xref: /openbmc/linux/mm/migrate.c (revision 4beec1d7)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 
44 #include <asm/tlbflush.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
48 
49 #include "internal.h"
50 
51 /*
52  * migrate_prep() needs to be called before we start compiling a list of pages
53  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54  * undesirable, use migrate_prep_local()
55  */
56 int migrate_prep(void)
57 {
58 	/*
59 	 * Clear the LRU lists so pages can be isolated.
60 	 * Note that pages may be moved off the LRU after we have
61 	 * drained them. Those pages will fail to migrate like other
62 	 * pages that may be busy.
63 	 */
64 	lru_add_drain_all();
65 
66 	return 0;
67 }
68 
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
71 {
72 	lru_add_drain();
73 
74 	return 0;
75 }
76 
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
78 {
79 	struct address_space *mapping;
80 
81 	/*
82 	 * Avoid burning cycles with pages that are yet under __free_pages(),
83 	 * or just got freed under us.
84 	 *
85 	 * In case we 'win' a race for a movable page being freed under us and
86 	 * raise its refcount preventing __free_pages() from doing its job
87 	 * the put_page() at the end of this block will take care of
88 	 * release this page, thus avoiding a nasty leakage.
89 	 */
90 	if (unlikely(!get_page_unless_zero(page)))
91 		goto out;
92 
93 	/*
94 	 * Check PageMovable before holding a PG_lock because page's owner
95 	 * assumes anybody doesn't touch PG_lock of newly allocated page
96 	 * so unconditionally grapping the lock ruins page's owner side.
97 	 */
98 	if (unlikely(!__PageMovable(page)))
99 		goto out_putpage;
100 	/*
101 	 * As movable pages are not isolated from LRU lists, concurrent
102 	 * compaction threads can race against page migration functions
103 	 * as well as race against the releasing a page.
104 	 *
105 	 * In order to avoid having an already isolated movable page
106 	 * being (wrongly) re-isolated while it is under migration,
107 	 * or to avoid attempting to isolate pages being released,
108 	 * lets be sure we have the page lock
109 	 * before proceeding with the movable page isolation steps.
110 	 */
111 	if (unlikely(!trylock_page(page)))
112 		goto out_putpage;
113 
114 	if (!PageMovable(page) || PageIsolated(page))
115 		goto out_no_isolated;
116 
117 	mapping = page_mapping(page);
118 	VM_BUG_ON_PAGE(!mapping, page);
119 
120 	if (!mapping->a_ops->isolate_page(page, mode))
121 		goto out_no_isolated;
122 
123 	/* Driver shouldn't use PG_isolated bit of page->flags */
124 	WARN_ON_ONCE(PageIsolated(page));
125 	__SetPageIsolated(page);
126 	unlock_page(page);
127 
128 	return true;
129 
130 out_no_isolated:
131 	unlock_page(page);
132 out_putpage:
133 	put_page(page);
134 out:
135 	return false;
136 }
137 
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
140 {
141 	struct address_space *mapping;
142 
143 	VM_BUG_ON_PAGE(!PageLocked(page), page);
144 	VM_BUG_ON_PAGE(!PageMovable(page), page);
145 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
146 
147 	mapping = page_mapping(page);
148 	mapping->a_ops->putback_page(page);
149 	__ClearPageIsolated(page);
150 }
151 
152 /*
153  * Put previously isolated pages back onto the appropriate lists
154  * from where they were once taken off for compaction/migration.
155  *
156  * This function shall be used whenever the isolated pageset has been
157  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158  * and isolate_huge_page().
159  */
160 void putback_movable_pages(struct list_head *l)
161 {
162 	struct page *page;
163 	struct page *page2;
164 
165 	list_for_each_entry_safe(page, page2, l, lru) {
166 		if (unlikely(PageHuge(page))) {
167 			putback_active_hugepage(page);
168 			continue;
169 		}
170 		list_del(&page->lru);
171 		/*
172 		 * We isolated non-lru movable page so here we can use
173 		 * __PageMovable because LRU page's mapping cannot have
174 		 * PAGE_MAPPING_MOVABLE.
175 		 */
176 		if (unlikely(__PageMovable(page))) {
177 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
178 			lock_page(page);
179 			if (PageMovable(page))
180 				putback_movable_page(page);
181 			else
182 				__ClearPageIsolated(page);
183 			unlock_page(page);
184 			put_page(page);
185 		} else {
186 			putback_lru_page(page);
187 			dec_node_page_state(page, NR_ISOLATED_ANON +
188 					page_is_file_cache(page));
189 		}
190 	}
191 }
192 
193 /*
194  * Restore a potential migration pte to a working pte entry
195  */
196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 				 unsigned long addr, void *old)
198 {
199 	struct mm_struct *mm = vma->vm_mm;
200 	swp_entry_t entry;
201  	pmd_t *pmd;
202 	pte_t *ptep, pte;
203  	spinlock_t *ptl;
204 
205 	if (unlikely(PageHuge(new))) {
206 		ptep = huge_pte_offset(mm, addr);
207 		if (!ptep)
208 			goto out;
209 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
210 	} else {
211 		pmd = mm_find_pmd(mm, addr);
212 		if (!pmd)
213 			goto out;
214 
215 		ptep = pte_offset_map(pmd, addr);
216 
217 		/*
218 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
219 		 * can race mremap's move_ptes(), which skips anon_vma lock.
220 		 */
221 
222 		ptl = pte_lockptr(mm, pmd);
223 	}
224 
225  	spin_lock(ptl);
226 	pte = *ptep;
227 	if (!is_swap_pte(pte))
228 		goto unlock;
229 
230 	entry = pte_to_swp_entry(pte);
231 
232 	if (!is_migration_entry(entry) ||
233 	    migration_entry_to_page(entry) != old)
234 		goto unlock;
235 
236 	get_page(new);
237 	pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
238 	if (pte_swp_soft_dirty(*ptep))
239 		pte = pte_mksoft_dirty(pte);
240 
241 	/* Recheck VMA as permissions can change since migration started  */
242 	if (is_write_migration_entry(entry))
243 		pte = maybe_mkwrite(pte, vma);
244 
245 #ifdef CONFIG_HUGETLB_PAGE
246 	if (PageHuge(new)) {
247 		pte = pte_mkhuge(pte);
248 		pte = arch_make_huge_pte(pte, vma, new, 0);
249 	}
250 #endif
251 	flush_dcache_page(new);
252 	set_pte_at(mm, addr, ptep, pte);
253 
254 	if (PageHuge(new)) {
255 		if (PageAnon(new))
256 			hugepage_add_anon_rmap(new, vma, addr);
257 		else
258 			page_dup_rmap(new, true);
259 	} else if (PageAnon(new))
260 		page_add_anon_rmap(new, vma, addr, false);
261 	else
262 		page_add_file_rmap(new, false);
263 
264 	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
265 		mlock_vma_page(new);
266 
267 	/* No need to invalidate - it was non-present before */
268 	update_mmu_cache(vma, addr, ptep);
269 unlock:
270 	pte_unmap_unlock(ptep, ptl);
271 out:
272 	return SWAP_AGAIN;
273 }
274 
275 /*
276  * Get rid of all migration entries and replace them by
277  * references to the indicated page.
278  */
279 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
280 {
281 	struct rmap_walk_control rwc = {
282 		.rmap_one = remove_migration_pte,
283 		.arg = old,
284 	};
285 
286 	if (locked)
287 		rmap_walk_locked(new, &rwc);
288 	else
289 		rmap_walk(new, &rwc);
290 }
291 
292 /*
293  * Something used the pte of a page under migration. We need to
294  * get to the page and wait until migration is finished.
295  * When we return from this function the fault will be retried.
