migration_entry_wait() so 2366 * it does not need to take a reference on page. 2367 */ 2368 if (is_device_private_page(page)) 2369 return true; 2370 2371 /* 2372 * Only allow device public page to be migrated and account for 2373 * the extra reference count imply by ZONE_DEVICE pages. 2374 */ 2375 if (!is_device_public_page(page)) 2376 return false; 2377 extra++; 2378 } 2379 2380 /* For file back page */ 2381 if (page_mapping(page)) 2382 extra += 1 + page_has_private(page); 2383 2384 if ((page_count(page) - extra) > page_mapcount(page)) 2385 return false; 2386 2387 return true; 2388 } 2389 2390 /* 2391 * migrate_vma_prepare() - lock pages and isolate them from the lru 2392 * @migrate: migrate struct containing all migration information 2393 * 2394 * This locks pages that have been collected by migrate_vma_collect(). Once each 2395 * page is locked it is isolated from the lru (for non-device pages). Finally, 2396 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2397 * migrated by concurrent kernel threads. 2398 */ 2399 static void migrate_vma_prepare(struct migrate_vma *migrate) 2400 { 2401 const unsigned long npages = migrate->npages; 2402 const unsigned long start = migrate->start; 2403 unsigned long addr, i, restore = 0; 2404 bool allow_drain = true; 2405 2406 lru_add_drain(); 2407 2408 for (i = 0; (i < npages) && migrate->cpages; i++) { 2409 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2410 bool remap = true; 2411 2412 if (!page) 2413 continue; 2414 2415 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2416 /* 2417 * Because we are migrating several pages there can be 2418 * a deadlock between 2 concurrent migration where each 2419 * are waiting on each other page lock. 2420 * 2421 * Make migrate_vma() a best effort thing and backoff 2422 * for any page we can not lock right away. 2423 */ 2424 if (!trylock_page(page)) { 2425 migrate->src[i] = 0; 2426 migrate->cpages--; 2427 put_page(page); 2428 continue; 2429 } 2430 remap = false; 2431 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2432 } 2433 2434 /* ZONE_DEVICE pages are not on LRU */ 2435 if (!is_zone_device_page(page)) { 2436 if (!PageLRU(page) && allow_drain) { 2437 /* Drain CPU's pagevec */ 2438 lru_add_drain_all(); 2439 allow_drain = false; 2440 } 2441 2442 if (isolate_lru_page(page)) { 2443 if (remap) { 2444 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2445 migrate->cpages--; 2446 restore++; 2447 } else { 2448 migrate->src[i] = 0; 2449 unlock_page(page); 2450 migrate->cpages--; 2451 put_page(page); 2452 } 2453 continue; 2454 } 2455 2456 /* Drop the reference we took in collect */ 2457 put_page(page); 2458 } 2459 2460 if (!migrate_vma_check_page(page)) { 2461 if (remap) { 2462 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2463 migrate->cpages--; 2464 restore++; 2465 2466 if (!is_zone_device_page(page)) { 2467 get_page(page); 2468 putback_lru_page(page); 2469 } 2470 } else { 2471 migrate->src[i] = 0; 2472 unlock_page(page); 2473 migrate->cpages--; 2474 2475 if (!is_zone_device_page(page)) 2476 putback_lru_page(page); 2477 else 2478 put_page(page); 2479 } 2480 } 2481 } 2482 2483 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2484 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2485 2486 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2487 continue; 2488 2489 remove_migration_pte(page, migrate->vma, addr, page); 2490 2491 migrate->src[i] = 0; 2492 unlock_page(page); 2493 put_page(page); 2494 restore--; 2495 } 2496 } 2497 2498 /* 2499 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2500 * @migrate: migrate struct containing all migration information 2501 * 2502 * Replace page mapping (CPU page table pte) with a special migration pte entry 2503 * and check again if it has been pinned. Pinned pages are restored because we 2504 * cannot migrate them. 2505 * 2506 * This is the last step before we call the device driver callback to allocate 2507 * destination memory and copy contents of original page over to new page. 2508 */ 2509 static void migrate_vma_unmap(struct migrate_vma *migrate) 2510 { 2511 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2512 const unsigned long npages = migrate->npages; 2513 const unsigned long start = migrate->start; 2514 unsigned long addr, i, restore = 0; 2515 2516 for (i = 0; i < npages; i++) { 2517 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2518 2519 