xref: /openbmc/linux/mm/migrate.c (revision 4cd61484)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct folio *folio,
175 		struct vm_area_struct *vma, unsigned long addr, void *old)
176 {
177 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
178 
179 	while (page_vma_mapped_walk(&pvmw)) {
180 		pte_t pte;
181 		swp_entry_t entry;
182 		struct page *new;
183 		unsigned long idx = 0;
184 
185 		/* pgoff is invalid for ksm pages, but they are never large */
186 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
187 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
188 		new = folio_page(folio, idx);
189 
190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
191 		/* PMD-mapped THP migration entry */
192 		if (!pvmw.pte) {
193 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
194 					!folio_test_pmd_mappable(folio), folio);
195 			remove_migration_pmd(&pvmw, new);
196 			continue;
197 		}
198 #endif
199 
200 		folio_get(folio);
201 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
202 		if (pte_swp_soft_dirty(*pvmw.pte))
203 			pte = pte_mksoft_dirty(pte);
204 
205 		/*
206 		 * Recheck VMA as permissions can change since migration started
207 		 */
208 		entry = pte_to_swp_entry(*pvmw.pte);
209 		if (is_writable_migration_entry(entry))
210 			pte = maybe_mkwrite(pte, vma);
211 		else if (pte_swp_uffd_wp(*pvmw.pte))
212 			pte = pte_mkuffd_wp(pte);
213 
214 		if (unlikely(is_device_private_page(new))) {
215 			if (pte_write(pte))
216 				entry = make_writable_device_private_entry(
217 							page_to_pfn(new));
218 			else
219 				entry = make_readable_device_private_entry(
220 							page_to_pfn(new));
221 			pte = swp_entry_to_pte(entry);
222 			if (pte_swp_soft_dirty(*pvmw.pte))
223 				pte = pte_swp_mksoft_dirty(pte);
224 			if (pte_swp_uffd_wp(*pvmw.pte))
225 				pte = pte_swp_mkuffd_wp(pte);
226 		}
227 
228 #ifdef CONFIG_HUGETLB_PAGE
229 		if (folio_test_hugetlb(folio)) {
230 			unsigned int shift = huge_page_shift(hstate_vma(vma));
231 
232 			pte = pte_mkhuge(pte);
233 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
234 			if (folio_test_anon(folio))
235 				hugepage_add_anon_rmap(new, vma, pvmw.address);
236 			else
237 				page_dup_rmap(new, true);
238 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239 		} else
240 #endif
241 		{
242 			if (folio_test_anon(folio))
243 				page_add_anon_rmap(new, vma, pvmw.address, false);
244 			else
245 				page_add_file_rmap(new, vma, false);
246 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247 		}
248 		if (vma->vm_flags & VM_LOCKED)
249 			mlock_page_drain_local();
250 
251 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
252 					   compound_order(new));
253 
254 		/* No need to invalidate - it was non-present before */
255 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 	}
257 
258 	return true;
259 }
260 
261 /*
262  * Get rid of all migration entries and replace them by
263  * references to the indicated page.
264  */
265 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
266 {
267 	struct rmap_walk_control rwc = {
268 		.rmap_one = remove_migration_pte,
269 		.arg = src,
270 	};
271 
272 	if (locked)
273 		rmap_walk_locked(dst, &rwc);
274 	else
275 		rmap_walk(dst, &rwc);
276 }
277 
278 /*
279  * Something used the pte of a page under migration. We need to
280  * get to the page and wait until migration is finished.
281  * When we return from this function the fault will be retried.
282  */
283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
284 				spinlock_t *ptl)
285 {
286 	pte_t pte;
287 	swp_entry_t entry;
288 
289 	spin_lock(ptl);
290 	pte = *ptep;
291 	if (!is_swap_pte(pte))
292 		goto out;
293 
294 	entry = pte_to_swp_entry(pte);
295 	if (!is_migration_entry(entry))
296 		goto out;
297 
298 	migration_entry_wait_on_locked(entry, ptep, ptl);
299 	return;
300 out:
301 	pte_unmap_unlock(ptep, ptl);
302 }
303 
304 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
305 				unsigned long address)
306 {
307 	spinlock_t *ptl = pte_lockptr(mm, pmd);
308 	pte_t *ptep = pte_offset_map(pmd, address);
309 	__migration_entry_wait(mm, ptep, ptl);
310 }
311 
312 void migration_entry_wait_huge(struct vm_area_struct *vma,
313 		struct mm_struct *mm, pte_t *pte)
314 {
315 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
316 	__migration_entry_wait(mm, pte, ptl);
317 }
318 
319 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
320 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
321 {
322 	spinlock_t *ptl;
323 
324 	ptl = pmd_lock(mm, pmd);
325 	if (!is_pmd_migration_entry(*pmd))
326 		goto unlock;
327 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
328 	return;
329 unlock:
330 	spin_unlock(ptl);
331 }
332 #endif
333 
334 static int expected_page_refs(struct address_space *mapping, struct page *page)
335 {
336 	int expected_count = 1;
337 
338 	if (mapping)
339 		expected_count += compound_nr(page) + page_has_private(page);
340 	return expected_count;
341 }
342 
343 /*
344  * Replace the page in the mapping.
345  *
346  * The number of remaining references must be:
347  * 1 for anonymous pages without a mapping
348  * 2 for pages with a mapping
349  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
350  */
351 int folio_migrate_mapping(struct address_space *mapping,
352 		struct folio *newfolio, struct folio *folio, int extra_count)
353 {
354 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
355 	struct zone *oldzone, *newzone;
356 	int dirty;
357 	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
358 	long nr = folio_nr_pages(folio);
359 
360 	if (!mapping) {
361 		/* Anonymous page without mapping */
362 		if (folio_ref_count(folio) != expected_count)
363 			return -EAGAIN;
364 
365 		/* No turning back from here */
366 		newfolio->index = folio->index;
367 		newfolio->mapping = folio->mapping;
368 		if (folio_test_swapbacked(folio))
369 			__folio_set_swapbacked(newfolio);
370 
371 		return MIGRATEPAGE_SUCCESS;
372 	}
373 
374 	oldzone = folio_zone(folio);
375 	newzone = folio_zone(newfolio);
376 
377 	xas_lock_irq(&xas);
378 	if (!folio_ref_freeze(folio, expected_count)) {
379 		xas_unlock_irq(&xas);
380 		return -EAGAIN;
381 	}
382 
383 	/*
384 	 * Now we know that no one else is looking at the folio:
385 	 * no turning back from here.
386 	 */
387 	newfolio->index = folio->index;
388 	newfolio->mapping = folio->mapping;
389 	folio_ref_add(newfolio, nr); /* add cache reference */
390 	if (folio_test_swapbacked(folio)) {
391 		__folio_set_swapbacked(newfolio);
392 		if (folio_test_swapcache(folio)) {
393 			folio_set_swapcache(newfolio);
394 			newfolio->private = folio_get_private(folio);
395 		}
396 	} else {
397 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
398 	}
399 
400 	/* Move dirty while page refs frozen and newpage not yet exposed */
401 	dirty = folio_test_dirty(folio);
402 	if (dirty) {
403 		folio_clear_dirty(folio);
404 		folio_set_dirty(newfolio);
405 	}
406 
407 	xas_store(&xas, newfolio);
408 
409 	/*
410 	 * Drop cache reference from old page by unfreezing
411 	 * to one less reference.
412 	 * We know this isn't the last reference.
413 	 */
414 	folio_ref_unfreeze(folio, expected_count - nr);
415 
416 	xas_unlock(&xas);
417 	/* Leave irq disabled to prevent preemption while updating stats */
418 
419 	/*
420 	 * If moved to a different zone then also account
421 	 * the page for that zone. Other VM counters will be
422 	 * taken care of when we establish references to the
423 	 * new page and drop references to the old page.
424 	 *
425 	 * Note that anonymous pages are accounted for
426 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
427 	 * are mapped to swap space.
428 	 */
429 	if (newzone != oldzone) {
430 		struct lruvec *old_lruvec, *new_lruvec;
431 		struct mem_cgroup *memcg;
432 
433 		memcg = folio_memcg(folio);
434 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
435 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
436 
437 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
438 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
439 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
440 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
441 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
442 		}
443 #ifdef CONFIG_SWAP
444 		if (folio_test_swapcache(folio)) {
445 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
446 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
447 		}
448 #endif
449 		if (dirty && mapping_can_writeback(mapping)) {
450 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
451 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
452 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
453 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
454 		}
455 	}
456 	local_irq_enable();
457 
458 	return MIGRATEPAGE_SUCCESS;
459 }
460 EXPORT_SYMBOL(folio_migrate_mapping);
461 
462 /*
463  * The expected number of remaining references is the same as that
464  * of folio_migrate_mapping().