296  */
297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
298 				spinlock_t *ptl)
299 {
300 	pte_t pte;
301 	swp_entry_t entry;
302 	struct page *page;
303 
304 	spin_lock(ptl);
305 	pte = *ptep;
306 	if (!is_swap_pte(pte))
307 		goto out;
308 
309 	entry = pte_to_swp_entry(pte);
310 	if (!is_migration_entry(entry))
311 		goto out;
312 
313 	page = migration_entry_to_page(entry);
314 
315 	/*
316 	 * Once radix-tree replacement of page migration started, page_count
317 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
318 	 * against a page without get_page().
319 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
320 	 * will occur again.
321 	 */
322 	if (!get_page_unless_zero(page))
323 		goto out;
324 	pte_unmap_unlock(ptep, ptl);
325 	wait_on_page_locked(page);
326 	put_page(page);
327 	return;
328 out:
329 	pte_unmap_unlock(ptep, ptl);
330 }
331 
332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333 				unsigned long address)
334 {
335 	spinlock_t *ptl = pte_lockptr(mm, pmd);
336 	pte_t *ptep = pte_offset_map(pmd, address);
337 	__migration_entry_wait(mm, ptep, ptl);
338 }
339 
340 void migration_entry_wait_huge(struct vm_area_struct *vma,
341 		struct mm_struct *mm, pte_t *pte)
342 {
343 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344 	__migration_entry_wait(mm, pte, ptl);
345 }
346 
347 #ifdef CONFIG_BLOCK
348 /* Returns true if all buffers are successfully locked */
349 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350 							enum migrate_mode mode)
351 {
352 	struct buffer_head *bh = head;
353 
354 	/* Simple case, sync compaction */
355 	if (mode != MIGRATE_ASYNC) {
356 		do {
357 			get_bh(bh);
358 			lock_buffer(bh);
359 			bh = bh->b_this_page;
360 
361 		} while (bh != head);
362 
363 		return true;
364 	}
365 
366 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
367 	do {
368 		get_bh(bh);
369 		if (!trylock_buffer(bh)) {
370 			/*
371 			 * We failed to lock the buffer and cannot stall in
372 			 * async migration. Release the taken locks
373 			 */
374 			struct buffer_head *failed_bh = bh;
375 			put_bh(failed_bh);
376 			bh = head;
377 			while (bh != failed_bh) {
378 				unlock_buffer(bh);
379 				put_bh(bh);
380 				bh = bh->b_this_page;
381 			}
382 			return false;
383 		}
384 
385 		bh = bh->b_this_page;
386 	} while (bh != head);
387 	return true;
388 }
389 #else
390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391 							enum migrate_mode mode)
392 {
393 	return true;
394 }
395 #endif /* CONFIG_BLOCK */
396 
397 /*
398  * Replace the page in the mapping.
399  *
400  * The number of remaining references must be:
401  * 1 for anonymous pages without a mapping
402  * 2 for pages with a mapping
403  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
404  */
405 int migrate_page_move_mapping(struct address_space *mapping,
406 		struct page *newpage, struct page *page,
407 		struct buffer_head *head, enum migrate_mode mode,
408 		int extra_count)
409 {
410 	struct zone *oldzone, *newzone;
411 	int dirty;
412 	int expected_count = 1 + extra_count;
413 	void **pslot;
414 
415 	if (!mapping) {
416 		/* Anonymous page without mapping */
417 		if (page_count(page) != expected_count)
418 			return -EAGAIN;
419 
420 		/* No turning back from here */
421 		newpage->index = page->index;
422 		newpage->mapping = page->mapping;
423 		if (PageSwapBacked(page))
424 			__SetPageSwapBacked(newpage);
425 
426 		return MIGRATEPAGE_SUCCESS;
427 	}
428 
429 	oldzone = page_zone(page);
430 	newzone = page_zone(newpage);
431 
432 	spin_lock_irq(&mapping->tree_lock);
433 
434 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
435  					page_index(page));
436 
437 	expected_count += 1 + page_has_private(page);
438 	if (page_count(page) != expected_count ||
439 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440 		spin_unlock_irq(&mapping->tree_lock);
441 		return -EAGAIN;
442 	}
443 
444 	if (!page_ref_freeze(page, expected_count)) {
445 		spin_unlock_irq(&mapping->tree_lock);
446 		return -EAGAIN;
447 	}
448 
449 	/*
450 	 * In the async migration case of moving a page with buffers, lock the
451 	 * buffers using trylock before the mapping is moved. If the mapping
452 	 * was moved, we later failed to lock the buffers and could not move
453 	 * the mapping back due to an elevated page count, we would have to
454 	 * block waiting on other references to be dropped.
455 	 */
456 	if (mode == MIGRATE_ASYNC && head &&
457 			!buffer_migrate_lock_buffers(head, mode)) {
458 		page_ref_unfreeze(page, expected_count);
459 		spin_unlock_irq(&mapping->tree_lock);
460 		return -EAGAIN;
461 	}
462 
463 	/*
464 	 * Now we know that no one else is looking at the page:
465 	 * no turning back from here.
466 	 */
467 	newpage->index = page->index;
468 	newpage->mapping = page->mapping;
469 	get_page(newpage);	/* add cache reference */
470 	if (PageSwapBacked(page)) {
471 		__SetPageSwapBacked(newpage);
472 		if (PageSwapCache(page)) {
473 			SetPageSwapCache(newpage);
474 			set_page_private(newpage, page_private(page));
475 		}
476 	} else {
477 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
478 	}
479 
480 	/* Move dirty while page refs frozen and newpage not yet exposed */
481 	dirty = PageDirty(page);
482 	if (dirty) {
483 		ClearPageDirty(page);
484 		SetPageDirty(newpage);
485 	}
486 
487 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
488 
489 	/*
490 	 * Drop cache reference from old page by unfreezing
491 	 * to one less reference.
492 	 * We know this isn't the last reference.
493 	 */
494 	page_ref_unfreeze(page, expected_count - 1);
495 
496 	spin_unlock(&mapping->tree_lock);
497 	/* Leave irq disabled to prevent preemption while updating stats */
498 
499 	/*
500 	 * If moved to a different zone then also account
501 	 * the page for that zone. Other VM counters will be
502 	 * taken care of when we establish references to the
503 	 * new page and drop references to the old page.
504 	 *
505 	 * Note that anonymous pages are accounted for
506 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
507 	 * are mapped to swap space.
508 	 */
509 	if (newzone != oldzone) {
510 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
511 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
512 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
513 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
514 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
515 		}
516 		if (dirty && mapping_cap_account_dirty(mapping)) {
517 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
518 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
519 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
520 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
521 		}
522 	}
523 	local_irq_enable();
524 
525 	return MIGRATEPAGE_SUCCESS;
526 }
527 EXPORT_SYMBOL(migrate_page_move_mapping);
528 
529 /*
530  * The expected number of remaining references is the same as that
531  * of migrate_page_move_mapping().
532  */
533 int migrate_huge_page_move_mapping(struct address_space *mapping,
534 				   struct page *newpage, struct page *page)
535 {
536 	int expected_count;
537 	void **pslot;
538 
539 	spin_lock_irq(&mapping->tree_lock);
540 
541 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
542 					page_index(page));
543 
544 	expected_count = 2 + page_has_private(page);
545 	if (page_count(page) != expected_count ||
546 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
547 		spin_unlock_irq(&mapping->tree_lock);
548 		return -EAGAIN;
549 	}
550 
551 	if (!page_ref_freeze(page, expected_count)) {
552 		spin_unlock_irq(&mapping->tree_lock);
553 		return -EAGAIN;
554 	}
555 
556 	newpage->index = page->index;
557 	newpage->mapping = page->mapping;
558 
559 	get_page(newpage);
560 
561 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
562 
563 	page_ref_unfreeze(page, expected_count - 1);
564 
565 	spin_unlock_irq(&mapping->tree_lock);
566 
567 	return MIGRATEPAGE_SUCCESS;
568 }
569 
570 /*
571  * Gigantic pages are so large that we do not guarantee that page++ pointer
572  * arithmetic will work across the entire page.  We need something more
573  * specialized.
