xref: /openbmc/linux/mm/migrate.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -thp_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_zone_device_page(new))) {
250 			if (is_device_private_page(new)) {
251 				entry = make_device_private_entry(new, pte_write(pte));
252 				pte = swp_entry_to_pte(entry);
253 				if (pte_swp_uffd_wp(*pvmw.pte))
254 					pte = pte_mkuffd_wp(pte);
255 			}
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 
330 	/*
331 	 * Once page cache replacement of page migration started, page_count
332 	 * is zero; but we must not call put_and_wait_on_page_locked() without
333 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	put_and_wait_on_page_locked(page);
339 	return;
340 out:
341 	pte_unmap_unlock(ptep, ptl);
342 }
343 
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 				unsigned long address)
346 {
347 	spinlock_t *ptl = pte_lockptr(mm, pmd);
348 	pte_t *ptep = pte_offset_map(pmd, address);
349 	__migration_entry_wait(mm, ptep, ptl);
350 }
351 
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 		struct mm_struct *mm, pte_t *pte)
354 {
355 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 	__migration_entry_wait(mm, pte, ptl);
357 }
358 
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 	spinlock_t *ptl;
363 	struct page *page;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 	if (!get_page_unless_zero(page))
370 		goto unlock;
371 	spin_unlock(ptl);
372 	put_and_wait_on_page_locked(page);
373 	return;
374 unlock:
375 	spin_unlock(ptl);
376 }
377 #endif
378 
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 	int expected_count = 1;
382 
383 	/*
384 	 * Device public or private pages have an extra refcount as they are
385 	 * ZONE_DEVICE pages.
386 	 */
387 	expected_count += is_device_private_page(page);
388 	if (mapping)
389 		expected_count += thp_nr_pages(page) + page_has_private(page);
390 
391 	return expected_count;
392 }
393 
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 		struct page *newpage, struct page *page, int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(mapping, page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		struct lruvec *old_lruvec, *new_lruvec;
494 		struct mem_cgroup *memcg;
495 
496 		memcg = page_memcg(page);
497 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499 
500 		__dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 		__inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
503 			__dec_lruvec_state(old_lruvec, NR_SHMEM);
504 			__inc_lruvec_state(new_lruvec, NR_SHMEM);
505 		}
506 		if (dirty && mapping_cap_account_dirty(mapping)) {
507 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511 		}
512 	}
513 	local_irq_enable();
514 
515 	return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518 
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524 				   struct page *newpage, struct page *page)
525 {
526 	XA_STATE(xas, &mapping->i_pages, page_index(page));
527 	int expected_count;
528 
529 	xas_lock_irq(&xas);
530 	expected_count = 2 + page_has_private(page);
531 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 		xas_unlock_irq(&xas);
533 		return -EAGAIN;
534 	}
535 
536 	if (!page_ref_freeze(page, expected_count)) {
537 		xas_unlock_irq(&xas);
538 		return -EAGAIN;
539 	}
540 
541 	newpage->index = page->index;
542 	newpage->mapping = page->mapping;
543 
544 	get_page(newpage);
545 
546 	xas_store(&xas, newpage);
547 
548 	page_ref_unfreeze(page, expected_count - 1);
549 
550 	xas_unlock_irq(&xas);
551 
552 	return MIGRATEPAGE_SUCCESS;
553 }
554 
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 				int nr_pages)
562 {
563 	int i;
564 	struct page *dst_base = dst;
565 	struct page *src_base = src;
566 
567 	for (i = 0; i < nr_pages; ) {
568 		cond_resched();
569 		copy_highpage(dst, src);
570 
571 		i++;
572 		dst = mem_map_next(dst, dst_base, i);
573 		src = mem_map_next(src, src_base, i);
574 	}
575 }
576 
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579 	int i;
580 	int nr_pages;
581 
582 	if (PageHuge(src)) {
583 		/* hugetlbfs page */
584 		struct hstate *h = page_hstate(src);
585 		nr_pages = pages_per_huge_page(h);
586 
587 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 			__copy_gigantic_page(dst, src, nr_pages);
589 			return;
590 		}
591 	} else {
592 		/* thp page */
593 		BUG_ON(!PageTransHuge(src));
594 		nr_pages = thp_nr_pages(src);
595 	}
596 
597 	for (i = 0; i < nr_pages; i++) {
598 		cond_resched();
599 		copy_highpage(dst + i, src + i);
600 	}
601 }
602 
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608 	int cpupid;
609 
610 	if (PageError(page))
611 		SetPageError(newpage);
612 	if (PageReferenced(page))
613 		SetPageReferenced(newpage);
614 	if (PageUptodate(page))
615 		SetPageUptodate(newpage);
616 	if (TestClearPageActive(page)) {
617 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 		SetPageActive(newpage);
619 	} else if (TestClearPageUnevictable(page))
620 		SetPageUnevictable(newpage);
621 	if (PageWorkingset(page))
622 		SetPageWorkingset(newpage);
623 	if (PageChecked(page))
624 		SetPageChecked(newpage);
625 	if (PageMappedToDisk(page))
626 		SetPageMappedToDisk(newpage);
627 
628 	/* Move dirty on pages not done by migrate_page_move_mapping() */
629 	if (PageDirty(page))
630 		SetPageDirty(newpage);
631 
632 	if (page_is_young(page))
633 		set_page_young(newpage);
634 	if (page_is_idle(page))
635 		set_page_idle(newpage);
636 
637 	/*
638 	 * Copy NUMA information to the new page, to prevent over-eager
639 	 * future migrations of this same page.
640 	 */
641 	cpupid = page_cpupid_xchg_last(page, -1);
642 	page_cpupid_xchg_last(newpage, cpupid);
643 
644 	ksm_migrate_page(newpage, page);
645 	/*
646 	 * Please do not reorder this without considering how mm/ksm.c's
647 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 	 */
649 	if (PageSwapCache(page))
650 		ClearPageSwapCache(page);
651 	ClearPagePrivate(page);
652 	set_page_private(page, 0);
653 
654 	/*
655 	 * If any waiters have accumulated on the new page then
656 	 * wake them up.
657 	 */
658 	if (PageWriteback(newpage))
659 		end_page_writeback(newpage);
660 
661 	/*
662 	 * PG_readahead shares the same bit with PG_reclaim.  The above
663 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 	 * bit after that.
665 	 */
666 	if (PageReadahead(page))
667 		SetPageReadahead(newpage);
668 
669 	copy_page_owner(page, newpage);
670 
671 	mem_cgroup_migrate(page, newpage);
672 }
673 EXPORT_SYMBOL(migrate_page_states);
674 
675 void migrate_page_copy(struct page *newpage, struct page *page)
676 {
677 	if (PageHuge(page) || PageTransHuge(page))
678 		copy_huge_page(newpage, page);
679 	else
680 		copy_highpage(newpage, page);
681 
682 	migrate_page_states(newpage, page);
683 }
684 EXPORT_SYMBOL(migrate_page_copy);
685 
686 /************************************************************
687  *                    Migration functions
688  ***********************************************************/
689 
690 /*
691  * Common logic to directly migrate a single LRU page suitable for
692  * pages that do not use PagePrivate/PagePrivate2.
693  *
694  * Pages are locked upon entry and exit.