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2520 continue; 2521 2522 if (page_mapped(page)) { 2523 try_to_unmap(page, flags); 2524 if (page_mapped(page)) 2525 goto restore; 2526 } 2527 2528 if (migrate_vma_check_page(page)) 2529 continue; 2530 2531 restore: 2532 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2533 migrate->cpages--; 2534 restore++; 2535 } 2536 2537 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2538 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2539 2540 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2541 continue; 2542 2543 remove_migration_ptes(page, page, false); 2544 2545 migrate->src[i] = 0; 2546 unlock_page(page); 2547 restore--; 2548 2549 if (is_zone_device_page(page)) 2550 put_page(page); 2551 else 2552 putback_lru_page(page); 2553 } 2554 } 2555 2556 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2557 unsigned long addr, 2558 struct page *page, 2559 unsigned long *src, 2560 unsigned long *dst) 2561 { 2562 struct vm_area_struct *vma = migrate->vma; 2563 struct mm_struct *mm = vma->vm_mm; 2564 struct mem_cgroup *memcg; 2565 bool flush = false; 2566 spinlock_t *ptl; 2567 pte_t entry; 2568 pgd_t *pgdp; 2569 p4d_t *p4dp; 2570 pud_t *pudp; 2571 pmd_t *pmdp; 2572 pte_t *ptep; 2573 2574 /* Only allow populating anonymous memory */ 2575 if (!vma_is_anonymous(vma)) 2576 goto abort; 2577 2578 pgdp = pgd_offset(mm, addr); 2579 p4dp = p4d_alloc(mm, pgdp, addr); 2580 if (!p4dp) 2581 goto abort; 2582 pudp = pud_alloc(mm, p4dp, addr); 2583 if (!pudp) 2584 goto abort; 2585 pmdp = pmd_alloc(mm, pudp, addr); 2586 if (!pmdp) 2587 goto abort; 2588 2589 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2590 goto abort; 2591 2592 /* 2593 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2594 * pte_offset_map() on pmds where a huge pmd might be created 2595 * from a different thread. 2596 * 2597 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2598 * parallel threads are excluded by other means. 2599 * 2600 * Here we only have down_read(mmap_sem). 2601 */ 2602 if (pte_alloc(mm, pmdp, addr)) 2603 goto abort; 2604 2605 /* See the comment in pte_alloc_one_map() */ 2606 if (unlikely(pmd_trans_unstable(pmdp))) 2607 goto abort; 2608 2609 if (unlikely(anon_vma_prepare(vma))) 2610 goto abort; 2611 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2612 goto abort; 2613 2614 /* 2615 * The memory barrier inside __SetPageUptodate makes sure that 2616 * preceding stores to the page contents become visible before 2617 * the set_pte_at() write. 2618 */ 2619 __SetPageUptodate(page); 2620 2621 if (is_zone_device_page(page)) { 2622 if (is_device_private_page(page)) { 2623 swp_entry_t swp_entry; 2624 2625 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2626 entry = swp_entry_to_pte(swp_entry); 2627 } else if (is_device_public_page(page)) { 2628 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2629 if (vma->vm_flags & VM_WRITE) 2630 entry = pte_mkwrite(pte_mkdirty(entry)); 2631 entry = pte_mkdevmap(entry); 2632 } 2633 } else { 2634 entry = mk_pte(page, vma->vm_page_prot); 2635 if (vma->vm_flags & VM_WRITE) 2636 entry = pte_mkwrite(pte_mkdirty(entry)); 2637 } 2638 2639 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2640 2641 if (pte_present(*ptep)) { 2642 unsigned long pfn = pte_pfn(*ptep); 2643 2644 if (!is_zero_pfn(pfn)) { 2645 pte_unmap_unlock(ptep, ptl); 2646 mem_cgroup_cancel_charge(page, memcg, false); 2647 goto abort; 2648 } 2649 flush = true; 2650 } else if (!pte_none(*ptep)) { 2651 pte_unmap_unlock(ptep, ptl); 2652 mem_cgroup_cancel_charge(page, memcg, false); 2653 goto abort; 2654 } 2655 2656 /* 2657 * Check for usefaultfd but do not deliver the fault. Instead, 2658 * just back off. 2659 */ 2660 if (userfaultfd_missing(vma)) { 2661 pte_unmap_unlock(ptep, ptl); 2662 mem_cgroup_cancel_charge(page, memcg, false); 2663 goto abort; 2664 } 2665 2666 inc_mm_counter(mm, MM_ANONPAGES); 2667 page_add_new_anon_rmap(page, vma, addr, false); 2668 mem_cgroup_commit_charge(page, memcg, false, false); 2669 if (!is_zone_device_page(page)) 2670 lru_cache_add_active_or_unevictable(page, vma); 2671 get_page(page); 2672 2673 if (flush) { 2674 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2675 ptep_clear_flush_notify(vma, addr, ptep); 2676 set_pte_at_notify(mm, addr, ptep, entry); 2677 update_mmu_cache(vma, addr, ptep); 2678 } else { 2679 /* No need to invalidate - it was