1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grabbing the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } 250 } 251 252 #ifdef CONFIG_HUGETLB_PAGE 253 if (PageHuge(new)) { 254 pte = pte_mkhuge(pte); 255 pte = arch_make_huge_pte(pte, vma, new, 0); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 257 if (PageAnon(new)) 258 hugepage_add_anon_rmap(new, vma, pvmw.address); 259 else 260 page_dup_rmap(new, true); 261 } else 262 #endif 263 { 264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 265 266 if (PageAnon(new)) 267 page_add_anon_rmap(new, vma, pvmw.address, false); 268 else 269 page_add_file_rmap(new, false); 270 } 271 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 272 mlock_vma_page(new); 273 274 if (PageTransHuge(page) && PageMlocked(page)) 275 clear_page_mlock(page); 276 277 /* No need to invalidate - it was non-present before */ 278 update_mmu_cache(vma, pvmw.address, pvmw.pte); 279 } 280 281 return true; 282 } 283 284 /* 285 * Get rid of all migration entries and replace them by 286 * references to the indicated page. 287 */ 288 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 289 { 290 struct rmap_walk_control rwc = { 291 .rmap_one = remove_migration_pte, 292 .arg = old, 293 }; 294 295 if (locked) 296 rmap_walk_locked(new, &rwc); 297 else 298 rmap_walk(new, &rwc); 299 } 300 301 /* 302 * Something used the pte of a page under migration. We need to 303 * get to the page and wait until migration is finished. 304 * When we return from this function the fault will be retried. 305 */ 306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 307 spinlock_t *ptl) 308 { 309 pte_t pte; 310 swp_entry_t entry; 311 struct page *page; 312 313 spin_lock(ptl); 314 pte = *ptep; 315 if (!is_swap_pte(pte)) 316 goto out; 317 318 entry = pte_to_swp_entry(pte); 319 if (!is_migration_entry(entry)) 320 goto out; 321 322 page = migration_entry_to_page(entry); 323 324 /* 325 * Once page cache replacement of page migration started, page_count 326 * is zero; but we must not call put_and_wait_on_page_locked() without 327 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 328 */ 329 if (!get_page_unless_zero(page)) 330 goto out; 331 pte_unmap_unlock(ptep, ptl); 332 put_and_wait_on_page_locked(page); 333 return; 334 out: 335 pte_unmap_unlock(ptep, ptl); 336 } 337 338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 339 unsigned long address) 340 { 341 spinlock_t *ptl = pte_lockptr(mm, pmd); 342 pte_t *ptep = pte_offset_map(pmd, address); 343 __migration_entry_wait(mm, ptep, ptl); 344 } 345 346 void migration_entry_wait_huge(struct vm_area_struct *vma, 347 struct mm_struct *mm, pte_t *pte) 348 { 349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 350 __migration_entry_wait(mm, pte, ptl); 351 } 352 353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 355 { 356 spinlock_t *ptl; 357 struct page *page; 358 359 ptl = pmd_lock(mm, pmd); 360 if (!is_pmd_migration_entry(*pmd)) 361 goto unlock; 362 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 363 if (!get_page_unless_zero(page)) 364 goto unlock; 365 spin_unlock(ptl); 366 put_and_wait_on_page_locked(page); 367 return; 368 unlock: 369 spin_unlock(ptl); 370 } 371 #endif 372 373 static int expected_page_refs(struct address_space *mapping, struct page *page) 374 { 375 int expected_count = 1; 376 377 /* 378 * Device public or private pages have an extra refcount as they are 379 * ZONE_DEVICE pages. 380 */ 381 expected_count += is_device_private_page(page); 382 if (mapping) 383 expected_count += hpage_nr_pages(page) + page_has_private(page); 384 385 return expected_count; 386 } 387 388 /* 389 * Replace the page in the mapping. 390 * 391 * The number of remaining references must be: 392 * 1 for anonymous pages without a mapping 393 * 2 for pages with a mapping 394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 395 */ 396 int migrate_page_move_mapping(struct address_space *mapping, 397 struct page *newpage, struct page *page, int extra_count) 398 { 399 XA_STATE(xas, &mapping->i_pages, page_index(page)); 400 struct zone *oldzone, *newzone; 401 int dirty; 402 int expected_count = expected_page_refs(mapping, page) + extra_count; 403 404 if (!mapping) { 405 /* Anonymous page without mapping */ 406 if (page_count(page) != expected_count) 407 return -EAGAIN; 408 409 /* No turning back from here */ 410 newpage->index = page->index; 411 newpage->mapping = page->mapping; 412 if (PageSwapBacked(page)) 413 __SetPageSwapBacked(newpage); 414 415 return MIGRATEPAGE_SUCCESS; 416 } 417 418 oldzone = page_zone(page); 419 newzone = page_zone(newpage); 420 421 xas_lock_irq(&xas); 422 if (page_count(page) != expected_count || xas_load(&xas) != page) { 423 xas_unlock_irq(&xas); 424 return -EAGAIN; 425 } 426 427 if (!page_ref_freeze(page, expected_count)) { 428 xas_unlock_irq(&xas); 429 return -EAGAIN; 430 } 431 432 /* 433 * Now we know that no one else is looking at the page: 434 * no turning back from here. 435 */ 436 newpage->index = page->index; 437 newpage->mapping = page->mapping; 438 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 439 if (PageSwapBacked(page)) { 440 __SetPageSwapBacked(newpage); 441 if (PageSwapCache(page)) { 442 SetPageSwapCache(newpage); 443 set_page_private(newpage, page_private(page)); 444 } 445 } else { 446 VM_BUG_ON_PAGE(PageSwapCache(page), page); 447 } 448 449 /* Move dirty while page refs frozen and newpage not yet exposed */ 450 dirty = PageDirty(page); 451 if (dirty) { 452 ClearPageDirty(page); 453 SetPageDirty(newpage); 454 } 455 456 xas_store(&xas, newpage); 457 if (PageTransHuge(page)) { 458 int i; 459 460 for (i = 1; i < HPAGE_PMD_NR; i++) { 461 xas_next(&xas); 462 xas_store(&xas, newpage + i); 463 } 464 } 465 466 /* 467 * Drop cache reference from old page by unfreezing 468 * to one less reference. 469 * We know this isn't the last reference. 470 */ 471 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 472 473 xas_unlock(&xas); 474 /* Leave irq disabled to prevent preemption while updating stats */ 475 476 /* 477 * If moved to a different zone then also account 478 * the page for that zone. Other VM counters will be 479 * taken care of when we establish references to the 480 * new page and drop references to the old page. 481 * 482 * Note that anonymous pages are accounted for 483 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 484 * are mapped to swap space. 485 */ 486 if (newzone != oldzone) { 487 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 488 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 489 if (PageSwapBacked(page) && !PageSwapCache(page)) { 490 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 491 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 492 } 493 if (dirty && mapping_cap_account_dirty(mapping)) { 494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 495 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 496 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 497 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 498 } 499 } 500 local_irq_enable(); 501 502 return MIGRATEPAGE_SUCCESS; 503 } 504 EXPORT_SYMBOL(migrate_page_move_mapping); 505 506 /* 507 * The expected number of remaining references is the same as that 508 * of migrate_page_move_mapping(). 509 */ 510 int migrate_huge_page_move_mapping(struct address_space *mapping, 511 struct page *newpage, struct page *page) 512 { 513 XA_STATE(xas, &mapping->i_pages, page_index(page)); 514 int expected_count; 515 516 xas_lock_irq(&xas); 517 expected_count = 2 + page_has_private(page); 518 if (page_count(page) != expected_count || xas_load(&xas) != page) { 519 xas_unlock_irq(&xas); 520 return -EAGAIN; 521 } 522 523 if (!page_ref_freeze(page, expected_count)) { 524 xas_unlock_irq(&xas); 525 return -EAGAIN; 526 } 527 528 newpage->index = page->index; 529 newpage->mapping = page->mapping; 530 531 get_page(newpage); 532 533 xas_store(&xas, newpage); 534 535 page_ref_unfreeze(page, expected_count - 1); 536 537 xas_unlock_irq(&xas); 538 539 return MIGRATEPAGE_SUCCESS; 540 } 541 542 /* 543 * Gigantic pages are so large that we do not guarantee that page++ pointer 544 * arithmetic will work across the entire page. We need something more 545 * specialized. 546 */ 547 static void __copy_gigantic_page(struct page *dst, struct page *src, 548 int nr_pages) 549 { 550 int i; 551 struct page *dst_base = dst; 552 struct page *src_base = src; 553 554 for (i = 0; i < nr_pages; ) { 555 cond_resched(); 556 copy_highpage(dst, src); 557 558 i++; 559 dst = mem_map_next(dst, dst_base, i); 560 src = mem_map_next(src, src_base, i); 561 } 562 } 563 564 static void copy_huge_page(struct page *dst, struct page *src) 565 { 566 int i; 567 int nr_pages; 568 569 if (PageHuge(src)) { 570 /* hugetlbfs page */ 571 struct hstate *h = page_hstate(src); 572 nr_pages = pages_per_huge_page(h); 573 574 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 575 __copy_gigantic_page(dst, src, nr_pages); 576 return; 577 } 578 } else { 579 /* thp page */ 580 BUG_ON(!PageTransHuge(src)); 581 nr_pages = hpage_nr_pages(src); 582 } 583 584 for (i = 0; i < nr_pages; i++) { 585 cond_resched(); 586 copy_highpage(dst + i, src + i); 587 } 588 } 589 590 /* 591 * Copy the page to its new location 592 */ 593 void migrate_page_states(struct page *newpage, struct page *page) 594 { 595 int cpupid; 596 597 if (PageError(page)) 598 SetPageError(newpage); 599 if (PageReferenced(page)) 600 SetPageReferenced(newpage); 601 if (PageUptodate(page)) 602 SetPageUptodate(newpage); 603 if (TestClearPageActive(page)) { 604 VM_BUG_ON_PAGE(PageUnevictable(page), page); 605 SetPageActive(newpage); 606 } else if (TestClearPageUnevictable(page)) 607 SetPageUnevictable(newpage); 608 if (PageWorkingset(page)) 609 SetPageWorkingset(newpage); 610 if (PageChecked(page)) 611 SetPageChecked(newpage); 