695  */
696 int migrate_page(struct address_space *mapping,
697 		struct page *newpage, struct page *page,
698 		enum migrate_mode mode)
699 {
700 	int rc;
701 
702 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
703 
704 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
705 
706 	if (rc != MIGRATEPAGE_SUCCESS)
707 		return rc;
708 
709 	if (mode != MIGRATE_SYNC_NO_COPY)
710 		migrate_page_copy(newpage, page);
711 	else
712 		migrate_page_states(newpage, page);
713 	return MIGRATEPAGE_SUCCESS;
714 }
715 EXPORT_SYMBOL(migrate_page);
716 
717 #ifdef CONFIG_BLOCK
718 /* Returns true if all buffers are successfully locked */
719 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
720 							enum migrate_mode mode)
721 {
722 	struct buffer_head *bh = head;
723 
724 	/* Simple case, sync compaction */
725 	if (mode != MIGRATE_ASYNC) {
726 		do {
727 			lock_buffer(bh);
728 			bh = bh->b_this_page;
729 
730 		} while (bh != head);
731 
732 		return true;
733 	}
734 
735 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
736 	do {
737 		if (!trylock_buffer(bh)) {
738 			/*
739 			 * We failed to lock the buffer and cannot stall in
740 			 * async migration. Release the taken locks
741 			 */
742 			struct buffer_head *failed_bh = bh;
743 			bh = head;
744 			while (bh != failed_bh) {
745 				unlock_buffer(bh);
746 				bh = bh->b_this_page;
747 			}
748 			return false;
749 		}
750 
751 		bh = bh->b_this_page;
752 	} while (bh != head);
753 	return true;
754 }
755 
756 static int __buffer_migrate_page(struct address_space *mapping,
757 		struct page *newpage, struct page *page, enum migrate_mode mode,
758 		bool check_refs)
759 {
760 	struct buffer_head *bh, *head;
761 	int rc;
762 	int expected_count;
763 
764 	if (!page_has_buffers(page))
765 		return migrate_page(mapping, newpage, page, mode);
766 
767 	/* Check whether page does not have extra refs before we do more work */
768 	expected_count = expected_page_refs(mapping, page);
769 	if (page_count(page) != expected_count)
770 		return -EAGAIN;
771 
772 	head = page_buffers(page);
773 	if (!buffer_migrate_lock_buffers(head, mode))
774 		return -EAGAIN;
775 
776 	if (check_refs) {
777 		bool busy;
778 		bool invalidated = false;
779 
780 recheck_buffers:
781 		busy = false;
782 		spin_lock(&mapping->private_lock);
783 		bh = head;
784 		do {
785 			if (atomic_read(&bh->b_count)) {
786 				busy = true;
787 				break;
788 			}
789 			bh = bh->b_this_page;
790 		} while (bh != head);
791 		if (busy) {
792 			if (invalidated) {
793 				rc = -EAGAIN;
794 				goto unlock_buffers;
795 			}
796 			spin_unlock(&mapping->private_lock);
797 			invalidate_bh_lrus();
798 			invalidated = true;
799 			goto recheck_buffers;
800 		}
801 	}
802 
803 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
804 	if (rc != MIGRATEPAGE_SUCCESS)
805 		goto unlock_buffers;
806 
807 	attach_page_private(newpage, detach_page_private(page));
808 
809 	bh = head;
810 	do {
811 		set_bh_page(bh, newpage, bh_offset(bh));
812 		bh = bh->b_this_page;
813 
814 	} while (bh != head);
815 
816 	if (mode != MIGRATE_SYNC_NO_COPY)
817 		migrate_page_copy(newpage, page);
818 	else
819 		migrate_page_states(newpage, page);
820 
821 	rc = MIGRATEPAGE_SUCCESS;
822 unlock_buffers:
823 	if (check_refs)
824 		spin_unlock(&mapping->private_lock);
825 	bh = head;
826 	do {
827 		unlock_buffer(bh);
828 		bh = bh->b_this_page;
829 
830 	} while (bh != head);
831 
832 	return rc;
833 }
834 
835 /*
836  * Migration function for pages with buffers. This function can only be used
837  * if the underlying filesystem guarantees that no other references to "page"
838  * exist. For example attached buffer heads are accessed only under page lock.
839  */
840 int buffer_migrate_page(struct address_space *mapping,
841 		struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
844 }
845 EXPORT_SYMBOL(buffer_migrate_page);
846 
847 /*
848  * Same as above except that this variant is more careful and checks that there
849  * are also no buffer head references. This function is the right one for
850  * mappings where buffer heads are directly looked up and referenced (such as
851  * block device mappings).
852  */
853 int buffer_migrate_page_norefs(struct address_space *mapping,
854 		struct page *newpage, struct page *page, enum migrate_mode mode)
855 {
856 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
857 }
858 #endif
859 
860 /*
861  * Writeback a page to clean the dirty state
862  */
863 static int writeout(struct address_space *mapping, struct page *page)
864 {
865 	struct writeback_control wbc = {
866 		.sync_mode = WB_SYNC_NONE,
867 		.nr_to_write = 1,
868 		.range_start = 0,
869 		.range_end = LLONG_MAX,
870 		.for_reclaim = 1
871 	};
872 	int rc;
873 
874 	if (!mapping->a_ops->writepage)
875 		/* No write method for the address space */
876 		return -EINVAL;
877 
878 	if (!clear_page_dirty_for_io(page))
879 		/* Someone else already triggered a write */
880 		return -EAGAIN;
881 
882 	/*
883 	 * A dirty page may imply that the underlying filesystem has
884 	 * the page on some queue. So the page must be clean for
885 	 * migration. Writeout may mean we loose the lock and the
886 	 * page state is no longer what we checked for earlier.
887 	 * At this point we know that the migration attempt cannot
888 	 * be successful.
889 	 */
890 	remove_migration_ptes(page, page, false);
891 
892 	rc = mapping->a_ops->writepage(page, &wbc);
893 
894 	if (rc != AOP_WRITEPAGE_ACTIVATE)
895 		/* unlocked. Relock */
896 		lock_page(page);
897 
898 	return (rc < 0) ? -EIO : -EAGAIN;
899 }
900 
901 /*
902  * Default handling if a filesystem does not provide a migration function.
903  */
904 static int fallback_migrate_page(struct address_space *mapping,
905 	struct page *newpage, struct page *page, enum migrate_mode mode)
906 {
907 	if (PageDirty(page)) {
908 		/* Only writeback pages in full synchronous migration */
909 		switch (mode) {
910 		case MIGRATE_SYNC:
911 		case MIGRATE_SYNC_NO_COPY:
912 			break;
913 		default:
914 			return -EBUSY;
915 		}
916 		return writeout(mapping, page);
917 	}
918 
919 	/*
920 	 * Buffers may be managed in a filesystem specific way.
921 	 * We must have no buffers or drop them.
922 	 */
923 	if (page_has_private(page) &&
924 	    !try_to_release_page(page, GFP_KERNEL))
925 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
926 
927 	return migrate_page(mapping, newpage, page, mode);
928 }
929 
930 /*
931  * Move a page to a newly allocated page
932  * The page is locked and all ptes have been successfully removed.
933  *
934  * The new page will have replaced the old page if this function
935  * is successful.
936  *
937  * Return value:
938  *   < 0 - error code
939  *  MIGRATEPAGE_SUCCESS - success
940  */
941 static int move_to_new_page(struct page *newpage, struct page *page,
942 				enum migrate_mode mode)
943 {
944 	struct address_space *mapping;
945 	int rc = -EAGAIN;
946 	bool is_lru = !__PageMovable(page);
947 
948 	VM_BUG_ON_PAGE(!PageLocked(page), page);
949 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
950 
951 	mapping = page_mapping(page);
952 
953 	if (likely(is_lru)) {
954 		if (!mapping)
955 			rc = migrate_page(mapping, newpage, page, mode);
956 		else if (mapping->a_ops->migratepage)
957 			/*
958 			 * Most pages have a mapping and most filesystems
959 			 * provide a migratepage callback. Anonymous pages
960 			 * are part of swap space which also has its own
961 			 * migratepage callback. This is the most common path
962 			 * for page migration.
963 			 */
964 			rc = mapping->a_ops->migratepage(mapping, newpage,
965 							page, mode);
966 		else
967 			rc = fallback_migrate_page(mapping, newpage,
968 							page, mode);
969 	} else {
970 		/*
971 		 * In case of non-lru page, it could be released after
972 		 * isolation step. In that case, we shouldn't try migration.
973 		 */
974 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
975 		if (!PageMovable(page)) {
976 			rc = MIGRATEPAGE_SUCCESS;
977 			__ClearPageIsolated(page);
978 			goto out;
979 		}
980 
981 		rc = mapping->a_ops->migratepage(mapping, newpage,
982 						page, mode);
983 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
984 			!PageIsolated(page));
985 	}
986 
987 	/*
988 	 * When successful, old pagecache page->mapping must be cleared before
989 	 * page is freed; but stats require that PageAnon be left as PageAnon.