574  */
575 static void __copy_gigantic_page(struct page *dst, struct page *src,
576 				int nr_pages)
577 {
578 	int i;
579 	struct page *dst_base = dst;
580 	struct page *src_base = src;
581 
582 	for (i = 0; i < nr_pages; ) {
583 		cond_resched();
584 		copy_highpage(dst, src);
585 
586 		i++;
587 		dst = mem_map_next(dst, dst_base, i);
588 		src = mem_map_next(src, src_base, i);
589 	}
590 }
591 
592 static void copy_huge_page(struct page *dst, struct page *src)
593 {
594 	int i;
595 	int nr_pages;
596 
597 	if (PageHuge(src)) {
598 		/* hugetlbfs page */
599 		struct hstate *h = page_hstate(src);
600 		nr_pages = pages_per_huge_page(h);
601 
602 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
603 			__copy_gigantic_page(dst, src, nr_pages);
604 			return;
605 		}
606 	} else {
607 		/* thp page */
608 		BUG_ON(!PageTransHuge(src));
609 		nr_pages = hpage_nr_pages(src);
610 	}
611 
612 	for (i = 0; i < nr_pages; i++) {
613 		cond_resched();
614 		copy_highpage(dst + i, src + i);
615 	}
616 }
617 
618 /*
619  * Copy the page to its new location
620  */
621 void migrate_page_copy(struct page *newpage, struct page *page)
622 {
623 	int cpupid;
624 
625 	if (PageHuge(page) || PageTransHuge(page))
626 		copy_huge_page(newpage, page);
627 	else
628 		copy_highpage(newpage, page);
629 
630 	if (PageError(page))
631 		SetPageError(newpage);
632 	if (PageReferenced(page))
633 		SetPageReferenced(newpage);
634 	if (PageUptodate(page))
635 		SetPageUptodate(newpage);
636 	if (TestClearPageActive(page)) {
637 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
638 		SetPageActive(newpage);
639 	} else if (TestClearPageUnevictable(page))
640 		SetPageUnevictable(newpage);
641 	if (PageChecked(page))
642 		SetPageChecked(newpage);
643 	if (PageMappedToDisk(page))
644 		SetPageMappedToDisk(newpage);
645 
646 	/* Move dirty on pages not done by migrate_page_move_mapping() */
647 	if (PageDirty(page))
648 		SetPageDirty(newpage);
649 
650 	if (page_is_young(page))
651 		set_page_young(newpage);
652 	if (page_is_idle(page))
653 		set_page_idle(newpage);
654 
655 	/*
656 	 * Copy NUMA information to the new page, to prevent over-eager
657 	 * future migrations of this same page.
658 	 */
659 	cpupid = page_cpupid_xchg_last(page, -1);
660 	page_cpupid_xchg_last(newpage, cpupid);
661 
662 	ksm_migrate_page(newpage, page);
663 	/*
664 	 * Please do not reorder this without considering how mm/ksm.c's
665 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
666 	 */
667 	if (PageSwapCache(page))
668 		ClearPageSwapCache(page);
669 	ClearPagePrivate(page);
670 	set_page_private(page, 0);
671 
672 	/*
673 	 * If any waiters have accumulated on the new page then
674 	 * wake them up.
675 	 */
676 	if (PageWriteback(newpage))
677 		end_page_writeback(newpage);
678 
679 	copy_page_owner(page, newpage);
680 
681 	mem_cgroup_migrate(page, newpage);
682 }
683 EXPORT_SYMBOL(migrate_page_copy);
684 
685 /************************************************************
686  *                    Migration functions
687  ***********************************************************/
688 
689 /*
690  * Common logic to directly migrate a single LRU page suitable for
691  * pages that do not use PagePrivate/PagePrivate2.
692  *
693  * Pages are locked upon entry and exit.
694  */
695 int migrate_page(struct address_space *mapping,
696 		struct page *newpage, struct page *page,
697 		enum migrate_mode mode)
698 {
699 	int rc;
700 
701 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
702 
703 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
704 
705 	if (rc != MIGRATEPAGE_SUCCESS)
706 		return rc;
707 
708 	migrate_page_copy(newpage, page);
709 	return MIGRATEPAGE_SUCCESS;
710 }
711 EXPORT_SYMBOL(migrate_page);
712 
713 #ifdef CONFIG_BLOCK
714 /*
715  * Migration function for pages with buffers. This function can only be used
716  * if the underlying filesystem guarantees that no other references to "page"
717  * exist.
718  */
719 int buffer_migrate_page(struct address_space *mapping,
720 		struct page *newpage, struct page *page, enum migrate_mode mode)
721 {
722 	struct buffer_head *bh, *head;
723 	int rc;
724 
725 	if (!page_has_buffers(page))
726 		return migrate_page(mapping, newpage, page, mode);
727 
728 	head = page_buffers(page);
729 
730 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
731 
732 	if (rc != MIGRATEPAGE_SUCCESS)
733 		return rc;
734 
735 	/*
736 	 * In the async case, migrate_page_move_mapping locked the buffers
737 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
738 	 * need to be locked now
739 	 */
740 	if (mode != MIGRATE_ASYNC)
741 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
742 
743 	ClearPagePrivate(page);
744 	set_page_private(newpage, page_private(page));
745 	set_page_private(page, 0);
746 	put_page(page);
747 	get_page(newpage);
748 
749 	bh = head;
750 	do {
751 		set_bh_page(bh, newpage, bh_offset(bh));
752 		bh = bh->b_this_page;
753 
754 	} while (bh != head);
755 
756 	SetPagePrivate(newpage);
757 
758 	migrate_page_copy(newpage, page);
759 
760 	bh = head;
761 	do {
762 		unlock_buffer(bh);
763  		put_bh(bh);
764 		bh = bh->b_this_page;
765 
766 	} while (bh != head);
767 
768 	return MIGRATEPAGE_SUCCESS;
769 }
770 EXPORT_SYMBOL(buffer_migrate_page);
771 #endif
772 
773 /*
774  * Writeback a page to clean the dirty state
775  */
776 static int writeout(struct address_space *mapping, struct page *page)
777 {
778 	struct writeback_control wbc = {
779 		.sync_mode = WB_SYNC_NONE,
780 		.nr_to_write = 1,
781 		.range_start = 0,
782 		.range_end = LLONG_MAX,
783 		.for_reclaim = 1
784 	};
785 	int rc;
786 
787 	if (!mapping->a_ops->writepage)
788 		/* No write method for the address space */
789 		return -EINVAL;
790 
791 	if (!clear_page_dirty_for_io(page))
792 		/* Someone else already triggered a write */
793 		return -EAGAIN;
794 
795 	/*
796 	 * A dirty page may imply that the underlying filesystem has
797 	 * the page on some queue. So the page must be clean for
798 	 * migration. Writeout may mean we loose the lock and the
799 	 * page state is no longer what we checked for earlier.
800 	 * At this point we know that the migration attempt cannot
801 	 * be successful.
802 	 */
803 	remove_migration_ptes(page, page, false);
804 
805 	rc = mapping->a_ops->writepage(page, &wbc);
806 
807 	if (rc != AOP_WRITEPAGE_ACTIVATE)
808 		/* unlocked. Relock */
809 		lock_page(page);
810 
811 	return (rc < 0) ? -EIO : -EAGAIN;
812 }
813 
814 /*
815  * Default handling if a filesystem does not provide a migration function.
816  */
817 static int fallback_migrate_page(struct address_space *mapping,
818 	struct page *newpage, struct page *page, enum migrate_mode mode)
819 {
820 	if (PageDirty(page)) {
821 		/* Only writeback pages in full synchronous migration */
822 		if (mode != MIGRATE_SYNC)
823 			return -EBUSY;
824 		return writeout(mapping, page);
825 	}
826 
827 	/*
828 	 * Buffers may be managed in a filesystem specific way.
829 	 * We must have no buffers or drop them.
