xref: /openbmc/linux/mm/migrate.c (revision 4da722ca)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44 
45 #include <asm/tlbflush.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
49 
50 #include "internal.h"
51 
52 /*
53  * migrate_prep() needs to be called before we start compiling a list of pages
54  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55  * undesirable, use migrate_prep_local()
56  */
57 int migrate_prep(void)
58 {
59 	/*
60 	 * Clear the LRU lists so pages can be isolated.
61 	 * Note that pages may be moved off the LRU after we have
62 	 * drained them. Those pages will fail to migrate like other
63 	 * pages that may be busy.
64 	 */
65 	lru_add_drain_all();
66 
67 	return 0;
68 }
69 
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
72 {
73 	lru_add_drain();
74 
75 	return 0;
76 }
77 
78 int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 {
80 	struct address_space *mapping;
81 
82 	/*
83 	 * Avoid burning cycles with pages that are yet under __free_pages(),
84 	 * or just got freed under us.
85 	 *
86 	 * In case we 'win' a race for a movable page being freed under us and
87 	 * raise its refcount preventing __free_pages() from doing its job
88 	 * the put_page() at the end of this block will take care of
89 	 * release this page, thus avoiding a nasty leakage.
90 	 */
91 	if (unlikely(!get_page_unless_zero(page)))
92 		goto out;
93 
94 	/*
95 	 * Check PageMovable before holding a PG_lock because page's owner
96 	 * assumes anybody doesn't touch PG_lock of newly allocated page
97 	 * so unconditionally grapping the lock ruins page's owner side.
98 	 */
99 	if (unlikely(!__PageMovable(page)))
100 		goto out_putpage;
101 	/*
102 	 * As movable pages are not isolated from LRU lists, concurrent
103 	 * compaction threads can race against page migration functions
104 	 * as well as race against the releasing a page.
105 	 *
106 	 * In order to avoid having an already isolated movable page
107 	 * being (wrongly) re-isolated while it is under migration,
108 	 * or to avoid attempting to isolate pages being released,
109 	 * lets be sure we have the page lock
110 	 * before proceeding with the movable page isolation steps.
111 	 */
112 	if (unlikely(!trylock_page(page)))
113 		goto out_putpage;
114 
115 	if (!PageMovable(page) || PageIsolated(page))
116 		goto out_no_isolated;
117 
118 	mapping = page_mapping(page);
119 	VM_BUG_ON_PAGE(!mapping, page);
120 
121 	if (!mapping->a_ops->isolate_page(page, mode))
122 		goto out_no_isolated;
123 
124 	/* Driver shouldn't use PG_isolated bit of page->flags */
125 	WARN_ON_ONCE(PageIsolated(page));
126 	__SetPageIsolated(page);
127 	unlock_page(page);
128 
129 	return 0;
130 
131 out_no_isolated:
132 	unlock_page(page);
133 out_putpage:
134 	put_page(page);
135 out:
136 	return -EBUSY;
137 }
138 
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
141 {
142 	struct address_space *mapping;
143 
144 	VM_BUG_ON_PAGE(!PageLocked(page), page);
145 	VM_BUG_ON_PAGE(!PageMovable(page), page);
146 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
147 
148 	mapping = page_mapping(page);
149 	mapping->a_ops->putback_page(page);
150 	__ClearPageIsolated(page);
151 }
152 
153 /*
154  * Put previously isolated pages back onto the appropriate lists
155  * from where they were once taken off for compaction/migration.
156  *
157  * This function shall be used whenever the isolated pageset has been
158  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159  * and isolate_huge_page().
160  */
161 void putback_movable_pages(struct list_head *l)
162 {
163 	struct page *page;
164 	struct page *page2;
165 
166 	list_for_each_entry_safe(page, page2, l, lru) {
167 		if (unlikely(PageHuge(page))) {
168 			putback_active_hugepage(page);
169 			continue;
170 		}
171 		list_del(&page->lru);
172 		/*
173 		 * We isolated non-lru movable page so here we can use
174 		 * __PageMovable because LRU page's mapping cannot have
175 		 * PAGE_MAPPING_MOVABLE.
176 		 */
177 		if (unlikely(__PageMovable(page))) {
178 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 			lock_page(page);
180 			if (PageMovable(page))
181 				putback_movable_page(page);
182 			else
183 				__ClearPageIsolated(page);
184 			unlock_page(page);
185 			put_page(page);
186 		} else {
187 			dec_node_page_state(page, NR_ISOLATED_ANON +
188 					page_is_file_cache(page));
189 			putback_lru_page(page);
190 		}
191 	}
192 }
193 
194 /*
195  * Restore a potential migration pte to a working pte entry
196  */
197 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198 				 unsigned long addr, void *old)
199 {
200 	struct page_vma_mapped_walk pvmw = {
201 		.page = old,
202 		.vma = vma,
203 		.address = addr,
204 		.flags = PVMW_SYNC | PVMW_MIGRATION,
205 	};
206 	struct page *new;
207 	pte_t pte;
208 	swp_entry_t entry;
209 
210 	VM_BUG_ON_PAGE(PageTail(page), page);
211 	while (page_vma_mapped_walk(&pvmw)) {
212 		if (PageKsm(page))
213 			new = page;
214 		else
215 			new = page - pvmw.page->index +
216 				linear_page_index(vma, pvmw.address);
217 
218 		get_page(new);
219 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
220 		if (pte_swp_soft_dirty(*pvmw.pte))
221 			pte = pte_mksoft_dirty(pte);
222 
223 		/*
224 		 * Recheck VMA as permissions can change since migration started
225 		 */
226 		entry = pte_to_swp_entry(*pvmw.pte);
227 		if (is_write_migration_entry(entry))
228 			pte = maybe_mkwrite(pte, vma);
229 
230 		flush_dcache_page(new);
231 #ifdef CONFIG_HUGETLB_PAGE
232 		if (PageHuge(new)) {
233 			pte = pte_mkhuge(pte);
234 			pte = arch_make_huge_pte(pte, vma, new, 0);
235 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
236 			if (PageAnon(new))
237 				hugepage_add_anon_rmap(new, vma, pvmw.address);
238 			else
239 				page_dup_rmap(new, true);
240 		} else
241 #endif
242 		{
243 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244 
245 			if (PageAnon(new))
246 				page_add_anon_rmap(new, vma, pvmw.address, false);
247 			else
248 				page_add_file_rmap(new, false);
249 		}
250 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
251 			mlock_vma_page(new);
252 
253 		/* No need to invalidate - it was non-present before */
254 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
255 	}
256 
257 	return true;
258 }
259 
260 /*
261  * Get rid of all migration entries and replace them by
262  * references to the indicated page.
263  */
264 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
265 {
266 	struct rmap_walk_control rwc = {
267 		.rmap_one = remove_migration_pte,
268 		.arg = old,
269 	};
270 
271 	if (locked)
272 		rmap_walk_locked(new, &rwc);
273 	else
274 		rmap_walk(new, &rwc);
275 }
276 
277 /*
278  * Something used the pte of a page under migration. We need to
279  * get to the page and wait until migration is finished.
280  * When we return from this function the fault will be retried.
281  */
282 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
283 				spinlock_t *ptl)
284 {
285 	pte_t pte;
286 	swp_entry_t entry;
287 	struct page *page;
288 
289 	spin_lock(ptl);
290 	pte = *ptep;
291 	if (!is_swap_pte(pte))
292 		goto out;
293 
294 	entry = pte_to_swp_entry(pte);
295 	if (!is_migration_entry(entry))
296 		goto out;
297 
298 	page = migration_entry_to_page(entry);
299 
300 	/*
301 	 * Once radix-tree replacement of page migration started, page_count
302 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
303 	 * against a page without get_page().
304 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
305 	 * will occur again.