990 	 */
991 	if (rc == MIGRATEPAGE_SUCCESS) {
992 		if (__PageMovable(page)) {
993 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
994 
995 			/*
996 			 * We clear PG_movable under page_lock so any compactor
997 			 * cannot try to migrate this page.
998 			 */
999 			__ClearPageIsolated(page);
1000 		}
1001 
1002 		/*
1003 		 * Anonymous and movable page->mapping will be cleared by
1004 		 * free_pages_prepare so don't reset it here for keeping
1005 		 * the type to work PageAnon, for example.
1006 		 */
1007 		if (!PageMappingFlags(page))
1008 			page->mapping = NULL;
1009 
1010 		if (likely(!is_zone_device_page(newpage)))
1011 			flush_dcache_page(newpage);
1012 
1013 	}
1014 out:
1015 	return rc;
1016 }
1017 
1018 static int __unmap_and_move(struct page *page, struct page *newpage,
1019 				int force, enum migrate_mode mode)
1020 {
1021 	int rc = -EAGAIN;
1022 	int page_was_mapped = 0;
1023 	struct anon_vma *anon_vma = NULL;
1024 	bool is_lru = !__PageMovable(page);
1025 
1026 	if (!trylock_page(page)) {
1027 		if (!force || mode == MIGRATE_ASYNC)
1028 			goto out;
1029 
1030 		/*
1031 		 * It's not safe for direct compaction to call lock_page.
1032 		 * For example, during page readahead pages are added locked
1033 		 * to the LRU. Later, when the IO completes the pages are
1034 		 * marked uptodate and unlocked. However, the queueing
1035 		 * could be merging multiple pages for one bio (e.g.
1036 		 * mpage_readahead). If an allocation happens for the
1037 		 * second or third page, the process can end up locking
1038 		 * the same page twice and deadlocking. Rather than
1039 		 * trying to be clever about what pages can be locked,
1040 		 * avoid the use of lock_page for direct compaction
1041 		 * altogether.
1042 		 */
1043 		if (current->flags & PF_MEMALLOC)
1044 			goto out;
1045 
1046 		lock_page(page);
1047 	}
1048 
1049 	if (PageWriteback(page)) {
1050 		/*
1051 		 * Only in the case of a full synchronous migration is it
1052 		 * necessary to wait for PageWriteback. In the async case,
1053 		 * the retry loop is too short and in the sync-light case,
1054 		 * the overhead of stalling is too much
1055 		 */
1056 		switch (mode) {
1057 		case MIGRATE_SYNC:
1058 		case MIGRATE_SYNC_NO_COPY:
1059 			break;
1060 		default:
1061 			rc = -EBUSY;
1062 			goto out_unlock;
1063 		}
1064 		if (!force)
1065 			goto out_unlock;
1066 		wait_on_page_writeback(page);
1067 	}
1068 
1069 	/*
1070 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071 	 * we cannot notice that anon_vma is freed while we migrates a page.
1072 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1073 	 * of migration. File cache pages are no problem because of page_lock()
1074 	 * File Caches may use write_page() or lock_page() in migration, then,
1075 	 * just care Anon page here.
1076 	 *
1077 	 * Only page_get_anon_vma() understands the subtleties of
1078 	 * getting a hold on an anon_vma from outside one of its mms.
1079 	 * But if we cannot get anon_vma, then we won't need it anyway,
1080 	 * because that implies that the anon page is no longer mapped
1081 	 * (and cannot be remapped so long as we hold the page lock).
1082 	 */
1083 	if (PageAnon(page) && !PageKsm(page))
1084 		anon_vma = page_get_anon_vma(page);
1085 
1086 	/*
1087 	 * Block others from accessing the new page when we get around to
1088 	 * establishing additional references. We are usually the only one
1089 	 * holding a reference to newpage at this point. We used to have a BUG
1090 	 * here if trylock_page(newpage) fails, but would like to allow for
1091 	 * cases where there might be a race with the previous use of newpage.
1092 	 * This is much like races on refcount of oldpage: just don't BUG().
1093 	 */
1094 	if (unlikely(!trylock_page(newpage)))
1095 		goto out_unlock;
1096 
1097 	if (unlikely(!is_lru)) {
1098 		rc = move_to_new_page(newpage, page, mode);
1099 		goto out_unlock_both;
1100 	}
1101 
1102 	/*
1103 	 * Corner case handling:
1104 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1105 	 * and treated as swapcache but it has no rmap yet.
1106 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1107 	 * trigger a BUG.  So handle it here.
1108 	 * 2. An orphaned page (see truncate_complete_page) might have
1109 	 * fs-private metadata. The page can be picked up due to memory
1110 	 * offlining.  Everywhere else except page reclaim, the page is
1111 	 * invisible to the vm, so the page can not be migrated.  So try to
1112 	 * free the metadata, so the page can be freed.
1113 	 */
1114 	if (!page->mapping) {
1115 		VM_BUG_ON_PAGE(PageAnon(page), page);
1116 		if (page_has_private(page)) {
1117 			try_to_free_buffers(page);
1118 			goto out_unlock_both;
1119 		}
1120 	} else if (page_mapped(page)) {
1121 		/* Establish migration ptes */
1122 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123 				page);
1124 		try_to_unmap(page,
1125 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1126 		page_was_mapped = 1;
1127 	}
1128 
1129 	if (!page_mapped(page))
1130 		rc = move_to_new_page(newpage, page, mode);
1131 
1132 	if (page_was_mapped)
1133 		remove_migration_ptes(page,
1134 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135 
1136 out_unlock_both:
1137 	unlock_page(newpage);
1138 out_unlock:
1139 	/* Drop an anon_vma reference if we took one */
1140 	if (anon_vma)
1141 		put_anon_vma(anon_vma);
1142 	unlock_page(page);
1143 out:
1144 	/*
1145 	 * If migration is successful, decrease refcount of the newpage
1146 	 * which will not free the page because new page owner increased
1147 	 * refcounter. As well, if it is LRU page, add the page to LRU
1148 	 * list in here. Use the old state of the isolated source page to
1149 	 * determine if we migrated a LRU page. newpage was already unlocked
1150 	 * and possibly modified by its owner - don't rely on the page
1151 	 * state.
1152 	 */
1153 	if (rc == MIGRATEPAGE_SUCCESS) {
1154 		if (unlikely(!is_lru))
1155 			put_page(newpage);
1156 		else
1157 			putback_lru_page(newpage);
1158 	}
1159 
1160 	return rc;
1161 }
1162 
1163 /*
1164  * Obtain the lock on page, remove all ptes and migrate the page
1165  * to the newly allocated page in newpage.
1166  */
1167 static int unmap_and_move(new_page_t get_new_page,
1168 				   free_page_t put_new_page,
1169 				   unsigned long private, struct page *page,
1170 				   int force, enum migrate_mode mode,
1171 				   enum migrate_reason reason)
1172 {
1173 	int rc = MIGRATEPAGE_SUCCESS;
1174 	struct page *newpage = NULL;
1175 
1176 	if (!thp_migration_supported() && PageTransHuge(page))
1177 		return -ENOMEM;
1178 
1179 	if (page_count(page) == 1) {
1180 		/* page was freed from under us. So we are done. */
1181 		ClearPageActive(page);
1182 		ClearPageUnevictable(page);
1183 		if (unlikely(__PageMovable(page))) {
1184 			lock_page(page);
1185 			if (!PageMovable(page))
1186 				__ClearPageIsolated(page);
1187 			unlock_page(page);
1188 		}
1189 		goto out;
1190 	}
1191 
1192 	newpage = get_new_page(page, private);
1193 	if (!newpage)
1194 		return -ENOMEM;
1195 
1196 	rc = __unmap_and_move(page, newpage, force, mode);
1197 	if (rc == MIGRATEPAGE_SUCCESS)
1198 		set_page_owner_migrate_reason(newpage, reason);
1199 
1200 out:
1201 	if (rc != -EAGAIN) {
1202 		/*
1203 		 * A page that has been migrated has all references
1204 		 * removed and will be freed. A page that has not been
1205 		 * migrated will have kept its references and be restored.