non-present before */ 2680 set_pte_at(mm, addr, ptep, entry); 2681 update_mmu_cache(vma, addr, ptep); 2682 } 2683 2684 pte_unmap_unlock(ptep, ptl); 2685 *src = MIGRATE_PFN_MIGRATE; 2686 return; 2687 2688 abort: 2689 *src &= ~MIGRATE_PFN_MIGRATE; 2690 } 2691 2692 /* 2693 * migrate_vma_pages() - migrate meta-data from src page to dst page 2694 * @migrate: migrate struct containing all migration information 2695 * 2696 * This migrates struct page meta-data from source struct page to destination 2697 * struct page. This effectively finishes the migration from source page to the 2698 * destination page. 2699 */ 2700 static void migrate_vma_pages(struct migrate_vma *migrate) 2701 { 2702 const unsigned long npages = migrate->npages; 2703 const unsigned long start = migrate->start; 2704 struct vm_area_struct *vma = migrate->vma; 2705 struct mm_struct *mm = vma->vm_mm; 2706 unsigned long addr, i, mmu_start; 2707 bool notified = false; 2708 2709 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2710 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2711 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2712 struct address_space *mapping; 2713 int r; 2714 2715 if (!newpage) { 2716 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2717 continue; 2718 } 2719 2720 if (!page) { 2721 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2722 continue; 2723 } 2724 if (!notified) { 2725 mmu_start = addr; 2726 notified = true; 2727 mmu_notifier_invalidate_range_start(mm, 2728 mmu_start, 2729 migrate->end); 2730 } 2731 migrate_vma_insert_page(migrate, addr, newpage, 2732 &migrate->src[i], 2733 &migrate->dst[i]); 2734 continue; 2735 } 2736 2737 mapping = page_mapping(page); 2738 2739 if (is_zone_device_page(newpage)) { 2740 if (is_device_private_page(newpage)) { 2741 /* 2742 * For now only support private anonymous when 2743 * migrating to un-addressable device memory. 2744 */ 2745 if (mapping) { 2746 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2747 continue; 2748 } 2749 } else if (!is_device_public_page(newpage)) { 2750 /* 2751 * Other types of ZONE_DEVICE page are not 2752 * supported. 2753 */ 2754 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2755 continue; 2756 } 2757 } 2758 2759 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2760 if (r != MIGRATEPAGE_SUCCESS) 2761 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2762 } 2763 2764 /* 2765 * No need to double call mmu_notifier->invalidate_range() callback as 2766 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2767 * did already call it. 2768 */ 2769 if (notified) 2770 mmu_notifier_invalidate_range_only_end(mm, mmu_start, 2771 migrate->end); 2772 } 2773 2774 /* 2775 * migrate_vma_finalize() - restore CPU page table entry 2776 * @migrate: migrate struct containing all migration information 2777 * 2778 * This replaces the special migration pte entry with either a mapping to the 2779 * new page if migration was successful for that page, or to the original page 2780 * otherwise. 2781 * 2782 * This also unlocks the pages and puts them back on the lru, or drops the extra 2783 * refcount, for device pages. 2784 */ 2785 static void migrate_vma_finalize(struct migrate_vma *migrate) 2786 { 2787 const unsigned long npages = migrate->npages; 2788 unsigned long i; 2789 2790 for (i = 0; i < npages; i++) { 2791 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2792 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2793 2794 if (!page) { 2795 if (newpage) { 2796 unlock_page(newpage); 2797 put_page(newpage); 2798 } 2799 continue; 2800 } 2801 2802 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2803 if (newpage) { 2804 unlock_page(newpage); 2805 put_page(newpage); 2806 } 2807 newpage = page; 2808 } 2809 2810 remove_migration_ptes(page, newpage, false); 2811 unlock_page(page); 2812 migrate->cpages--; 2813 2814 if (is_zone_device_page(page)) 2815 put_page(page); 2816 else 2817 putback_lru_page(page); 2818 2819 if (newpage != page) { 2820 unlock_page(newpage); 2821 if (is_zone_device_page(newpage)) 2822 put_page(newpage); 2823 else 2824 putback_lru_page(newpage); 2825 } 2826 } 2827 } 2828 2829 /* 2830 * migrate_vma() - migrate a range of memory inside vma 2831 * 2832 * @ops: migration callback for allocating destination memory and copying 2833 * @vma: virtual memory area containing the range to be migrated 2834 * @start: start address of the range to