306 	 */
307 	if (!get_page_unless_zero(page))
308 		goto out;
309 	pte_unmap_unlock(ptep, ptl);
310 	wait_on_page_locked(page);
311 	put_page(page);
312 	return;
313 out:
314 	pte_unmap_unlock(ptep, ptl);
315 }
316 
317 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
318 				unsigned long address)
319 {
320 	spinlock_t *ptl = pte_lockptr(mm, pmd);
321 	pte_t *ptep = pte_offset_map(pmd, address);
322 	__migration_entry_wait(mm, ptep, ptl);
323 }
324 
325 void migration_entry_wait_huge(struct vm_area_struct *vma,
326 		struct mm_struct *mm, pte_t *pte)
327 {
328 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
329 	__migration_entry_wait(mm, pte, ptl);
330 }
331 
332 #ifdef CONFIG_BLOCK
333 /* Returns true if all buffers are successfully locked */
334 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
335 							enum migrate_mode mode)
336 {
337 	struct buffer_head *bh = head;
338 
339 	/* Simple case, sync compaction */
340 	if (mode != MIGRATE_ASYNC) {
341 		do {
342 			get_bh(bh);
343 			lock_buffer(bh);
344 			bh = bh->b_this_page;
345 
346 		} while (bh != head);
347 
348 		return true;
349 	}
350 
351 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
352 	do {
353 		get_bh(bh);
354 		if (!trylock_buffer(bh)) {
355 			/*
356 			 * We failed to lock the buffer and cannot stall in
357 			 * async migration. Release the taken locks
358 			 */
359 			struct buffer_head *failed_bh = bh;
360 			put_bh(failed_bh);
361 			bh = head;
362 			while (bh != failed_bh) {
363 				unlock_buffer(bh);
364 				put_bh(bh);
365 				bh = bh->b_this_page;
366 			}
367 			return false;
368 		}
369 
370 		bh = bh->b_this_page;
371 	} while (bh != head);
372 	return true;
373 }
374 #else
375 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
376 							enum migrate_mode mode)
377 {
378 	return true;
379 }
380 #endif /* CONFIG_BLOCK */
381 
382 /*
383  * Replace the page in the mapping.
384  *
385  * The number of remaining references must be:
386  * 1 for anonymous pages without a mapping
387  * 2 for pages with a mapping
388  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
389  */
390 int migrate_page_move_mapping(struct address_space *mapping,
391 		struct page *newpage, struct page *page,
392 		struct buffer_head *head, enum migrate_mode mode,
393 		int extra_count)
394 {
395 	struct zone *oldzone, *newzone;
396 	int dirty;
397 	int expected_count = 1 + extra_count;
398 	void **pslot;
399 
400 	if (!mapping) {
401 		/* Anonymous page without mapping */
402 		if (page_count(page) != expected_count)
403 			return -EAGAIN;
404 
405 		/* No turning back from here */
406 		newpage->index = page->index;
407 		newpage->mapping = page->mapping;
408 		if (PageSwapBacked(page))
409 			__SetPageSwapBacked(newpage);
410 
411 		return MIGRATEPAGE_SUCCESS;
412 	}
413 
414 	oldzone = page_zone(page);
415 	newzone = page_zone(newpage);
416 
417 	spin_lock_irq(&mapping->tree_lock);
418 
419 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
420  					page_index(page));
421 
422 	expected_count += 1 + page_has_private(page);
423 	if (page_count(page) != expected_count ||
424 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
425 		spin_unlock_irq(&mapping->tree_lock);
426 		return -EAGAIN;
427 	}
428 
429 	if (!page_ref_freeze(page, expected_count)) {
430 		spin_unlock_irq(&mapping->tree_lock);
431 		return -EAGAIN;
432 	}
433 
434 	/*
435 	 * In the async migration case of moving a page with buffers, lock the
436 	 * buffers using trylock before the mapping is moved. If the mapping
437 	 * was moved, we later failed to lock the buffers and could not move
438 	 * the mapping back due to an elevated page count, we would have to
439 	 * block waiting on other references to be dropped.
440 	 */
441 	if (mode == MIGRATE_ASYNC && head &&
442 			!buffer_migrate_lock_buffers(head, mode)) {
443 		page_ref_unfreeze(page, expected_count);
444 		spin_unlock_irq(&mapping->tree_lock);
445 		return -EAGAIN;
446 	}
447 
448 	/*
449 	 * Now we know that no one else is looking at the page:
450 	 * no turning back from here.
451 	 */
452 	newpage->index = page->index;
453 	newpage->mapping = page->mapping;
454 	get_page(newpage);	/* add cache reference */
455 	if (PageSwapBacked(page)) {
456 		__SetPageSwapBacked(newpage);
457 		if (PageSwapCache(page)) {
458 			SetPageSwapCache(newpage);
459 			set_page_private(newpage, page_private(page));
460 		}
461 	} else {
462 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
463 	}
464 
465 	/* Move dirty while page refs frozen and newpage not yet exposed */
466 	dirty = PageDirty(page);
467 	if (dirty) {
468 		ClearPageDirty(page);
469 		SetPageDirty(newpage);
470 	}
471 
472 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
473 
474 	/*
475 	 * Drop cache reference from old page by unfreezing
476 	 * to one less reference.
477 	 * We know this isn't the last reference.
478 	 */
479 	page_ref_unfreeze(page, expected_count - 1);
480 
481 	spin_unlock(&mapping->tree_lock);
482 	/* Leave irq disabled to prevent preemption while updating stats */
483 
484 	/*
485 	 * If moved to a different zone then also account
486 	 * the page for that zone. Other VM counters will be
487 	 * taken care of when we establish references to the
488 	 * new page and drop references to the old page.
489 	 *
490 	 * Note that anonymous pages are accounted for
491 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 	 * are mapped to swap space.
493 	 */
494 	if (newzone != oldzone) {
495 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
496 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
497 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
498 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
499 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
500 		}
501 		if (dirty && mapping_cap_account_dirty(mapping)) {
502 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
503 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
504 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
505 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
506 		}
507 	}
508 	local_irq_enable();
509 
510 	return MIGRATEPAGE_SUCCESS;
511 }
512 EXPORT_SYMBOL(migrate_page_move_mapping);
513 
514 /*
515  * The expected number of remaining references is the same as that
516  * of migrate_page_move_mapping().