1206 		 */
1207 		list_del(&page->lru);
1208 
1209 		/*
1210 		 * Compaction can migrate also non-LRU pages which are
1211 		 * not accounted to NR_ISOLATED_*. They can be recognized
1212 		 * as __PageMovable
1213 		 */
1214 		if (likely(!__PageMovable(page)))
1215 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216 					page_is_file_lru(page), -thp_nr_pages(page));
1217 	}
1218 
1219 	/*
1220 	 * If migration is successful, releases reference grabbed during
1221 	 * isolation. Otherwise, restore the page to right list unless
1222 	 * we want to retry.
1223 	 */
1224 	if (rc == MIGRATEPAGE_SUCCESS) {
1225 		put_page(page);
1226 		if (reason == MR_MEMORY_FAILURE) {
1227 			/*
1228 			 * Set PG_HWPoison on just freed page
1229 			 * intentionally. Although it's rather weird,
1230 			 * it's how HWPoison flag works at the moment.
1231 			 */
1232 			if (set_hwpoison_free_buddy_page(page))
1233 				num_poisoned_pages_inc();
1234 		}
1235 	} else {
1236 		if (rc != -EAGAIN) {
1237 			if (likely(!__PageMovable(page))) {
1238 				putback_lru_page(page);
1239 				goto put_new;
1240 			}
1241 
1242 			lock_page(page);
1243 			if (PageMovable(page))
1244 				putback_movable_page(page);
1245 			else
1246 				__ClearPageIsolated(page);
1247 			unlock_page(page);
1248 			put_page(page);
1249 		}
1250 put_new:
1251 		if (put_new_page)
1252 			put_new_page(newpage, private);
1253 		else
1254 			put_page(newpage);
1255 	}
1256 
1257 	return rc;
1258 }
1259 
1260 /*
1261  * Counterpart of unmap_and_move_page() for hugepage migration.
1262  *
1263  * This function doesn't wait the completion of hugepage I/O
1264  * because there is no race between I/O and migration for hugepage.
1265  * Note that currently hugepage I/O occurs only in direct I/O
1266  * where no lock is held and PG_writeback is irrelevant,
1267  * and writeback status of all subpages are counted in the reference
1268  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269  * under direct I/O, the reference of the head page is 512 and a bit more.)
1270  * This means that when we try to migrate hugepage whose subpages are
1271  * doing direct I/O, some references remain after try_to_unmap() and
1272  * hugepage migration fails without data corruption.
1273  *
1274  * There is also no race when direct I/O is issued on the page under migration,
1275  * because then pte is replaced with migration swap entry and direct I/O code
1276  * will wait in the page fault for migration to complete.
1277  */
1278 static int unmap_and_move_huge_page(new_page_t get_new_page,
1279 				free_page_t put_new_page, unsigned long private,
1280 				struct page *hpage, int force,
1281 				enum migrate_mode mode, int reason)
1282 {
1283 	int rc = -EAGAIN;
1284 	int page_was_mapped = 0;
1285 	struct page *new_hpage;
1286 	struct anon_vma *anon_vma = NULL;
1287 	struct address_space *mapping = NULL;
1288 
1289 	/*
1290 	 * Migratability of hugepages depends on architectures and their size.
1291 	 * This check is necessary because some callers of hugepage migration
1292 	 * like soft offline and memory hotremove don't walk through page
1293 	 * tables or check whether the hugepage is pmd-based or not before
1294 	 * kicking migration.
1295 	 */
1296 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1297 		putback_active_hugepage(hpage);
1298 		return -ENOSYS;
1299 	}
1300 
1301 	new_hpage = get_new_page(hpage, private);
1302 	if (!new_hpage)
1303 		return -ENOMEM;
1304 
1305 	if (!trylock_page(hpage)) {
1306 		if (!force)
1307 			goto out;
1308 		switch (mode) {
1309 		case MIGRATE_SYNC:
1310 		case MIGRATE_SYNC_NO_COPY:
1311 			break;
1312 		default:
1313 			goto out;
1314 		}
1315 		lock_page(hpage);
1316 	}
1317 
1318 	/*
1319 	 * Check for pages which are in the process of being freed.  Without
1320 	 * page_mapping() set, hugetlbfs specific move page routine will not
1321 	 * be called and we could leak usage counts for subpools.
1322 	 */
1323 	if (page_private(hpage) && !page_mapping(hpage)) {
1324 		rc = -EBUSY;
1325 		goto out_unlock;
1326 	}
1327 
1328 	if (PageAnon(hpage))
1329 		anon_vma = page_get_anon_vma(hpage);
1330 
1331 	if (unlikely(!trylock_page(new_hpage)))
1332 		goto put_anon;
1333 
1334 	if (page_mapped(hpage)) {
1335 		/*
1336 		 * try_to_unmap could potentially call huge_pmd_unshare.
1337 		 * Because of this, take semaphore in write mode here and
1338 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1339 		 * taken the lock.
1340 		 */
1341 		mapping = hugetlb_page_mapping_lock_write(hpage);
1342 		if (unlikely(!mapping))
1343 			goto unlock_put_anon;
1344 
1345 		try_to_unmap(hpage,
1346 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1347 			TTU_RMAP_LOCKED);
1348 		page_was_mapped = 1;
1349 		/*
1350 		 * Leave mapping locked until after subsequent call to
1351 		 * remove_migration_ptes()
1352 		 */
1353 	}
1354 
1355 	if (!page_mapped(hpage))
1356 		rc = move_to_new_page(new_hpage, hpage, mode);
1357 
1358 	if (page_was_mapped) {
1359 		remove_migration_ptes(hpage,
1360 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1361 		i_mmap_unlock_write(mapping);
1362 	}
1363 
1364 unlock_put_anon:
1365 	unlock_page(new_hpage);
1366 
1367 put_anon:
1368 	if (anon_vma)
1369 		put_anon_vma(anon_vma);
1370 
1371 	if (rc == MIGRATEPAGE_SUCCESS) {
1372 		move_hugetlb_state(hpage, new_hpage, reason);
1373 		put_new_page = NULL;
1374 	}
1375 
1376 out_unlock:
1377 	unlock_page(hpage);
1378 out:
1379 	if (rc != -EAGAIN)
1380 		putback_active_hugepage(hpage);
1381 
1382 	/*
1383 	 * If migration was not successful and there's a freeing callback, use
1384 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1385 	 * isolation.
1386 	 */
1387 	if (put_new_page)
1388 		put_new_page(new_hpage, private);
1389 	else
1390 		putback_active_hugepage(new_hpage);
1391 
1392 	return rc;
1393 }
1394 
1395 /*
1396  * migrate_pages - migrate the pages specified in a list, to the free pages
1397  *		   supplied as the target for the page migration
1398  *
1399  * @from:		The list of pages to be migrated.
1400  * @get_new_page:	The function used to allocate free pages to be used
1401  *			as the target of the page migration.
1402  * @put_new_page:	The function used to free target pages if migration
1403  *			fails, or NULL if no special handling is necessary.
1404  * @private:		Private data to be passed on to get_new_page()
1405  * @mode:		The migration mode that specifies the constraints for
1406  *			page migration, if any.
1407  * @reason:		The reason for page migration.
1408  *
1409  * The function returns after 10 attempts or if no pages are movable any more
1410  * because the list has become empty or no retryable pages exist any more.
1411  * The caller should call putback_movable_pages() to return pages to the LRU
1412  * or free list only if ret != 0.
1413  *
1414  * Returns the number of pages that were not migrated, or an error code.
1415  */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417 		free_page_t put_new_page, unsigned long private,
1418 		enum migrate_mode mode, int reason)
1419 {
1420 	int retry = 1;
1421 	int thp_retry = 1;
1422 	int nr_failed = 0;
1423 	int nr_succeeded = 0;
1424 	int nr_thp_succeeded = 0;
1425 	int nr_thp_failed = 0;
1426 	int nr_thp_split = 0;
1427 	int pass = 0;
1428 	bool is_thp = false;
1429 	struct page *page;
1430 	struct page *page2;
1431 	int swapwrite = current->flags & PF_SWAPWRITE;
1432 	int rc, nr_subpages;
1433 
1434 	if (!swapwrite)
1435 		current->flags |= PF_SWAPWRITE;
1436 
1437 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1438 		retry = 0;
1439 		thp_retry = 0;
1440 
1441 		list_for_each_entry_safe(page, page2, from, lru) {
1442 retry:
1443 			/*
1444 			 * THP statistics is based on the source huge page.