465  */
466 int migrate_huge_page_move_mapping(struct address_space *mapping,
467 				   struct page *newpage, struct page *page)
468 {
469 	XA_STATE(xas, &mapping->i_pages, page_index(page));
470 	int expected_count;
471 
472 	xas_lock_irq(&xas);
473 	expected_count = 2 + page_has_private(page);
474 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
475 		xas_unlock_irq(&xas);
476 		return -EAGAIN;
477 	}
478 
479 	if (!page_ref_freeze(page, expected_count)) {
480 		xas_unlock_irq(&xas);
481 		return -EAGAIN;
482 	}
483 
484 	newpage->index = page->index;
485 	newpage->mapping = page->mapping;
486 
487 	get_page(newpage);
488 
489 	xas_store(&xas, newpage);
490 
491 	page_ref_unfreeze(page, expected_count - 1);
492 
493 	xas_unlock_irq(&xas);
494 
495 	return MIGRATEPAGE_SUCCESS;
496 }
497 
498 /*
499  * Copy the flags and some other ancillary information
500  */
501 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
502 {
503 	int cpupid;
504 
505 	if (folio_test_error(folio))
506 		folio_set_error(newfolio);
507 	if (folio_test_referenced(folio))
508 		folio_set_referenced(newfolio);
509 	if (folio_test_uptodate(folio))
510 		folio_mark_uptodate(newfolio);
511 	if (folio_test_clear_active(folio)) {
512 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
513 		folio_set_active(newfolio);
514 	} else if (folio_test_clear_unevictable(folio))
515 		folio_set_unevictable(newfolio);
516 	if (folio_test_workingset(folio))
517 		folio_set_workingset(newfolio);
518 	if (folio_test_checked(folio))
519 		folio_set_checked(newfolio);
520 	if (folio_test_mappedtodisk(folio))
521 		folio_set_mappedtodisk(newfolio);
522 
523 	/* Move dirty on pages not done by folio_migrate_mapping() */
524 	if (folio_test_dirty(folio))
525 		folio_set_dirty(newfolio);
526 
527 	if (folio_test_young(folio))
528 		folio_set_young(newfolio);
529 	if (folio_test_idle(folio))
530 		folio_set_idle(newfolio);
531 
532 	/*
533 	 * Copy NUMA information to the new page, to prevent over-eager
534 	 * future migrations of this same page.
535 	 */
536 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
537 	page_cpupid_xchg_last(&newfolio->page, cpupid);
538 
539 	folio_migrate_ksm(newfolio, folio);
540 	/*
541 	 * Please do not reorder this without considering how mm/ksm.c's
542 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
543 	 */
544 	if (folio_test_swapcache(folio))
545 		folio_clear_swapcache(folio);
546 	folio_clear_private(folio);
547 
548 	/* page->private contains hugetlb specific flags */
549 	if (!folio_test_hugetlb(folio))
550 		folio->private = NULL;
551 
552 	/*
553 	 * If any waiters have accumulated on the new page then
554 	 * wake them up.
555 	 */
556 	if (folio_test_writeback(newfolio))
557 		folio_end_writeback(newfolio);
558 
559 	/*
560 	 * PG_readahead shares the same bit with PG_reclaim.  The above
561 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
562 	 * bit after that.
563 	 */
564 	if (folio_test_readahead(folio))
565 		folio_set_readahead(newfolio);
566 
567 	folio_copy_owner(newfolio, folio);
568 
569 	if (!folio_test_hugetlb(folio))
570 		mem_cgroup_migrate(folio, newfolio);
571 }
572 EXPORT_SYMBOL(folio_migrate_flags);
573 
574 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
575 {
576 	folio_copy(newfolio, folio);
577 	folio_migrate_flags(newfolio, folio);
578 }
579 EXPORT_SYMBOL(folio_migrate_copy);
580 
581 /************************************************************
582  *                    Migration functions
583  ***********************************************************/
584 
585 /*
586  * Common logic to directly migrate a single LRU page suitable for
587  * pages that do not use PagePrivate/PagePrivate2.
588  *
589  * Pages are locked upon entry and exit.
590  */
591 int migrate_page(struct address_space *mapping,
592 		struct page *newpage, struct page *page,
593 		enum migrate_mode mode)
594 {
595 	struct folio *newfolio = page_folio(newpage);
596 	struct folio *folio = page_folio(page);
597 	int rc;
598 
599 	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
600 
601 	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
602 
603 	if (rc != MIGRATEPAGE_SUCCESS)
604 		return rc;
605 
606 	if (mode != MIGRATE_SYNC_NO_COPY)
607 		folio_migrate_copy(newfolio, folio);
608 	else
609 		folio_migrate_flags(newfolio, folio);
610 	return MIGRATEPAGE_SUCCESS;
611 }
612 EXPORT_SYMBOL(migrate_page);
613 
614 #ifdef CONFIG_BLOCK
615 /* Returns true if all buffers are successfully locked */
616 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
617 							enum migrate_mode mode)
618 {
619 	struct buffer_head *bh = head;
620 
621 	/* Simple case, sync compaction */
622 	if (mode != MIGRATE_ASYNC) {
623 		do {
624 			lock_buffer(bh);
625 			bh = bh->b_this_page;
626 
627 		} while (bh != head);
628 
629 		return true;
630 	}
631 
632 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
633 	do {
634 		if (!trylock_buffer(bh)) {
635 			/*
636 			 * We failed to lock the buffer and cannot stall in
637 			 * async migration. Release the taken locks
638 			 */
639 			struct buffer_head *failed_bh = bh;
640 			bh = head;
641 			while (bh != failed_bh) {
642 				unlock_buffer(bh);
643 				bh = bh->b_this_page;
644 			}
645 			return false;
646 		}
647 
648 		bh = bh->b_this_page;
649 	} while (bh != head);
650 	return true;
651 }
652 
653 static int __buffer_migrate_page(struct address_space *mapping,
654 		struct page *newpage, struct page *page, enum migrate_mode mode,
655 		bool check_refs)
656 {
657 	struct buffer_head *bh, *head;
658 	int rc;
659 	int expected_count;
660 
661 	if (!page_has_buffers(page))
662 		return migrate_page(mapping, newpage, page, mode);
663 
664 	/* Check whether page does not have extra refs before we do more work */
665 	expected_count = expected_page_refs(mapping, page);
666 	if (page_count(page) != expected_count)
667 		return -EAGAIN;
668 
669 	head = page_buffers(page);
670 	if (!buffer_migrate_lock_buffers(head, mode))
671 		return -EAGAIN;
672 
673 	if (check_refs) {
674 		bool busy;
675 		bool invalidated = false;
676 
677 recheck_buffers:
678 		busy = false;
679 		spin_lock(&mapping->private_lock);
680 		bh = head;
681 		do {
682 			if (atomic_read(&bh->b_count)) {
683 				busy = true;
684 				break;
685 			}
686 			bh = bh->b_this_page;
687 		} while (bh != head);
688 		if (busy) {
689 			if (invalidated) {
690 				rc = -EAGAIN;
691 				goto unlock_buffers;
692 			}
693 			spin_unlock(&mapping->private_lock);
694 			invalidate_bh_lrus();
695 			invalidated = true;
696 			goto recheck_buffers;
697 		}
698 	}
699 
700 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
701 	if (rc != MIGRATEPAGE_SUCCESS)
702 		goto unlock_buffers;
703 
704 	attach_page_private(newpage, detach_page_private(page));
705 
706 	bh = head;
707 	do {
708 		set_bh_page(bh, newpage, bh_offset(bh));
709 		bh = bh->b_this_page;
710 
711 	} while (bh != head);
712 
713 	if (mode != MIGRATE_SYNC_NO_COPY)
714 		migrate_page_copy(newpage, page);
715 	else
716 		migrate_page_states(newpage, page);
717 
718 	rc = MIGRATEPAGE_SUCCESS;
719 unlock_buffers:
720 	if (check_refs)
721 		spin_unlock(&mapping->private_lock);
722 	bh = head;
723 	do {
724 		unlock_buffer(bh);
725 		bh = bh->b_this_page;
726 
727 	} while (bh != head);
728 
729 	return rc;
730 }
731 
732 /*
733  * Migration function for pages with buffers. This function can only be used
734  * if the underlying filesystem guarantees that no other references to "page"
735  * exist. For example attached buffer heads are accessed only under page lock.
736  */
737 int buffer_migrate_page(struct address_space *mapping,
738 		struct page *newpage, struct page *page, enum migrate_mode mode)
739 {
740 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
741 }
742 EXPORT_SYMBOL(buffer_migrate_page);
743 
744 /*
745  * Same as above except that this variant is more careful and checks that there
746  * are also no buffer head references. This function is the right one for
747  * mappings where buffer heads are directly looked up and referenced (such as
748  * block device mappings).
749  */
750 int buffer_migrate_page_norefs(struct address_space *mapping,
751 		struct page *newpage, struct page *page, enum migrate_mode mode)
752 {
753 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
754 }
755 #endif
756 
757 /*
758  * Writeback a page to clean the dirty state
759  */
760 static int writeout(struct address_space *mapping, struct page *page)
761 {
762 	struct folio *folio = page_folio(page);
763 	struct writeback_control wbc = {
764 		.sync_mode = WB_SYNC_NONE,
765 		.nr_to_write = 1,
766 		.range_start = 0,
767 		.range_end = LLONG_MAX,
768 		.for_reclaim = 1
769 	};
770 	int rc;
771 
772 	if (!mapping->a_ops->writepage)
773 		/* No write method for the address space */
774 		return -EINVAL;
775 
776 	if (!clear_page_dirty_for_io(page))
777 		/* Someone else already triggered a write */
778 		return -EAGAIN;
779 
780 	/*
781 	 * A dirty page may imply that the underlying filesystem has
782 	 * the page on some queue. So the page must be clean for
783 	 * migration. Writeout may mean we loose the lock and the
784 	 * page state is no longer what we checked for earlier.
785 	 * At this point we know that the migration attempt cannot
786 	 * be successful.
787 	 */
788 	remove_migration_ptes(folio, folio, false);
789 
790 	rc = mapping->a_ops->writepage(page, &wbc);
791 
792 	if (rc != AOP_WRITEPAGE_ACTIVATE)
793 		/* unlocked. Relock */
794 		lock_page(page);
795 
796 	return (rc < 0) ? -EIO : -EAGAIN;
797 }
798 
799 /*
800  * Default handling if a filesystem does not provide a migration function.