517  */
518 int migrate_huge_page_move_mapping(struct address_space *mapping,
519 				   struct page *newpage, struct page *page)
520 {
521 	int expected_count;
522 	void **pslot;
523 
524 	spin_lock_irq(&mapping->tree_lock);
525 
526 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
527 					page_index(page));
528 
529 	expected_count = 2 + page_has_private(page);
530 	if (page_count(page) != expected_count ||
531 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
532 		spin_unlock_irq(&mapping->tree_lock);
533 		return -EAGAIN;
534 	}
535 
536 	if (!page_ref_freeze(page, expected_count)) {
537 		spin_unlock_irq(&mapping->tree_lock);
538 		return -EAGAIN;
539 	}
540 
541 	newpage->index = page->index;
542 	newpage->mapping = page->mapping;
543 
544 	get_page(newpage);
545 
546 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
547 
548 	page_ref_unfreeze(page, expected_count - 1);
549 
550 	spin_unlock_irq(&mapping->tree_lock);
551 
552 	return MIGRATEPAGE_SUCCESS;
553 }
554 
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 				int nr_pages)
562 {
563 	int i;
564 	struct page *dst_base = dst;
565 	struct page *src_base = src;
566 
567 	for (i = 0; i < nr_pages; ) {
568 		cond_resched();
569 		copy_highpage(dst, src);
570 
571 		i++;
572 		dst = mem_map_next(dst, dst_base, i);
573 		src = mem_map_next(src, src_base, i);
574 	}
575 }
576 
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579 	int i;
580 	int nr_pages;
581 
582 	if (PageHuge(src)) {
583 		/* hugetlbfs page */
584 		struct hstate *h = page_hstate(src);
585 		nr_pages = pages_per_huge_page(h);
586 
587 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 			__copy_gigantic_page(dst, src, nr_pages);
589 			return;
590 		}
591 	} else {
592 		/* thp page */
593 		BUG_ON(!PageTransHuge(src));
594 		nr_pages = hpage_nr_pages(src);
595 	}
596 
597 	for (i = 0; i < nr_pages; i++) {
598 		cond_resched();
599 		copy_highpage(dst + i, src + i);
600 	}
601 }
602 
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_copy(struct page *newpage, struct page *page)
607 {
608 	int cpupid;
609 
610 	if (PageHuge(page) || PageTransHuge(page))
611 		copy_huge_page(newpage, page);
612 	else
613 		copy_highpage(newpage, page);
614 
615 	if (PageError(page))
616 		SetPageError(newpage);
617 	if (PageReferenced(page))
618 		SetPageReferenced(newpage);
619 	if (PageUptodate(page))
620 		SetPageUptodate(newpage);
621 	if (TestClearPageActive(page)) {
622 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
623 		SetPageActive(newpage);
624 	} else if (TestClearPageUnevictable(page))
625 		SetPageUnevictable(newpage);
626 	if (PageChecked(page))
627 		SetPageChecked(newpage);
628 	if (PageMappedToDisk(page))
629 		SetPageMappedToDisk(newpage);
630 
631 	/* Move dirty on pages not done by migrate_page_move_mapping() */
632 	if (PageDirty(page))
633 		SetPageDirty(newpage);
634 
635 	if (page_is_young(page))
636 		set_page_young(newpage);
637 	if (page_is_idle(page))
638 		set_page_idle(newpage);
639 
640 	/*
641 	 * Copy NUMA information to the new page, to prevent over-eager
642 	 * future migrations of this same page.
643 	 */
644 	cpupid = page_cpupid_xchg_last(page, -1);
645 	page_cpupid_xchg_last(newpage, cpupid);
646 
647 	ksm_migrate_page(newpage, page);
648 	/*
649 	 * Please do not reorder this without considering how mm/ksm.c's
650 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
651 	 */
652 	if (PageSwapCache(page))
653 		ClearPageSwapCache(page);
654 	ClearPagePrivate(page);
655 	set_page_private(page, 0);
656 
657 	/*
658 	 * If any waiters have accumulated on the new page then
659 	 * wake them up.
660 	 */
661 	if (PageWriteback(newpage))
662 		end_page_writeback(newpage);
663 
664 	copy_page_owner(page, newpage);
665 
666 	mem_cgroup_migrate(page, newpage);
667 }
668 EXPORT_SYMBOL(migrate_page_copy);
669 
670 /************************************************************
671  *                    Migration functions
672  ***********************************************************/
673 
674 /*
675  * Common logic to directly migrate a single LRU page suitable for
676  * pages that do not use PagePrivate/PagePrivate2.
677  *
678  * Pages are locked upon entry and exit.
679  */
680 int migrate_page(struct address_space *mapping,
681 		struct page *newpage, struct page *page,
682 		enum migrate_mode mode)
683 {
684 	int rc;
685 
686 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
687 
688 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
689 
690 	if (rc != MIGRATEPAGE_SUCCESS)
691 		return rc;
692 
693 	migrate_page_copy(newpage, page);
694 	return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697 
698 #ifdef CONFIG_BLOCK
699 /*
700  * Migration function for pages with buffers. This function can only be used
701  * if the underlying filesystem guarantees that no other references to "page"
702  * exist.
703  */
704 int buffer_migrate_page(struct address_space *mapping,
705 		struct page *newpage, struct page *page, enum migrate_mode mode)
706 {
707 	struct buffer_head *bh, *head;
708 	int rc;
709 
710 	if (!page_has_buffers(page))
711 		return migrate_page(mapping, newpage, page, mode);
712 
713 	head = page_buffers(page);
714 
715 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
716 
717 	if (rc != MIGRATEPAGE_SUCCESS)
718 		return rc;
719 
720 	/*
721 	 * In the async case, migrate_page_move_mapping locked the buffers
722 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
723 	 * need to be locked now
724 	 */
725 	if (mode != MIGRATE_ASYNC)
726 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
727 
728 	ClearPagePrivate(page);
729 	set_page_private(newpage, page_private(page));
730 	set_page_private(page, 0);
731 	put_page(page);
732 	get_page(newpage);
733 
734 	bh = head;
735 	do {
736 		set_bh_page(bh, newpage, bh_offset(bh));
737 		bh = bh->b_this_page;
738 
739 	} while (bh != head);
740 
741 	SetPagePrivate(newpage);
742 
743 	migrate_page_copy(newpage, page);
744 
745 	bh = head;
746 	do {
747 		unlock_buffer(bh);
748  		put_bh(bh);
749 		bh = bh->b_this_page;
750 
751 	} while (bh != head);
752 
753 	return MIGRATEPAGE_SUCCESS;
754 }
755 EXPORT_SYMBOL(buffer_migrate_page);
756 #endif
757 
758 /*
759  * Writeback a page to clean the dirty state
760  */
761 static int writeout(struct address_space *mapping, struct page *page)
762 {
763 	struct writeback_control wbc = {
764 		.sync_mode = WB_SYNC_NONE,
765 		.nr_to_write = 1,
766 		.range_start = 0,
767 		.range_end = LLONG_MAX,
768 		.for_reclaim = 1
769 	};
770 	int rc;
771 
772 	if (!mapping->a_ops->writepage)
773 		/* No write method for the address space */
774 		return -EINVAL;
775 
776 	if (!clear_page_dirty_for_io(page))
777 		/* Someone else already triggered a write */
778 		return -EAGAIN;
779 
780 	/*
781 	 * A dirty page may imply that the underlying filesystem has
782 	 * the page on some queue. So the page must be clean for
783 	 * migration. Writeout may mean we loose the lock and the
784 	 * page state is no longer what we checked for earlier.
785 	 * At this point we know that the migration attempt cannot
786 	 * be successful.
787 	 */
788 	remove_migration_ptes(page, page, false);
789 
790 	rc = mapping->a_ops->writepage(page, &wbc);
791 
792 	if (rc != AOP_WRITEPAGE_ACTIVATE)
793 		/* unlocked. Relock */
794 		lock_page(page);
795 
796 	return (rc < 0) ? -EIO : -EAGAIN;
797 }
798 
799 /*
800  * Default handling if a filesystem does not provide a migration function.
801  */
802 static int fallback_migrate_page(struct address_space *mapping,
803 	struct page *newpage, struct page *page, enum migrate_mode mode)
804 {
805 	if (PageDirty(page)) {
806 		/* Only writeback pages in full synchronous migration */
807 		if (mode != MIGRATE_SYNC)
808 			return -EBUSY;
809 		return writeout(mapping, page);
810 	}
811 
812 	/*
813 	 * Buffers may be managed in a filesystem specific way.
814 	 * We must have no buffers or drop them.
815 	 */
816 	if (page_has_private(page) &&
817 	    !try_to_release_page(page, GFP_KERNEL))
818 		return -EAGAIN;
819 
820 	return migrate_page(mapping, newpage, page, mode);
821 }
822 
823 /*
824  * Move a page to a newly allocated page
825  * The page is locked and all ptes have been successfully removed.
826  *
827  * The new page will have replaced the old page if this function
828  * is successful.