1445 			 * Capture required information that might get lost
1446 			 * during migration.
1447 			 */
1448 			is_thp = PageTransHuge(page);
1449 			nr_subpages = thp_nr_pages(page);
1450 			cond_resched();
1451 
1452 			if (PageHuge(page))
1453 				rc = unmap_and_move_huge_page(get_new_page,
1454 						put_new_page, private, page,
1455 						pass > 2, mode, reason);
1456 			else
1457 				rc = unmap_and_move(get_new_page, put_new_page,
1458 						private, page, pass > 2, mode,
1459 						reason);
1460 
1461 			switch(rc) {
1462 			case -ENOMEM:
1463 				/*
1464 				 * THP migration might be unsupported or the
1465 				 * allocation could've failed so we should
1466 				 * retry on the same page with the THP split
1467 				 * to base pages.
1468 				 *
1469 				 * Head page is retried immediately and tail
1470 				 * pages are added to the tail of the list so
1471 				 * we encounter them after the rest of the list
1472 				 * is processed.
1473 				 */
1474 				if (PageTransHuge(page) && !PageHuge(page)) {
1475 					lock_page(page);
1476 					rc = split_huge_page_to_list(page, from);
1477 					unlock_page(page);
1478 					if (!rc) {
1479 						list_safe_reset_next(page, page2, lru);
1480 						nr_thp_split++;
1481 						goto retry;
1482 					}
1483 				}
1484 				if (is_thp) {
1485 					nr_thp_failed++;
1486 					nr_failed += nr_subpages;
1487 					goto out;
1488 				}
1489 				nr_failed++;
1490 				goto out;
1491 			case -EAGAIN:
1492 				if (is_thp) {
1493 					thp_retry++;
1494 					break;
1495 				}
1496 				retry++;
1497 				break;
1498 			case MIGRATEPAGE_SUCCESS:
1499 				if (is_thp) {
1500 					nr_thp_succeeded++;
1501 					nr_succeeded += nr_subpages;
1502 					break;
1503 				}
1504 				nr_succeeded++;
1505 				break;
1506 			default:
1507 				/*
1508 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1509 				 * unlike -EAGAIN case, the failed page is
1510 				 * removed from migration page list and not
1511 				 * retried in the next outer loop.
1512 				 */
1513 				if (is_thp) {
1514 					nr_thp_failed++;
1515 					nr_failed += nr_subpages;
1516 					break;
1517 				}
1518 				nr_failed++;
1519 				break;
1520 			}
1521 		}
1522 	}
1523 	nr_failed += retry + thp_retry;
1524 	nr_thp_failed += thp_retry;
1525 	rc = nr_failed;
1526 out:
1527 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1528 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1529 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1530 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1531 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1532 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1533 			       nr_thp_failed, nr_thp_split, mode, reason);
1534 
1535 	if (!swapwrite)
1536 		current->flags &= ~PF_SWAPWRITE;
1537 
1538 	return rc;
1539 }
1540 
1541 struct page *alloc_migration_target(struct page *page, unsigned long private)
1542 {
1543 	struct migration_target_control *mtc;
1544 	gfp_t gfp_mask;
1545 	unsigned int order = 0;
1546 	struct page *new_page = NULL;
1547 	int nid;
1548 	int zidx;
1549 
1550 	mtc = (struct migration_target_control *)private;
1551 	gfp_mask = mtc->gfp_mask;
1552 	nid = mtc->nid;
1553 	if (nid == NUMA_NO_NODE)
1554 		nid = page_to_nid(page);
1555 
1556 	if (PageHuge(page)) {
1557 		struct hstate *h = page_hstate(compound_head(page));
1558 
1559 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1560 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1561 	}
1562 
1563 	if (PageTransHuge(page)) {
1564 		/*
1565 		 * clear __GFP_RECLAIM to make the migration callback
1566 		 * consistent with regular THP allocations.
1567 		 */
1568 		gfp_mask &= ~__GFP_RECLAIM;
1569 		gfp_mask |= GFP_TRANSHUGE;
1570 		order = HPAGE_PMD_ORDER;
1571 	}
1572 	zidx = zone_idx(page_zone(page));
1573 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1574 		gfp_mask |= __GFP_HIGHMEM;
1575 
1576 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1577 
1578 	if (new_page && PageTransHuge(new_page))
1579 		prep_transhuge_page(new_page);
1580 
1581 	return new_page;
1582 }
1583 
1584 #ifdef CONFIG_NUMA
1585 
1586 static int store_status(int __user *status, int start, int value, int nr)
1587 {
1588 	while (nr-- > 0) {
1589 		if (put_user(value, status + start))
1590 			return -EFAULT;
1591 		start++;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 static int do_move_pages_to_node(struct mm_struct *mm,
1598 		struct list_head *pagelist, int node)
1599 {
1600 	int err;
1601 	struct migration_target_control mtc = {
1602 		.nid = node,
1603 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1604 	};
1605 
1606 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1607 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1608 	if (err)
1609 		putback_movable_pages(pagelist);
1610 	return err;
1611 }
1612 
1613 /*
1614  * Resolves the given address to a struct page, isolates it from the LRU and
1615  * puts it to the given pagelist.
1616  * Returns:
1617  *     errno - if the page cannot be found/isolated
1618  *     0 - when it doesn't have to be migrated because it is already on the
1619  *         target node
1620  *     1 - when it has been queued
1621  */
1622 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1623 		int node, struct list_head *pagelist, bool migrate_all)
1624 {
1625 	struct vm_area_struct *vma;
1626 	struct page *page;
1627 	unsigned int follflags;
1628 	int err;
1629 
1630 	mmap_read_lock(mm);
1631 	err = -EFAULT;
1632 	vma = find_vma(mm, addr);
1633 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1634 		goto out;
1635 
1636 	/* FOLL_DUMP to ignore special (like zero) pages */
1637 	follflags = FOLL_GET | FOLL_DUMP;
1638 	page = follow_page(vma, addr, follflags);
1639 
1640 	err = PTR_ERR(page);
1641 	if (IS_ERR(page))
1642 		goto out;
1643 
1644 	err = -ENOENT;
1645 	if (!page)
1646 		goto out;
1647 
1648 	err = 0;
1649 	if (page_to_nid(page) == node)
1650 		goto out_putpage;
1651 
1652 	err = -EACCES;
1653 	if (page_mapcount(page) > 1 && !migrate_all)
1654 		goto out_putpage;
1655 
1656 	if (PageHuge(page)) {
1657 		if (PageHead(page)) {
1658 			isolate_huge_page(page, pagelist);
1659 			err = 1;
1660 		}
1661 	} else {
1662 		struct page *head;
1663 
1664 		head = compound_head(page);
1665 		err = isolate_lru_page(head);
1666 		if (err)
1667 			goto out_putpage;
1668 
1669 		err = 1;
1670 		list_add_tail(&head->lru, pagelist);
1671 		mod_node_page_state(page_pgdat(head),
1672 			NR_ISOLATED_ANON + page_is_file_lru(head),
1673 			thp_nr_pages(head));
1674 	}
1675 out_putpage:
1676 	/*
1677 	 * Either remove the duplicate refcount from
1678 	 * isolate_lru_page() or drop the page ref if it was
1679 	 * not isolated.
1680 	 */
1681 	put_page(page);
1682 out:
1683 	mmap_read_unlock(mm);
1684 	return err;
1685 }
1686 
1687 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1688 		struct list_head *pagelist, int __user *status,
1689 		int start, int i, unsigned long nr_pages)
1690 {
1691 	int err;
1692 
1693 	if (list_empty(pagelist))
1694 		return 0;
1695 
1696 	err = do_move_pages_to_node(mm, pagelist, node);
1697 	if (err) {
1698 		/*
1699 		 * Positive err means the number of failed
1700 		 * pages to migrate.  Since we are going to
1701 		 * abort and return the number of non-migrated
1702 		 * pages, so need to incude the rest of the
1703 		 * nr_pages that have not been attempted as
1704 		 * well.