801  */
802 static int fallback_migrate_page(struct address_space *mapping,
803 	struct page *newpage, struct page *page, enum migrate_mode mode)
804 {
805 	if (PageDirty(page)) {
806 		/* Only writeback pages in full synchronous migration */
807 		switch (mode) {
808 		case MIGRATE_SYNC:
809 		case MIGRATE_SYNC_NO_COPY:
810 			break;
811 		default:
812 			return -EBUSY;
813 		}
814 		return writeout(mapping, page);
815 	}
816 
817 	/*
818 	 * Buffers may be managed in a filesystem specific way.
819 	 * We must have no buffers or drop them.
820 	 */
821 	if (page_has_private(page) &&
822 	    !try_to_release_page(page, GFP_KERNEL))
823 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
824 
825 	return migrate_page(mapping, newpage, page, mode);
826 }
827 
828 /*
829  * Move a page to a newly allocated page
830  * The page is locked and all ptes have been successfully removed.
831  *
832  * The new page will have replaced the old page if this function
833  * is successful.
834  *
835  * Return value:
836  *   < 0 - error code
837  *  MIGRATEPAGE_SUCCESS - success
838  */
839 static int move_to_new_page(struct page *newpage, struct page *page,
840 				enum migrate_mode mode)
841 {
842 	struct address_space *mapping;
843 	int rc = -EAGAIN;
844 	bool is_lru = !__PageMovable(page);
845 
846 	VM_BUG_ON_PAGE(!PageLocked(page), page);
847 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
848 
849 	mapping = page_mapping(page);
850 
851 	if (likely(is_lru)) {
852 		if (!mapping)
853 			rc = migrate_page(mapping, newpage, page, mode);
854 		else if (mapping->a_ops->migratepage)
855 			/*
856 			 * Most pages have a mapping and most filesystems
857 			 * provide a migratepage callback. Anonymous pages
858 			 * are part of swap space which also has its own
859 			 * migratepage callback. This is the most common path
860 			 * for page migration.
861 			 */
862 			rc = mapping->a_ops->migratepage(mapping, newpage,
863 							page, mode);
864 		else
865 			rc = fallback_migrate_page(mapping, newpage,
866 							page, mode);
867 	} else {
868 		/*
869 		 * In case of non-lru page, it could be released after
870 		 * isolation step. In that case, we shouldn't try migration.
871 		 */
872 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
873 		if (!PageMovable(page)) {
874 			rc = MIGRATEPAGE_SUCCESS;
875 			ClearPageIsolated(page);
876 			goto out;
877 		}
878 
879 		rc = mapping->a_ops->migratepage(mapping, newpage,
880 						page, mode);
881 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
882 			!PageIsolated(page));
883 	}
884 
885 	/*
886 	 * When successful, old pagecache page->mapping must be cleared before
887 	 * page is freed; but stats require that PageAnon be left as PageAnon.
888 	 */
889 	if (rc == MIGRATEPAGE_SUCCESS) {
890 		if (__PageMovable(page)) {
891 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
892 
893 			/*
894 			 * We clear PG_movable under page_lock so any compactor
895 			 * cannot try to migrate this page.
896 			 */
897 			ClearPageIsolated(page);
898 		}
899 
900 		/*
901 		 * Anonymous and movable page->mapping will be cleared by
902 		 * free_pages_prepare so don't reset it here for keeping
903 		 * the type to work PageAnon, for example.
904 		 */
905 		if (!PageMappingFlags(page))
906 			page->mapping = NULL;
907 
908 		if (likely(!is_zone_device_page(newpage)))
909 			flush_dcache_folio(page_folio(newpage));
910 	}
911 out:
912 	return rc;
913 }
914 
915 static int __unmap_and_move(struct page *page, struct page *newpage,
916 				int force, enum migrate_mode mode)
917 {
918 	struct folio *folio = page_folio(page);
919 	struct folio *dst = page_folio(newpage);
920 	int rc = -EAGAIN;
921 	bool page_was_mapped = false;
922 	struct anon_vma *anon_vma = NULL;
923 	bool is_lru = !__PageMovable(page);
924 
925 	if (!trylock_page(page)) {
926 		if (!force || mode == MIGRATE_ASYNC)
927 			goto out;
928 
929 		/*
930 		 * It's not safe for direct compaction to call lock_page.
931 		 * For example, during page readahead pages are added locked
932 		 * to the LRU. Later, when the IO completes the pages are
933 		 * marked uptodate and unlocked. However, the queueing
934 		 * could be merging multiple pages for one bio (e.g.
935 		 * mpage_readahead). If an allocation happens for the
936 		 * second or third page, the process can end up locking
937 		 * the same page twice and deadlocking. Rather than
938 		 * trying to be clever about what pages can be locked,
939 		 * avoid the use of lock_page for direct compaction
940 		 * altogether.
941 		 */
942 		if (current->flags & PF_MEMALLOC)
943 			goto out;
944 
945 		lock_page(page);
946 	}
947 
948 	if (PageWriteback(page)) {
949 		/*
950 		 * Only in the case of a full synchronous migration is it
951 		 * necessary to wait for PageWriteback. In the async case,
952 		 * the retry loop is too short and in the sync-light case,
953 		 * the overhead of stalling is too much
954 		 */
955 		switch (mode) {
956 		case MIGRATE_SYNC:
957 		case MIGRATE_SYNC_NO_COPY:
958 			break;
959 		default:
960 			rc = -EBUSY;
961 			goto out_unlock;
962 		}
963 		if (!force)
964 			goto out_unlock;
965 		wait_on_page_writeback(page);
966 	}
967 
968 	/*
969 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
970 	 * we cannot notice that anon_vma is freed while we migrates a page.
971 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
972 	 * of migration. File cache pages are no problem because of page_lock()
973 	 * File Caches may use write_page() or lock_page() in migration, then,
974 	 * just care Anon page here.
975 	 *
976 	 * Only page_get_anon_vma() understands the subtleties of
977 	 * getting a hold on an anon_vma from outside one of its mms.
978 	 * But if we cannot get anon_vma, then we won't need it anyway,
979 	 * because that implies that the anon page is no longer mapped
980 	 * (and cannot be remapped so long as we hold the page lock).
981 	 */
982 	if (PageAnon(page) && !PageKsm(page))
983 		anon_vma = page_get_anon_vma(page);
984 
985 	/*
986 	 * Block others from accessing the new page when we get around to
987 	 * establishing additional references. We are usually the only one
988 	 * holding a reference to newpage at this point. We used to have a BUG
989 	 * here if trylock_page(newpage) fails, but would like to allow for
990 	 * cases where there might be a race with the previous use of newpage.
991 	 * This is much like races on refcount of oldpage: just don't BUG().
992 	 */
993 	if (unlikely(!trylock_page(newpage)))
994 		goto out_unlock;
995 
996 	if (unlikely(!is_lru)) {
997 		rc = move_to_new_page(newpage, page, mode);
998 		goto out_unlock_both;
999 	}
1000 
1001 	/*
1002 	 * Corner case handling:
1003 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1004 	 * and treated as swapcache but it has no rmap yet.
1005 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1006 	 * trigger a BUG.  So handle it here.
1007 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1008 	 * fs-private metadata. The page can be picked up due to memory
1009 	 * offlining.  Everywhere else except page reclaim, the page is
1010 	 * invisible to the vm, so the page can not be migrated.  So try to
1011 	 * free the metadata, so the page can be freed.
1012 	 */
1013 	if (!page->mapping) {
1014 		VM_BUG_ON_PAGE(PageAnon(page), page);
1015 		if (page_has_private(page)) {
1016 			try_to_free_buffers(page);
1017 			goto out_unlock_both;
1018 		}
1019 	} else if (page_mapped(page)) {
1020 		/* Establish migration ptes */
1021 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1022 				page);
1023 		try_to_migrate(folio, 0);
1024 		page_was_mapped = true;
1025 	}
1026 
1027 	if (!page_mapped(page))
1028 		rc = move_to_new_page(newpage, page, mode);
1029 
1030 	/*
1031 	 * When successful, push newpage to LRU immediately: so that if it
1032 	 * turns out to be an mlocked page, remove_migration_ptes() will
1033 	 * automatically build up the correct newpage->mlock_count for it.
1034 	 *
1035 	 * We would like to do something similar for the old page, when
1036 	 * unsuccessful, and other cases when a page has been temporarily
1037 	 * isolated from the unevictable LRU: but this case is the easiest.
1038 	 */
1039 	if (rc == MIGRATEPAGE_SUCCESS) {
1040 		lru_cache_add(newpage);
1041 		if (page_was_mapped)
1042 			lru_add_drain();
1043 	}
1044 
1045 	if (page_was_mapped)
1046 		remove_migration_ptes(folio,
1047 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1048 
1049 out_unlock_both:
1050 	unlock_page(newpage);
1051 out_unlock:
1052 	/* Drop an anon_vma reference if we took one */
1053 	if (anon_vma)
1054 		put_anon_vma(anon_vma);
1055 	unlock_page(page);
1056 out:
1057 	/*
1058 	 * If migration is successful, decrease refcount of the newpage,
1059 	 * which will not free the page because new page owner increased
1060 	 * refcounter.
1061 	 */
1062 	if (rc == MIGRATEPAGE_SUCCESS)
1063 		put_page(newpage);
1064 
1065 	return rc;
1066 }
1067 
1068 /*
1069  * Obtain the lock on page, remove all ptes and migrate the page
1070  * to the newly allocated page in newpage.