migrate (inclusive) 2835 * @end: end address of the range to migrate (exclusive) 2836 * @src: array of hmm_pfn_t containing source pfns 2837 * @dst: array of hmm_pfn_t containing destination pfns 2838 * @private: pointer passed back to each of the callback 2839 * Returns: 0 on success, error code otherwise 2840 * 2841 * This function tries to migrate a range of memory virtual address range, using 2842 * callbacks to allocate and copy memory from source to destination. First it 2843 * collects all the pages backing each virtual address in the range, saving this 2844 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2845 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2846 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2847 * in the corresponding src array entry. It then restores any pages that are 2848 * pinned, by remapping and unlocking those pages. 2849 * 2850 * At this point it calls the alloc_and_copy() callback. For documentation on 2851 * what is expected from that callback, see struct migrate_vma_ops comments in 2852 * include/linux/migrate.h 2853 * 2854 * After the alloc_and_copy() callback, this function goes over each entry in 2855 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2856 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2857 * then the function tries to migrate struct page information from the source 2858 * struct page to the destination struct page. If it fails to migrate the struct 2859 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2860 * array. 2861 * 2862 * At this point all successfully migrated pages have an entry in the src 2863 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2864 * array entry with MIGRATE_PFN_VALID flag set. 2865 * 2866 * It then calls the finalize_and_map() callback. See comments for "struct 2867 * migrate_vma_ops", in include/linux/migrate.h for details about 2868 * finalize_and_map() behavior. 2869 * 2870 * After the finalize_and_map() callback, for successfully migrated pages, this 2871 * function updates the CPU page table to point to new pages, otherwise it 2872 * restores the CPU page table to point to the original source pages. 2873 * 2874 * Function returns 0 after the above steps, even if no pages were migrated 2875 * (The function only returns an error if any of the arguments are invalid.) 2876 * 2877 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2878 * unsigned long entries. 2879 */ 2880 int migrate_vma(const struct migrate_vma_ops *ops, 2881 struct vm_area_struct *vma, 2882 unsigned long start, 2883 unsigned long end, 2884 unsigned long *src, 2885 unsigned long *dst, 2886 void *private) 2887 { 2888 struct migrate_vma migrate; 2889 2890 /* Sanity check the arguments */ 2891 start &= PAGE_MASK; 2892 end &= PAGE_MASK; 2893 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2894 vma_is_dax(vma)) 2895 return -EINVAL; 2896 if (start < vma->vm_start || start >= vma->vm_end) 2897 return -EINVAL; 2898 if (end <= vma->vm_start || end > vma->vm_end) 2899 return -EINVAL; 2900 if (!ops || !src || !dst || start >= end) 2901 return -EINVAL; 2902 2903 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2904 migrate.src = src; 2905 migrate.dst = dst; 2906 migrate.start = start; 2907 migrate.npages = 0; 2908 migrate.cpages = 0; 2909 migrate.end = end; 2910 migrate.vma = vma; 2911 2912 /* Collect, and try to unmap source pages */ 2913 migrate_vma_collect(&migrate); 2914 if (!migrate.cpages) 2915 return 0; 2916 2917 /* Lock and isolate page */ 2918 migrate_vma_prepare(&migrate); 2919 if (!migrate.cpages) 2920 return 0; 2921 2922 /* Unmap pages */ 2923 migrate_vma_unmap(&migrate); 2924 if (!migrate.cpages) 2925 return 0; 2926 2927 /* 2928 * At this point pages are locked and unmapped, and thus they have 2929 * stable content and can safely be copied to destination memory that 2930 * is allocated by the callback. 2931 * 2932 * Note that migration can fail in migrate_vma_struct_page() for each 2933 * individual page. 2934 */ 2935 ops->alloc_and_copy(vma, src, dst, start, end, private); 2936 2937 /* This does the real migration of struct page */ 2938 migrate_vma_pages(&migrate); 2939 2940 ops->finalize_and_map(vma, src, dst, start, end, private); 2941 2942 /* Unlock and remap pages */ 2943 migrate_vma_finalize(&migrate); 2944 2945 return 0; 2946 } 2947 EXPORT_SYMBOL(migrate_vma); 2948 #endif /* defined(MIGRATE_VMA_HELPER) */ 2949