1705 		 */
1706 		if (err > 0)
1707 			err += nr_pages - i - 1;
1708 		return err;
1709 	}
1710 	return store_status(status, start, node, i - start);
1711 }
1712 
1713 /*
1714  * Migrate an array of page address onto an array of nodes and fill
1715  * the corresponding array of status.
1716  */
1717 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1718 			 unsigned long nr_pages,
1719 			 const void __user * __user *pages,
1720 			 const int __user *nodes,
1721 			 int __user *status, int flags)
1722 {
1723 	int current_node = NUMA_NO_NODE;
1724 	LIST_HEAD(pagelist);
1725 	int start, i;
1726 	int err = 0, err1;
1727 
1728 	migrate_prep();
1729 
1730 	for (i = start = 0; i < nr_pages; i++) {
1731 		const void __user *p;
1732 		unsigned long addr;
1733 		int node;
1734 
1735 		err = -EFAULT;
1736 		if (get_user(p, pages + i))
1737 			goto out_flush;
1738 		if (get_user(node, nodes + i))
1739 			goto out_flush;
1740 		addr = (unsigned long)untagged_addr(p);
1741 
1742 		err = -ENODEV;
1743 		if (node < 0 || node >= MAX_NUMNODES)
1744 			goto out_flush;
1745 		if (!node_state(node, N_MEMORY))
1746 			goto out_flush;
1747 
1748 		err = -EACCES;
1749 		if (!node_isset(node, task_nodes))
1750 			goto out_flush;
1751 
1752 		if (current_node == NUMA_NO_NODE) {
1753 			current_node = node;
1754 			start = i;
1755 		} else if (node != current_node) {
1756 			err = move_pages_and_store_status(mm, current_node,
1757 					&pagelist, status, start, i, nr_pages);
1758 			if (err)
1759 				goto out;
1760 			start = i;
1761 			current_node = node;
1762 		}
1763 
1764 		/*
1765 		 * Errors in the page lookup or isolation are not fatal and we simply
1766 		 * report them via status
1767 		 */
1768 		err = add_page_for_migration(mm, addr, current_node,
1769 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1770 
1771 		if (err > 0) {
1772 			/* The page is successfully queued for migration */
1773 			continue;
1774 		}
1775 
1776 		/*
1777 		 * If the page is already on the target node (!err), store the
1778 		 * node, otherwise, store the err.
1779 		 */
1780 		err = store_status(status, i, err ? : current_node, 1);
1781 		if (err)
1782 			goto out_flush;
1783 
1784 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1785 				status, start, i, nr_pages);
1786 		if (err)
1787 			goto out;
1788 		current_node = NUMA_NO_NODE;
1789 	}
1790 out_flush:
1791 	/* Make sure we do not overwrite the existing error */
1792 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1793 				status, start, i, nr_pages);
1794 	if (err >= 0)
1795 		err = err1;
1796 out:
1797 	return err;
1798 }
1799 
1800 /*
1801  * Determine the nodes of an array of pages and store it in an array of status.
1802  */
1803 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1804 				const void __user **pages, int *status)
1805 {
1806 	unsigned long i;
1807 
1808 	mmap_read_lock(mm);
1809 
1810 	for (i = 0; i < nr_pages; i++) {
1811 		unsigned long addr = (unsigned long)(*pages);
1812 		struct vm_area_struct *vma;
1813 		struct page *page;
1814 		int err = -EFAULT;
1815 
1816 		vma = find_vma(mm, addr);
1817 		if (!vma || addr < vma->vm_start)
1818 			goto set_status;
1819 
1820 		/* FOLL_DUMP to ignore special (like zero) pages */
1821 		page = follow_page(vma, addr, FOLL_DUMP);
1822 
1823 		err = PTR_ERR(page);
1824 		if (IS_ERR(page))
1825 			goto set_status;
1826 
1827 		err = page ? page_to_nid(page) : -ENOENT;
1828 set_status:
1829 		*status = err;
1830 
1831 		pages++;
1832 		status++;
1833 	}
1834 
1835 	mmap_read_unlock(mm);
1836 }
1837 
1838 /*
1839  * Determine the nodes of a user array of pages and store it in
1840  * a user array of status.
1841  */
1842 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1843 			 const void __user * __user *pages,
1844 			 int __user *status)
1845 {
1846 #define DO_PAGES_STAT_CHUNK_NR 16
1847 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1848 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1849 
1850 	while (nr_pages) {
1851 		unsigned long chunk_nr;
1852 
1853 		chunk_nr = nr_pages;
1854 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1855 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1856 
1857 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1858 			break;
1859 
1860 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1861 
1862 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1863 			break;
1864 
1865 		pages += chunk_nr;
1866 		status += chunk_nr;
1867 		nr_pages -= chunk_nr;
1868 	}
1869 	return nr_pages ? -EFAULT : 0;
1870 }
1871 
1872 /*
1873  * Move a list of pages in the address space of the currently executing
1874  * process.
1875  */
1876 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1877 			     const void __user * __user *pages,
1878 			     const int __user *nodes,
1879 			     int __user *status, int flags)
1880 {
1881 	struct task_struct *task;
1882 	struct mm_struct *mm;
1883 	int err;
1884 	nodemask_t task_nodes;
1885 
1886 	/* Check flags */
1887 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1888 		return -EINVAL;
1889 
1890 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1891 		return -EPERM;
1892 
1893 	/* Find the mm_struct */
1894 	rcu_read_lock();
1895 	task = pid ? find_task_by_vpid(pid) : current;
1896 	if (!task) {
1897 		rcu_read_unlock();
1898 		return -ESRCH;
1899 	}
1900 	get_task_struct(task);
1901 
1902 	/*
1903 	 * Check if this process has the right to modify the specified
1904 	 * process. Use the regular "ptrace_may_access()" checks.
1905 	 */
1906 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1907 		rcu_read_unlock();
1908 		err = -EPERM;
1909 		goto out;
1910 	}
1911 	rcu_read_unlock();
1912 
1913  	err = security_task_movememory(task);
1914  	if (err)
1915 		goto out;
1916 
1917 	task_nodes = cpuset_mems_allowed(task);
1918 	mm = get_task_mm(task);
1919 	put_task_struct(task);
1920 
1921 	if (!mm)
1922 		return -EINVAL;
1923 
1924 	if (nodes)
1925 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1926 				    nodes, status, flags);
1927 	else
1928 		err = do_pages_stat(mm, nr_pages, pages, status);
1929 
1930 	mmput(mm);
1931 	return err;
1932 
1933 out:
1934 	put_task_struct(task);
1935 	return err;
1936 }
1937 
1938 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1939 		const void __user * __user *, pages,
1940 		const int __user *, nodes,
1941 		int __user *, status, int, flags)
1942 {
1943 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1944 }
1945 
1946 #ifdef CONFIG_COMPAT
1947 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1948 		       compat_uptr_t __user *, pages32,
1949 		       const int __user *, nodes,
1950 		       int __user *, status,
1951 		       int, flags)
1952 {
1953 	const void __user * __user *pages;
1954 	int i;
1955 
1956 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1957 	for (i = 0; i < nr_pages; i++) {
1958 		compat_uptr_t p;
1959 
1960 		if (get_user(p, pages32 + i) ||
1961 			put_user(compat_ptr(p), pages + i))
1962 			return -EFAULT;
1963 	}
1964 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1965 }
1966 #endif /* CONFIG_COMPAT */
1967 
1968 #ifdef CONFIG_NUMA_BALANCING
1969 /*
1970  * Returns true if this is a safe migration target node for misplaced NUMA
1971  * pages. Currently it only checks the watermarks which crude
1972  */
1973 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1974 				   unsigned long nr_migrate_pages)
1975 {
1976 	int z;
1977 
1978 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1979 		struct zone *zone = pgdat->node_zones + z;
1980 
1981 		if (!populated_zone(zone))
1982 			continue;
1983 
1984 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1985 		if (!zone_watermark_ok(zone, 0,
1986 				       high_wmark_pages(zone) +
1987 				       nr_migrate_pages,
1988 				       ZONE_MOVABLE, 0))
1989 			continue;
1990 		return true;
1991 	}
1992 	return false;
1993 }
1994 
1995 static struct page *alloc_misplaced_dst_page(struct page *page,
1996 					   unsigned long data)
1997 {
1998 	int nid = (int) data;
1999 	struct page *newpage;
2000 
2001 	newpage = __alloc_pages_node(nid,
2002 					 (GFP_HIGHUSER_MOVABLE |
2003 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2004 					  __GFP_NORETRY | __GFP_NOWARN) &
2005 					 ~__GFP_RECLAIM, 0);
2006 
2007 	return newpage;
2008 }
2009 
2010 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2011 {
2012 	int page_lru;
2013 
2014 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2015 
2016 	/* Avoid migrating to a node that is nearly full */
2017 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2018 		return 0;
2019 
2020 	if (isolate_lru_page(page))
2021 		return 0;
2022 
2023 	/*
2024 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2025 	 * check on page_count(), so we must do it here, now that the page
2026 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2027 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2028 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2029 	 */
2030 	if (PageTransHuge(page) && page_count(page) != 3) {
2031 		putback_lru_page(page);
2032 		return 0;
2033 	}
2034 
2035 	page_lru = page_is_file_lru(page);
2036 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2037 				thp_nr_pages(page));
2038 
2039 	/*
2040 	 * Isolating the page has taken another reference, so the
2041 	 * caller's reference can be safely dropped without the page
2042 	 * disappearing underneath us during migration.