1071  */
1072 static int unmap_and_move(new_page_t get_new_page,
1073 				   free_page_t put_new_page,
1074 				   unsigned long private, struct page *page,
1075 				   int force, enum migrate_mode mode,
1076 				   enum migrate_reason reason,
1077 				   struct list_head *ret)
1078 {
1079 	int rc = MIGRATEPAGE_SUCCESS;
1080 	struct page *newpage = NULL;
1081 
1082 	if (!thp_migration_supported() && PageTransHuge(page))
1083 		return -ENOSYS;
1084 
1085 	if (page_count(page) == 1) {
1086 		/* page was freed from under us. So we are done. */
1087 		ClearPageActive(page);
1088 		ClearPageUnevictable(page);
1089 		if (unlikely(__PageMovable(page))) {
1090 			lock_page(page);
1091 			if (!PageMovable(page))
1092 				ClearPageIsolated(page);
1093 			unlock_page(page);
1094 		}
1095 		goto out;
1096 	}
1097 
1098 	newpage = get_new_page(page, private);
1099 	if (!newpage)
1100 		return -ENOMEM;
1101 
1102 	rc = __unmap_and_move(page, newpage, force, mode);
1103 	if (rc == MIGRATEPAGE_SUCCESS)
1104 		set_page_owner_migrate_reason(newpage, reason);
1105 
1106 out:
1107 	if (rc != -EAGAIN) {
1108 		/*
1109 		 * A page that has been migrated has all references
1110 		 * removed and will be freed. A page that has not been
1111 		 * migrated will have kept its references and be restored.
1112 		 */
1113 		list_del(&page->lru);
1114 	}
1115 
1116 	/*
1117 	 * If migration is successful, releases reference grabbed during
1118 	 * isolation. Otherwise, restore the page to right list unless
1119 	 * we want to retry.
1120 	 */
1121 	if (rc == MIGRATEPAGE_SUCCESS) {
1122 		/*
1123 		 * Compaction can migrate also non-LRU pages which are
1124 		 * not accounted to NR_ISOLATED_*. They can be recognized
1125 		 * as __PageMovable
1126 		 */
1127 		if (likely(!__PageMovable(page)))
1128 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1129 					page_is_file_lru(page), -thp_nr_pages(page));
1130 
1131 		if (reason != MR_MEMORY_FAILURE)
1132 			/*
1133 			 * We release the page in page_handle_poison.
1134 			 */
1135 			put_page(page);
1136 	} else {
1137 		if (rc != -EAGAIN)
1138 			list_add_tail(&page->lru, ret);
1139 
1140 		if (put_new_page)
1141 			put_new_page(newpage, private);
1142 		else
1143 			put_page(newpage);
1144 	}
1145 
1146 	return rc;
1147 }
1148 
1149 /*
1150  * Counterpart of unmap_and_move_page() for hugepage migration.
1151  *
1152  * This function doesn't wait the completion of hugepage I/O
1153  * because there is no race between I/O and migration for hugepage.
1154  * Note that currently hugepage I/O occurs only in direct I/O
1155  * where no lock is held and PG_writeback is irrelevant,
1156  * and writeback status of all subpages are counted in the reference
1157  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1158  * under direct I/O, the reference of the head page is 512 and a bit more.)
1159  * This means that when we try to migrate hugepage whose subpages are
1160  * doing direct I/O, some references remain after try_to_unmap() and
1161  * hugepage migration fails without data corruption.
1162  *
1163  * There is also no race when direct I/O is issued on the page under migration,
1164  * because then pte is replaced with migration swap entry and direct I/O code
1165  * will wait in the page fault for migration to complete.
1166  */
1167 static int unmap_and_move_huge_page(new_page_t get_new_page,
1168 				free_page_t put_new_page, unsigned long private,
1169 				struct page *hpage, int force,
1170 				enum migrate_mode mode, int reason,
1171 				struct list_head *ret)
1172 {
1173 	struct folio *dst, *src = page_folio(hpage);
1174 	int rc = -EAGAIN;
1175 	int page_was_mapped = 0;
1176 	struct page *new_hpage;
1177 	struct anon_vma *anon_vma = NULL;
1178 	struct address_space *mapping = NULL;
1179 
1180 	/*
1181 	 * Migratability of hugepages depends on architectures and their size.
1182 	 * This check is necessary because some callers of hugepage migration
1183 	 * like soft offline and memory hotremove don't walk through page
1184 	 * tables or check whether the hugepage is pmd-based or not before
1185 	 * kicking migration.
1186 	 */
1187 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1188 		list_move_tail(&hpage->lru, ret);
1189 		return -ENOSYS;
1190 	}
1191 
1192 	if (page_count(hpage) == 1) {
1193 		/* page was freed from under us. So we are done. */
1194 		putback_active_hugepage(hpage);
1195 		return MIGRATEPAGE_SUCCESS;
1196 	}
1197 
1198 	new_hpage = get_new_page(hpage, private);
1199 	if (!new_hpage)
1200 		return -ENOMEM;
1201 	dst = page_folio(new_hpage);
1202 
1203 	if (!trylock_page(hpage)) {
1204 		if (!force)
1205 			goto out;
1206 		switch (mode) {
1207 		case MIGRATE_SYNC:
1208 		case MIGRATE_SYNC_NO_COPY:
1209 			break;
1210 		default:
1211 			goto out;
1212 		}
1213 		lock_page(hpage);
1214 	}
1215 
1216 	/*
1217 	 * Check for pages which are in the process of being freed.  Without
1218 	 * page_mapping() set, hugetlbfs specific move page routine will not
1219 	 * be called and we could leak usage counts for subpools.
1220 	 */
1221 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1222 		rc = -EBUSY;
1223 		goto out_unlock;
1224 	}
1225 
1226 	if (PageAnon(hpage))
1227 		anon_vma = page_get_anon_vma(hpage);
1228 
1229 	if (unlikely(!trylock_page(new_hpage)))
1230 		goto put_anon;
1231 
1232 	if (page_mapped(hpage)) {
1233 		enum ttu_flags ttu = 0;
1234 
1235 		if (!PageAnon(hpage)) {
1236 			/*
1237 			 * In shared mappings, try_to_unmap could potentially
1238 			 * call huge_pmd_unshare.  Because of this, take
1239 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1240 			 * to let lower levels know we have taken the lock.
1241 			 */
1242 			mapping = hugetlb_page_mapping_lock_write(hpage);
1243 			if (unlikely(!mapping))
1244 				goto unlock_put_anon;
1245 
1246 			ttu = TTU_RMAP_LOCKED;
1247 		}
1248 
1249 		try_to_migrate(src, ttu);
1250 		page_was_mapped = 1;
1251 
1252 		if (ttu & TTU_RMAP_LOCKED)
1253 			i_mmap_unlock_write(mapping);
1254 	}
1255 
1256 	if (!page_mapped(hpage))
1257 		rc = move_to_new_page(new_hpage, hpage, mode);
1258 
1259 	if (page_was_mapped)
1260 		remove_migration_ptes(src,
1261 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1262 
1263 unlock_put_anon:
1264 	unlock_page(new_hpage);
1265 
1266 put_anon:
1267 	if (anon_vma)
1268 		put_anon_vma(anon_vma);
1269 
1270 	if (rc == MIGRATEPAGE_SUCCESS) {
1271 		move_hugetlb_state(hpage, new_hpage, reason);
1272 		put_new_page = NULL;
1273 	}
1274 
1275 out_unlock:
1276 	unlock_page(hpage);
1277 out:
1278 	if (rc == MIGRATEPAGE_SUCCESS)
1279 		putback_active_hugepage(hpage);
1280 	else if (rc != -EAGAIN)
1281 		list_move_tail(&hpage->lru, ret);
1282 
1283 	/*
1284 	 * If migration was not successful and there's a freeing callback, use
1285 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1286 	 * isolation.
1287 	 */
1288 	if (put_new_page)
1289 		put_new_page(new_hpage, private);
1290 	else
1291 		putback_active_hugepage(new_hpage);
1292 
1293 	return rc;
1294 }
1295 
1296 static inline int try_split_thp(struct page *page, struct page **page2,
1297 				struct list_head *from)
1298 {
1299 	int rc = 0;
1300 
1301 	lock_page(page);
1302 	rc = split_huge_page_to_list(page, from);
1303 	unlock_page(page);
1304 	if (!rc)
1305 		list_safe_reset_next(page, *page2, lru);
1306 
1307 	return rc;
1308 }
1309 
1310 /*
1311  * migrate_pages - migrate the pages specified in a list, to the free pages
1312  *		   supplied as the target for the page migration
1313  *
1314  * @from:		The list of pages to be migrated.
1315  * @get_new_page:	The function used to allocate free pages to be used
1316  *			as the target of the page migration.
1317  * @put_new_page:	The function used to free target pages if migration
1318  *			fails, or NULL if no special handling is necessary.
1319  * @private:		Private data to be passed on to get_new_page()
1320  * @mode:		The migration mode that specifies the constraints for
1321  *			page migration, if any.
1322  * @reason:		The reason for page migration.
1323  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1324  *			the caller passes a non-NULL pointer.
1325  *
1326  * The function returns after 10 attempts or if no pages are movable any more
1327  * because the list has become empty or no retryable pages exist any more.
1328  * It is caller's responsibility to call putback_movable_pages() to return pages
1329  * to the LRU or free list only if ret != 0.