612 if (PageMappedToDisk(page)) 613 SetPageMappedToDisk(newpage); 614 615 /* Move dirty on pages not done by migrate_page_move_mapping() */ 616 if (PageDirty(page)) 617 SetPageDirty(newpage); 618 619 if (page_is_young(page)) 620 set_page_young(newpage); 621 if (page_is_idle(page)) 622 set_page_idle(newpage); 623 624 /* 625 * Copy NUMA information to the new page, to prevent over-eager 626 * future migrations of this same page. 627 */ 628 cpupid = page_cpupid_xchg_last(page, -1); 629 page_cpupid_xchg_last(newpage, cpupid); 630 631 ksm_migrate_page(newpage, page); 632 /* 633 * Please do not reorder this without considering how mm/ksm.c's 634 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 635 */ 636 if (PageSwapCache(page)) 637 ClearPageSwapCache(page); 638 ClearPagePrivate(page); 639 set_page_private(page, 0); 640 641 /* 642 * If any waiters have accumulated on the new page then 643 * wake them up. 644 */ 645 if (PageWriteback(newpage)) 646 end_page_writeback(newpage); 647 648 copy_page_owner(page, newpage); 649 650 mem_cgroup_migrate(page, newpage); 651 } 652 EXPORT_SYMBOL(migrate_page_states); 653 654 void migrate_page_copy(struct page *newpage, struct page *page) 655 { 656 if (PageHuge(page) || PageTransHuge(page)) 657 copy_huge_page(newpage, page); 658 else 659 copy_highpage(newpage, page); 660 661 migrate_page_states(newpage, page); 662 } 663 EXPORT_SYMBOL(migrate_page_copy); 664 665 /************************************************************ 666 * Migration functions 667 ***********************************************************/ 668 669 /* 670 * Common logic to directly migrate a single LRU page suitable for 671 * pages that do not use PagePrivate/PagePrivate2. 672 * 673 * Pages are locked upon entry and exit. 674 */ 675 int migrate_page(struct address_space *mapping, 676 struct page *newpage, struct page *page, 677 enum migrate_mode mode) 678 { 679 int rc; 680 681 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 682 683 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 684 685 if (rc != MIGRATEPAGE_SUCCESS) 686 return rc; 687 688 if (mode != MIGRATE_SYNC_NO_COPY) 689 migrate_page_copy(newpage, page); 690 else 691 migrate_page_states(newpage, page); 692 return MIGRATEPAGE_SUCCESS; 693 } 694 EXPORT_SYMBOL(migrate_page); 695 696 #ifdef CONFIG_BLOCK 697 /* Returns true if all buffers are successfully locked */ 698 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 699 enum migrate_mode mode) 700 { 701 struct buffer_head *bh = head; 702 703 /* Simple case, sync compaction */ 704 if (mode != MIGRATE_ASYNC) { 705 do { 706 lock_buffer(bh); 707 bh = bh->b_this_page; 708 709 } while (bh != head); 710 711 return true; 712 } 713 714 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 715 do { 716 if (!trylock_buffer(bh)) { 717 /* 718 * We failed to lock the buffer and cannot stall in 719 * async migration. Release the taken locks 720 */ 721 struct buffer_head *failed_bh = bh; 722 bh = head; 723 while (bh != failed_bh) { 724 unlock_buffer(bh); 725 bh = bh->b_this_page; 726 } 727 return false; 728 } 729 730 bh = bh->b_this_page; 731 } while (bh != head); 732 return true; 733 } 734 735 static int __buffer_migrate_page(struct address_space *mapping, 736 struct page *newpage, struct page *page, enum migrate_mode mode, 737 bool check_refs) 738 { 739 struct buffer_head *bh, *head; 740 int rc; 741 int expected_count; 742 743 if (!page_has_buffers(page)) 744 return migrate_page(mapping, newpage, page, mode); 745 746 /* Check whether page does not have extra refs before we do more work */ 747 expected_count = expected_page_refs(mapping, page); 748 if (page_count(page) != expected_count) 749 return -EAGAIN; 750 751 head = page_buffers(page); 752 if (!buffer_migrate_lock_buffers(head, mode)) 753 return -EAGAIN; 754 755 if (check_refs) { 756 bool busy; 757 bool invalidated = false; 758 759 recheck_buffers: 760 busy = false; 761 spin_lock(&mapping->private_lock); 762 bh = head; 763 do { 764 if (atomic_read(&bh->b_count)) { 765 busy = true; 766 break; 767 } 768 bh = bh->b_this_page; 769 } while (bh != head); 770 spin_unlock(&mapping->private_lock); 771 if (busy) { 772 if (invalidated) { 773 rc = -EAGAIN; 774 goto unlock_buffers; 775 } 776 invalidate_bh_lrus(); 777 invalidated = true; 778 goto recheck_buffers; 779 } 780 } 781 782 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 783 if (rc != MIGRATEPAGE_SUCCESS) 784 goto unlock_buffers; 785 786 ClearPagePrivate(page); 787 set_page_private(newpage, page_private(page)); 788 set_page_private(page, 0); 789 put_page(page); 790 get_page(newpage); 791 792 bh = head; 793 do { 794 set_bh_page(bh, newpage, bh_offset(bh)); 795 bh = bh->b_this_page; 796 797 } while (bh != head); 798 799 SetPagePrivate(newpage); 800 801 if (mode != MIGRATE_SYNC_NO_COPY) 802 migrate_page_copy(newpage, page); 803 else 804 migrate_page_states(newpage, page); 805 806 rc = MIGRATEPAGE_SUCCESS; 807 unlock_buffers: 808 bh = head; 809 do { 810 unlock_buffer(bh); 811 bh = bh->b_this_page; 812 813 } while (bh != head); 814 815 return rc; 816 } 817 818 /* 819 * Migration function for pages with buffers. This function can only be used 820 * if the underlying filesystem guarantees that no other references to "page" 821 * exist. For example attached buffer heads are accessed only under page lock. 822 */ 823 int buffer_migrate_page(struct address_space *mapping, 824 struct page *newpage, struct page *page, enum migrate_mode mode) 825 { 826 return __buffer_migrate_page(mapping, newpage, page, mode, false); 827 } 828 EXPORT_SYMBOL(buffer_migrate_page); 829 830 /* 831 * Same as above except that this variant is more careful and checks that there 832 * are also no buffer head references. This function is the right one for 833 * mappings where buffer heads are directly looked up and referenced (such as 834 * block device mappings). 835 */ 836 int buffer_migrate_page_norefs(struct address_space *mapping, 837 struct page *newpage, struct page *page, enum migrate_mode mode) 838 { 839 return __buffer_migrate_page(mapping, newpage, page, mode, true); 840 } 841 #endif 842 843 /* 844 * Writeback a page to clean the dirty state 845 */ 846 static int writeout(struct address_space *mapping, struct page *page) 847 { 848 struct writeback_control wbc = { 849 .sync_mode = WB_SYNC_NONE, 850 .nr_to_write = 1, 851 .range_start = 0, 852 .range_end = LLONG_MAX, 853 .for_reclaim = 1 854 }; 855 int rc; 856 857 if (!mapping->a_ops->writepage) 858 /* No write method for the address space */ 859 return -EINVAL; 860 861 if (!clear_page_dirty_for_io(page)) 862 /* Someone else already triggered a write */ 863 return -EAGAIN; 864 865 /* 866 * A dirty page may imply that the underlying filesystem has 867 * the page on some queue. So the page must be clean for 868 * migration. Writeout may mean we loose the lock and the 869 * page state is no longer what we checked for earlier. 870 * At this point we know that the migration attempt cannot 871 * be successful. 872 */ 873 remove_migration_ptes(page, page, false); 874 875 rc = mapping->a_ops->writepage(page, &wbc); 876 877 if (rc != AOP_WRITEPAGE_ACTIVATE) 878 /* unlocked. Relock */ 879 lock_page(page); 880 881 return (rc < 0) ? -EIO : -EAGAIN; 882 } 883 884 /* 885 * Default handling if a filesystem does not provide a migration function. 886 */ 887 static int fallback_migrate_page(struct address_space *mapping, 888 struct page *newpage, struct page *page, enum migrate_mode mode) 889 { 890 if (PageDirty(page)) { 891 /* Only writeback pages in full synchronous migration */ 892 switch (mode) { 893 case MIGRATE_SYNC: 894 case MIGRATE_SYNC_NO_COPY: 895 break; 896 default: 897 return -EBUSY; 898 } 899 return writeout(mapping, page); 900 } 901 902 /* 903 * Buffers may be managed in a filesystem specific way. 904 * We must have no buffers or drop them. 905 */ 906 if (page_has_private(page) && 907 !try_to_release_page(page, GFP_KERNEL)) 908 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 909 910 return migrate_page(mapping, newpage, page, mode); 911 } 912 913 /* 914 * Move a page to a newly allocated page 915 * The page is locked and all ptes have been successfully removed. 916 * 917 * The new page will have replaced the old page if this function 918 * is successful. 919 * 920 * Return value: 921 * < 0 - error code 922 * MIGRATEPAGE_SUCCESS - success 923 */ 924 static int move_to_new_page(struct page *newpage, struct page *page, 925 enum migrate_mode mode) 926 { 927 struct address_space *mapping; 928 int rc = -EAGAIN; 929 bool is_lru = !__PageMovable(page); 930 931 VM_BUG_ON_PAGE(!PageLocked(page), page); 932 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 933 934 mapping = page_mapping(page); 935 936 if (likely(is_lru)) { 937 if (!mapping) 938 rc = migrate_page(mapping, newpage, page, mode); 939 else if (mapping->a_ops->migratepage) 940 /* 941 * Most pages have a mapping and most filesystems 942 * provide a migratepage callback. Anonymous pages 943 * are part of swap space which also has its own 944 * migratepage callback. This is the most common path 945 * for page migration. 946 */ 947 rc = mapping->a_ops->migratepage(mapping, newpage, 948 page, mode); 949 else 950 rc = fallback_migrate_page(mapping, newpage, 951 page, mode); 952 } else { 953 /* 954 * In case of non-lru page, it could be released after 955 * isolation step. In that case, we shouldn't try migration. 956 */ 957 VM_BUG_ON_PAGE(!PageIsolated(page), page); 958 if (!PageMovable(page)) { 959 rc = MIGRATEPAGE_SUCCESS; 960 __ClearPageIsolated(page); 961 goto out; 962 } 963 964 rc = mapping->a_ops->migratepage(mapping, newpage, 965 page, mode); 966 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 967 !PageIsolated(page)); 968 } 969 970 /* 971 * When successful, old pagecache page->mapping must be cleared before 972 * page is freed; but stats require that PageAnon be left as PageAnon. 