830 	 */
831 	if (page_has_private(page) &&
832 	    !try_to_release_page(page, GFP_KERNEL))
833 		return -EAGAIN;
834 
835 	return migrate_page(mapping, newpage, page, mode);
836 }
837 
838 /*
839  * Move a page to a newly allocated page
840  * The page is locked and all ptes have been successfully removed.
841  *
842  * The new page will have replaced the old page if this function
843  * is successful.
844  *
845  * Return value:
846  *   < 0 - error code
847  *  MIGRATEPAGE_SUCCESS - success
848  */
849 static int move_to_new_page(struct page *newpage, struct page *page,
850 				enum migrate_mode mode)
851 {
852 	struct address_space *mapping;
853 	int rc = -EAGAIN;
854 	bool is_lru = !__PageMovable(page);
855 
856 	VM_BUG_ON_PAGE(!PageLocked(page), page);
857 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
858 
859 	mapping = page_mapping(page);
860 
861 	if (likely(is_lru)) {
862 		if (!mapping)
863 			rc = migrate_page(mapping, newpage, page, mode);
864 		else if (mapping->a_ops->migratepage)
865 			/*
866 			 * Most pages have a mapping and most filesystems
867 			 * provide a migratepage callback. Anonymous pages
868 			 * are part of swap space which also has its own
869 			 * migratepage callback. This is the most common path
870 			 * for page migration.
871 			 */
872 			rc = mapping->a_ops->migratepage(mapping, newpage,
873 							page, mode);
874 		else
875 			rc = fallback_migrate_page(mapping, newpage,
876 							page, mode);
877 	} else {
878 		/*
879 		 * In case of non-lru page, it could be released after
880 		 * isolation step. In that case, we shouldn't try migration.
881 		 */
882 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
883 		if (!PageMovable(page)) {
884 			rc = MIGRATEPAGE_SUCCESS;
885 			__ClearPageIsolated(page);
886 			goto out;
887 		}
888 
889 		rc = mapping->a_ops->migratepage(mapping, newpage,
890 						page, mode);
891 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
892 			!PageIsolated(page));
893 	}
894 
895 	/*
896 	 * When successful, old pagecache page->mapping must be cleared before
897 	 * page is freed; but stats require that PageAnon be left as PageAnon.
898 	 */
899 	if (rc == MIGRATEPAGE_SUCCESS) {
900 		if (__PageMovable(page)) {
901 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
902 
903 			/*
904 			 * We clear PG_movable under page_lock so any compactor
905 			 * cannot try to migrate this page.
906 			 */
907 			__ClearPageIsolated(page);
908 		}
909 
910 		/*
911 		 * Anonymous and movable page->mapping will be cleard by
912 		 * free_pages_prepare so don't reset it here for keeping
913 		 * the type to work PageAnon, for example.
914 		 */
915 		if (!PageMappingFlags(page))
916 			page->mapping = NULL;
917 	}
918 out:
919 	return rc;
920 }
921 
922 static int __unmap_and_move(struct page *page, struct page *newpage,
923 				int force, enum migrate_mode mode)
924 {
925 	int rc = -EAGAIN;
926 	int page_was_mapped = 0;
927 	struct anon_vma *anon_vma = NULL;
928 	bool is_lru = !__PageMovable(page);
929 
930 	if (!trylock_page(page)) {
931 		if (!force || mode == MIGRATE_ASYNC)
932 			goto out;
933 
934 		/*
935 		 * It's not safe for direct compaction to call lock_page.
936 		 * For example, during page readahead pages are added locked
937 		 * to the LRU. Later, when the IO completes the pages are
938 		 * marked uptodate and unlocked. However, the queueing
939 		 * could be merging multiple pages for one bio (e.g.
940 		 * mpage_readpages). If an allocation happens for the
941 		 * second or third page, the process can end up locking
942 		 * the same page twice and deadlocking. Rather than
943 		 * trying to be clever about what pages can be locked,
944 		 * avoid the use of lock_page for direct compaction
945 		 * altogether.
946 		 */
947 		if (current->flags & PF_MEMALLOC)
948 			goto out;
949 
950 		lock_page(page);
951 	}
952 
953 	if (PageWriteback(page)) {
954 		/*
955 		 * Only in the case of a full synchronous migration is it
956 		 * necessary to wait for PageWriteback. In the async case,
957 		 * the retry loop is too short and in the sync-light case,
958 		 * the overhead of stalling is too much
959 		 */
960 		if (mode != MIGRATE_SYNC) {
961 			rc = -EBUSY;
962 			goto out_unlock;
963 		}
964 		if (!force)
965 			goto out_unlock;
966 		wait_on_page_writeback(page);
967 	}
968 
969 	/*
970 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
971 	 * we cannot notice that anon_vma is freed while we migrates a page.
972 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
973 	 * of migration. File cache pages are no problem because of page_lock()
974 	 * File Caches may use write_page() or lock_page() in migration, then,
975 	 * just care Anon page here.
976 	 *
977 	 * Only page_get_anon_vma() understands the subtleties of
978 	 * getting a hold on an anon_vma from outside one of its mms.
979 	 * But if we cannot get anon_vma, then we won't need it anyway,
980 	 * because that implies that the anon page is no longer mapped
981 	 * (and cannot be remapped so long as we hold the page lock).
982 	 */
983 	if (PageAnon(page) && !PageKsm(page))
984 		anon_vma = page_get_anon_vma(page);
985 
986 	/*
987 	 * Block others from accessing the new page when we get around to
988 	 * establishing additional references. We are usually the only one
989 	 * holding a reference to newpage at this point. We used to have a BUG
990 	 * here if trylock_page(newpage) fails, but would like to allow for
991 	 * cases where there might be a race with the previous use of newpage.
992 	 * This is much like races on refcount of oldpage: just don't BUG().
993 	 */
994 	if (unlikely(!trylock_page(newpage)))
995 		goto out_unlock;
996 
997 	if (unlikely(!is_lru)) {
998 		rc = move_to_new_page(newpage, page, mode);
999 		goto out_unlock_both;
1000 	}
1001 
1002 	/*
1003 	 * Corner case handling:
1004 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1005 	 * and treated as swapcache but it has no rmap yet.
1006 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1007 	 * trigger a BUG.  So handle it here.
1008 	 * 2. An orphaned page (see truncate_complete_page) might have
1009 	 * fs-private metadata. The page can be picked up due to memory
1010 	 * offlining.  Everywhere else except page reclaim, the page is
1011 	 * invisible to the vm, so the page can not be migrated.  So try to
1012 	 * free the metadata, so the page can be freed.
1013 	 */
1014 	if (!page->mapping) {
1015 		VM_BUG_ON_PAGE(PageAnon(page), page);
1016 		if (page_has_private(page)) {
1017 			try_to_free_buffers(page);
1018 			goto out_unlock_both;
1019 		}
1020 	} else if (page_mapped(page)) {
1021 		/* Establish migration ptes */
1022 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1023 				page);
1024 		try_to_unmap(page,
1025 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1026 		page_was_mapped = 1;
1027 	}
1028 
1029 	if (!page_mapped(page))
1030 		rc = move_to_new_page(newpage, page, mode);
1031 
1032 	if (page_was_mapped)
1033 		remove_migration_ptes(page,
1034 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1035 
1036 out_unlock_both:
1037 	unlock_page(newpage);
1038 out_unlock:
1039 	/* Drop an anon_vma reference if we took one */
1040 	if (anon_vma)
1041 		put_anon_vma(anon_vma);
1042 	unlock_page(page);
1043 out:
1044 	/*
1045 	 * If migration is successful, decrease refcount of the newpage
1046 	 * which will not free the page because new page owner increased
1047 	 * refcounter. As well, if it is LRU page, add the page to LRU
1048 	 * list in here.
1049 	 */
1050 	if (rc == MIGRATEPAGE_SUCCESS) {
1051 		if (unlikely(__PageMovable(newpage)))
1052 			put_page(newpage);
1053 		else
1054 			putback_lru_page(newpage);
1055 	}
1056 
1057 	return rc;
1058 }
1059 
1060 /*
1061  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1062  * around it.