1330  *
1331  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1332  * an error code. The number of THP splits will be considered as the number of
1333  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1334  */
1335 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1336 		free_page_t put_new_page, unsigned long private,
1337 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1338 {
1339 	int retry = 1;
1340 	int thp_retry = 1;
1341 	int nr_failed = 0;
1342 	int nr_failed_pages = 0;
1343 	int nr_succeeded = 0;
1344 	int nr_thp_succeeded = 0;
1345 	int nr_thp_failed = 0;
1346 	int nr_thp_split = 0;
1347 	int pass = 0;
1348 	bool is_thp = false;
1349 	struct page *page;
1350 	struct page *page2;
1351 	int rc, nr_subpages;
1352 	LIST_HEAD(ret_pages);
1353 	LIST_HEAD(thp_split_pages);
1354 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1355 	bool no_subpage_counting = false;
1356 
1357 	trace_mm_migrate_pages_start(mode, reason);
1358 
1359 thp_subpage_migration:
1360 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1361 		retry = 0;
1362 		thp_retry = 0;
1363 
1364 		list_for_each_entry_safe(page, page2, from, lru) {
1365 retry:
1366 			/*
1367 			 * THP statistics is based on the source huge page.
1368 			 * Capture required information that might get lost
1369 			 * during migration.
1370 			 */
1371 			is_thp = PageTransHuge(page) && !PageHuge(page);
1372 			nr_subpages = compound_nr(page);
1373 			cond_resched();
1374 
1375 			if (PageHuge(page))
1376 				rc = unmap_and_move_huge_page(get_new_page,
1377 						put_new_page, private, page,
1378 						pass > 2, mode, reason,
1379 						&ret_pages);
1380 			else
1381 				rc = unmap_and_move(get_new_page, put_new_page,
1382 						private, page, pass > 2, mode,
1383 						reason, &ret_pages);
1384 			/*
1385 			 * The rules are:
1386 			 *	Success: non hugetlb page will be freed, hugetlb
1387 			 *		 page will be put back
1388 			 *	-EAGAIN: stay on the from list
1389 			 *	-ENOMEM: stay on the from list
1390 			 *	Other errno: put on ret_pages list then splice to
1391 			 *		     from list
1392 			 */
1393 			switch(rc) {
1394 			/*
1395 			 * THP migration might be unsupported or the
1396 			 * allocation could've failed so we should
1397 			 * retry on the same page with the THP split
1398 			 * to base pages.
1399 			 *
1400 			 * Head page is retried immediately and tail
1401 			 * pages are added to the tail of the list so
1402 			 * we encounter them after the rest of the list
1403 			 * is processed.
1404 			 */
1405 			case -ENOSYS:
1406 				/* THP migration is unsupported */
1407 				if (is_thp) {
1408 					nr_thp_failed++;
1409 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1410 						nr_thp_split++;
1411 						goto retry;
1412 					}
1413 				/* Hugetlb migration is unsupported */
1414 				} else if (!no_subpage_counting) {
1415 					nr_failed++;
1416 				}
1417 
1418 				nr_failed_pages += nr_subpages;
1419 				break;
1420 			case -ENOMEM:
1421 				/*
1422 				 * When memory is low, don't bother to try to migrate
1423 				 * other pages, just exit.
1424 				 * THP NUMA faulting doesn't split THP to retry.
1425 				 */
1426 				if (is_thp && !nosplit) {
1427 					nr_thp_failed++;
1428 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1429 						nr_thp_split++;
1430 						goto retry;
1431 					}
1432 				} else if (!no_subpage_counting) {
1433 					nr_failed++;
1434 				}
1435 
1436 				nr_failed_pages += nr_subpages;
1437 				/*
1438 				 * There might be some subpages of fail-to-migrate THPs
1439 				 * left in thp_split_pages list. Move them back to migration
1440 				 * list so that they could be put back to the right list by
1441 				 * the caller otherwise the page refcnt will be leaked.
1442 				 */
1443 				list_splice_init(&thp_split_pages, from);
1444 				nr_thp_failed += thp_retry;
1445 				goto out;
1446 			case -EAGAIN:
1447 				if (is_thp)
1448 					thp_retry++;
1449 				else
1450 					retry++;
1451 				break;
1452 			case MIGRATEPAGE_SUCCESS:
1453 				nr_succeeded += nr_subpages;
1454 				if (is_thp)
1455 					nr_thp_succeeded++;
1456 				break;
1457 			default:
1458 				/*
1459 				 * Permanent failure (-EBUSY, etc.):
1460 				 * unlike -EAGAIN case, the failed page is
1461 				 * removed from migration page list and not
1462 				 * retried in the next outer loop.
1463 				 */
1464 				if (is_thp)
1465 					nr_thp_failed++;
1466 				else if (!no_subpage_counting)
1467 					nr_failed++;
1468 
1469 				nr_failed_pages += nr_subpages;
1470 				break;
1471 			}
1472 		}
1473 	}
1474 	nr_failed += retry;
1475 	nr_thp_failed += thp_retry;
1476 	/*
1477 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1478 	 * counting in this round, since all subpages of a THP is counted
1479 	 * as 1 failure in the first round.
1480 	 */
1481 	if (!list_empty(&thp_split_pages)) {
1482 		/*
1483 		 * Move non-migrated pages (after 10 retries) to ret_pages
1484 		 * to avoid migrating them again.
1485 		 */
1486 		list_splice_init(from, &ret_pages);
1487 		list_splice_init(&thp_split_pages, from);
1488 		no_subpage_counting = true;
1489 		retry = 1;
1490 		goto thp_subpage_migration;
1491 	}
1492 
1493 	rc = nr_failed + nr_thp_failed;
1494 out:
1495 	/*
1496 	 * Put the permanent failure page back to migration list, they
1497 	 * will be put back to the right list by the caller.
1498 	 */
1499 	list_splice(&ret_pages, from);
1500 
1501 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1502 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1503 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1504 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1505 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1506 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1507 			       nr_thp_failed, nr_thp_split, mode, reason);
1508 
1509 	if (ret_succeeded)
1510 		*ret_succeeded = nr_succeeded;
1511 
1512 	return rc;
1513 }
1514 
1515 struct page *alloc_migration_target(struct page *page, unsigned long private)
1516 {
1517 	struct folio *folio = page_folio(page);
1518 	struct migration_target_control *mtc;
1519 	gfp_t gfp_mask;
1520 	unsigned int order = 0;
1521 	struct folio *new_folio = NULL;
1522 	int nid;
1523 	int zidx;
1524 
1525 	mtc = (struct migration_target_control *)private;
1526 	gfp_mask = mtc->gfp_mask;
1527 	nid = mtc->nid;
1528 	if (nid == NUMA_NO_NODE)
1529 		nid = folio_nid(folio);
1530 
1531 	if (folio_test_hugetlb(folio)) {
1532 		struct hstate *h = page_hstate(&folio->page);
1533 
1534 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1535 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1536 	}
1537 
1538 	if (folio_test_large(folio)) {
1539 		/*
1540 		 * clear __GFP_RECLAIM to make the migration callback
1541 		 * consistent with regular THP allocations.
1542 		 */
1543 		gfp_mask &= ~__GFP_RECLAIM;
1544 		gfp_mask |= GFP_TRANSHUGE;
1545 		order = folio_order(folio);
1546 	}
1547 	zidx = zone_idx(folio_zone(folio));
1548 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1549 		gfp_mask |= __GFP_HIGHMEM;
1550 
1551 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1552 
1553 	return &new_folio->page;
1554 }
1555 
1556 #ifdef CONFIG_NUMA
1557 
1558 static int store_status(int __user *status, int start, int value, int nr)
1559 {
1560 	while (nr-- > 0) {
1561 		if (put_user(value, status + start))
1562 			return -EFAULT;
1563 		start++;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static int do_move_pages_to_node(struct mm_struct *mm,
1570 		struct list_head *pagelist, int node)
1571 {
1572 	int err;
1573 	struct migration_target_control mtc = {
1574 		.nid = node,
1575 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1576 	};
1577 
1578 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1579 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1580 	if (err)
1581 		putback_movable_pages(pagelist);
1582 	return err;
1583 }
1584 
1585 /*
1586  * Resolves the given address to a struct page, isolates it from the LRU and
1587  * puts it to the given pagelist.
1588  * Returns:
1589  *     errno - if the page cannot be found/isolated
1590  *     0 - when it doesn't have to be migrated because it is already on the
1591  *         target node
1592  *     1 - when it has been queued
1593  */
1594 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1595 		int node, struct list_head *pagelist, bool migrate_all)
1596 {
1597 	struct vm_area_struct *vma;
1598 	struct page *page;
1599 	int err;
1600 
1601 	mmap_read_lock(mm);
1602 	err = -EFAULT;
1603 	vma = vma_lookup(mm, addr);
1604 	if (!vma || !vma_migratable(vma))
1605 		goto out;
1606 
1607 	/* FOLL_DUMP to ignore special (like zero) pages */
1608 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1609 
1610 	err = PTR_ERR(page);
1611 	if (IS_ERR(page))
1612 		goto out;
1613 
1614 	err = -ENOENT;
1615 	if (!page)
1616 		goto out;
1617 
1618 	err = 0;
1619 	if (page_to_nid(page) == node)
1620 		goto out_putpage;
1621 
1622 	err = -EACCES;
1623 	if (page_mapcount(page) > 1 && !migrate_all)
1624 		goto out_putpage;
1625 
1626 	if (PageHuge(page)) {
1627 		if (PageHead(page)) {
1628 			isolate_huge_page(page, pagelist);
1629 			err = 1;
1630 		}
1631 	} else {
1632 		struct page *head;
1633 
1634 		head = compound_head(page);
1635 		err = isolate_lru_page(head);
1636 		if (err)
1637 			goto out_putpage;
1638 
1639 		err = 1;
1640 		list_add_tail(&head->lru, pagelist);
1641 		mod_node_page_state(page_pgdat(head),
1642 			NR_ISOLATED_ANON + page_is_file_lru(head),
1643 			thp_nr_pages(head));
1644 	}
1645 out_putpage:
1646 	/*
1647 	 * Either remove the duplicate refcount from
1648 	 * isolate_lru_page() or drop the page ref if it was
1649 	 * not isolated.