973 */ 974 if (rc == MIGRATEPAGE_SUCCESS) { 975 if (__PageMovable(page)) { 976 VM_BUG_ON_PAGE(!PageIsolated(page), page); 977 978 /* 979 * We clear PG_movable under page_lock so any compactor 980 * cannot try to migrate this page. 981 */ 982 __ClearPageIsolated(page); 983 } 984 985 /* 986 * Anonymous and movable page->mapping will be cleard by 987 * free_pages_prepare so don't reset it here for keeping 988 * the type to work PageAnon, for example. 989 */ 990 if (!PageMappingFlags(page)) 991 page->mapping = NULL; 992 993 if (likely(!is_zone_device_page(newpage))) 994 flush_dcache_page(newpage); 995 996 } 997 out: 998 return rc; 999 } 1000 1001 static int __unmap_and_move(struct page *page, struct page *newpage, 1002 int force, enum migrate_mode mode) 1003 { 1004 int rc = -EAGAIN; 1005 int page_was_mapped = 0; 1006 struct anon_vma *anon_vma = NULL; 1007 bool is_lru = !__PageMovable(page); 1008 1009 if (!trylock_page(page)) { 1010 if (!force || mode == MIGRATE_ASYNC) 1011 goto out; 1012 1013 /* 1014 * It's not safe for direct compaction to call lock_page. 1015 * For example, during page readahead pages are added locked 1016 * to the LRU. Later, when the IO completes the pages are 1017 * marked uptodate and unlocked. However, the queueing 1018 * could be merging multiple pages for one bio (e.g. 1019 * mpage_readpages). If an allocation happens for the 1020 * second or third page, the process can end up locking 1021 * the same page twice and deadlocking. Rather than 1022 * trying to be clever about what pages can be locked, 1023 * avoid the use of lock_page for direct compaction 1024 * altogether. 1025 */ 1026 if (current->flags & PF_MEMALLOC) 1027 goto out; 1028 1029 lock_page(page); 1030 } 1031 1032 if (PageWriteback(page)) { 1033 /* 1034 * Only in the case of a full synchronous migration is it 1035 * necessary to wait for PageWriteback. In the async case, 1036 * the retry loop is too short and in the sync-light case, 1037 * the overhead of stalling is too much 1038 */ 1039 switch (mode) { 1040 case MIGRATE_SYNC: 1041 case MIGRATE_SYNC_NO_COPY: 1042 break; 1043 default: 1044 rc = -EBUSY; 1045 goto out_unlock; 1046 } 1047 if (!force) 1048 goto out_unlock; 1049 wait_on_page_writeback(page); 1050 } 1051 1052 /* 1053 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1054 * we cannot notice that anon_vma is freed while we migrates a page. 1055 * This get_anon_vma() delays freeing anon_vma pointer until the end 1056 * of migration. File cache pages are no problem because of page_lock() 1057 * File Caches may use write_page() or lock_page() in migration, then, 1058 * just care Anon page here. 1059 * 1060 * Only page_get_anon_vma() understands the subtleties of 1061 * getting a hold on an anon_vma from outside one of its mms. 1062 * But if we cannot get anon_vma, then we won't need it anyway, 1063 * because that implies that the anon page is no longer mapped 1064 * (and cannot be remapped so long as we hold the page lock). 1065 */ 1066 if (PageAnon(page) && !PageKsm(page)) 1067 anon_vma = page_get_anon_vma(page); 1068 1069 /* 1070 * Block others from accessing the new page when we get around to 1071 * establishing additional references. We are usually the only one 1072 * holding a reference to newpage at this point. We used to have a BUG 1073 * here if trylock_page(newpage) fails, but would like to allow for 1074 * cases where there might be a race with the previous use of newpage. 1075 * This is much like races on refcount of oldpage: just don't BUG(). 1076 */ 1077 if (unlikely(!trylock_page(newpage))) 1078 goto out_unlock; 1079 1080 if (unlikely(!is_lru)) { 1081 rc = move_to_new_page(newpage, page, mode); 1082 goto out_unlock_both; 1083 } 1084 1085 /* 1086 * Corner case handling: 1087 * 1. When a new swap-cache page is read into, it is added to the LRU 1088 * and treated as swapcache but it has no rmap yet. 1089 * Calling try_to_unmap() against a page->mapping==NULL page will 1090 * trigger a BUG. So handle it here. 1091 * 2. An orphaned page (see truncate_complete_page) might have 1092 * fs-private metadata. The page can be picked up due to memory 1093 * offlining. Everywhere else except page reclaim, the page is 1094 * invisible to the vm, so the page can not be migrated. So try to 1095 * free the metadata, so the page can be freed. 1096 */ 1097 if (!page->mapping) { 1098 VM_BUG_ON_PAGE(PageAnon(page), page); 1099 if (page_has_private(page)) { 1100 try_to_free_buffers(page); 1101 goto out_unlock_both; 1102 } 1103 } else if (page_mapped(page)) { 1104 /* Establish migration ptes */ 1105 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1106 page); 1107 try_to_unmap(page, 1108 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1109 page_was_mapped = 1; 1110 } 1111 1112 if (!page_mapped(page)) 1113 rc = move_to_new_page(newpage, page, mode); 1114 1115 if (page_was_mapped) 1116 remove_migration_ptes(page, 1117 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1118 1119 out_unlock_both: 1120 unlock_page(newpage); 1121 out_unlock: 1122 /* Drop an anon_vma reference if we took one */ 1123 if (anon_vma) 1124 put_anon_vma(anon_vma); 1125 unlock_page(page); 1126 out: 1127 /* 1128 * If migration is successful, decrease refcount of the newpage 1129 * which will not free the page because new page owner increased 1130 * refcounter. As well, if it is LRU page, add the page to LRU 1131 * list in here. Use the old state of the isolated source page to 1132 * determine if we migrated a LRU page. newpage was already unlocked 1133 * and possibly modified by its owner - don't rely on the page 1134 * state. 1135 */ 1136 if (rc == MIGRATEPAGE_SUCCESS) { 1137 if (unlikely(!is_lru)) 1138 put_page(newpage); 1139 else 1140 putback_lru_page(newpage); 1141 } 1142 1143 return rc; 1144 } 1145 1146 /* 1147 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1148 * around it. 1149 */ 1150 #if defined(CONFIG_ARM) && \ 1151 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1152 #define ICE_noinline noinline 1153 #else 1154 #define ICE_noinline 1155 #endif 1156 1157 /* 1158 * Obtain the lock on page, remove all ptes and migrate the page 1159 * to the newly allocated page in newpage. 1160 */ 1161 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1162 free_page_t put_new_page, 1163 unsigned long private, struct page *page, 1164 int force, enum migrate_mode mode, 1165 enum migrate_reason reason) 1166 { 1167 int rc = MIGRATEPAGE_SUCCESS; 1168 struct page *newpage; 1169 1170 if (!thp_migration_supported() && PageTransHuge(page)) 1171 return -ENOMEM; 1172 1173 newpage = get_new_page(page, private); 1174 if (!newpage) 1175 return -ENOMEM; 1176 1177 if (page_count(page) == 1) { 1178 /* page was freed from under us. So we are done. */ 1179 ClearPageActive(page); 1180 ClearPageUnevictable(page); 1181 if (unlikely(__PageMovable(page))) { 1182 lock_page(page); 1183 if (!PageMovable(page)) 1184 __ClearPageIsolated(page); 1185 unlock_page(page); 1186 } 1187 if (put_new_page) 1188 put_new_page(newpage, private); 1189 else 1190 put_page(newpage); 1191 goto out; 1192 } 1193 1194 rc = __unmap_and_move(page, newpage, force, mode); 1195 if (rc == MIGRATEPAGE_SUCCESS) 1196 set_page_owner_migrate_reason(newpage, reason); 1197 1198 out: 1199 if (rc != -EAGAIN) { 1200 /* 1201 * A page that has been migrated has all references 1202 * removed and will be freed. A page that has not been 1203 * migrated will have kepts its references and be 1204 * restored. 1205 */ 1206 list_del(&page->lru); 1207 1208 /* 1209 * Compaction can migrate also non-LRU pages which are 1210 * not accounted to NR_ISOLATED_*. They can be recognized 1211 * as __PageMovable 1212 */ 1213 if (likely(!__PageMovable(page))) 1214 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1215 page_is_file_cache(page), -hpage_nr_pages(page)); 1216 } 1217 1218 /* 1219 * If migration is successful, releases reference grabbed during 1220 * isolation. Otherwise, restore the page to right list unless 1221 * we want to retry. 1222 */ 1223 if (rc == MIGRATEPAGE_SUCCESS) { 1224 put_page(page); 1225 if (reason == MR_MEMORY_FAILURE) { 1226 /* 1227 * Set PG_HWPoison on just freed page 1228 * intentionally. Although it's rather weird, 1229 * it's how HWPoison flag works at the moment. 1230 */ 1231 if (set_hwpoison_free_buddy_page(page)) 1232 num_poisoned_pages_inc(); 1233 } 1234 } else { 1235 if (rc != -EAGAIN) { 1236 if (likely(!__PageMovable(page))) { 1237 putback_lru_page(page); 1238 goto put_new; 1239 } 1240 1241 lock_page(page); 1242 if (PageMovable(page)) 1243 putback_movable_page(page); 1244 else 1245 __ClearPageIsolated(page); 1246 unlock_page(page); 1247 put_page(page); 1248 } 1249 put_new: 1250 if (put_new_page) 1251 put_new_page(newpage, private); 1252 else 1253 put_page(newpage); 1254 } 1255 1256 return rc; 1257 } 1258 1259 /* 1260 * Counterpart of unmap_and_move_page() for hugepage migration. 1261 * 1262 * This function doesn't wait the completion of hugepage I/O 1263 * because there is no race between I/O and migration for hugepage. 1264 * Note that currently hugepage I/O occurs only in direct I/O 1265 * where no lock is held and PG_writeback is irrelevant, 1266 * and writeback status of all subpages are counted in the reference 1267 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1268 * under direct I/O, the reference of the head page is 512 and a bit more.) 1269 * This means that when we try to migrate hugepage whose subpages are 1270 * doing direct I/O, some references remain after try_to_unmap() and 1271 * hugepage migration fails without data corruption. 1272 * 1273 * There is also no race when direct I/O is issued on the page under migration, 1274 * because then pte is replaced with migration swap entry and direct I/O code 1275 * will wait in the page fault for migration to complete. 