1063  */
1064 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1065 #define ICE_noinline noinline
1066 #else
1067 #define ICE_noinline
1068 #endif
1069 
1070 /*
1071  * Obtain the lock on page, remove all ptes and migrate the page
1072  * to the newly allocated page in newpage.
1073  */
1074 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1075 				   free_page_t put_new_page,
1076 				   unsigned long private, struct page *page,
1077 				   int force, enum migrate_mode mode,
1078 				   enum migrate_reason reason)
1079 {
1080 	int rc = MIGRATEPAGE_SUCCESS;
1081 	int *result = NULL;
1082 	struct page *newpage;
1083 
1084 	newpage = get_new_page(page, private, &result);
1085 	if (!newpage)
1086 		return -ENOMEM;
1087 
1088 	if (page_count(page) == 1) {
1089 		/* page was freed from under us. So we are done. */
1090 		ClearPageActive(page);
1091 		ClearPageUnevictable(page);
1092 		if (unlikely(__PageMovable(page))) {
1093 			lock_page(page);
1094 			if (!PageMovable(page))
1095 				__ClearPageIsolated(page);
1096 			unlock_page(page);
1097 		}
1098 		if (put_new_page)
1099 			put_new_page(newpage, private);
1100 		else
1101 			put_page(newpage);
1102 		goto out;
1103 	}
1104 
1105 	if (unlikely(PageTransHuge(page))) {
1106 		lock_page(page);
1107 		rc = split_huge_page(page);
1108 		unlock_page(page);
1109 		if (rc)
1110 			goto out;
1111 	}
1112 
1113 	rc = __unmap_and_move(page, newpage, force, mode);
1114 	if (rc == MIGRATEPAGE_SUCCESS)
1115 		set_page_owner_migrate_reason(newpage, reason);
1116 
1117 out:
1118 	if (rc != -EAGAIN) {
1119 		/*
1120 		 * A page that has been migrated has all references
1121 		 * removed and will be freed. A page that has not been
1122 		 * migrated will have kepts its references and be
1123 		 * restored.
1124 		 */
1125 		list_del(&page->lru);
1126 
1127 		/*
1128 		 * Compaction can migrate also non-LRU pages which are
1129 		 * not accounted to NR_ISOLATED_*. They can be recognized
1130 		 * as __PageMovable
1131 		 */
1132 		if (likely(!__PageMovable(page)))
1133 			dec_node_page_state(page, NR_ISOLATED_ANON +
1134 					page_is_file_cache(page));
1135 	}
1136 
1137 	/*
1138 	 * If migration is successful, releases reference grabbed during
1139 	 * isolation. Otherwise, restore the page to right list unless
1140 	 * we want to retry.
1141 	 */
1142 	if (rc == MIGRATEPAGE_SUCCESS) {
1143 		put_page(page);
1144 		if (reason == MR_MEMORY_FAILURE) {
1145 			/*
1146 			 * Set PG_HWPoison on just freed page
1147 			 * intentionally. Although it's rather weird,
1148 			 * it's how HWPoison flag works at the moment.
1149 			 */
1150 			if (!test_set_page_hwpoison(page))
1151 				num_poisoned_pages_inc();
1152 		}
1153 	} else {
1154 		if (rc != -EAGAIN) {
1155 			if (likely(!__PageMovable(page))) {
1156 				putback_lru_page(page);
1157 				goto put_new;
1158 			}
1159 
1160 			lock_page(page);
1161 			if (PageMovable(page))
1162 				putback_movable_page(page);
1163 			else
1164 				__ClearPageIsolated(page);
1165 			unlock_page(page);
1166 			put_page(page);
1167 		}
1168 put_new:
1169 		if (put_new_page)
1170 			put_new_page(newpage, private);
1171 		else
1172 			put_page(newpage);
1173 	}
1174 
1175 	if (result) {
1176 		if (rc)
1177 			*result = rc;
1178 		else
1179 			*result = page_to_nid(newpage);
1180 	}
1181 	return rc;
1182 }
1183 
1184 /*
1185  * Counterpart of unmap_and_move_page() for hugepage migration.
1186  *
1187  * This function doesn't wait the completion of hugepage I/O
1188  * because there is no race between I/O and migration for hugepage.
1189  * Note that currently hugepage I/O occurs only in direct I/O
1190  * where no lock is held and PG_writeback is irrelevant,
1191  * and writeback status of all subpages are counted in the reference
1192  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1193  * under direct I/O, the reference of the head page is 512 and a bit more.)
1194  * This means that when we try to migrate hugepage whose subpages are
1195  * doing direct I/O, some references remain after try_to_unmap() and
1196  * hugepage migration fails without data corruption.
1197  *
1198  * There is also no race when direct I/O is issued on the page under migration,
1199  * because then pte is replaced with migration swap entry and direct I/O code
1200  * will wait in the page fault for migration to complete.
1201  */
1202 static int unmap_and_move_huge_page(new_page_t get_new_page,
1203 				free_page_t put_new_page, unsigned long private,
1204 				struct page *hpage, int force,
1205 				enum migrate_mode mode, int reason)
1206 {
1207 	int rc = -EAGAIN;
1208 	int *result = NULL;
1209 	int page_was_mapped = 0;
1210 	struct page *new_hpage;
1211 	struct anon_vma *anon_vma = NULL;
1212 
1213 	/*
1214 	 * Movability of hugepages depends on architectures and hugepage size.
1215 	 * This check is necessary because some callers of hugepage migration
1216 	 * like soft offline and memory hotremove don't walk through page
1217 	 * tables or check whether the hugepage is pmd-based or not before
1218 	 * kicking migration.
1219 	 */
1220 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1221 		putback_active_hugepage(hpage);
1222 		return -ENOSYS;
1223 	}
1224 
1225 	new_hpage = get_new_page(hpage, private, &result);
1226 	if (!new_hpage)
1227 		return -ENOMEM;
1228 
1229 	if (!trylock_page(hpage)) {
1230 		if (!force || mode != MIGRATE_SYNC)
1231 			goto out;
1232 		lock_page(hpage);
1233 	}
1234 
1235 	if (PageAnon(hpage))
1236 		anon_vma = page_get_anon_vma(hpage);
1237 
1238 	if (unlikely(!trylock_page(new_hpage)))
1239 		goto put_anon;
1240 
1241 	if (page_mapped(hpage)) {
1242 		try_to_unmap(hpage,
1243 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1244 		page_was_mapped = 1;
1245 	}
1246 
1247 	if (!page_mapped(hpage))
1248 		rc = move_to_new_page(new_hpage, hpage, mode);
1249 
1250 	if (page_was_mapped)
1251 		remove_migration_ptes(hpage,
1252 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1253 
1254 	unlock_page(new_hpage);
1255 
1256 put_anon:
1257 	if (anon_vma)
1258 		put_anon_vma(anon_vma);
1259 
1260 	if (rc == MIGRATEPAGE_SUCCESS) {
1261 		hugetlb_cgroup_migrate(hpage, new_hpage);
1262 		put_new_page = NULL;
1263 		set_page_owner_migrate_reason(new_hpage, reason);
1264 	}
1265 
1266 	unlock_page(hpage);
1267 out:
1268 	if (rc != -EAGAIN)
1269 		putback_active_hugepage(hpage);
1270 
1271 	/*
1272 	 * If migration was not successful and there's a freeing callback, use
1273 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1274 	 * isolation.
1275 	 */
1276 	if (put_new_page)
1277 		put_new_page(new_hpage, private);
1278 	else
1279 		putback_active_hugepage(new_hpage);
1280 
1281 	if (result) {
1282 		if (rc)
1283 			*result = rc;
1284 		else
1285 			*result = page_to_nid(new_hpage);
1286 	}
1287 	return rc;
1288 }
1289 
1290 /*
1291  * migrate_pages - migrate the pages specified in a list, to the free pages
1292  *		   supplied as the target for the page migration
1293  *
1294  * @from:		The list of pages to be migrated.