2043 	 */
2044 	put_page(page);
2045 	return 1;
2046 }
2047 
2048 bool pmd_trans_migrating(pmd_t pmd)
2049 {
2050 	struct page *page = pmd_page(pmd);
2051 	return PageLocked(page);
2052 }
2053 
2054 /*
2055  * Attempt to migrate a misplaced page to the specified destination
2056  * node. Caller is expected to have an elevated reference count on
2057  * the page that will be dropped by this function before returning.
2058  */
2059 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2060 			   int node)
2061 {
2062 	pg_data_t *pgdat = NODE_DATA(node);
2063 	int isolated;
2064 	int nr_remaining;
2065 	LIST_HEAD(migratepages);
2066 
2067 	/*
2068 	 * Don't migrate file pages that are mapped in multiple processes
2069 	 * with execute permissions as they are probably shared libraries.
2070 	 */
2071 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2072 	    (vma->vm_flags & VM_EXEC))
2073 		goto out;
2074 
2075 	/*
2076 	 * Also do not migrate dirty pages as not all filesystems can move
2077 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2078 	 */
2079 	if (page_is_file_lru(page) && PageDirty(page))
2080 		goto out;
2081 
2082 	isolated = numamigrate_isolate_page(pgdat, page);
2083 	if (!isolated)
2084 		goto out;
2085 
2086 	list_add(&page->lru, &migratepages);
2087 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2088 				     NULL, node, MIGRATE_ASYNC,
2089 				     MR_NUMA_MISPLACED);
2090 	if (nr_remaining) {
2091 		if (!list_empty(&migratepages)) {
2092 			list_del(&page->lru);
2093 			dec_node_page_state(page, NR_ISOLATED_ANON +
2094 					page_is_file_lru(page));
2095 			putback_lru_page(page);
2096 		}
2097 		isolated = 0;
2098 	} else
2099 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2100 	BUG_ON(!list_empty(&migratepages));
2101 	return isolated;
2102 
2103 out:
2104 	put_page(page);
2105 	return 0;
2106 }
2107 #endif /* CONFIG_NUMA_BALANCING */
2108 
2109 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2110 /*
2111  * Migrates a THP to a given target node. page must be locked and is unlocked
2112  * before returning.
2113  */
2114 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2115 				struct vm_area_struct *vma,
2116 				pmd_t *pmd, pmd_t entry,
2117 				unsigned long address,
2118 				struct page *page, int node)
2119 {
2120 	spinlock_t *ptl;
2121 	pg_data_t *pgdat = NODE_DATA(node);
2122 	int isolated = 0;
2123 	struct page *new_page = NULL;
2124 	int page_lru = page_is_file_lru(page);
2125 	unsigned long start = address & HPAGE_PMD_MASK;
2126 
2127 	new_page = alloc_pages_node(node,
2128 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2129 		HPAGE_PMD_ORDER);
2130 	if (!new_page)
2131 		goto out_fail;
2132 	prep_transhuge_page(new_page);
2133 
2134 	isolated = numamigrate_isolate_page(pgdat, page);
2135 	if (!isolated) {
2136 		put_page(new_page);
2137 		goto out_fail;
2138 	}
2139 
2140 	/* Prepare a page as a migration target */
2141 	__SetPageLocked(new_page);
2142 	if (PageSwapBacked(page))
2143 		__SetPageSwapBacked(new_page);
2144 
2145 	/* anon mapping, we can simply copy page->mapping to the new page: */
2146 	new_page->mapping = page->mapping;
2147 	new_page->index = page->index;
2148 	/* flush the cache before copying using the kernel virtual address */
2149 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2150 	migrate_page_copy(new_page, page);
2151 	WARN_ON(PageLRU(new_page));
2152 
2153 	/* Recheck the target PMD */
2154 	ptl = pmd_lock(mm, pmd);
2155 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2156 		spin_unlock(ptl);
2157 
2158 		/* Reverse changes made by migrate_page_copy() */
2159 		if (TestClearPageActive(new_page))
2160 			SetPageActive(page);
2161 		if (TestClearPageUnevictable(new_page))
2162 			SetPageUnevictable(page);
2163 
2164 		unlock_page(new_page);
2165 		put_page(new_page);		/* Free it */
2166 
2167 		/* Retake the callers reference and putback on LRU */
2168 		get_page(page);
2169 		putback_lru_page(page);
2170 		mod_node_page_state(page_pgdat(page),
2171 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2172 
2173 		goto out_unlock;
2174 	}
2175 
2176 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2177 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2178 
2179 	/*
2180 	 * Overwrite the old entry under pagetable lock and establish
2181 	 * the new PTE. Any parallel GUP will either observe the old
2182 	 * page blocking on the page lock, block on the page table
2183 	 * lock or observe the new page. The SetPageUptodate on the
2184 	 * new page and page_add_new_anon_rmap guarantee the copy is
2185 	 * visible before the pagetable update.
2186 	 */
2187 	page_add_anon_rmap(new_page, vma, start, true);
2188 	/*
2189 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2190 	 * has already been flushed globally.  So no TLB can be currently
2191 	 * caching this non present pmd mapping.  There's no need to clear the
2192 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2193 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2194 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2195 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2196 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2197 	 * pmd.