829  *
830  * Return value:
831  *   < 0 - error code
832  *  MIGRATEPAGE_SUCCESS - success
833  */
834 static int move_to_new_page(struct page *newpage, struct page *page,
835 				enum migrate_mode mode)
836 {
837 	struct address_space *mapping;
838 	int rc = -EAGAIN;
839 	bool is_lru = !__PageMovable(page);
840 
841 	VM_BUG_ON_PAGE(!PageLocked(page), page);
842 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
843 
844 	mapping = page_mapping(page);
845 
846 	if (likely(is_lru)) {
847 		if (!mapping)
848 			rc = migrate_page(mapping, newpage, page, mode);
849 		else if (mapping->a_ops->migratepage)
850 			/*
851 			 * Most pages have a mapping and most filesystems
852 			 * provide a migratepage callback. Anonymous pages
853 			 * are part of swap space which also has its own
854 			 * migratepage callback. This is the most common path
855 			 * for page migration.
856 			 */
857 			rc = mapping->a_ops->migratepage(mapping, newpage,
858 							page, mode);
859 		else
860 			rc = fallback_migrate_page(mapping, newpage,
861 							page, mode);
862 	} else {
863 		/*
864 		 * In case of non-lru page, it could be released after
865 		 * isolation step. In that case, we shouldn't try migration.
866 		 */
867 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
868 		if (!PageMovable(page)) {
869 			rc = MIGRATEPAGE_SUCCESS;
870 			__ClearPageIsolated(page);
871 			goto out;
872 		}
873 
874 		rc = mapping->a_ops->migratepage(mapping, newpage,
875 						page, mode);
876 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
877 			!PageIsolated(page));
878 	}
879 
880 	/*
881 	 * When successful, old pagecache page->mapping must be cleared before
882 	 * page is freed; but stats require that PageAnon be left as PageAnon.
883 	 */
884 	if (rc == MIGRATEPAGE_SUCCESS) {
885 		if (__PageMovable(page)) {
886 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
887 
888 			/*
889 			 * We clear PG_movable under page_lock so any compactor
890 			 * cannot try to migrate this page.
891 			 */
892 			__ClearPageIsolated(page);
893 		}
894 
895 		/*
896 		 * Anonymous and movable page->mapping will be cleard by
897 		 * free_pages_prepare so don't reset it here for keeping
898 		 * the type to work PageAnon, for example.
899 		 */
900 		if (!PageMappingFlags(page))
901 			page->mapping = NULL;
902 	}
903 out:
904 	return rc;
905 }
906 
907 static int __unmap_and_move(struct page *page, struct page *newpage,
908 				int force, enum migrate_mode mode)
909 {
910 	int rc = -EAGAIN;
911 	int page_was_mapped = 0;
912 	struct anon_vma *anon_vma = NULL;
913 	bool is_lru = !__PageMovable(page);
914 
915 	if (!trylock_page(page)) {
916 		if (!force || mode == MIGRATE_ASYNC)
917 			goto out;
918 
919 		/*
920 		 * It's not safe for direct compaction to call lock_page.
921 		 * For example, during page readahead pages are added locked
922 		 * to the LRU. Later, when the IO completes the pages are
923 		 * marked uptodate and unlocked. However, the queueing
924 		 * could be merging multiple pages for one bio (e.g.
925 		 * mpage_readpages). If an allocation happens for the
926 		 * second or third page, the process can end up locking
927 		 * the same page twice and deadlocking. Rather than
928 		 * trying to be clever about what pages can be locked,
929 		 * avoid the use of lock_page for direct compaction
930 		 * altogether.
931 		 */
932 		if (current->flags & PF_MEMALLOC)
933 			goto out;
934 
935 		lock_page(page);
936 	}
937 
938 	if (PageWriteback(page)) {
939 		/*
940 		 * Only in the case of a full synchronous migration is it
941 		 * necessary to wait for PageWriteback. In the async case,
942 		 * the retry loop is too short and in the sync-light case,
943 		 * the overhead of stalling is too much
944 		 */
945 		if (mode != MIGRATE_SYNC) {
946 			rc = -EBUSY;
947 			goto out_unlock;
948 		}
949 		if (!force)
950 			goto out_unlock;
951 		wait_on_page_writeback(page);
952 	}
953 
954 	/*
955 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
956 	 * we cannot notice that anon_vma is freed while we migrates a page.
957 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
958 	 * of migration. File cache pages are no problem because of page_lock()
959 	 * File Caches may use write_page() or lock_page() in migration, then,
960 	 * just care Anon page here.
961 	 *
962 	 * Only page_get_anon_vma() understands the subtleties of
963 	 * getting a hold on an anon_vma from outside one of its mms.
964 	 * But if we cannot get anon_vma, then we won't need it anyway,
965 	 * because that implies that the anon page is no longer mapped
966 	 * (and cannot be remapped so long as we hold the page lock).
967 	 */
968 	if (PageAnon(page) && !PageKsm(page))
969 		anon_vma = page_get_anon_vma(page);
970 
971 	/*
972 	 * Block others from accessing the new page when we get around to
973 	 * establishing additional references. We are usually the only one
974 	 * holding a reference to newpage at this point. We used to have a BUG
975 	 * here if trylock_page(newpage) fails, but would like to allow for
976 	 * cases where there might be a race with the previous use of newpage.
977 	 * This is much like races on refcount of oldpage: just don't BUG().
978 	 */
979 	if (unlikely(!trylock_page(newpage)))
980 		goto out_unlock;
981 
982 	if (unlikely(!is_lru)) {
983 		rc = move_to_new_page(newpage, page, mode);
984 		goto out_unlock_both;
985 	}
986 
987 	/*
988 	 * Corner case handling:
989 	 * 1. When a new swap-cache page is read into, it is added to the LRU
990 	 * and treated as swapcache but it has no rmap yet.
991 	 * Calling try_to_unmap() against a page->mapping==NULL page will
992 	 * trigger a BUG.  So handle it here.
993 	 * 2. An orphaned page (see truncate_complete_page) might have
994 	 * fs-private metadata. The page can be picked up due to memory
995 	 * offlining.  Everywhere else except page reclaim, the page is
996 	 * invisible to the vm, so the page can not be migrated.  So try to
997 	 * free the metadata, so the page can be freed.
998 	 */
999 	if (!page->mapping) {
1000 		VM_BUG_ON_PAGE(PageAnon(page), page);
1001 		if (page_has_private(page)) {
1002 			try_to_free_buffers(page);
1003 			goto out_unlock_both;
1004 		}
1005 	} else if (page_mapped(page)) {
1006 		/* Establish migration ptes */
1007 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1008 				page);
1009 		try_to_unmap(page,
1010 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1011 		page_was_mapped = 1;
1012 	}
1013 
1014 	if (!page_mapped(page))
1015 		rc = move_to_new_page(newpage, page, mode);
1016 
1017 	if (page_was_mapped)
1018 		remove_migration_ptes(page,
1019 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1020 
1021 out_unlock_both:
1022 	unlock_page(newpage);
1023 out_unlock:
1024 	/* Drop an anon_vma reference if we took one */
1025 	if (anon_vma)
1026 		put_anon_vma(anon_vma);
1027 	unlock_page(page);
1028 out:
1029 	/*
1030 	 * If migration is successful, decrease refcount of the newpage
1031 	 * which will not free the page because new page owner increased
1032 	 * refcounter. As well, if it is LRU page, add the page to LRU
1033 	 * list in here.
1034 	 */
1035 	if (rc == MIGRATEPAGE_SUCCESS) {
1036 		if (unlikely(__PageMovable(newpage)))
1037 			put_page(newpage);
1038 		else
1039 			putback_lru_page(newpage);
1040 	}
1041 
1042 	return rc;
1043 }
1044 
1045 /*
1046  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1047  * around it.
1048  */
1049 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1050 #define ICE_noinline noinline
1051 #else
1052 #define ICE_noinline
1053 #endif
1054 
1055 /*
1056  * Obtain the lock on page, remove all ptes and migrate the page
1057  * to the newly allocated page in newpage.