1295  * @get_new_page:	The function used to allocate free pages to be used
1296  *			as the target of the page migration.
1297  * @put_new_page:	The function used to free target pages if migration
1298  *			fails, or NULL if no special handling is necessary.
1299  * @private:		Private data to be passed on to get_new_page()
1300  * @mode:		The migration mode that specifies the constraints for
1301  *			page migration, if any.
1302  * @reason:		The reason for page migration.
1303  *
1304  * The function returns after 10 attempts or if no pages are movable any more
1305  * because the list has become empty or no retryable pages exist any more.
1306  * The caller should call putback_movable_pages() to return pages to the LRU
1307  * or free list only if ret != 0.
1308  *
1309  * Returns the number of pages that were not migrated, or an error code.
1310  */
1311 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1312 		free_page_t put_new_page, unsigned long private,
1313 		enum migrate_mode mode, int reason)
1314 {
1315 	int retry = 1;
1316 	int nr_failed = 0;
1317 	int nr_succeeded = 0;
1318 	int pass = 0;
1319 	struct page *page;
1320 	struct page *page2;
1321 	int swapwrite = current->flags & PF_SWAPWRITE;
1322 	int rc;
1323 
1324 	if (!swapwrite)
1325 		current->flags |= PF_SWAPWRITE;
1326 
1327 	for(pass = 0; pass < 10 && retry; pass++) {
1328 		retry = 0;
1329 
1330 		list_for_each_entry_safe(page, page2, from, lru) {
1331 			cond_resched();
1332 
1333 			if (PageHuge(page))
1334 				rc = unmap_and_move_huge_page(get_new_page,
1335 						put_new_page, private, page,
1336 						pass > 2, mode, reason);
1337 			else
1338 				rc = unmap_and_move(get_new_page, put_new_page,
1339 						private, page, pass > 2, mode,
1340 						reason);
1341 
1342 			switch(rc) {
1343 			case -ENOMEM:
1344 				nr_failed++;
1345 				goto out;
1346 			case -EAGAIN:
1347 				retry++;
1348 				break;
1349 			case MIGRATEPAGE_SUCCESS:
1350 				nr_succeeded++;
1351 				break;
1352 			default:
1353 				/*
1354 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1355 				 * unlike -EAGAIN case, the failed page is
1356 				 * removed from migration page list and not
1357 				 * retried in the next outer loop.
1358 				 */
1359 				nr_failed++;
1360 				break;
1361 			}
1362 		}
1363 	}
1364 	nr_failed += retry;
1365 	rc = nr_failed;
1366 out:
1367 	if (nr_succeeded)
1368 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1369 	if (nr_failed)
1370 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1371 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1372 
1373 	if (!swapwrite)
1374 		current->flags &= ~PF_SWAPWRITE;
1375 
1376 	return rc;
1377 }
1378 
1379 #ifdef CONFIG_NUMA
1380 /*
1381  * Move a list of individual pages
1382  */
1383 struct page_to_node {
1384 	unsigned long addr;
1385 	struct page *page;
1386 	int node;
1387 	int status;
1388 };
1389 
1390 static struct page *new_page_node(struct page *p, unsigned long private,
1391 		int **result)
1392 {
1393 	struct page_to_node *pm = (struct page_to_node *)private;
1394 
1395 	while (pm->node != MAX_NUMNODES && pm->page != p)
1396 		pm++;
1397 
1398 	if (pm->node == MAX_NUMNODES)
1399 		return NULL;
1400 
1401 	*result = &pm->status;
1402 
1403 	if (PageHuge(p))
1404 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1405 					pm->node);
1406 	else
1407 		return __alloc_pages_node(pm->node,
1408 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1409 }
1410 
1411 /*
1412  * Move a set of pages as indicated in the pm array. The addr
1413  * field must be set to the virtual address of the page to be moved
1414  * and the node number must contain a valid target node.
1415  * The pm array ends with node = MAX_NUMNODES.
1416  */
1417 static int do_move_page_to_node_array(struct mm_struct *mm,
1418 				      struct page_to_node *pm,
1419 				      int migrate_all)
1420 {
1421 	int err;
1422 	struct page_to_node *pp;
1423 	LIST_HEAD(pagelist);
1424 
1425 	down_read(&mm->mmap_sem);
1426 
1427 	/*
1428 	 * Build a list of pages to migrate
1429 	 */
1430 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1431 		struct vm_area_struct *vma;
1432 		struct page *page;
1433 
1434 		err = -EFAULT;
1435 		vma = find_vma(mm, pp->addr);
1436 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1437 			goto set_status;
1438 
1439 		/* FOLL_DUMP to ignore special (like zero) pages */
1440 		page = follow_page(vma, pp->addr,
1441 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1442 
1443 		err = PTR_ERR(page);
1444 		if (IS_ERR(page))
1445 			goto set_status;
1446 
1447 		err = -ENOENT;
1448 		if (!page)
1449 			goto set_status;
1450 
1451 		pp->page = page;
1452 		err = page_to_nid(page);
1453 
1454 		if (err == pp->node)
1455 			/*
1456 			 * Node already in the right place
1457 			 */
1458 			goto put_and_set;
1459 
1460 		err = -EACCES;
1461 		if (page_mapcount(page) > 1 &&
1462 				!migrate_all)
1463 			goto put_and_set;
1464 
1465 		if (PageHuge(page)) {
1466 			if (PageHead(page))
1467 				isolate_huge_page(page, &pagelist);
1468 			goto put_and_set;
1469 		}
1470 
1471 		err = isolate_lru_page(page);
1472 		if (!err) {
1473 			list_add_tail(&page->lru, &pagelist);
1474 			inc_node_page_state(page, NR_ISOLATED_ANON +
1475 					    page_is_file_cache(page));
1476 		}
1477 put_and_set:
1478 		/*
1479 		 * Either remove the duplicate refcount from
1480 		 * isolate_lru_page() or drop the page ref if it was
1481 		 * not isolated.
1482 		 */
1483 		put_page(page);
1484 set_status:
1485 		pp->status = err;
1486 	}
1487 
1488 	err = 0;
1489 	if (!list_empty(&pagelist)) {
1490 		err = migrate_pages(&pagelist, new_page_node, NULL,
1491 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1492 		if (err)
1493 			putback_movable_pages(&pagelist);
1494 	}
1495 
1496 	up_read(&mm->mmap_sem);
1497 	return err;
1498 }
1499 
1500 /*
1501  * Migrate an array of page address onto an array of nodes and fill
1502  * the corresponding array of status.
1503  */
1504 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1505 			 unsigned long nr_pages,
1506 			 const void __user * __user *pages,
1507 			 const int __user *nodes,
1508 			 int __user *status, int flags)
1509 {
1510 	struct page_to_node *pm;
1511 	unsigned long chunk_nr_pages;
1512 	unsigned long chunk_start;
1513 	int err;
1514 
1515 	err = -ENOMEM;
1516 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1517 	if (!pm)
1518 		goto out;
1519 
1520 	migrate_prep();
1521 
1522 	/*
1523 	 * Store a chunk of page_to_node array in a page,
1524 	 * but keep the last one as a marker
1525 	 */
1526 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1527 
1528 	for (chunk_start = 0;
1529 	     chunk_start < nr_pages;
1530 	     chunk_start += chunk_nr_pages) {
1531 		int j;
1532 
1533 		if (chunk_start + chunk_nr_pages > nr_pages)
1534 			chunk_nr_pages = nr_pages - chunk_start;
1535 
1536 		/* fill the chunk pm with addrs and nodes from user-space */
1537 		for (j = 0; j < chunk_nr_pages; j++) {
1538 			const void __user *p;
1539 			int node;
1540 
1541 			err = -EFAULT;
1542 			if (get_user(p, pages + j + chunk_start))
1543 				goto out_pm;
1544 			pm[j].addr = (unsigned long) p;
1545 
1546 			if (get_user(node, nodes + j + chunk_start))
1547 				goto out_pm;
1548 
1549 			err = -ENODEV;
1550 			if (node < 0 || node >= MAX_NUMNODES)
1551 				goto out_pm;
1552 
1553 			if (!node_state(node, N_MEMORY))
1554 				goto out_pm;
1555 
1556 			err = -EACCES;
1557 			if (!node_isset(node, task_nodes))
1558 				goto out_pm;
1559 
1560 			pm[j].node = node;
1561 		}
1562 
1563 		/* End marker for this chunk */
1564 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1565 
1566 		/* Migrate this chunk */
1567 		err = do_move_page_to_node_array(mm, pm,
1568 						 flags & MPOL_MF_MOVE_ALL);
1569 		if (err < 0)
1570 			goto out_pm;
1571 
1572 		/* Return status information */
1573 		for (j = 0; j < chunk_nr_pages; j++)
1574 			if (put_user(pm[j].status, status + j + chunk_start)) {
1575 				err = -EFAULT;
1576 				goto out_pm;
1577 			}
1578 	}
1579 	err = 0;
1580 
1581 out_pm:
1582 	free_page((unsigned long)pm);
1583 out:
1584 	return err;
1585 }
1586 
1587 /*
1588  * Determine the nodes of an array of pages and store it in an array of status.