1650 	 */
1651 	put_page(page);
1652 out:
1653 	mmap_read_unlock(mm);
1654 	return err;
1655 }
1656 
1657 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1658 		struct list_head *pagelist, int __user *status,
1659 		int start, int i, unsigned long nr_pages)
1660 {
1661 	int err;
1662 
1663 	if (list_empty(pagelist))
1664 		return 0;
1665 
1666 	err = do_move_pages_to_node(mm, pagelist, node);
1667 	if (err) {
1668 		/*
1669 		 * Positive err means the number of failed
1670 		 * pages to migrate.  Since we are going to
1671 		 * abort and return the number of non-migrated
1672 		 * pages, so need to include the rest of the
1673 		 * nr_pages that have not been attempted as
1674 		 * well.
1675 		 */
1676 		if (err > 0)
1677 			err += nr_pages - i - 1;
1678 		return err;
1679 	}
1680 	return store_status(status, start, node, i - start);
1681 }
1682 
1683 /*
1684  * Migrate an array of page address onto an array of nodes and fill
1685  * the corresponding array of status.
1686  */
1687 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1688 			 unsigned long nr_pages,
1689 			 const void __user * __user *pages,
1690 			 const int __user *nodes,
1691 			 int __user *status, int flags)
1692 {
1693 	int current_node = NUMA_NO_NODE;
1694 	LIST_HEAD(pagelist);
1695 	int start, i;
1696 	int err = 0, err1;
1697 
1698 	lru_cache_disable();
1699 
1700 	for (i = start = 0; i < nr_pages; i++) {
1701 		const void __user *p;
1702 		unsigned long addr;
1703 		int node;
1704 
1705 		err = -EFAULT;
1706 		if (get_user(p, pages + i))
1707 			goto out_flush;
1708 		if (get_user(node, nodes + i))
1709 			goto out_flush;
1710 		addr = (unsigned long)untagged_addr(p);
1711 
1712 		err = -ENODEV;
1713 		if (node < 0 || node >= MAX_NUMNODES)
1714 			goto out_flush;
1715 		if (!node_state(node, N_MEMORY))
1716 			goto out_flush;
1717 
1718 		err = -EACCES;
1719 		if (!node_isset(node, task_nodes))
1720 			goto out_flush;
1721 
1722 		if (current_node == NUMA_NO_NODE) {
1723 			current_node = node;
1724 			start = i;
1725 		} else if (node != current_node) {
1726 			err = move_pages_and_store_status(mm, current_node,
1727 					&pagelist, status, start, i, nr_pages);
1728 			if (err)
1729 				goto out;
1730 			start = i;
1731 			current_node = node;
1732 		}
1733 
1734 		/*
1735 		 * Errors in the page lookup or isolation are not fatal and we simply
1736 		 * report them via status
1737 		 */
1738 		err = add_page_for_migration(mm, addr, current_node,
1739 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1740 
1741 		if (err > 0) {
1742 			/* The page is successfully queued for migration */
1743 			continue;
1744 		}
1745 
1746 		/*
1747 		 * The move_pages() man page does not have an -EEXIST choice, so
1748 		 * use -EFAULT instead.
1749 		 */
1750 		if (err == -EEXIST)
1751 			err = -EFAULT;
1752 
1753 		/*
1754 		 * If the page is already on the target node (!err), store the
1755 		 * node, otherwise, store the err.
1756 		 */
1757 		err = store_status(status, i, err ? : current_node, 1);
1758 		if (err)
1759 			goto out_flush;
1760 
1761 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1762 				status, start, i, nr_pages);
1763 		if (err)
1764 			goto out;
1765 		current_node = NUMA_NO_NODE;
1766 	}
1767 out_flush:
1768 	/* Make sure we do not overwrite the existing error */
1769 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1770 				status, start, i, nr_pages);
1771 	if (err >= 0)
1772 		err = err1;
1773 out:
1774 	lru_cache_enable();
1775 	return err;
1776 }
1777 
1778 /*
1779  * Determine the nodes of an array of pages and store it in an array of status.
1780  */
1781 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1782 				const void __user **pages, int *status)
1783 {
1784 	unsigned long i;
1785 
1786 	mmap_read_lock(mm);
1787 
1788 	for (i = 0; i < nr_pages; i++) {
1789 		unsigned long addr = (unsigned long)(*pages);
1790 		struct vm_area_struct *vma;
1791 		struct page *page;
1792 		int err = -EFAULT;
1793 
1794 		vma = vma_lookup(mm, addr);
1795 		if (!vma)
1796 			goto set_status;
1797 
1798 		/* FOLL_DUMP to ignore special (like zero) pages */
1799 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1800 
1801 		err = PTR_ERR(page);
1802 		if (IS_ERR(page))
1803 			goto set_status;
1804 
1805 		if (page) {
1806 			err = page_to_nid(page);
1807 			put_page(page);
1808 		} else {
1809 			err = -ENOENT;
1810 		}
1811 set_status:
1812 		*status = err;
1813 
1814 		pages++;
1815 		status++;
1816 	}
1817 
1818 	mmap_read_unlock(mm);
1819 }
1820 
1821 static int get_compat_pages_array(const void __user *chunk_pages[],
1822 				  const void __user * __user *pages,
1823 				  unsigned long chunk_nr)
1824 {
1825 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1826 	compat_uptr_t p;
1827 	int i;
1828 
1829 	for (i = 0; i < chunk_nr; i++) {
1830 		if (get_user(p, pages32 + i))
1831 			return -EFAULT;
1832 		chunk_pages[i] = compat_ptr(p);
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 /*
1839  * Determine the nodes of a user array of pages and store it in
1840  * a user array of status.
1841  */
1842 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1843 			 const void __user * __user *pages,
1844 			 int __user *status)
1845 {
1846 #define DO_PAGES_STAT_CHUNK_NR 16UL
1847 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1848 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1849 
1850 	while (nr_pages) {
1851 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1852 
1853 		if (in_compat_syscall()) {
1854 			if (get_compat_pages_array(chunk_pages, pages,
1855 						   chunk_nr))
1856 				break;
1857 		} else {
1858 			if (copy_from_user(chunk_pages, pages,
1859 				      chunk_nr * sizeof(*chunk_pages)))
1860 				break;
1861 		}
1862 
1863 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1864 
1865 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1866 			break;
1867 
1868 		pages += chunk_nr;
1869 		status += chunk_nr;
1870 		nr_pages -= chunk_nr;
1871 	}
1872 	return nr_pages ? -EFAULT : 0;
1873 }
1874 
1875 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1876 {
1877 	struct task_struct *task;
1878 	struct mm_struct *mm;
1879 
1880 	/*
1881 	 * There is no need to check if current process has the right to modify
1882 	 * the specified process when they are same.
1883 	 */
1884 	if (!pid) {
1885 		mmget(current->mm);
1886 		*mem_nodes = cpuset_mems_allowed(current);
1887 		return current->mm;
1888 	}
1889 
1890 	/* Find the mm_struct */
1891 	rcu_read_lock();
1892 	task = find_task_by_vpid(pid);
1893 	if (!task) {
1894 		rcu_read_unlock();
1895 		return ERR_PTR(-ESRCH);
1896 	}
1897 	get_task_struct(task);
1898 
1899 	/*
1900 	 * Check if this process has the right to modify the specified
1901 	 * process. Use the regular "ptrace_may_access()" checks.
1902 	 */
1903 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1904 		rcu_read_unlock();
1905 		mm = ERR_PTR(-EPERM);
1906 		goto out;
1907 	}
1908 	rcu_read_unlock();
1909 
1910 	mm = ERR_PTR(security_task_movememory(task));
1911 	if (IS_ERR(mm))
1912 		goto out;
1913 	*mem_nodes = cpuset_mems_allowed(task);
1914 	mm = get_task_mm(task);
1915 out:
1916 	put_task_struct(task);
1917 	if (!mm)
1918 		mm = ERR_PTR(-EINVAL);
1919 	return mm;
1920 }
1921 
1922 /*
1923  * Move a list of pages in the address space of the currently executing
1924  * process.
1925  */
1926 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1927 			     const void __user * __user *pages,
1928 			     const int __user *nodes,
1929 			     int __user *status, int flags)
1930 {
1931 	struct mm_struct *mm;
1932 	int err;
1933 	nodemask_t task_nodes;
1934 
1935 	/* Check flags */
1936 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1937 		return -EINVAL;
1938 
1939 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1940 		return -EPERM;
1941 
1942 	mm = find_mm_struct(pid, &task_nodes);
1943 	if (IS_ERR(mm))
1944 		return PTR_ERR(mm);
1945 
1946 	if (nodes)
1947 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1948 				    nodes, status, flags);
1949 	else
1950 		err = do_pages_stat(mm, nr_pages, pages, status);
1951 
1952 	mmput(mm);
1953 	return err;
1954 }
1955 
1956 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1957 		const void __user * __user *, pages,
1958 		const int __user *, nodes,
1959 		int __user *, status, int, flags)
1960 {
1961 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1962 }
1963 
1964 #ifdef CONFIG_NUMA_BALANCING
1965 /*
1966  * Returns true if this is a safe migration target node for misplaced NUMA
1967  * pages. Currently it only checks the watermarks which is crude.