1058  */
1059 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1060 				   free_page_t put_new_page,
1061 				   unsigned long private, struct page *page,
1062 				   int force, enum migrate_mode mode,
1063 				   enum migrate_reason reason)
1064 {
1065 	int rc = MIGRATEPAGE_SUCCESS;
1066 	int *result = NULL;
1067 	struct page *newpage;
1068 
1069 	newpage = get_new_page(page, private, &result);
1070 	if (!newpage)
1071 		return -ENOMEM;
1072 
1073 	if (page_count(page) == 1) {
1074 		/* page was freed from under us. So we are done. */
1075 		ClearPageActive(page);
1076 		ClearPageUnevictable(page);
1077 		if (unlikely(__PageMovable(page))) {
1078 			lock_page(page);
1079 			if (!PageMovable(page))
1080 				__ClearPageIsolated(page);
1081 			unlock_page(page);
1082 		}
1083 		if (put_new_page)
1084 			put_new_page(newpage, private);
1085 		else
1086 			put_page(newpage);
1087 		goto out;
1088 	}
1089 
1090 	if (unlikely(PageTransHuge(page))) {
1091 		lock_page(page);
1092 		rc = split_huge_page(page);
1093 		unlock_page(page);
1094 		if (rc)
1095 			goto out;
1096 	}
1097 
1098 	rc = __unmap_and_move(page, newpage, force, mode);
1099 	if (rc == MIGRATEPAGE_SUCCESS)
1100 		set_page_owner_migrate_reason(newpage, reason);
1101 
1102 out:
1103 	if (rc != -EAGAIN) {
1104 		/*
1105 		 * A page that has been migrated has all references
1106 		 * removed and will be freed. A page that has not been
1107 		 * migrated will have kepts its references and be
1108 		 * restored.
1109 		 */
1110 		list_del(&page->lru);
1111 
1112 		/*
1113 		 * Compaction can migrate also non-LRU pages which are
1114 		 * not accounted to NR_ISOLATED_*. They can be recognized
1115 		 * as __PageMovable
1116 		 */
1117 		if (likely(!__PageMovable(page)))
1118 			dec_node_page_state(page, NR_ISOLATED_ANON +
1119 					page_is_file_cache(page));
1120 	}
1121 
1122 	/*
1123 	 * If migration is successful, releases reference grabbed during
1124 	 * isolation. Otherwise, restore the page to right list unless
1125 	 * we want to retry.
1126 	 */
1127 	if (rc == MIGRATEPAGE_SUCCESS) {
1128 		put_page(page);
1129 		if (reason == MR_MEMORY_FAILURE) {
1130 			/*
1131 			 * Set PG_HWPoison on just freed page
1132 			 * intentionally. Although it's rather weird,
1133 			 * it's how HWPoison flag works at the moment.
1134 			 */
1135 			if (!test_set_page_hwpoison(page))
1136 				num_poisoned_pages_inc();
1137 		}
1138 	} else {
1139 		if (rc != -EAGAIN) {
1140 			if (likely(!__PageMovable(page))) {
1141 				putback_lru_page(page);
1142 				goto put_new;
1143 			}
1144 
1145 			lock_page(page);
1146 			if (PageMovable(page))
1147 				putback_movable_page(page);
1148 			else
1149 				__ClearPageIsolated(page);
1150 			unlock_page(page);
1151 			put_page(page);
1152 		}
1153 put_new:
1154 		if (put_new_page)
1155 			put_new_page(newpage, private);
1156 		else
1157 			put_page(newpage);
1158 	}
1159 
1160 	if (result) {
1161 		if (rc)
1162 			*result = rc;
1163 		else
1164 			*result = page_to_nid(newpage);
1165 	}
1166 	return rc;
1167 }
1168 
1169 /*
1170  * Counterpart of unmap_and_move_page() for hugepage migration.
1171  *
1172  * This function doesn't wait the completion of hugepage I/O
1173  * because there is no race between I/O and migration for hugepage.
1174  * Note that currently hugepage I/O occurs only in direct I/O
1175  * where no lock is held and PG_writeback is irrelevant,
1176  * and writeback status of all subpages are counted in the reference
1177  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1178  * under direct I/O, the reference of the head page is 512 and a bit more.)
1179  * This means that when we try to migrate hugepage whose subpages are
1180  * doing direct I/O, some references remain after try_to_unmap() and
1181  * hugepage migration fails without data corruption.
1182  *
1183  * There is also no race when direct I/O is issued on the page under migration,
1184  * because then pte is replaced with migration swap entry and direct I/O code
1185  * will wait in the page fault for migration to complete.
1186  */
1187 static int unmap_and_move_huge_page(new_page_t get_new_page,
1188 				free_page_t put_new_page, unsigned long private,
1189 				struct page *hpage, int force,
1190 				enum migrate_mode mode, int reason)
1191 {
1192 	int rc = -EAGAIN;
1193 	int *result = NULL;
1194 	int page_was_mapped = 0;
1195 	struct page *new_hpage;
1196 	struct anon_vma *anon_vma = NULL;
1197 
1198 	/*
1199 	 * Movability of hugepages depends on architectures and hugepage size.
1200 	 * This check is necessary because some callers of hugepage migration
1201 	 * like soft offline and memory hotremove don't walk through page
1202 	 * tables or check whether the hugepage is pmd-based or not before
1203 	 * kicking migration.
1204 	 */
1205 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1206 		putback_active_hugepage(hpage);
1207 		return -ENOSYS;
1208 	}
1209 
1210 	new_hpage = get_new_page(hpage, private, &result);
1211 	if (!new_hpage)
1212 		return -ENOMEM;
1213 
1214 	if (!trylock_page(hpage)) {
1215 		if (!force || mode != MIGRATE_SYNC)
1216 			goto out;
1217 		lock_page(hpage);
1218 	}
1219 
1220 	if (PageAnon(hpage))
1221 		anon_vma = page_get_anon_vma(hpage);
1222 
1223 	if (unlikely(!trylock_page(new_hpage)))
1224 		goto put_anon;
1225 
1226 	if (page_mapped(hpage)) {
1227 		try_to_unmap(hpage,
1228 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1229 		page_was_mapped = 1;
1230 	}
1231 
1232 	if (!page_mapped(hpage))
1233 		rc = move_to_new_page(new_hpage, hpage, mode);
1234 
1235 	if (page_was_mapped)
1236 		remove_migration_ptes(hpage,
1237 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1238 
1239 	unlock_page(new_hpage);
1240 
1241 put_anon:
1242 	if (anon_vma)
1243 		put_anon_vma(anon_vma);
1244 
1245 	if (rc == MIGRATEPAGE_SUCCESS) {
1246 		hugetlb_cgroup_migrate(hpage, new_hpage);
1247 		put_new_page = NULL;
1248 		set_page_owner_migrate_reason(new_hpage, reason);
1249 	}
1250 
1251 	unlock_page(hpage);
1252 out:
1253 	if (rc != -EAGAIN)
1254 		putback_active_hugepage(hpage);
1255 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1256 		num_poisoned_pages_inc();
1257 
1258 	/*
1259 	 * If migration was not successful and there's a freeing callback, use
1260 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1261 	 * isolation.
1262 	 */
1263 	if (put_new_page)
1264 		put_new_page(new_hpage, private);
1265 	else
1266 		putback_active_hugepage(new_hpage);
1267 
1268 	if (result) {
1269 		if (rc)
1270 			*result = rc;
1271 		else
1272 			*result = page_to_nid(new_hpage);
1273 	}
1274 	return rc;
1275 }
1276 
1277 /*
1278  * migrate_pages - migrate the pages specified in a list, to the free pages
1279  *		   supplied as the target for the page migration
1280  *
1281  * @from:		The list of pages to be migrated.
1282  * @get_new_page:	The function used to allocate free pages to be used
1283  *			as the target of the page migration.