1589  */
1590 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1591 				const void __user **pages, int *status)
1592 {
1593 	unsigned long i;
1594 
1595 	down_read(&mm->mmap_sem);
1596 
1597 	for (i = 0; i < nr_pages; i++) {
1598 		unsigned long addr = (unsigned long)(*pages);
1599 		struct vm_area_struct *vma;
1600 		struct page *page;
1601 		int err = -EFAULT;
1602 
1603 		vma = find_vma(mm, addr);
1604 		if (!vma || addr < vma->vm_start)
1605 			goto set_status;
1606 
1607 		/* FOLL_DUMP to ignore special (like zero) pages */
1608 		page = follow_page(vma, addr, FOLL_DUMP);
1609 
1610 		err = PTR_ERR(page);
1611 		if (IS_ERR(page))
1612 			goto set_status;
1613 
1614 		err = page ? page_to_nid(page) : -ENOENT;
1615 set_status:
1616 		*status = err;
1617 
1618 		pages++;
1619 		status++;
1620 	}
1621 
1622 	up_read(&mm->mmap_sem);
1623 }
1624 
1625 /*
1626  * Determine the nodes of a user array of pages and store it in
1627  * a user array of status.
1628  */
1629 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1630 			 const void __user * __user *pages,
1631 			 int __user *status)
1632 {
1633 #define DO_PAGES_STAT_CHUNK_NR 16
1634 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1635 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1636 
1637 	while (nr_pages) {
1638 		unsigned long chunk_nr;
1639 
1640 		chunk_nr = nr_pages;
1641 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1642 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1643 
1644 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1645 			break;
1646 
1647 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1648 
1649 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1650 			break;
1651 
1652 		pages += chunk_nr;
1653 		status += chunk_nr;
1654 		nr_pages -= chunk_nr;
1655 	}
1656 	return nr_pages ? -EFAULT : 0;
1657 }
1658 
1659 /*
1660  * Move a list of pages in the address space of the currently executing
1661  * process.
1662  */
1663 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1664 		const void __user * __user *, pages,
1665 		const int __user *, nodes,
1666 		int __user *, status, int, flags)
1667 {
1668 	const struct cred *cred = current_cred(), *tcred;
1669 	struct task_struct *task;
1670 	struct mm_struct *mm;
1671 	int err;
1672 	nodemask_t task_nodes;
1673 
1674 	/* Check flags */
1675 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1676 		return -EINVAL;
1677 
1678 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1679 		return -EPERM;
1680 
1681 	/* Find the mm_struct */
1682 	rcu_read_lock();
1683 	task = pid ? find_task_by_vpid(pid) : current;
1684 	if (!task) {
1685 		rcu_read_unlock();
1686 		return -ESRCH;
1687 	}
1688 	get_task_struct(task);
1689 
1690 	/*
1691 	 * Check if this process has the right to modify the specified
1692 	 * process. The right exists if the process has administrative
1693 	 * capabilities, superuser privileges or the same
1694 	 * userid as the target process.
1695 	 */
1696 	tcred = __task_cred(task);
1697 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1698 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1699 	    !capable(CAP_SYS_NICE)) {
1700 		rcu_read_unlock();
1701 		err = -EPERM;
1702 		goto out;
1703 	}
1704 	rcu_read_unlock();
1705 
1706  	err = security_task_movememory(task);
1707  	if (err)
1708 		goto out;
1709 
1710 	task_nodes = cpuset_mems_allowed(task);
1711 	mm = get_task_mm(task);
1712 	put_task_struct(task);
1713 
1714 	if (!mm)
1715 		return -EINVAL;
1716 
1717 	if (nodes)
1718 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1719 				    nodes, status, flags);
1720 	else
1721 		err = do_pages_stat(mm, nr_pages, pages, status);
1722 
1723 	mmput(mm);
1724 	return err;
1725 
1726 out:
1727 	put_task_struct(task);
1728 	return err;
1729 }
1730 
1731 #ifdef CONFIG_NUMA_BALANCING
1732 /*
1733  * Returns true if this is a safe migration target node for misplaced NUMA
1734  * pages. Currently it only checks the watermarks which crude
1735  */
1736 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1737 				   unsigned long nr_migrate_pages)
1738 {
1739 	int z;
1740 
1741 	if (!pgdat_reclaimable(pgdat))
1742 		return false;
1743 
1744 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745 		struct zone *zone = pgdat->node_zones + z;
1746 
1747 		if (!populated_zone(zone))
1748 			continue;
1749 
1750 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1751 		if (!zone_watermark_ok(zone, 0,
1752 				       high_wmark_pages(zone) +
1753 				       nr_migrate_pages,
1754 				       0, 0))
1755 			continue;
1756 		return true;
1757 	}
1758 	return false;
1759 }
1760 
1761 static struct page *alloc_misplaced_dst_page(struct page *page,
1762 					   unsigned long data,
1763 					   int **result)
1764 {
1765 	int nid = (int) data;
1766 	struct page *newpage;
1767 
1768 	newpage = __alloc_pages_node(nid,
1769 					 (GFP_HIGHUSER_MOVABLE |
1770 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1771 					  __GFP_NORETRY | __GFP_NOWARN) &
1772 					 ~__GFP_RECLAIM, 0);
1773 
1774 	return newpage;
1775 }
1776 
1777 /*
1778  * page migration rate limiting control.
1779  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1780  * window of time. Default here says do not migrate more than 1280M per second.
1781  */
1782 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1783 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1784 
1785 /* Returns true if the node is migrate rate-limited after the update */
1786 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1787 					unsigned long nr_pages)
1788 {
1789 	/*
1790 	 * Rate-limit the amount of data that is being migrated to a node.
1791 	 * Optimal placement is no good if the memory bus is saturated and
1792 	 * all the time is being spent migrating!
1793 	 */
1794 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1795 		spin_lock(&pgdat->numabalancing_migrate_lock);
1796 		pgdat->numabalancing_migrate_nr_pages = 0;
1797 		pgdat->numabalancing_migrate_next_window = jiffies +
1798 			msecs_to_jiffies(migrate_interval_millisecs);
1799 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1800 	}
1801 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1802 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1803 								nr_pages);
1804 		return true;
1805 	}
1806 
1807 	/*
1808 	 * This is an unlocked non-atomic update so errors are possible.
1809 	 * The consequences are failing to migrate when we potentiall should
1810 	 * have which is not severe enough to warrant locking. If it is ever
1811 	 * a problem, it can be converted to a per-cpu counter.