1276 */ 1277 static int unmap_and_move_huge_page(new_page_t get_new_page, 1278 free_page_t put_new_page, unsigned long private, 1279 struct page *hpage, int force, 1280 enum migrate_mode mode, int reason) 1281 { 1282 int rc = -EAGAIN; 1283 int page_was_mapped = 0; 1284 struct page *new_hpage; 1285 struct anon_vma *anon_vma = NULL; 1286 1287 /* 1288 * Migratability of hugepages depends on architectures and their size. 1289 * This check is necessary because some callers of hugepage migration 1290 * like soft offline and memory hotremove don't walk through page 1291 * tables or check whether the hugepage is pmd-based or not before 1292 * kicking migration. 1293 */ 1294 if (!hugepage_migration_supported(page_hstate(hpage))) { 1295 putback_active_hugepage(hpage); 1296 return -ENOSYS; 1297 } 1298 1299 new_hpage = get_new_page(hpage, private); 1300 if (!new_hpage) 1301 return -ENOMEM; 1302 1303 if (!trylock_page(hpage)) { 1304 if (!force) 1305 goto out; 1306 switch (mode) { 1307 case MIGRATE_SYNC: 1308 case MIGRATE_SYNC_NO_COPY: 1309 break; 1310 default: 1311 goto out; 1312 } 1313 lock_page(hpage); 1314 } 1315 1316 /* 1317 * Check for pages which are in the process of being freed. Without 1318 * page_mapping() set, hugetlbfs specific move page routine will not 1319 * be called and we could leak usage counts for subpools. 1320 */ 1321 if (page_private(hpage) && !page_mapping(hpage)) { 1322 rc = -EBUSY; 1323 goto out_unlock; 1324 } 1325 1326 if (PageAnon(hpage)) 1327 anon_vma = page_get_anon_vma(hpage); 1328 1329 if (unlikely(!trylock_page(new_hpage))) 1330 goto put_anon; 1331 1332 if (page_mapped(hpage)) { 1333 try_to_unmap(hpage, 1334 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1335 page_was_mapped = 1; 1336 } 1337 1338 if (!page_mapped(hpage)) 1339 rc = move_to_new_page(new_hpage, hpage, mode); 1340 1341 if (page_was_mapped) 1342 remove_migration_ptes(hpage, 1343 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1344 1345 unlock_page(new_hpage); 1346 1347 put_anon: 1348 if (anon_vma) 1349 put_anon_vma(anon_vma); 1350 1351 if (rc == MIGRATEPAGE_SUCCESS) { 1352 move_hugetlb_state(hpage, new_hpage, reason); 1353 put_new_page = NULL; 1354 } 1355 1356 out_unlock: 1357 unlock_page(hpage); 1358 out: 1359 if (rc != -EAGAIN) 1360 putback_active_hugepage(hpage); 1361 1362 /* 1363 * If migration was not successful and there's a freeing callback, use 1364 * it. Otherwise, put_page() will drop the reference grabbed during 1365 * isolation. 1366 */ 1367 if (put_new_page) 1368 put_new_page(new_hpage, private); 1369 else 1370 putback_active_hugepage(new_hpage); 1371 1372 return rc; 1373 } 1374 1375 /* 1376 * migrate_pages - migrate the pages specified in a list, to the free pages 1377 * supplied as the target for the page migration 1378 * 1379 * @from: The list of pages to be migrated. 1380 * @get_new_page: The function used to allocate free pages to be used 1381 * as the target of the page migration. 1382 * @put_new_page: The function used to free target pages if migration 1383 * fails, or NULL if no special handling is necessary. 1384 * @private: Private data to be passed on to get_new_page() 1385 * @mode: The migration mode that specifies the constraints for 1386 * page migration, if any. 1387 * @reason: The reason for page migration. 1388 * 1389 * The function returns after 10 attempts or if no pages are movable any more 1390 * because the list has become empty or no retryable pages exist any more. 1391 * The caller should call putback_movable_pages() to return pages to the LRU 1392 * or free list only if ret != 0. 1393 * 1394 * Returns the number of pages that were not migrated, or an error code. 1395 */ 1396 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1397 free_page_t put_new_page, unsigned long private, 1398 enum migrate_mode mode, int reason) 1399 { 1400 int retry = 1; 1401 int nr_failed = 0; 1402 int nr_succeeded = 0; 1403 int pass = 0; 1404 struct page *page; 1405 struct page *page2; 1406 int swapwrite = current->flags & PF_SWAPWRITE; 1407 int rc; 1408 1409 if (!swapwrite) 1410 current->flags |= PF_SWAPWRITE; 1411 1412 for(pass = 0; pass < 10 && retry; pass++) { 1413 retry = 0; 1414 1415 list_for_each_entry_safe(page, page2, from, lru) { 1416 retry: 1417 cond_resched(); 1418 1419 if (PageHuge(page)) 1420 rc = unmap_and_move_huge_page(get_new_page, 1421 put_new_page, private, page, 1422 pass > 2, mode, reason); 1423 else 1424 rc = unmap_and_move(get_new_page, put_new_page, 1425 private, page, pass > 2, mode, 1426 reason); 1427 1428 switch(rc) { 1429 case -ENOMEM: 1430 /* 1431 * THP migration might be unsupported or the 1432 * allocation could've failed so we should 1433 * retry on the same page with the THP split 1434 * to base pages. 1435 * 1436 * Head page is retried immediately and tail 1437 * pages are added to the tail of the list so 1438 * we encounter them after the rest of the list 1439 * is processed. 1440 */ 1441 if (PageTransHuge(page) && !PageHuge(page)) { 1442 lock_page(page); 1443 rc = split_huge_page_to_list(page, from); 1444 unlock_page(page); 1445 if (!rc) { 1446 list_safe_reset_next(page, page2, lru); 1447 goto retry; 1448 } 1449 } 1450 nr_failed++; 1451 goto out; 1452 case -EAGAIN: 1453 retry++; 1454 break; 1455 case MIGRATEPAGE_SUCCESS: 1456 nr_succeeded++; 1457 break; 1458 default: 1459 /* 1460 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1461 * unlike -EAGAIN case, the failed page is 1462 * removed from migration page list and not 1463 * retried in the next outer loop. 1464 */ 1465 nr_failed++; 1466 break; 1467 } 1468 } 1469 } 1470 nr_failed += retry; 1471 rc = nr_failed; 1472 out: 1473 if (nr_succeeded) 1474 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1475 if (nr_failed) 1476 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1477 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1478 1479 if (!swapwrite) 1480 current->flags &= ~PF_SWAPWRITE; 1481 1482 return rc; 1483 } 1484 1485 #ifdef CONFIG_NUMA 1486 1487 static int store_status(int __user *status, int start, int value, int nr) 1488 { 1489 while (nr-- > 0) { 1490 if (put_user(value, status + start)) 1491 return -EFAULT; 1492 start++; 1493 } 1494 1495 return 0; 1496 } 1497 1498 static int do_move_pages_to_node(struct mm_struct *mm, 1499 struct list_head *pagelist, int node) 1500 { 1501 int err; 1502 1503 if (list_empty(pagelist)) 1504 return 0; 1505 1506 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1507 MIGRATE_SYNC, MR_SYSCALL); 1508 if (err) 1509 putback_movable_pages(pagelist); 1510 return err; 1511 } 1512 1513 /* 1514 * Resolves the given address to a struct page, isolates it from the LRU and 1515 * puts it to the given pagelist. 1516 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1517 * queued or the page doesn't need to be migrated because it is already on 1518 * the target node 1519 */ 1520 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1521 int node, struct list_head *pagelist, bool migrate_all) 1522 { 1523 struct vm_area_struct *vma; 1524 struct page *page; 1525 unsigned int follflags; 1526 int err; 1527 1528 down_read(&mm->mmap_sem); 1529 err = -EFAULT; 1530 vma = find_vma(mm, addr); 1531 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1532 goto out; 1533 1534 /* FOLL_DUMP to ignore special (like zero) pages */ 1535 follflags = FOLL_GET | FOLL_DUMP; 1536 page = follow_page(vma, addr, follflags); 1537 1538 err = PTR_ERR(page); 1539 if (IS_ERR(page)) 1540 goto out; 1541 1542 err = -ENOENT; 1543 if (!page) 1544 goto out; 1545 1546 err = 0; 1547 if (page_to_nid(page) == node) 1548 goto out_putpage; 1549 1550 err = -EACCES; 1551 if (page_mapcount(page) > 1 && !migrate_all) 1552 goto out_putpage; 1553 1554 if (PageHuge(page)) { 1555 if (PageHead(page)) { 1556 isolate_huge_page(page, pagelist); 1557 err = 0; 1558 } 1559 } else { 1560 struct page *head; 1561 1562 head = compound_head(page); 1563 err = isolate_lru_page(head); 1564 if (err) 1565 goto out_putpage; 1566 1567 err = 0; 1568 list_add_tail(&head->lru, pagelist); 1569 mod_node_page_state(page_pgdat(head), 1570 NR_ISOLATED_ANON + page_is_file_cache(head), 1571 hpage_nr_pages(head)); 1572 } 1573 out_putpage: 1574 /* 1575 * Either remove the duplicate refcount from 1576 * isolate_lru_page() or drop the page ref if it was 1577 * not isolated. 1578 */ 1579 put_page(page); 1580 out: 1581 up_read(&mm->mmap_sem); 1582 return err; 1583 } 1584 1585 /* 1586 * Migrate an array of page address onto an array of nodes and fill 1587 * the corresponding array of status. 1588 */ 1589 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1590 unsigned long nr_pages, 1591 const void __user * __user *pages, 1592 const int __user *nodes, 1593 int __user *status, int flags) 1594 { 1595 int current_node = NUMA_NO_NODE; 1596 LIST_HEAD(pagelist); 1597 int start, i; 1598 int err = 0, err1; 1599 1600 migrate_prep(); 1601 1602 for (i = start = 0; i < nr_pages; i++) { 1603 const void __user *p; 1604 unsigned long addr; 1605 int node; 1606 1607 err = -EFAULT; 1608 if (get_user(p, pages + i)) 1609 goto out_flush; 1610 if (get_user(node, nodes + i)) 1611 goto out_flush; 1612 addr = (unsigned long)p; 1613 1614 err = -ENODEV; 1615 if (node < 0 || node >= MAX_NUMNODES) 1616 goto out_flush; 1617 if (!node_state(node, N_MEMORY)) 1618 goto out_flush; 1619 1620 err = -EACCES; 1621 if (!node_isset(node, task_nodes)) 1622 goto out_flush; 1623 1624 if (current_node == NUMA_NO_NODE) { 1625 current_node = node; 1626 start = i; 1627 } else if (node != current_node) { 1628 err = do_move_pages_to_node(mm, &pagelist, current_node); 1629 if (err) 1630 goto out; 1631 err = store_status(status, start, current_node, i - start); 1632 if (err) 1633 goto out; 1634 start = i; 1635 current_node = node; 1636 } 1637 1638 /* 1639 * Errors in the page lookup or isolation are not fatal and we simply 1640 * report them via status 1641 */ 1642 err = add_page_for_migration(mm, addr, current_node, 1643 &pagelist, flags & MPOL_MF_MOVE_ALL); 1644 if (!err) 1645 continue; 1646 1647 err = store_status(status, i, err, 1); 1648 if (err) 1649 goto out_flush; 1650 1651 err = do_move_pages_to_node(mm, &pagelist, current_node); 1652 if (err) 1653 goto out; 1654 if (i > start) { 1655 err = store_status(status, start, current_node, i - start); 1656 if (err) 1657 goto out; 1658 } 1659 current_node = NUMA_NO_NODE; 1660 } 1661 out_flush: 1662 if (list_empty(&pagelist)) 1663 return err; 1664 1665 /* Make sure we do not overwrite the existing error */ 1666 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1667 if (!err1) 1668 err1 = store_status(status, start, current_node, i - start); 1669 if (!err) 1670 err = err1; 1671 out: 1672 return err; 1673 } 1674 1675 /* 1676 * Determine the nodes of an array of pages and store it in an array of status. 