1284  * @put_new_page:	The function used to free target pages if migration
1285  *			fails, or NULL if no special handling is necessary.
1286  * @private:		Private data to be passed on to get_new_page()
1287  * @mode:		The migration mode that specifies the constraints for
1288  *			page migration, if any.
1289  * @reason:		The reason for page migration.
1290  *
1291  * The function returns after 10 attempts or if no pages are movable any more
1292  * because the list has become empty or no retryable pages exist any more.
1293  * The caller should call putback_movable_pages() to return pages to the LRU
1294  * or free list only if ret != 0.
1295  *
1296  * Returns the number of pages that were not migrated, or an error code.
1297  */
1298 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1299 		free_page_t put_new_page, unsigned long private,
1300 		enum migrate_mode mode, int reason)
1301 {
1302 	int retry = 1;
1303 	int nr_failed = 0;
1304 	int nr_succeeded = 0;
1305 	int pass = 0;
1306 	struct page *page;
1307 	struct page *page2;
1308 	int swapwrite = current->flags & PF_SWAPWRITE;
1309 	int rc;
1310 
1311 	if (!swapwrite)
1312 		current->flags |= PF_SWAPWRITE;
1313 
1314 	for(pass = 0; pass < 10 && retry; pass++) {
1315 		retry = 0;
1316 
1317 		list_for_each_entry_safe(page, page2, from, lru) {
1318 			cond_resched();
1319 
1320 			if (PageHuge(page))
1321 				rc = unmap_and_move_huge_page(get_new_page,
1322 						put_new_page, private, page,
1323 						pass > 2, mode, reason);
1324 			else
1325 				rc = unmap_and_move(get_new_page, put_new_page,
1326 						private, page, pass > 2, mode,
1327 						reason);
1328 
1329 			switch(rc) {
1330 			case -ENOMEM:
1331 				nr_failed++;
1332 				goto out;
1333 			case -EAGAIN:
1334 				retry++;
1335 				break;
1336 			case MIGRATEPAGE_SUCCESS:
1337 				nr_succeeded++;
1338 				break;
1339 			default:
1340 				/*
1341 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1342 				 * unlike -EAGAIN case, the failed page is
1343 				 * removed from migration page list and not
1344 				 * retried in the next outer loop.
1345 				 */
1346 				nr_failed++;
1347 				break;
1348 			}
1349 		}
1350 	}
1351 	nr_failed += retry;
1352 	rc = nr_failed;
1353 out:
1354 	if (nr_succeeded)
1355 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1356 	if (nr_failed)
1357 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1358 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1359 
1360 	if (!swapwrite)
1361 		current->flags &= ~PF_SWAPWRITE;
1362 
1363 	return rc;
1364 }
1365 
1366 #ifdef CONFIG_NUMA
1367 /*
1368  * Move a list of individual pages
1369  */
1370 struct page_to_node {
1371 	unsigned long addr;
1372 	struct page *page;
1373 	int node;
1374 	int status;
1375 };
1376 
1377 static struct page *new_page_node(struct page *p, unsigned long private,
1378 		int **result)
1379 {
1380 	struct page_to_node *pm = (struct page_to_node *)private;
1381 
1382 	while (pm->node != MAX_NUMNODES && pm->page != p)
1383 		pm++;
1384 
1385 	if (pm->node == MAX_NUMNODES)
1386 		return NULL;
1387 
1388 	*result = &pm->status;
1389 
1390 	if (PageHuge(p))
1391 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1392 					pm->node);
1393 	else
1394 		return __alloc_pages_node(pm->node,
1395 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1396 }
1397 
1398 /*
1399  * Move a set of pages as indicated in the pm array. The addr
1400  * field must be set to the virtual address of the page to be moved
1401  * and the node number must contain a valid target node.
1402  * The pm array ends with node = MAX_NUMNODES.
1403  */
1404 static int do_move_page_to_node_array(struct mm_struct *mm,
1405 				      struct page_to_node *pm,
1406 				      int migrate_all)
1407 {
1408 	int err;
1409 	struct page_to_node *pp;
1410 	LIST_HEAD(pagelist);
1411 
1412 	down_read(&mm->mmap_sem);
1413 
1414 	/*
1415 	 * Build a list of pages to migrate
1416 	 */
1417 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1418 		struct vm_area_struct *vma;
1419 		struct page *page;
1420 
1421 		err = -EFAULT;
1422 		vma = find_vma(mm, pp->addr);
1423 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1424 			goto set_status;
1425 
1426 		/* FOLL_DUMP to ignore special (like zero) pages */
1427 		page = follow_page(vma, pp->addr,
1428 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1429 
1430 		err = PTR_ERR(page);
1431 		if (IS_ERR(page))
1432 			goto set_status;
1433 
1434 		err = -ENOENT;
1435 		if (!page)
1436 			goto set_status;
1437 
1438 		pp->page = page;
1439 		err = page_to_nid(page);
1440 
1441 		if (err == pp->node)
1442 			/*
1443 			 * Node already in the right place
1444 			 */
1445 			goto put_and_set;
1446 
1447 		err = -EACCES;
1448 		if (page_mapcount(page) > 1 &&
1449 				!migrate_all)
1450 			goto put_and_set;
1451 
1452 		if (PageHuge(page)) {
1453 			if (PageHead(page))
1454 				isolate_huge_page(page, &pagelist);
1455 			goto put_and_set;
1456 		}
1457 
1458 		err = isolate_lru_page(page);
1459 		if (!err) {
1460 			list_add_tail(&page->lru, &pagelist);
1461 			inc_node_page_state(page, NR_ISOLATED_ANON +
1462 					    page_is_file_cache(page));
1463 		}
1464 put_and_set:
1465 		/*
1466 		 * Either remove the duplicate refcount from
1467 		 * isolate_lru_page() or drop the page ref if it was
1468 		 * not isolated.
1469 		 */
1470 		put_page(page);
1471 set_status:
1472 		pp->status = err;
1473 	}
1474 
1475 	err = 0;
1476 	if (!list_empty(&pagelist)) {
1477 		err = migrate_pages(&pagelist, new_page_node, NULL,
1478 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1479 		if (err)
1480 			putback_movable_pages(&pagelist);
1481 	}
1482 
1483 	up_read(&mm->mmap_sem);
1484 	return err;
1485 }
1486 
1487 /*
1488  * Migrate an array of page address onto an array of nodes and fill
1489  * the corresponding array of status.
1490  */
1491 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1492 			 unsigned long nr_pages,
1493 			 const void __user * __user *pages,
1494 			 const int __user *nodes,
1495 			 int __user *status, int flags)
1496 {
1497 	struct page_to_node *pm;
1498 	unsigned long chunk_nr_pages;
1499 	unsigned long chunk_start;
1500 	int err;
1501 
1502 	err = -ENOMEM;
1503 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1504 	if (!pm)
1505 		goto out;
1506 
1507 	migrate_prep();
1508 
1509 	/*
1510 	 * Store a chunk of page_to_node array in a page,
1511 	 * but keep the last one as a marker
1512 	 */
1513 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1514 
1515 	for (chunk_start = 0;
1516 	     chunk_start < nr_pages;
1517 	     chunk_start += chunk_nr_pages) {
1518 		int j;
1519 
1520 		if (chunk_start + chunk_nr_pages > nr_pages)
1521 			chunk_nr_pages = nr_pages - chunk_start;
1522 
1523 		/* fill the chunk pm with addrs and nodes from user-space */
1524 		for (j = 0; j < chunk_nr_pages; j++) {
1525 			const void __user *p;
1526 			int node;
1527 
1528 			err = -EFAULT;
1529 			if (get_user(p, pages + j + chunk_start))
1530 				goto out_pm;
1531 			pm[j].addr = (unsigned long) p;
1532 
1533 			if (get_user(node, nodes + j + chunk_start))
1534 				goto out_pm;
1535 
1536 			err = -ENODEV;
1537 			if (node < 0 || node >= MAX_NUMNODES)
1538 				goto out_pm;
1539 
1540 			if (!node_state(node, N_MEMORY))
1541 				goto out_pm;
1542 
1543 			err = -EACCES;
1544 			if (!node_isset(node, task_nodes))
1545 				goto out_pm;
1546 
1547 			pm[j].node = node;
1548 		}
1549 
1550 		/* End marker for this chunk */
1551 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1552 
1553 		/* Migrate this chunk */
1554 		err = do_move_page_to_node_array(mm, pm,
1555 						 flags & MPOL_MF_MOVE_ALL);
1556 		if (err < 0)
1557 			goto out_pm;
1558 
1559 		/* Return status information */
1560 		for (j = 0; j < chunk_nr_pages; j++)
1561 			if (put_user(pm[j].status, status + j + chunk_start)) {
1562 				err = -EFAULT;
1563 				goto out_pm;
1564 			}
1565 	}
1566 	err = 0;
1567 
1568 out_pm:
1569 	free_page((unsigned long)pm);
1570 out:
1571 	return err;
1572 }
1573 
1574 /*
1575  * Determine the nodes of an array of pages and store it in an array of status.