1812 	 */
1813 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1814 	return false;
1815 }
1816 
1817 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1818 {
1819 	int page_lru;
1820 
1821 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1822 
1823 	/* Avoid migrating to a node that is nearly full */
1824 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1825 		return 0;
1826 
1827 	if (isolate_lru_page(page))
1828 		return 0;
1829 
1830 	/*
1831 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1832 	 * check on page_count(), so we must do it here, now that the page
1833 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1834 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1835 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1836 	 */
1837 	if (PageTransHuge(page) && page_count(page) != 3) {
1838 		putback_lru_page(page);
1839 		return 0;
1840 	}
1841 
1842 	page_lru = page_is_file_cache(page);
1843 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1844 				hpage_nr_pages(page));
1845 
1846 	/*
1847 	 * Isolating the page has taken another reference, so the
1848 	 * caller's reference can be safely dropped without the page
1849 	 * disappearing underneath us during migration.
1850 	 */
1851 	put_page(page);
1852 	return 1;
1853 }
1854 
1855 bool pmd_trans_migrating(pmd_t pmd)
1856 {
1857 	struct page *page = pmd_page(pmd);
1858 	return PageLocked(page);
1859 }
1860 
1861 /*
1862  * Attempt to migrate a misplaced page to the specified destination
1863  * node. Caller is expected to have an elevated reference count on
1864  * the page that will be dropped by this function before returning.
1865  */
1866 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1867 			   int node)
1868 {
1869 	pg_data_t *pgdat = NODE_DATA(node);
1870 	int isolated;
1871 	int nr_remaining;
1872 	LIST_HEAD(migratepages);
1873 
1874 	/*
1875 	 * Don't migrate file pages that are mapped in multiple processes
1876 	 * with execute permissions as they are probably shared libraries.
1877 	 */
1878 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1879 	    (vma->vm_flags & VM_EXEC))
1880 		goto out;
1881 
1882 	/*
1883 	 * Rate-limit the amount of data that is being migrated to a node.
1884 	 * Optimal placement is no good if the memory bus is saturated and
1885 	 * all the time is being spent migrating!
1886 	 */
1887 	if (numamigrate_update_ratelimit(pgdat, 1))
1888 		goto out;
1889 
1890 	isolated = numamigrate_isolate_page(pgdat, page);
1891 	if (!isolated)
1892 		goto out;
1893 
1894 	list_add(&page->lru, &migratepages);
1895 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1896 				     NULL, node, MIGRATE_ASYNC,
1897 				     MR_NUMA_MISPLACED);
1898 	if (nr_remaining) {
1899 		if (!list_empty(&migratepages)) {
1900 			list_del(&page->lru);
1901 			dec_node_page_state(page, NR_ISOLATED_ANON +
1902 					page_is_file_cache(page));
1903 			putback_lru_page(page);
1904 		}
1905 		isolated = 0;
1906 	} else
1907 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1908 	BUG_ON(!list_empty(&migratepages));
1909 	return isolated;
1910 
1911 out:
1912 	put_page(page);
1913 	return 0;
1914 }
1915 #endif /* CONFIG_NUMA_BALANCING */
1916 
1917 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1918 /*
1919  * Migrates a THP to a given target node. page must be locked and is unlocked
1920  * before returning.
1921  */
1922 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1923 				struct vm_area_struct *vma,
1924 				pmd_t *pmd, pmd_t entry,
1925 				unsigned long address,
1926 				struct page *page, int node)
1927 {
1928 	spinlock_t *ptl;
1929 	pg_data_t *pgdat = NODE_DATA(node);
1930 	int isolated = 0;
1931 	struct page *new_page = NULL;
1932 	int page_lru = page_is_file_cache(page);
1933 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1934 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1935 	pmd_t orig_entry;
1936 
1937 	/*
1938 	 * Rate-limit the amount of data that is being migrated to a node.
1939 	 * Optimal placement is no good if the memory bus is saturated and
1940 	 * all the time is being spent migrating!
1941 	 */
1942 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1943 		goto out_dropref;
1944 
1945 	new_page = alloc_pages_node(node,
1946 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1947 		HPAGE_PMD_ORDER);
1948 	if (!new_page)
1949 		goto out_fail;
1950 	prep_transhuge_page(new_page);
1951 
1952 	isolated = numamigrate_isolate_page(pgdat, page);
1953 	if (!isolated) {
1954 		put_page(new_page);
1955 		goto out_fail;
1956 	}
1957 	/*
1958 	 * We are not sure a pending tlb flush here is for a huge page
1959 	 * mapping or not. Hence use the tlb range variant
1960 	 */
1961 	if (mm_tlb_flush_pending(mm))
1962 		flush_tlb_range(vma, mmun_start, mmun_end);
1963 
1964 	/* Prepare a page as a migration target */
1965 	__SetPageLocked(new_page);
1966 	__SetPageSwapBacked(new_page);
1967 
1968 	/* anon mapping, we can simply copy page->mapping to the new page: */
1969 	new_page->mapping = page->mapping;
1970 	new_page->index = page->index;
1971 	migrate_page_copy(new_page, page);
1972 	WARN_ON(PageLRU(new_page));
1973 
1974 	/* Recheck the target PMD */
1975 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1976 	ptl = pmd_lock(mm, pmd);
1977 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1978 fail_putback:
1979 		spin_unlock(ptl);
1980 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1981 
1982 		/* Reverse changes made by migrate_page_copy() */
1983 		if (TestClearPageActive(new_page))
1984 			SetPageActive(page);
1985 		if (TestClearPageUnevictable(new_page))
1986 			SetPageUnevictable(page);
1987 
1988 		unlock_page(new_page);
1989 		put_page(new_page);		/* Free it */
1990 
1991 		/* Retake the callers reference and putback on LRU */
1992 		get_page(page);
1993 		putback_lru_page(page);
1994 		mod_node_page_state(page_pgdat(page),
1995 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1996 
1997 		goto out_unlock;
1998 	}
1999 
2000 	orig_entry = *pmd;
2001 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2002 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2003 
2004 	/*
2005 	 * Clear the old entry under pagetable lock and establish the new PTE.
2006 	 * Any parallel GUP will either observe the old page blocking on the
2007 	 * page lock, block on the page table lock or observe the new page.
2008 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2009 	 * guarantee the copy is visible before the pagetable update.
2010 	 */
2011 	flush_cache_range(vma, mmun_start, mmun_end);
2012 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2013 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2014 	set_pmd_at(mm, mmun_start, pmd, entry);
2015 	update_mmu_cache_pmd(vma, address, &entry);
2016 
2017 	if (page_count(page) != 2) {
2018 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2019 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2020 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2021 		update_mmu_cache_pmd(vma, address, &entry);
2022 		page_remove_rmap(new_page, true);
2023 		goto fail_putback;
2024 	}
2025 
2026 	mlock_migrate_page(new_page, page);
2027 	page_remove_rmap(page, true);
2028 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2029 
2030 	spin_unlock(ptl);
2031 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2032 
2033 	/* Take an "isolate" reference and put new page on the LRU. */
2034 	get_page(new_page);
2035 	putback_lru_page(new_page);
2036 
2037 	unlock_page(new_page);
2038 	unlock_page(page);
2039 	put_page(page);			/* Drop the rmap reference */
2040 	put_page(page);			/* Drop the LRU isolation reference */
2041 
2042 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2043 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2044 
2045 	mod_node_page_state(page_pgdat(page),
2046 			NR_ISOLATED_ANON + page_lru,
2047 			-HPAGE_PMD_NR);
2048 	return isolated;
2049 
2050 out_fail:
2051 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2052 out_dropref:
2053 	ptl = pmd_lock(mm, pmd);
2054 	if (pmd_same(*pmd, entry)) {
2055 		entry = pmd_modify(entry, vma->vm_page_prot);
2056 		set_pmd_at(mm, mmun_start, pmd, entry);
2057 		update_mmu_cache_pmd(vma, address, &entry);
2058 	}
2059 	spin_unlock(ptl);
2060 
2061 out_unlock:
2062 	unlock_page(page);
2063 	put_page(page);
2064 	return 0;
2065 }
2066 #endif /* CONFIG_NUMA_BALANCING */
2067 
2068 #endif /* CONFIG_NUMA */
2069