1677 */ 1678 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1679 const void __user **pages, int *status) 1680 { 1681 unsigned long i; 1682 1683 down_read(&mm->mmap_sem); 1684 1685 for (i = 0; i < nr_pages; i++) { 1686 unsigned long addr = (unsigned long)(*pages); 1687 struct vm_area_struct *vma; 1688 struct page *page; 1689 int err = -EFAULT; 1690 1691 vma = find_vma(mm, addr); 1692 if (!vma || addr < vma->vm_start) 1693 goto set_status; 1694 1695 /* FOLL_DUMP to ignore special (like zero) pages */ 1696 page = follow_page(vma, addr, FOLL_DUMP); 1697 1698 err = PTR_ERR(page); 1699 if (IS_ERR(page)) 1700 goto set_status; 1701 1702 err = page ? page_to_nid(page) : -ENOENT; 1703 set_status: 1704 *status = err; 1705 1706 pages++; 1707 status++; 1708 } 1709 1710 up_read(&mm->mmap_sem); 1711 } 1712 1713 /* 1714 * Determine the nodes of a user array of pages and store it in 1715 * a user array of status. 1716 */ 1717 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1718 const void __user * __user *pages, 1719 int __user *status) 1720 { 1721 #define DO_PAGES_STAT_CHUNK_NR 16 1722 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1723 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1724 1725 while (nr_pages) { 1726 unsigned long chunk_nr; 1727 1728 chunk_nr = nr_pages; 1729 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1730 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1731 1732 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1733 break; 1734 1735 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1736 1737 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1738 break; 1739 1740 pages += chunk_nr; 1741 status += chunk_nr; 1742 nr_pages -= chunk_nr; 1743 } 1744 return nr_pages ? -EFAULT : 0; 1745 } 1746 1747 /* 1748 * Move a list of pages in the address space of the currently executing 1749 * process. 1750 */ 1751 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1752 const void __user * __user *pages, 1753 const int __user *nodes, 1754 int __user *status, int flags) 1755 { 1756 struct task_struct *task; 1757 struct mm_struct *mm; 1758 int err; 1759 nodemask_t task_nodes; 1760 1761 /* Check flags */ 1762 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1763 return -EINVAL; 1764 1765 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1766 return -EPERM; 1767 1768 /* Find the mm_struct */ 1769 rcu_read_lock(); 1770 task = pid ? find_task_by_vpid(pid) : current; 1771 if (!task) { 1772 rcu_read_unlock(); 1773 return -ESRCH; 1774 } 1775 get_task_struct(task); 1776 1777 /* 1778 * Check if this process has the right to modify the specified 1779 * process. Use the regular "ptrace_may_access()" checks. 1780 */ 1781 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1782 rcu_read_unlock(); 1783 err = -EPERM; 1784 goto out; 1785 } 1786 rcu_read_unlock(); 1787 1788 err = security_task_movememory(task); 1789 if (err) 1790 goto out; 1791 1792 task_nodes = cpuset_mems_allowed(task); 1793 mm = get_task_mm(task); 1794 put_task_struct(task); 1795 1796 if (!mm) 1797 return -EINVAL; 1798 1799 if (nodes) 1800 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1801 nodes, status, flags); 1802 else 1803 err = do_pages_stat(mm, nr_pages, pages, status); 1804 1805 mmput(mm); 1806 return err; 1807 1808 out: 1809 put_task_struct(task); 1810 return err; 1811 } 1812 1813 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1814 const void __user * __user *, pages, 1815 const int __user *, nodes, 1816 int __user *, status, int, flags) 1817 { 1818 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1819 } 1820 1821 #ifdef CONFIG_COMPAT 1822 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1823 compat_uptr_t __user *, pages32, 1824 const int __user *, nodes, 1825 int __user *, status, 1826 int, flags) 1827 { 1828 const void __user * __user *pages; 1829 int i; 1830 1831 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1832 for (i = 0; i < nr_pages; i++) { 1833 compat_uptr_t p; 1834 1835 if (get_user(p, pages32 + i) || 1836 put_user(compat_ptr(p), pages + i)) 1837 return -EFAULT; 1838 } 1839 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1840 } 1841 #endif /* CONFIG_COMPAT */ 1842 1843 #ifdef CONFIG_NUMA_BALANCING 1844 /* 1845 * Returns true if this is a safe migration target node for misplaced NUMA 1846 * pages. Currently it only checks the watermarks which crude 1847 */ 1848 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1849 unsigned long nr_migrate_pages) 1850 { 1851 int z; 1852 1853 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1854 struct zone *zone = pgdat->node_zones + z; 1855 1856 if (!populated_zone(zone)) 1857 continue; 1858 1859 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1860 if (!zone_watermark_ok(zone, 0, 1861 high_wmark_pages(zone) + 1862 nr_migrate_pages, 1863 0, 0)) 1864 continue; 1865 return true; 1866 } 1867 return false; 1868 } 1869 1870 static struct page *alloc_misplaced_dst_page(struct page *page, 1871 unsigned long data) 1872 { 1873 int nid = (int) data; 1874 struct page *newpage; 1875 1876 newpage = __alloc_pages_node(nid, 1877 (GFP_HIGHUSER_MOVABLE | 1878 __GFP_THISNODE | __GFP_NOMEMALLOC | 1879 __GFP_NORETRY | __GFP_NOWARN) & 1880 ~__GFP_RECLAIM, 0); 1881 1882 return newpage; 1883 } 1884 1885 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1886 { 1887 int page_lru; 1888 1889 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1890 1891 /* Avoid migrating to a node that is nearly full */ 1892 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1893 return 0; 1894 1895 if (isolate_lru_page(page)) 1896 return 0; 1897 1898 /* 1899 * migrate_misplaced_transhuge_page() skips page migration's usual 1900 * check on page_count(), so we must do it here, now that the page 1901 * has been isolated: a GUP pin, or any other pin, prevents migration. 1902 * The expected page count is 3: 1 for page's mapcount and 1 for the 1903 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1904 */ 1905 if (PageTransHuge(page) && page_count(page) != 3) { 1906 putback_lru_page(page); 1907 return 0; 1908 } 1909 1910 page_lru = page_is_file_cache(page); 1911 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1912 hpage_nr_pages(page)); 1913 1914 /* 1915 * Isolating the page has taken another reference, so the 1916 * caller's reference can be safely dropped without the page 1917 * disappearing underneath us during migration. 1918 */ 1919 put_page(page); 1920 return 1; 1921 } 1922 1923 bool pmd_trans_migrating(pmd_t pmd) 1924 { 1925 struct page *page = pmd_page(pmd); 1926 return PageLocked(page); 1927 } 1928 1929 /* 1930 * Attempt to migrate a misplaced page to the specified destination 1931 * node. Caller is expected to have an elevated reference count on 1932 * the page that will be dropped by this function before returning. 1933 */ 1934 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1935 int node) 1936 { 1937 pg_data_t *pgdat = NODE_DATA(node); 1938 int isolated; 1939 int nr_remaining; 1940 LIST_HEAD(migratepages); 1941 1942 /* 1943 * Don't migrate file pages that are mapped in multiple processes 1944 * with execute permissions as they are probably shared libraries. 1945 */ 1946 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1947 (vma->vm_flags & VM_EXEC)) 1948 goto out; 1949 1950 /* 1951 * Also do not migrate dirty pages as not all filesystems can move 1952 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1953 */ 1954 if (page_is_file_cache(page) && PageDirty(page)) 1955 goto out; 1956 1957 isolated = numamigrate_isolate_page(pgdat, page); 1958 if (!isolated) 1959 goto out; 1960 1961 list_add(&page->lru, &migratepages); 1962 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1963 NULL, node, MIGRATE_ASYNC, 1964 MR_NUMA_MISPLACED); 1965 if (nr_remaining) { 1966 if (!list_empty(&migratepages)) { 1967 list_del(&page->lru); 1968 dec_node_page_state(page, NR_ISOLATED_ANON + 1969 page_is_file_cache(page)); 1970 putback_lru_page(page); 1971 } 1972 isolated = 0; 1973 } else 1974 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1975 BUG_ON(!list_empty(&migratepages)); 1976 return isolated; 1977 1978 out: 1979 put_page(page); 1980 return 0; 1981 } 1982 #endif /* CONFIG_NUMA_BALANCING */ 1983 1984 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1985 /* 1986 * Migrates a THP to a given target node. page must be locked and is unlocked 1987 * before returning. 