1576  */
1577 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1578 				const void __user **pages, int *status)
1579 {
1580 	unsigned long i;
1581 
1582 	down_read(&mm->mmap_sem);
1583 
1584 	for (i = 0; i < nr_pages; i++) {
1585 		unsigned long addr = (unsigned long)(*pages);
1586 		struct vm_area_struct *vma;
1587 		struct page *page;
1588 		int err = -EFAULT;
1589 
1590 		vma = find_vma(mm, addr);
1591 		if (!vma || addr < vma->vm_start)
1592 			goto set_status;
1593 
1594 		/* FOLL_DUMP to ignore special (like zero) pages */
1595 		page = follow_page(vma, addr, FOLL_DUMP);
1596 
1597 		err = PTR_ERR(page);
1598 		if (IS_ERR(page))
1599 			goto set_status;
1600 
1601 		err = page ? page_to_nid(page) : -ENOENT;
1602 set_status:
1603 		*status = err;
1604 
1605 		pages++;
1606 		status++;
1607 	}
1608 
1609 	up_read(&mm->mmap_sem);
1610 }
1611 
1612 /*
1613  * Determine the nodes of a user array of pages and store it in
1614  * a user array of status.
1615  */
1616 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1617 			 const void __user * __user *pages,
1618 			 int __user *status)
1619 {
1620 #define DO_PAGES_STAT_CHUNK_NR 16
1621 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1622 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1623 
1624 	while (nr_pages) {
1625 		unsigned long chunk_nr;
1626 
1627 		chunk_nr = nr_pages;
1628 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1629 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1630 
1631 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1632 			break;
1633 
1634 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1635 
1636 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1637 			break;
1638 
1639 		pages += chunk_nr;
1640 		status += chunk_nr;
1641 		nr_pages -= chunk_nr;
1642 	}
1643 	return nr_pages ? -EFAULT : 0;
1644 }
1645 
1646 /*
1647  * Move a list of pages in the address space of the currently executing
1648  * process.
1649  */
1650 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1651 		const void __user * __user *, pages,
1652 		const int __user *, nodes,
1653 		int __user *, status, int, flags)
1654 {
1655 	const struct cred *cred = current_cred(), *tcred;
1656 	struct task_struct *task;
1657 	struct mm_struct *mm;
1658 	int err;
1659 	nodemask_t task_nodes;
1660 
1661 	/* Check flags */
1662 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1663 		return -EINVAL;
1664 
1665 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1666 		return -EPERM;
1667 
1668 	/* Find the mm_struct */
1669 	rcu_read_lock();
1670 	task = pid ? find_task_by_vpid(pid) : current;
1671 	if (!task) {
1672 		rcu_read_unlock();
1673 		return -ESRCH;
1674 	}
1675 	get_task_struct(task);
1676 
1677 	/*
1678 	 * Check if this process has the right to modify the specified
1679 	 * process. The right exists if the process has administrative
1680 	 * capabilities, superuser privileges or the same
1681 	 * userid as the target process.
1682 	 */
1683 	tcred = __task_cred(task);
1684 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1685 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1686 	    !capable(CAP_SYS_NICE)) {
1687 		rcu_read_unlock();
1688 		err = -EPERM;
1689 		goto out;
1690 	}
1691 	rcu_read_unlock();
1692 
1693  	err = security_task_movememory(task);
1694  	if (err)
1695 		goto out;
1696 
1697 	task_nodes = cpuset_mems_allowed(task);
1698 	mm = get_task_mm(task);
1699 	put_task_struct(task);
1700 
1701 	if (!mm)
1702 		return -EINVAL;
1703 
1704 	if (nodes)
1705 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1706 				    nodes, status, flags);
1707 	else
1708 		err = do_pages_stat(mm, nr_pages, pages, status);
1709 
1710 	mmput(mm);
1711 	return err;
1712 
1713 out:
1714 	put_task_struct(task);
1715 	return err;
1716 }
1717 
1718 #ifdef CONFIG_NUMA_BALANCING
1719 /*
1720  * Returns true if this is a safe migration target node for misplaced NUMA
1721  * pages. Currently it only checks the watermarks which crude
1722  */
1723 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1724 				   unsigned long nr_migrate_pages)
1725 {
1726 	int z;
1727 
1728 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1729 		struct zone *zone = pgdat->node_zones + z;
1730 
1731 		if (!populated_zone(zone))
1732 			continue;
1733 
1734 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1735 		if (!zone_watermark_ok(zone, 0,
1736 				       high_wmark_pages(zone) +
1737 				       nr_migrate_pages,
1738 				       0, 0))
1739 			continue;
1740 		return true;
1741 	}
1742 	return false;
1743 }
1744 
1745 static struct page *alloc_misplaced_dst_page(struct page *page,
1746 					   unsigned long data,
1747 					   int **result)
1748 {
1749 	int nid = (int) data;
1750 	struct page *newpage;
1751 
1752 	newpage = __alloc_pages_node(nid,
1753 					 (GFP_HIGHUSER_MOVABLE |
1754 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1755 					  __GFP_NORETRY | __GFP_NOWARN) &
1756 					 ~__GFP_RECLAIM, 0);
1757 
1758 	return newpage;
1759 }
1760 
1761 /*
1762  * page migration rate limiting control.
1763  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1764  * window of time. Default here says do not migrate more than 1280M per second.
1765  */
1766 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1767 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1768 
1769 /* Returns true if the node is migrate rate-limited after the update */
1770 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1771 					unsigned long nr_pages)
1772 {
1773 	/*
1774 	 * Rate-limit the amount of data that is being migrated to a node.
1775 	 * Optimal placement is no good if the memory bus is saturated and
1776 	 * all the time is being spent migrating!
1777 	 */
1778 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1779 		spin_lock(&pgdat->numabalancing_migrate_lock);
1780 		pgdat->numabalancing_migrate_nr_pages = 0;
1781 		pgdat->numabalancing_migrate_next_window = jiffies +
1782 			msecs_to_jiffies(migrate_interval_millisecs);
1783 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1784 	}
1785 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1786 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1787 								nr_pages);
1788 		return true;
1789 	}
1790 
1791 	/*
1792 	 * This is an unlocked non-atomic update so errors are possible.
1793 	 * The consequences are failing to migrate when we potentiall should
1794 	 * have which is not severe enough to warrant locking. If it is ever
1795 	 * a problem, it can be converted to a per-cpu counter.