1968  */
1969 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1970 				   unsigned long nr_migrate_pages)
1971 {
1972 	int z;
1973 
1974 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1975 		struct zone *zone = pgdat->node_zones + z;
1976 
1977 		if (!managed_zone(zone))
1978 			continue;
1979 
1980 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1981 		if (!zone_watermark_ok(zone, 0,
1982 				       high_wmark_pages(zone) +
1983 				       nr_migrate_pages,
1984 				       ZONE_MOVABLE, 0))
1985 			continue;
1986 		return true;
1987 	}
1988 	return false;
1989 }
1990 
1991 static struct page *alloc_misplaced_dst_page(struct page *page,
1992 					   unsigned long data)
1993 {
1994 	int nid = (int) data;
1995 	int order = compound_order(page);
1996 	gfp_t gfp = __GFP_THISNODE;
1997 	struct folio *new;
1998 
1999 	if (order > 0)
2000 		gfp |= GFP_TRANSHUGE_LIGHT;
2001 	else {
2002 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2003 			__GFP_NOWARN;
2004 		gfp &= ~__GFP_RECLAIM;
2005 	}
2006 	new = __folio_alloc_node(gfp, order, nid);
2007 
2008 	return &new->page;
2009 }
2010 
2011 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2012 {
2013 	int nr_pages = thp_nr_pages(page);
2014 	int order = compound_order(page);
2015 
2016 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2017 
2018 	/* Do not migrate THP mapped by multiple processes */
2019 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2020 		return 0;
2021 
2022 	/* Avoid migrating to a node that is nearly full */
2023 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2024 		int z;
2025 
2026 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2027 			return 0;
2028 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2029 			if (managed_zone(pgdat->node_zones + z))
2030 				break;
2031 		}
2032 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2033 		return 0;
2034 	}
2035 
2036 	if (isolate_lru_page(page))
2037 		return 0;
2038 
2039 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2040 			    nr_pages);
2041 
2042 	/*
2043 	 * Isolating the page has taken another reference, so the
2044 	 * caller's reference can be safely dropped without the page
2045 	 * disappearing underneath us during migration.
2046 	 */
2047 	put_page(page);
2048 	return 1;
2049 }
2050 
2051 /*
2052  * Attempt to migrate a misplaced page to the specified destination
2053  * node. Caller is expected to have an elevated reference count on
2054  * the page that will be dropped by this function before returning.
2055  */
2056 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2057 			   int node)
2058 {
2059 	pg_data_t *pgdat = NODE_DATA(node);
2060 	int isolated;
2061 	int nr_remaining;
2062 	unsigned int nr_succeeded;
2063 	LIST_HEAD(migratepages);
2064 	int nr_pages = thp_nr_pages(page);
2065 
2066 	/*
2067 	 * Don't migrate file pages that are mapped in multiple processes
2068 	 * with execute permissions as they are probably shared libraries.
2069 	 */
2070 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2071 	    (vma->vm_flags & VM_EXEC))
2072 		goto out;
2073 
2074 	/*
2075 	 * Also do not migrate dirty pages as not all filesystems can move
2076 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2077 	 */
2078 	if (page_is_file_lru(page) && PageDirty(page))
2079 		goto out;
2080 
2081 	isolated = numamigrate_isolate_page(pgdat, page);
2082 	if (!isolated)
2083 		goto out;
2084 
2085 	list_add(&page->lru, &migratepages);
2086 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2087 				     NULL, node, MIGRATE_ASYNC,
2088 				     MR_NUMA_MISPLACED, &nr_succeeded);
2089 	if (nr_remaining) {
2090 		if (!list_empty(&migratepages)) {
2091 			list_del(&page->lru);
2092 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2093 					page_is_file_lru(page), -nr_pages);
2094 			putback_lru_page(page);
2095 		}
2096 		isolated = 0;
2097 	}
2098 	if (nr_succeeded) {
2099 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2100 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2101 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2102 					    nr_succeeded);
2103 	}
2104 	BUG_ON(!list_empty(&migratepages));
2105 	return isolated;
2106 
2107 out:
2108 	put_page(page);
2109 	return 0;
2110 }
2111 #endif /* CONFIG_NUMA_BALANCING */
2112 #endif /* CONFIG_NUMA */
2113 
2114 /*
2115  * node_demotion[] example:
2116  *
2117  * Consider a system with two sockets.  Each socket has
2118  * three classes of memory attached: fast, medium and slow.
2119  * Each memory class is placed in its own NUMA node.  The
2120  * CPUs are placed in the node with the "fast" memory.  The
2121  * 6 NUMA nodes (0-5) might be split among the sockets like
2122  * this:
2123  *
2124  *	Socket A: 0, 1, 2
2125  *	Socket B: 3, 4, 5
2126  *
2127  * When Node 0 fills up, its memory should be migrated to
2128  * Node 1.  When Node 1 fills up, it should be migrated to
2129  * Node 2.  The migration path start on the nodes with the
2130  * processors (since allocations default to this node) and
2131  * fast memory, progress through medium and end with the
2132  * slow memory:
2133  *
2134  *	0 -> 1 -> 2 -> stop
2135  *	3 -> 4 -> 5 -> stop
2136  *
2137  * This is represented in the node_demotion[] like this:
2138  *
2139  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2140  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2141  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2142  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2143  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2144  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2145  *
2146  * Moreover some systems may have multiple slow memory nodes.
2147  * Suppose a system has one socket with 3 memory nodes, node 0
2148  * is fast memory type, and node 1/2 both are slow memory
2149  * type, and the distance between fast memory node and slow
2150  * memory node is same. So the migration path should be:
2151  *
2152  *	0 -> 1/2 -> stop
2153  *
2154  * This is represented in the node_demotion[] like this:
2155  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2156  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2157  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2158  */
2159 
2160 /*
2161  * Writes to this array occur without locking.  Cycles are
2162  * not allowed: Node X demotes to Y which demotes to X...
2163  *
2164  * If multiple reads are performed, a single rcu_read_lock()
2165  * must be held over all reads to ensure that no cycles are
2166  * observed.
2167  */
2168 #define DEFAULT_DEMOTION_TARGET_NODES 15
2169 
2170 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2171 #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
2172 #else
2173 #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
2174 #endif
2175 
2176 struct demotion_nodes {
2177 	unsigned short nr;
2178 	short nodes[DEMOTION_TARGET_NODES];
2179 };
2180 
2181 static struct demotion_nodes *node_demotion __read_mostly;
2182 
2183 /**
2184  * next_demotion_node() - Get the next node in the demotion path
2185  * @node: The starting node to lookup the next node
2186  *
2187  * Return: node id for next memory node in the demotion path hierarchy
2188  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2189  * @node online or guarantee that it *continues* to be the next demotion
2190  * target.
2191  */
2192 int next_demotion_node(int node)
2193 {
2194 	struct demotion_nodes *nd;
2195 	unsigned short target_nr, index;
2196 	int target;
2197 
2198 	if (!node_demotion)
2199 		return NUMA_NO_NODE;
2200 
2201 	nd = &node_demotion[node];
2202 
2203 	/*
2204 	 * node_demotion[] is updated without excluding this
2205 	 * function from running.  RCU doesn't provide any
2206 	 * compiler barriers, so the READ_ONCE() is required
2207 	 * to avoid compiler reordering or read merging.
2208 	 *
2209 	 * Make sure to use RCU over entire code blocks if
2210 	 * node_demotion[] reads need to be consistent.
2211 	 */
2212 	rcu_read_lock();
2213 	target_nr = READ_ONCE(nd->nr);
2214 
2215 	switch (target_nr) {
2216 	case 0:
2217 		target = NUMA_NO_NODE;
2218 		goto out;
2219 	case 1:
2220 		index = 0;
2221 		break;
2222 	default:
2223 		/*
2224 		 * If there are multiple target nodes, just select one
2225 		 * target node randomly.
2226 		 *
2227 		 * In addition, we can also use round-robin to select
2228 		 * target node, but we should introduce another variable
2229 		 * for node_demotion[] to record last selected target node,
2230 		 * that may cause cache ping-pong due to the changing of
2231 		 * last target node. Or introducing per-cpu data to avoid
2232 		 * caching issue, which seems more complicated. So selecting
2233 		 * target node randomly seems better until now.
2234 		 */
2235 		index = get_random_int() % target_nr;
2236 		break;
2237 	}
2238 
2239 	target = READ_ONCE(nd->nodes[index]);
2240 
2241 out:
2242 	rcu_read_unlock();
2243 	return target;
2244 }
2245 
2246 #if defined(CONFIG_HOTPLUG_CPU)
2247 /* Disable reclaim-based migration. */
2248 static void __disable_all_migrate_targets(void)
2249 {
2250 	int node, i;
2251 
2252 	if (!node_demotion)
2253 		return;
2254 
2255 	for_each_online_node(node) {
2256 		node_demotion[node].nr = 0;
2257 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2258 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
2259 	}
2260 }
2261 
2262 static void disable_all_migrate_targets(void)
2263 {
2264 	__disable_all_migrate_targets();
2265 
2266 	/*
2267 	 * Ensure that the "disable" is visible across the system.
2268 	 * Readers will see either a combination of before+disable
2269 	 * state or disable+after.  They will never see before and
2270 	 * after state together.
2271 	 *
2272 	 * The before+after state together might have cycles and
2273 	 * could cause readers to do things like loop until this
2274 	 * function finishes.  This ensures they can only see a
2275 	 * single "bad" read and would, for instance, only loop
2276 	 * once.