1988 */ 1989 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1990 struct vm_area_struct *vma, 1991 pmd_t *pmd, pmd_t entry, 1992 unsigned long address, 1993 struct page *page, int node) 1994 { 1995 spinlock_t *ptl; 1996 pg_data_t *pgdat = NODE_DATA(node); 1997 int isolated = 0; 1998 struct page *new_page = NULL; 1999 int page_lru = page_is_file_cache(page); 2000 unsigned long start = address & HPAGE_PMD_MASK; 2001 2002 new_page = alloc_pages_node(node, 2003 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2004 HPAGE_PMD_ORDER); 2005 if (!new_page) 2006 goto out_fail; 2007 prep_transhuge_page(new_page); 2008 2009 isolated = numamigrate_isolate_page(pgdat, page); 2010 if (!isolated) { 2011 put_page(new_page); 2012 goto out_fail; 2013 } 2014 2015 /* Prepare a page as a migration target */ 2016 __SetPageLocked(new_page); 2017 if (PageSwapBacked(page)) 2018 __SetPageSwapBacked(new_page); 2019 2020 /* anon mapping, we can simply copy page->mapping to the new page: */ 2021 new_page->mapping = page->mapping; 2022 new_page->index = page->index; 2023 /* flush the cache before copying using the kernel virtual address */ 2024 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2025 migrate_page_copy(new_page, page); 2026 WARN_ON(PageLRU(new_page)); 2027 2028 /* Recheck the target PMD */ 2029 ptl = pmd_lock(mm, pmd); 2030 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2031 spin_unlock(ptl); 2032 2033 /* Reverse changes made by migrate_page_copy() */ 2034 if (TestClearPageActive(new_page)) 2035 SetPageActive(page); 2036 if (TestClearPageUnevictable(new_page)) 2037 SetPageUnevictable(page); 2038 2039 unlock_page(new_page); 2040 put_page(new_page); /* Free it */ 2041 2042 /* Retake the callers reference and putback on LRU */ 2043 get_page(page); 2044 putback_lru_page(page); 2045 mod_node_page_state(page_pgdat(page), 2046 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2047 2048 goto out_unlock; 2049 } 2050 2051 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2052 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2053 2054 /* 2055 * Overwrite the old entry under pagetable lock and establish 2056 * the new PTE. Any parallel GUP will either observe the old 2057 * page blocking on the page lock, block on the page table 2058 * lock or observe the new page. The SetPageUptodate on the 2059 * new page and page_add_new_anon_rmap guarantee the copy is 2060 * visible before the pagetable update. 2061 */ 2062 page_add_anon_rmap(new_page, vma, start, true); 2063 /* 2064 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2065 * has already been flushed globally. So no TLB can be currently 2066 * caching this non present pmd mapping. There's no need to clear the 2067 * pmd before doing set_pmd_at(), nor to flush the TLB after 2068 * set_pmd_at(). Clearing the pmd here would introduce a race 2069 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2070 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2071 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2072 * pmd. 2073 */ 2074 set_pmd_at(mm, start, pmd, entry); 2075 update_mmu_cache_pmd(vma, address, &entry); 2076 2077 page_ref_unfreeze(page, 2); 2078 mlock_migrate_page(new_page, page); 2079 page_remove_rmap(page, true); 2080 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2081 2082 spin_unlock(ptl); 2083 2084 /* Take an "isolate" reference and put new page on the LRU. */ 2085 get_page(new_page); 2086 putback_lru_page(new_page); 2087 2088 unlock_page(new_page); 2089 unlock_page(page); 2090 put_page(page); /* Drop the rmap reference */ 2091 put_page(page); /* Drop the LRU isolation reference */ 2092 2093 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2094 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2095 2096 mod_node_page_state(page_pgdat(page), 2097 NR_ISOLATED_ANON + page_lru, 2098 -HPAGE_PMD_NR); 2099 return isolated; 2100 2101 out_fail: 2102 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2103 ptl = pmd_lock(mm, pmd); 2104 if (pmd_same(*pmd, entry)) { 2105 entry = pmd_modify(entry, vma->vm_page_prot); 2106 set_pmd_at(mm, start, pmd, entry); 2107 update_mmu_cache_pmd(vma, address, &entry); 2108 } 2109 spin_unlock(ptl); 2110 2111 out_unlock: 2112 unlock_page(page); 2113 put_page(page); 2114 return 0; 2115 } 2116 #endif /* CONFIG_NUMA_BALANCING */ 2117 2118 #endif /* CONFIG_NUMA */ 2119 2120 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2121 struct migrate_vma { 2122 struct vm_area_struct *vma; 2123 unsigned long *dst; 2124 unsigned long *src; 2125 unsigned long cpages; 2126 unsigned long npages; 2127 unsigned long start; 2128 unsigned long end; 2129 }; 2130 2131 static int migrate_vma_collect_hole(unsigned long start, 2132 unsigned long end, 2133 struct mm_walk *walk) 2134 { 2135 struct migrate_vma *migrate = walk->private; 2136 unsigned long addr; 2137 2138 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2139 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2140 migrate->dst[migrate->npages] = 0; 2141 migrate->npages++; 2142 migrate->cpages++; 2143 } 2144 2145 return 0; 2146 } 2147 2148 static int migrate_vma_collect_skip(unsigned long start, 2149 unsigned long end, 2150 struct mm_walk *walk) 2151 { 2152 struct migrate_vma *migrate = walk->private; 2153 unsigned long addr; 2154 2155 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2156 migrate->dst[migrate->npages] = 0; 2157 migrate->src[migrate->npages++] = 0; 2158 } 2159 2160 return 0; 2161 } 2162 2163 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2164 unsigned long start, 2165 unsigned long end, 2166 struct mm_walk *walk) 2167 { 2168 struct migrate_vma *migrate = walk->private; 2169 struct vm_area_struct *vma = walk->vma; 2170 struct mm_struct *mm = vma->vm_mm; 2171 unsigned long addr = start, unmapped = 0; 2172 spinlock_t *ptl; 2173 pte_t *ptep; 2174 2175 again: 2176 if (pmd_none(*pmdp)) 2177 return migrate_vma_collect_hole(start, end, walk); 2178 2179 if (pmd_trans_huge(*pmdp)) { 2180 struct page *page; 2181 2182 ptl = pmd_lock(mm, pmdp); 2183 if (unlikely(!pmd_trans_huge(*pmdp))) { 2184 spin_unlock(ptl); 2185 goto again; 2186 } 2187 2188 page = pmd_page(*pmdp); 2189 if (is_huge_zero_page(page)) { 2190 spin_unlock(ptl); 2191 split_huge_pmd(vma, pmdp, addr); 2192 if (pmd_trans_unstable(pmdp)) 2193 return migrate_vma_collect_skip(start, end, 2194 walk); 2195 } else { 2196 int ret; 2197 2198 get_page(page); 2199 spin_unlock(ptl); 2200 if (unlikely(!trylock_page(page))) 2201 return migrate_vma_collect_skip(start, end, 2202 walk); 2203 ret = split_huge_page(page); 2204 unlock_page(page); 2205 put_page(page); 2206 if (ret) 2207 return migrate_vma_collect_skip(start, end, 2208 walk); 2209 if (pmd_none(*pmdp)) 2210 return migrate_vma_collect_hole(start, end, 2211 walk); 2212 } 2213 } 2214 2215 if (unlikely(pmd_bad(*pmdp))) 2216 return migrate_vma_collect_skip(start, end, walk); 2217 2218 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2219 arch_enter_lazy_mmu_mode(); 2220 2221 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2222 unsigned long mpfn, pfn; 2223 struct page *page; 2224 swp_entry_t entry; 2225 pte_t pte; 2226 2227 pte = *ptep; 2228 pfn = pte_pfn(pte); 2229 2230 if (pte_none(pte)) { 2231 mpfn = MIGRATE_PFN_MIGRATE; 2232 migrate->cpages++; 2233 pfn = 0; 2234 goto next; 2235 } 2236 2237 if (!pte_present(pte)) { 2238 mpfn = pfn = 0; 2239 2240 /* 2241 * Only care about unaddressable device page special 2242 * page table entry. Other special swap entries are not 2243 * migratable, and we ignore regular swapped page. 2244 */ 2245 entry = pte_to_swp_entry(pte); 2246 if (!is_device_private_entry(entry)) 2247 goto next; 2248 2249 page = device_private_entry_to_page(entry); 2250 mpfn = migrate_pfn(page_to_pfn(page))| 2251 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2252 if (is_write_device_private_entry(entry)) 2253 mpfn |= MIGRATE_PFN_WRITE; 2254 } else { 2255 if (is_zero_pfn(pfn)) { 2256 mpfn = MIGRATE_PFN_MIGRATE; 2257 migrate->cpages++; 2258 pfn = 0; 2259 goto next; 2260 } 2261 page = vm_normal_page(migrate->vma, addr, pte); 2262 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2263 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2264 } 2265 2266 /* FIXME support THP */ 2267 if (!page || !page->mapping || PageTransCompound(page)) { 2268 mpfn = pfn = 0; 2269 goto next; 2270 } 2271 pfn = page_to_pfn(page); 2272 2273 /* 2274 * By getting a reference on the page we pin it and that blocks 2275 * any kind of migration. Side effect is that it "freezes" the 2276 * pte. 2277 * 2278 * We drop this reference after isolating the page from the lru 2279 * for non device page (device page are not on the lru and thus 2280 * can't be dropped from it). 2281 */ 2282 get_page(page); 2283 migrate->cpages++; 2284 2285 /* 2286 * Optimize for the common case where page is only mapped once 2287 * in one process. If we can lock the page, then we can safely 2288 * set up a special migration page table entry now. 2289 */ 2290 if (trylock_page(page)) { 2291 pte_t swp_pte; 2292 2293 mpfn |= MIGRATE_PFN_LOCKED; 2294 ptep_get_and_clear(mm, addr, ptep); 2295 2296 /* Setup special migration page table entry */ 2297 entry = make_migration_entry(page, mpfn & 2298 MIGRATE_PFN_WRITE); 2299 swp_pte = swp_entry_to_pte(entry); 2300 if (pte_soft_dirty(pte)) 2301 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2302 set_pte_at(mm, addr, ptep, swp_pte); 2303 2304 /* 2305 * This is like regular unmap: we remove the rmap and 2306 * drop page refcount. Page won't be freed, as we took 2307 * a reference just above. 