1796 	 */
1797 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1798 	return false;
1799 }
1800 
1801 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1802 {
1803 	int page_lru;
1804 
1805 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1806 
1807 	/* Avoid migrating to a node that is nearly full */
1808 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1809 		return 0;
1810 
1811 	if (isolate_lru_page(page))
1812 		return 0;
1813 
1814 	/*
1815 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1816 	 * check on page_count(), so we must do it here, now that the page
1817 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1818 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1819 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1820 	 */
1821 	if (PageTransHuge(page) && page_count(page) != 3) {
1822 		putback_lru_page(page);
1823 		return 0;
1824 	}
1825 
1826 	page_lru = page_is_file_cache(page);
1827 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1828 				hpage_nr_pages(page));
1829 
1830 	/*
1831 	 * Isolating the page has taken another reference, so the
1832 	 * caller's reference can be safely dropped without the page
1833 	 * disappearing underneath us during migration.
1834 	 */
1835 	put_page(page);
1836 	return 1;
1837 }
1838 
1839 bool pmd_trans_migrating(pmd_t pmd)
1840 {
1841 	struct page *page = pmd_page(pmd);
1842 	return PageLocked(page);
1843 }
1844 
1845 /*
1846  * Attempt to migrate a misplaced page to the specified destination
1847  * node. Caller is expected to have an elevated reference count on
1848  * the page that will be dropped by this function before returning.
1849  */
1850 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1851 			   int node)
1852 {
1853 	pg_data_t *pgdat = NODE_DATA(node);
1854 	int isolated;
1855 	int nr_remaining;
1856 	LIST_HEAD(migratepages);
1857 
1858 	/*
1859 	 * Don't migrate file pages that are mapped in multiple processes
1860 	 * with execute permissions as they are probably shared libraries.
1861 	 */
1862 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1863 	    (vma->vm_flags & VM_EXEC))
1864 		goto out;
1865 
1866 	/*
1867 	 * Rate-limit the amount of data that is being migrated to a node.
1868 	 * Optimal placement is no good if the memory bus is saturated and
1869 	 * all the time is being spent migrating!
1870 	 */
1871 	if (numamigrate_update_ratelimit(pgdat, 1))
1872 		goto out;
1873 
1874 	isolated = numamigrate_isolate_page(pgdat, page);
1875 	if (!isolated)
1876 		goto out;
1877 
1878 	list_add(&page->lru, &migratepages);
1879 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1880 				     NULL, node, MIGRATE_ASYNC,
1881 				     MR_NUMA_MISPLACED);
1882 	if (nr_remaining) {
1883 		if (!list_empty(&migratepages)) {
1884 			list_del(&page->lru);
1885 			dec_node_page_state(page, NR_ISOLATED_ANON +
1886 					page_is_file_cache(page));
1887 			putback_lru_page(page);
1888 		}
1889 		isolated = 0;
1890 	} else
1891 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1892 	BUG_ON(!list_empty(&migratepages));
1893 	return isolated;
1894 
1895 out:
1896 	put_page(page);
1897 	return 0;
1898 }
1899 #endif /* CONFIG_NUMA_BALANCING */
1900 
1901 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1902 /*
1903  * Migrates a THP to a given target node. page must be locked and is unlocked
1904  * before returning.
1905  */
1906 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1907 				struct vm_area_struct *vma,
1908 				pmd_t *pmd, pmd_t entry,
1909 				unsigned long address,
1910 				struct page *page, int node)
1911 {
1912 	spinlock_t *ptl;
1913 	pg_data_t *pgdat = NODE_DATA(node);
1914 	int isolated = 0;
1915 	struct page *new_page = NULL;
1916 	int page_lru = page_is_file_cache(page);
1917 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1918 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1919 
1920 	/*
1921 	 * Rate-limit the amount of data that is being migrated to a node.
1922 	 * Optimal placement is no good if the memory bus is saturated and
1923 	 * all the time is being spent migrating!
1924 	 */
1925 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1926 		goto out_dropref;
1927 
1928 	new_page = alloc_pages_node(node,
1929 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1930 		HPAGE_PMD_ORDER);
1931 	if (!new_page)
1932 		goto out_fail;
1933 	prep_transhuge_page(new_page);
1934 
1935 	isolated = numamigrate_isolate_page(pgdat, page);
1936 	if (!isolated) {
1937 		put_page(new_page);
1938 		goto out_fail;
1939 	}
1940 	/*
1941 	 * We are not sure a pending tlb flush here is for a huge page
1942 	 * mapping or not. Hence use the tlb range variant
1943 	 */
1944 	if (mm_tlb_flush_pending(mm))
1945 		flush_tlb_range(vma, mmun_start, mmun_end);
1946 
1947 	/* Prepare a page as a migration target */
1948 	__SetPageLocked(new_page);
1949 	if (PageSwapBacked(page))
1950 		__SetPageSwapBacked(new_page);
1951 
1952 	/* anon mapping, we can simply copy page->mapping to the new page: */
1953 	new_page->mapping = page->mapping;
1954 	new_page->index = page->index;
1955 	migrate_page_copy(new_page, page);
1956 	WARN_ON(PageLRU(new_page));
1957 
1958 	/* Recheck the target PMD */
1959 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1960 	ptl = pmd_lock(mm, pmd);
1961 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1962 		spin_unlock(ptl);
1963 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1964 
1965 		/* Reverse changes made by migrate_page_copy() */
1966 		if (TestClearPageActive(new_page))
1967 			SetPageActive(page);
1968 		if (TestClearPageUnevictable(new_page))
1969 			SetPageUnevictable(page);
1970 
1971 		unlock_page(new_page);
1972 		put_page(new_page);		/* Free it */
1973 
1974 		/* Retake the callers reference and putback on LRU */
1975 		get_page(page);
1976 		putback_lru_page(page);
1977 		mod_node_page_state(page_pgdat(page),
1978 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1979 
1980 		goto out_unlock;
1981 	}
1982 
1983 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1984 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1985 
1986 	/*
1987 	 * Clear the old entry under pagetable lock and establish the new PTE.
1988 	 * Any parallel GUP will either observe the old page blocking on the
1989 	 * page lock, block on the page table lock or observe the new page.
1990 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1991 	 * guarantee the copy is visible before the pagetable update.
1992 	 */
1993 	flush_cache_range(vma, mmun_start, mmun_end);
1994 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1995 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1996 	set_pmd_at(mm, mmun_start, pmd, entry);
1997 	update_mmu_cache_pmd(vma, address, &entry);
1998 
1999 	page_ref_unfreeze(page, 2);
2000 	mlock_migrate_page(new_page, page);
2001 	page_remove_rmap(page, true);
2002 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2003 
2004 	spin_unlock(ptl);
2005 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2006 
2007 	/* Take an "isolate" reference and put new page on the LRU. */
2008 	get_page(new_page);
2009 	putback_lru_page(new_page);
2010 
2011 	unlock_page(new_page);
2012 	unlock_page(page);
2013 	put_page(page);			/* Drop the rmap reference */
2014 	put_page(page);			/* Drop the LRU isolation reference */
2015 
2016 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2017 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2018 
2019 	mod_node_page_state(page_pgdat(page),
2020 			NR_ISOLATED_ANON + page_lru,
2021 			-HPAGE_PMD_NR);
2022 	return isolated;
2023 
2024 out_fail:
2025 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2026 out_dropref:
2027 	ptl = pmd_lock(mm, pmd);
2028 	if (pmd_same(*pmd, entry)) {
2029 		entry = pmd_modify(entry, vma->vm_page_prot);
2030 		set_pmd_at(mm, mmun_start, pmd, entry);
2031 		update_mmu_cache_pmd(vma, address, &entry);
2032 	}
2033 	spin_unlock(ptl);
2034 
2035 out_unlock:
2036 	unlock_page(page);
2037 	put_page(page);
2038 	return 0;
2039 }
2040 #endif /* CONFIG_NUMA_BALANCING */
2041 
2042 #endif /* CONFIG_NUMA */
2043