2277 	 */
2278 	synchronize_rcu();
2279 }
2280 
2281 /*
2282  * Find an automatic demotion target for 'node'.
2283  * Failing here is OK.  It might just indicate
2284  * being at the end of a chain.
2285  */
2286 static int establish_migrate_target(int node, nodemask_t *used,
2287 				    int best_distance)
2288 {
2289 	int migration_target, index, val;
2290 	struct demotion_nodes *nd;
2291 
2292 	if (!node_demotion)
2293 		return NUMA_NO_NODE;
2294 
2295 	nd = &node_demotion[node];
2296 
2297 	migration_target = find_next_best_node(node, used);
2298 	if (migration_target == NUMA_NO_NODE)
2299 		return NUMA_NO_NODE;
2300 
2301 	/*
2302 	 * If the node has been set a migration target node before,
2303 	 * which means it's the best distance between them. Still
2304 	 * check if this node can be demoted to other target nodes
2305 	 * if they have a same best distance.
2306 	 */
2307 	if (best_distance != -1) {
2308 		val = node_distance(node, migration_target);
2309 		if (val > best_distance)
2310 			goto out_clear;
2311 	}
2312 
2313 	index = nd->nr;
2314 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2315 		      "Exceeds maximum demotion target nodes\n"))
2316 		goto out_clear;
2317 
2318 	nd->nodes[index] = migration_target;
2319 	nd->nr++;
2320 
2321 	return migration_target;
2322 out_clear:
2323 	node_clear(migration_target, *used);
2324 	return NUMA_NO_NODE;
2325 }
2326 
2327 /*
2328  * When memory fills up on a node, memory contents can be
2329  * automatically migrated to another node instead of
2330  * discarded at reclaim.
2331  *
2332  * Establish a "migration path" which will start at nodes
2333  * with CPUs and will follow the priorities used to build the
2334  * page allocator zonelists.
2335  *
2336  * The difference here is that cycles must be avoided.  If
2337  * node0 migrates to node1, then neither node1, nor anything
2338  * node1 migrates to can migrate to node0. Also one node can
2339  * be migrated to multiple nodes if the target nodes all have
2340  * a same best-distance against the source node.
2341  *
2342  * This function can run simultaneously with readers of
2343  * node_demotion[].  However, it can not run simultaneously
2344  * with itself.  Exclusion is provided by memory hotplug events
2345  * being single-threaded.
2346  */
2347 static void __set_migration_target_nodes(void)
2348 {
2349 	nodemask_t next_pass;
2350 	nodemask_t this_pass;
2351 	nodemask_t used_targets = NODE_MASK_NONE;
2352 	int node, best_distance;
2353 
2354 	/*
2355 	 * Avoid any oddities like cycles that could occur
2356 	 * from changes in the topology.  This will leave
2357 	 * a momentary gap when migration is disabled.
2358 	 */
2359 	disable_all_migrate_targets();
2360 
2361 	/*
2362 	 * Allocations go close to CPUs, first.  Assume that
2363 	 * the migration path starts at the nodes with CPUs.
2364 	 */
2365 	next_pass = node_states[N_CPU];
2366 again:
2367 	this_pass = next_pass;
2368 	next_pass = NODE_MASK_NONE;
2369 	/*
2370 	 * To avoid cycles in the migration "graph", ensure
2371 	 * that migration sources are not future targets by
2372 	 * setting them in 'used_targets'.  Do this only
2373 	 * once per pass so that multiple source nodes can
2374 	 * share a target node.
2375 	 *
2376 	 * 'used_targets' will become unavailable in future
2377 	 * passes.  This limits some opportunities for
2378 	 * multiple source nodes to share a destination.
2379 	 */
2380 	nodes_or(used_targets, used_targets, this_pass);
2381 
2382 	for_each_node_mask(node, this_pass) {
2383 		best_distance = -1;
2384 
2385 		/*
2386 		 * Try to set up the migration path for the node, and the target
2387 		 * migration nodes can be multiple, so doing a loop to find all
2388 		 * the target nodes if they all have a best node distance.
2389 		 */
2390 		do {
2391 			int target_node =
2392 				establish_migrate_target(node, &used_targets,
2393 							 best_distance);
2394 
2395 			if (target_node == NUMA_NO_NODE)
2396 				break;
2397 
2398 			if (best_distance == -1)
2399 				best_distance = node_distance(node, target_node);
2400 
2401 			/*
2402 			 * Visit targets from this pass in the next pass.
2403 			 * Eventually, every node will have been part of
2404 			 * a pass, and will become set in 'used_targets'.
2405 			 */
2406 			node_set(target_node, next_pass);
2407 		} while (1);
2408 	}
2409 	/*
2410 	 * 'next_pass' contains nodes which became migration
2411 	 * targets in this pass.  Make additional passes until
2412 	 * no more migrations targets are available.
2413 	 */
2414 	if (!nodes_empty(next_pass))
2415 		goto again;
2416 }
2417 
2418 /*
2419  * For callers that do not hold get_online_mems() already.
2420  */
2421 void set_migration_target_nodes(void)
2422 {
2423 	get_online_mems();
2424 	__set_migration_target_nodes();
2425 	put_online_mems();
2426 }
2427 
2428 /*
2429  * This leaves migrate-on-reclaim transiently disabled between
2430  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
2431  * whether reclaim-based migration is enabled or not, which
2432  * ensures that the user can turn reclaim-based migration at
2433  * any time without needing to recalculate migration targets.
2434  *
2435  * These callbacks already hold get_online_mems().  That is why
2436  * __set_migration_target_nodes() can be used as opposed to
2437  * set_migration_target_nodes().
2438  */
2439 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2440 						 unsigned long action, void *_arg)
2441 {
2442 	struct memory_notify *arg = _arg;
2443 
2444 	/*
2445 	 * Only update the node migration order when a node is
2446 	 * changing status, like online->offline.  This avoids
2447 	 * the overhead of synchronize_rcu() in most cases.
2448 	 */
2449 	if (arg->status_change_nid < 0)
2450 		return notifier_from_errno(0);
2451 
2452 	switch (action) {
2453 	case MEM_GOING_OFFLINE:
2454 		/*
2455 		 * Make sure there are not transient states where
2456 		 * an offline node is a migration target.  This
2457 		 * will leave migration disabled until the offline
2458 		 * completes and the MEM_OFFLINE case below runs.
2459 		 */
2460 		disable_all_migrate_targets();
2461 		break;
2462 	case MEM_OFFLINE:
2463 	case MEM_ONLINE:
2464 		/*
2465 		 * Recalculate the target nodes once the node
2466 		 * reaches its final state (online or offline).
2467 		 */
2468 		__set_migration_target_nodes();
2469 		break;
2470 	case MEM_CANCEL_OFFLINE:
2471 		/*
2472 		 * MEM_GOING_OFFLINE disabled all the migration
2473 		 * targets.  Reenable them.
2474 		 */
2475 		__set_migration_target_nodes();
2476 		break;
2477 	case MEM_GOING_ONLINE:
2478 	case MEM_CANCEL_ONLINE:
2479 		break;
2480 	}
2481 
2482 	return notifier_from_errno(0);
2483 }
2484 
2485 void __init migrate_on_reclaim_init(void)
2486 {
2487 	node_demotion = kcalloc(nr_node_ids,
2488 				sizeof(struct demotion_nodes),
2489 				GFP_KERNEL);
2490 	WARN_ON(!node_demotion);
2491 
2492 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2493 	/*
2494 	 * At this point, all numa nodes with memory/CPus have their state
2495 	 * properly set, so we can build the demotion order now.
2496 	 * Let us hold the cpu_hotplug lock just, as we could possibily have
2497 	 * CPU hotplug events during boot.
2498 	 */
2499 	cpus_read_lock();
2500 	set_migration_target_nodes();
2501 	cpus_read_unlock();
2502 }
2503 #endif /* CONFIG_HOTPLUG_CPU */
2504 
2505 bool numa_demotion_enabled = false;
2506 
2507 #ifdef CONFIG_SYSFS
2508 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2509 					  struct kobj_attribute *attr, char *buf)
2510 {
2511 	return sysfs_emit(buf, "%s\n",
2512 			  numa_demotion_enabled ? "true" : "false");
2513 }
2514 
2515 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2516 					   struct kobj_attribute *attr,
2517 					   const char *buf, size_t count)
2518 {
2519 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
2520 		numa_demotion_enabled = true;
2521 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
2522 		numa_demotion_enabled = false;
2523 	else
2524 		return -EINVAL;
2525 
2526 	return count;
2527 }
2528 
2529 static struct kobj_attribute numa_demotion_enabled_attr =
2530 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2531 	       numa_demotion_enabled_store);
2532 
2533 static struct attribute *numa_attrs[] = {
2534 	&numa_demotion_enabled_attr.attr,
2535 	NULL,
2536 };
2537 
2538 static const struct attribute_group numa_attr_group = {
2539 	.attrs = numa_attrs,
2540 };
2541 
2542 static int __init numa_init_sysfs(void)
2543 {
2544 	int err;
2545 	struct kobject *numa_kobj;
2546 
2547 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
2548 	if (!numa_kobj) {
2549 		pr_err("failed to create numa kobject\n");
2550 		return -ENOMEM;
2551 	}
2552 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
2553 	if (err) {
2554 		pr_err("failed to register numa group\n");
2555 		goto delete_obj;
2556 	}
2557 	return 0;
2558 
2559 delete_obj:
2560 	kobject_put(numa_kobj);
2561 	return err;
2562 }
2563 subsys_initcall(numa_init_sysfs);
2564 #endif
2565