2308 */ 2309 page_remove_rmap(page, false); 2310 put_page(page); 2311 2312 if (pte_present(pte)) 2313 unmapped++; 2314 } 2315 2316 next: 2317 migrate->dst[migrate->npages] = 0; 2318 migrate->src[migrate->npages++] = mpfn; 2319 } 2320 arch_leave_lazy_mmu_mode(); 2321 pte_unmap_unlock(ptep - 1, ptl); 2322 2323 /* Only flush the TLB if we actually modified any entries */ 2324 if (unmapped) 2325 flush_tlb_range(walk->vma, start, end); 2326 2327 return 0; 2328 } 2329 2330 /* 2331 * migrate_vma_collect() - collect pages over a range of virtual addresses 2332 * @migrate: migrate struct containing all migration information 2333 * 2334 * This will walk the CPU page table. For each virtual address backed by a 2335 * valid page, it updates the src array and takes a reference on the page, in 2336 * order to pin the page until we lock it and unmap it. 2337 */ 2338 static void migrate_vma_collect(struct migrate_vma *migrate) 2339 { 2340 struct mmu_notifier_range range; 2341 struct mm_walk mm_walk; 2342 2343 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2344 mm_walk.pte_entry = NULL; 2345 mm_walk.pte_hole = migrate_vma_collect_hole; 2346 mm_walk.hugetlb_entry = NULL; 2347 mm_walk.test_walk = NULL; 2348 mm_walk.vma = migrate->vma; 2349 mm_walk.mm = migrate->vma->vm_mm; 2350 mm_walk.private = migrate; 2351 2352 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm, 2353 migrate->start, 2354 migrate->end); 2355 mmu_notifier_invalidate_range_start(&range); 2356 walk_page_range(migrate->start, migrate->end, &mm_walk); 2357 mmu_notifier_invalidate_range_end(&range); 2358 2359 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2360 } 2361 2362 /* 2363 * migrate_vma_check_page() - check if page is pinned or not 2364 * @page: struct page to check 2365 * 2366 * Pinned pages cannot be migrated. This is the same test as in 2367 * migrate_page_move_mapping(), except that here we allow migration of a 2368 * ZONE_DEVICE page. 2369 */ 2370 static bool migrate_vma_check_page(struct page *page) 2371 { 2372 /* 2373 * One extra ref because caller holds an extra reference, either from 2374 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2375 * a device page. 2376 */ 2377 int extra = 1; 2378 2379 /* 2380 * FIXME support THP (transparent huge page), it is bit more complex to 2381 * check them than regular pages, because they can be mapped with a pmd 2382 * or with a pte (split pte mapping). 2383 */ 2384 if (PageCompound(page)) 2385 return false; 2386 2387 /* Page from ZONE_DEVICE have one extra reference */ 2388 if (is_zone_device_page(page)) { 2389 /* 2390 * Private page can never be pin as they have no valid pte and 2391 * GUP will fail for those. Yet if there is a pending migration 2392 * a thread might try to wait on the pte migration entry and 2393 * will bump the page reference count. Sadly there is no way to 2394 * differentiate a regular pin from migration wait. Hence to 2395 * avoid 2 racing thread trying to migrate back to CPU to enter 2396 * infinite loop (one stoping migration because the other is 2397 * waiting on pte migration entry). We always return true here. 2398 * 2399 * FIXME proper solution is to rework migration_entry_wait() so 2400 * it does not need to take a reference on page. 2401 */ 2402 return is_device_private_page(page); 2403 } 2404 2405 /* For file back page */ 2406 if (page_mapping(page)) 2407 extra += 1 + page_has_private(page); 2408 2409 if ((page_count(page) - extra) > page_mapcount(page)) 2410 return false; 2411 2412 return true; 2413 } 2414 2415 /* 2416 * migrate_vma_prepare() - lock pages and isolate them from the lru 2417 * @migrate: migrate struct containing all migration information 2418 * 2419 * This locks pages that have been collected by migrate_vma_collect(). Once each 2420 * page is locked it is isolated from the lru (for non-device pages). Finally, 2421 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2422 * migrated by concurrent kernel threads. 2423 */ 2424 static void migrate_vma_prepare(struct migrate_vma *migrate) 2425 { 2426 const unsigned long npages = migrate->npages; 2427 const unsigned long start = migrate->start; 2428 unsigned long addr, i, restore = 0; 2429 bool allow_drain = true; 2430 2431 lru_add_drain(); 2432 2433 for (i = 0; (i < npages) && migrate->cpages; i++) { 2434 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2435 bool remap = true; 2436 2437 if (!page) 2438 continue; 2439 2440 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2441 /* 2442 * Because we are migrating several pages there can be 2443 * a deadlock between 2 concurrent migration where each 2444 * are waiting on each other page lock. 2445 * 2446 * Make migrate_vma() a best effort thing and backoff 2447 * for any page we can not lock right away. 2448 */ 2449 if (!trylock_page(page)) { 2450 migrate->src[i] = 0; 2451 migrate->cpages--; 2452 put_page(page); 2453 continue; 2454 } 2455 remap = false; 2456 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2457 } 2458 2459 /* ZONE_DEVICE pages are not on LRU */ 2460 if (!is_zone_device_page(page)) { 2461 if (!PageLRU(page) && allow_drain) { 2462 /* Drain CPU's pagevec */ 2463 lru_add_drain_all(); 2464 allow_drain = false; 2465 } 2466 2467 if (isolate_lru_page(page)) { 2468 if (remap) { 2469 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2470 migrate->cpages--; 2471 restore++; 2472 } else { 2473 migrate->src[i] = 0; 2474 unlock_page(page); 2475 migrate->cpages--; 2476 put_page(page); 2477 } 2478 continue; 2479 } 2480 2481 /* Drop the reference we took in collect */ 2482 put_page(page); 2483 } 2484 2485 if (!migrate_vma_check_page(page)) { 2486 if (remap) { 2487 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2488 migrate->cpages--; 2489 restore++; 2490 2491 if (!is_zone_device_page(page)) { 2492 get_page(page); 2493 putback_lru_page(page); 2494 } 2495 } else { 2496 migrate->src[i] = 0; 2497 unlock_page(page); 2498 migrate->cpages--; 2499 2500 if (!is_zone_device_page(page)) 2501 putback_lru_page(page); 2502 else 2503 put_page(page); 2504 } 2505 } 2506 } 2507 2508 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2509 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2510 2511 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2512 continue; 2513 2514 remove_migration_pte(page, migrate->vma, addr, page); 2515 2516 migrate->src[i] = 0; 2517 unlock_page(page); 2518 put_page(page); 2519 restore--; 2520 } 2521 } 2522 2523 /* 2524 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2525 * @migrate: migrate struct containing all migration information 2526 * 2527 * Replace page mapping (CPU page table pte) with a special migration pte entry 2528 * and check again if it has been pinned. Pinned pages are restored because we 2529 * cannot migrate them. 2530 * 2531 * This is the last step before we call the device driver callback to allocate 2532 * destination memory and copy contents of original page over to new page. 2533 */ 2534 static void migrate_vma_unmap(struct migrate_vma *migrate) 2535 { 2536 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2537 const unsigned long npages = migrate->npages; 2538 const unsigned long start = migrate->start; 2539 unsigned long addr, i, restore = 0; 2540 2541 for (i = 0; i < npages; i++) { 2542 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2543 2544 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2545 continue; 2546 2547 if (page_mapped(page)) { 2548 try_to_unmap(page, flags); 2549 if (page_mapped(page)) 2550 goto restore; 2551 } 2552 2553 if (migrate_vma_check_page(page)) 2554 continue; 2555 2556 restore: 2557 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2558 migrate->cpages--; 2559 restore++; 2560 } 2561 2562 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2563 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2564 2565 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2566 continue; 2567 2568 remove_migration_ptes(page, page, false); 2569 2570 migrate->src[i] = 0; 2571 unlock_page(page); 2572 restore--; 2573 2574 if (is_zone_device_page(page)) 2575 put_page(page); 2576 else 2577 putback_lru_page(page); 2578 } 2579 } 2580 2581 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2582 unsigned long addr, 2583 struct page *page, 2584 unsigned long *src, 2585 unsigned long *dst) 2586 { 2587 struct vm_area_struct *vma = migrate->vma; 2588 struct mm_struct *mm = vma->vm_mm; 2589 struct mem_cgroup *memcg; 2590 bool flush = false; 2591 spinlock_t *ptl; 2592 pte_t entry; 2593 pgd_t *pgdp; 2594 p4d_t *p4dp; 2595 pud_t *pudp; 2596 pmd_t *pmdp; 2597 pte_t *ptep; 2598 2599 /* Only allow populating anonymous memory */ 2600 if (!vma_is_anonymous(vma)) 2601 goto abort; 2602 2603 pgdp = pgd_offset(mm, addr); 2604 p4dp = p4d_alloc(mm, pgdp, addr); 2605 if (!p4dp) 2606 goto abort; 2607 pudp = pud_alloc(mm, p4dp, addr); 2608 if (!pudp) 2609 goto abort; 2610 pmdp = pmd_alloc(mm, pudp, addr); 2611 if (!pmdp) 2612 goto abort; 2613 2614 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2615 goto abort; 2616 2617 /* 2618 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2619 * pte_offset_map() on pmds where a huge pmd might be created 2620 * from a different thread. 2621 * 2622 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2623 * parallel threads are excluded by other means. 2624 * 2625 * Here we only have down_read(mmap_sem). 2626 */ 2627 if (pte_alloc(mm, pmdp)) 2628 goto abort; 2629 2630 /* See the comment in pte_alloc_one_map() */ 2631 if (unlikely(pmd_trans_unstable(pmdp))) 2632 goto abort; 2633 2634 if (unlikely(anon_vma_prepare(vma))) 2635 goto abort; 2636 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2637 goto abort; 2638 2639 /* 2640 * The memory barrier inside __SetPageUptodate makes sure that 2641 * preceding stores to the page contents become visible before 2642 * the set_pte_at() write. 2643 */ 2644 __SetPageUptodate(page); 2645 2646 if (is_zone_device_page(page)) { 2647 if (is_device_private_page(page)) { 2648 swp_entry_t swp_entry; 2649 2650 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2651 entry = swp_entry_to_pte(swp_entry); 2652 } 2653 } else { 2654 entry = mk_pte(page, vma->vm_page_prot); 2655 if (vma->vm_flags & VM_WRITE) 2656 entry = pte_mkwrite(pte_mkdirty(entry)); 2657 } 2658 2659 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2660 2661 if (pte_present(*ptep)) { 2662 unsigned long pfn = pte_pfn(*ptep); 2663 2664 if (!is_zero_pfn(pfn)) { 2665 pte_unmap_unlock(ptep, ptl); 2666 mem_cgroup_cancel_charge(page, memcg, false); 2667 goto abort; 2668 } 2669 flush = true; 2670 } else if (!pte_none(*ptep)) { 2671 pte_unmap_unlock(ptep, ptl); 2672 mem_cgroup_cancel_charge(page, memcg, false); 2673 goto abort; 2674 } 2675 2676 /* 2677 * Check for usefaultfd but do not deliver the fault. Instead, 2678 * just back off. 2679 */ 2680 if (userfaultfd_missing(vma)) { 2681 pte_unmap_unlock(ptep, ptl); 2682 mem_cgroup_cancel_charge(page, memcg, false); 2683 goto abort; 2684 } 2685 2686 inc_mm_counter(mm, MM_ANONPAGES); 2687 page_add_new_anon_rmap(page, vma, addr, false); 2688 mem_cgroup_commit_charge(page, memcg, false, false); 2689 if (!is_zone_device_page(page)) 2690 lru_cache_add_active_or_unevictable(page, vma); 2691 get_page(page); 2692 2693 if (flush) { 2694 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2695 ptep_clear_flush_notify(vma, addr, ptep); 2696 set_pte_at_notify(mm, addr, ptep, entry); 2697 update_mmu_cache(vma, addr, ptep); 2698 } else { 2699 /* No need to invalidate - it was non-present before */ 2700 set_pte_at(mm, addr, ptep, entry); 2701 update_mmu_cache(vma, addr, ptep); 2702 } 2703 2704 pte_unmap_unlock(ptep, ptl); 2705 *src = MIGRATE_PFN_MIGRATE; 2706 return; 2707 2708 abort: 2709 *src &= ~MIGRATE_PFN_MIGRATE; 2710 } 2711 2712 /* 2713 * migrate_vma_pages() - migrate meta-data from src page to dst page 2714 * @migrate: migrate struct containing all migration information 2715 * 2716 * This migrates struct page meta-data from source struct page to destination 2717 * struct page. This effectively finishes the migration from source page to the 2718 * destination page. 2719 */ 2720 static void migrate_vma_pages(struct migrate_vma *migrate) 2721 { 2722 const unsigned long npages = migrate->npages; 2723 const unsigned long start = migrate->start; 2724 struct mmu_notifier_range range; 2725 unsigned long addr, i; 2726 bool notified = false; 2727 2728 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2729 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2730 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2731 struct address_space *mapping; 2732 int r; 2733 2734 if (!newpage) { 2735 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2736 continue; 2737 } 2738 2739 if (!page) { 2740 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2741 continue; 2742 } 2743 if (!notified) { 2744 notified = true; 2745 2746 mmu_notifier_range_init(&range, 2747 MMU_NOTIFY_CLEAR, 0, 2748 NULL, 2749 migrate->vma->vm_mm, 2750 addr, migrate->end); 2751 mmu_notifier_invalidate_range_start(&range); 2752 } 2753 migrate_vma_insert_page(migrate, addr, newpage, 2754 &migrate->src[i], 2755 &migrate->dst[i]); 2756 continue; 2757 } 2758 2759 mapping = page_mapping(page); 2760 2761 if (is_zone_device_page(newpage)) { 2762 if (is_device_private_page(newpage)) { 2763 /* 2764 * For now only support private anonymous when 2765 * migrating to un-addressable device memory. 2766 */ 2767 if (mapping) { 2768 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2769 continue; 2770 } 2771 } else { 2772 /* 2773 * Other types of ZONE_DEVICE page are not 2774 * supported. 2775 */ 2776 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2777 continue; 2778 } 2779 } 2780 2781 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2782 if (r != MIGRATEPAGE_SUCCESS) 2783 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2784 } 2785 2786 /* 2787 * No need to double call mmu_notifier->invalidate_range() callback as 2788 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2789 * did already call it. 2790 */ 2791 if (notified) 2792 mmu_notifier_invalidate_range_only_end(&range); 2793 } 2794 2795 /* 2796 * migrate_vma_finalize() - restore CPU page table entry 2797 * @migrate: migrate struct containing all migration information 2798 * 2799 * This replaces the special migration pte entry with either a mapping to the 2800 * new page if migration was successful for that page, or to the original page 2801 * otherwise. 2802 * 2803 * This also unlocks the pages and puts them back on the lru, or drops the extra 2804 * refcount, for device pages. 2805 */ 2806 static void migrate_vma_finalize(struct migrate_vma *migrate) 2807 { 2808 const unsigned long npages = migrate->npages; 2809 unsigned long i; 2810 2811 for (i = 0; i < npages; i++) { 2812 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2813 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2814 2815 if (!page) { 2816 if (newpage) { 2817 unlock_page(newpage); 2818 put_page(newpage); 2819 } 2820 continue; 2821 } 2822 2823 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2824 if (newpage) { 2825 unlock_page(newpage); 2826 put_page(newpage); 2827 } 2828 newpage = page; 2829 } 2830 2831 remove_migration_ptes(page, newpage, false); 2832 unlock_page(page); 2833 migrate->cpages--; 2834 2835 if (is_zone_device_page(page)) 2836 put_page(page); 2837 else 2838 putback_lru_page(page); 2839 2840 if (newpage != page) { 2841 unlock_page(newpage); 2842 if (is_zone_device_page(newpage)) 2843 put_page(newpage); 2844 else 2845 putback_lru_page(newpage); 2846 } 2847 } 2848 } 2849 2850 /* 2851 * migrate_vma() - migrate a range of memory inside vma 2852 * 2853 * @ops: migration callback for allocating destination memory and copying 2854 * @vma: virtual memory area containing the range to be migrated 2855 * @start: start address of the range to migrate (inclusive) 2856 * @end: end address of the range to migrate (exclusive) 2857 * @src: array of hmm_pfn_t containing source pfns 2858 * @dst: array of hmm_pfn_t containing destination pfns 2859 * @private: pointer passed back to each of the callback 2860 * Returns: 0 on success, error code otherwise 2861 * 2862 * This function tries to migrate a range of memory virtual address range, using 2863 * callbacks to allocate and copy memory from source to destination. First it 2864 * collects all the pages backing each virtual address in the range, saving this 2865 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2866 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2867 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2868 * in the corresponding src array entry. It then restores any pages that are 2869 * pinned, by remapping and unlocking those pages. 2870 * 2871 * At this point it calls the alloc_and_copy() callback. For documentation on 2872 * what is expected from that callback, see struct migrate_vma_ops comments in 2873 * include/linux/migrate.h 2874 * 2875 * After the alloc_and_copy() callback, this function goes over each entry in 2876 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2877 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2878 * then the function tries to migrate struct page information from the source 2879 * struct page to the destination struct page. If it fails to migrate the struct 2880 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2881 * array. 2882 * 2883 * At this point all successfully migrated pages have an entry in the src 2884 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2885 * array entry with MIGRATE_PFN_VALID flag set. 2886 * 2887 * It then calls the finalize_and_map() callback. See comments for "struct 2888 * migrate_vma_ops", in include/linux/migrate.h for details about 2889 * finalize_and_map() behavior. 2890 * 2891 * After the finalize_and_map() callback, for successfully migrated pages, this 2892 * function updates the CPU page table to point to new pages, otherwise it 2893 * restores the CPU page table to point to the original source pages. 2894 * 2895 * Function returns 0 after the above steps, even if no pages were migrated 2896 * (The function only returns an error if any of the arguments are invalid.) 2897 * 2898 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2899 * unsigned long entries. 2900 */ 2901 int migrate_vma(const struct migrate_vma_ops *ops, 2902 struct vm_area_struct *vma, 2903 unsigned long start, 2904 unsigned long end, 2905 unsigned long *src, 2906 unsigned long *dst, 2907 void *private) 2908 { 2909 struct migrate_vma migrate; 2910 2911 /* Sanity check the arguments */ 2912 start &= PAGE_MASK; 2913 end &= PAGE_MASK; 2914 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2915 vma_is_dax(vma)) 2916 return -EINVAL; 2917 if (start < vma->vm_start || start >= vma->vm_end) 2918 return -EINVAL; 2919 if (end <= vma->vm_start || end > vma->vm_end) 2920 return -EINVAL; 2921 if (!ops || !src || !dst || start >= end) 2922 return -EINVAL; 2923 2924 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2925 migrate.src = src; 2926 migrate.dst = dst; 2927 migrate.start = start; 2928 migrate.npages = 0; 2929 migrate.cpages = 0; 2930 migrate.end = end; 2931 migrate.vma = vma; 2932 2933 /* Collect, and try to unmap source pages */ 2934 migrate_vma_collect(&migrate); 2935 if (!migrate.cpages) 2936 return 0; 2937 2938 /* Lock and isolate page */ 2939 migrate_vma_prepare(&migrate); 2940 if (!migrate.cpages) 2941 return 0; 2942 2943 /* Unmap pages */ 2944 migrate_vma_unmap(&migrate); 2945 if (!migrate.cpages) 2946 return 0; 2947 2948 /* 2949 * At this point pages are locked and unmapped, and thus they have 2950 * stable content and can safely be copied to destination memory that 2951 * is allocated by the callback. 2952 * 2953 * Note that migration can fail in migrate_vma_struct_page() for each 2954 * individual page. 2955 */ 2956 ops->alloc_and_copy(vma, src, dst, start, end, private); 2957 2958 /* This does the real migration of struct page */ 2959 migrate_vma_pages(&migrate); 2960 2961 ops->finalize_and_map(vma, src, dst, start, end, private); 2962 2963 /* Unlock and remap pages */ 2964 migrate_vma_finalize(&migrate); 2965 2966 return 0; 2967 } 2968 EXPORT_SYMBOL(migrate_vma); 2969 #endif /* defined(MIGRATE_VMA_HELPER) */ 2970