2198 	 */
2199 	set_pmd_at(mm, start, pmd, entry);
2200 	update_mmu_cache_pmd(vma, address, &entry);
2201 
2202 	page_ref_unfreeze(page, 2);
2203 	mlock_migrate_page(new_page, page);
2204 	page_remove_rmap(page, true);
2205 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2206 
2207 	spin_unlock(ptl);
2208 
2209 	/* Take an "isolate" reference and put new page on the LRU. */
2210 	get_page(new_page);
2211 	putback_lru_page(new_page);
2212 
2213 	unlock_page(new_page);
2214 	unlock_page(page);
2215 	put_page(page);			/* Drop the rmap reference */
2216 	put_page(page);			/* Drop the LRU isolation reference */
2217 
2218 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2219 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2220 
2221 	mod_node_page_state(page_pgdat(page),
2222 			NR_ISOLATED_ANON + page_lru,
2223 			-HPAGE_PMD_NR);
2224 	return isolated;
2225 
2226 out_fail:
2227 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2228 	ptl = pmd_lock(mm, pmd);
2229 	if (pmd_same(*pmd, entry)) {
2230 		entry = pmd_modify(entry, vma->vm_page_prot);
2231 		set_pmd_at(mm, start, pmd, entry);
2232 		update_mmu_cache_pmd(vma, address, &entry);
2233 	}
2234 	spin_unlock(ptl);
2235 
2236 out_unlock:
2237 	unlock_page(page);
2238 	put_page(page);
2239 	return 0;
2240 }
2241 #endif /* CONFIG_NUMA_BALANCING */
2242 
2243 #endif /* CONFIG_NUMA */
2244 
2245 #ifdef CONFIG_DEVICE_PRIVATE
2246 static int migrate_vma_collect_hole(unsigned long start,
2247 				    unsigned long end,
2248 				    __always_unused int depth,
2249 				    struct mm_walk *walk)
2250 {
2251 	struct migrate_vma *migrate = walk->private;
2252 	unsigned long addr;
2253 
2254 	/* Only allow populating anonymous memory. */
2255 	if (!vma_is_anonymous(walk->vma)) {
2256 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2257 			migrate->src[migrate->npages] = 0;
2258 			migrate->dst[migrate->npages] = 0;
2259 			migrate->npages++;
2260 		}
2261 		return 0;
2262 	}
2263 
2264 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2265 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2266 		migrate->dst[migrate->npages] = 0;
2267 		migrate->npages++;
2268 		migrate->cpages++;
2269 	}
2270 
2271 	return 0;
2272 }
2273 
2274 static int migrate_vma_collect_skip(unsigned long start,
2275 				    unsigned long end,
2276 				    struct mm_walk *walk)
2277 {
2278 	struct migrate_vma *migrate = walk->private;
2279 	unsigned long addr;
2280 
2281 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2282 		migrate->dst[migrate->npages] = 0;
2283 		migrate->src[migrate->npages++] = 0;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2290 				   unsigned long start,
2291 				   unsigned long end,
2292 				   struct mm_walk *walk)
2293 {
2294 	struct migrate_vma *migrate = walk->private;
2295 	struct vm_area_struct *vma = walk->vma;
2296 	struct mm_struct *mm = vma->vm_mm;
2297 	unsigned long addr = start, unmapped = 0;
2298 	spinlock_t *ptl;
2299 	pte_t *ptep;
2300 
2301 again:
2302 	if (pmd_none(*pmdp))
2303 		return migrate_vma_collect_hole(start, end, -1, walk);
2304 
2305 	if (pmd_trans_huge(*pmdp)) {
2306 		struct page *page;
2307 
2308 		ptl = pmd_lock(mm, pmdp);
2309 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2310 			spin_unlock(ptl);
2311 			goto again;
2312 		}
2313 
2314 		page = pmd_page(*pmdp);
2315 		if (is_huge_zero_page(page)) {
2316 			spin_unlock(ptl);
2317 			split_huge_pmd(vma, pmdp, addr);
2318 			if (pmd_trans_unstable(pmdp))
2319 				return migrate_vma_collect_skip(start, end,
2320 								walk);
2321 		} else {
2322 			int ret;
2323 
2324 			get_page(page);
2325 			spin_unlock(ptl);
2326 			if (unlikely(!trylock_page(page)))
2327 				return migrate_vma_collect_skip(start, end,
2328 								walk);
2329 			ret = split_huge_page(page);
2330 			unlock_page(page);
2331 			put_page(page);
2332 			if (ret)
2333 				return migrate_vma_collect_skip(start, end,
2334 								walk);
2335 			if (pmd_none(*pmdp))
2336 				return migrate_vma_collect_hole(start, end, -1,
2337 								walk);
2338 		}
2339 	}
2340 
2341 	if (unlikely(pmd_bad(*pmdp)))
2342 		return migrate_vma_collect_skip(start, end, walk);
2343 
2344 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2345 	arch_enter_lazy_mmu_mode();
2346 
2347 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2348 		unsigned long mpfn = 0, pfn;
2349 		struct page *page;
2350 		swp_entry_t entry;
2351 		pte_t pte;
2352 
2353 		pte = *ptep;
2354 
2355 		if (pte_none(pte)) {
2356 			if (vma_is_anonymous(vma)) {
2357 				mpfn = MIGRATE_PFN_MIGRATE;
2358 				migrate->cpages++;
2359 			}
2360 			goto next;
2361 		}
2362 
2363 		if (!pte_present(pte)) {
2364 			/*
2365 			 * Only care about unaddressable device page special
2366 			 * page table entry. Other special swap entries are not
2367 			 * migratable, and we ignore regular swapped page.
2368 			 */
2369 			entry = pte_to_swp_entry(pte);
2370 			if (!is_device_private_entry(entry))
2371 				goto next;
2372 
2373 			page = device_private_entry_to_page(entry);
2374 			if (!(migrate->flags &
2375 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2376 			    page->pgmap->owner != migrate->pgmap_owner)
2377 				goto next;
2378 
2379 			mpfn = migrate_pfn(page_to_pfn(page)) |
2380 					MIGRATE_PFN_MIGRATE;
2381 			if (is_write_device_private_entry(entry))
2382 				mpfn |= MIGRATE_PFN_WRITE;
2383 		} else {
2384 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2385 				goto next;
2386 			pfn = pte_pfn(pte);
2387 			if (is_zero_pfn(pfn)) {
2388 				mpfn = MIGRATE_PFN_MIGRATE;
2389 				migrate->cpages++;
2390 				goto next;
2391 			}
2392 			page = vm_normal_page(migrate->vma, addr, pte);
2393 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2394 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2395 		}
2396 
2397 		/* FIXME support THP */
2398 		if (!page || !page->mapping || PageTransCompound(page)) {
2399 			mpfn = 0;
2400 			goto next;
2401 		}
2402 
2403 		/*
2404 		 * By getting a reference on the page we pin it and that blocks
2405 		 * any kind of migration. Side effect is that it "freezes" the
2406 		 * pte.
2407 		 *
2408 		 * We drop this reference after isolating the page from the lru
2409 		 * for non device page (device page are not on the lru and thus
2410 		 * can't be dropped from it).
2411 		 */
2412 		get_page(page);
2413 		migrate->cpages++;
2414 
2415 		/*
2416 		 * Optimize for the common case where page is only mapped once
2417 		 * in one process. If we can lock the page, then we can safely
2418 		 * set up a special migration page table entry now.
2419 		 */
2420 		if (trylock_page(page)) {
2421 			pte_t swp_pte;
2422 
2423 			mpfn |= MIGRATE_PFN_LOCKED;
2424 			ptep_get_and_clear(mm, addr, ptep);
2425 
2426 			/* Setup special migration page table entry */
2427 			entry = make_migration_entry(page, mpfn &
2428 						     MIGRATE_PFN_WRITE);
2429 			swp_pte = swp_entry_to_pte(entry);
2430 			if (pte_soft_dirty(pte))
2431 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2432 			if (pte_uffd_wp(pte))
2433 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2434 			set_pte_at(mm, addr, ptep, swp_pte);
2435 
2436 			/*
2437 			 * This is like regular unmap: we remove the rmap and
2438 			 * drop page refcount. Page won't be freed, as we took
2439 			 * a reference just above.
2440 			 */
2441 			page_remove_rmap(page, false);
2442 			put_page(page);
2443 
2444 			if (pte_present(pte))
2445 				unmapped++;
2446 		}
2447 
2448 next:
2449 		migrate->dst[migrate->npages] = 0;
2450 		migrate->src[migrate->npages++] = mpfn;
2451 	}
2452 	arch_leave_lazy_mmu_mode();
2453 	pte_unmap_unlock(ptep - 1, ptl);
2454 
2455 	/* Only flush the TLB if we actually modified any entries */
2456 	if (unmapped)
2457 		flush_tlb_range(walk->vma, start, end);
2458 
2459 	return 0;
2460 }
2461 
2462 static const struct mm_walk_ops migrate_vma_walk_ops = {
2463 	.pmd_entry		= migrate_vma_collect_pmd,
2464 	.pte_hole		= migrate_vma_collect_hole,
2465 };
2466 
2467 /*
2468  * migrate_vma_collect() - collect pages over a range of virtual addresses
2469  * @migrate: migrate struct containing all migration information
2470  *
2471  * This will walk the CPU page table. For each virtual address backed by a
2472  * valid page, it updates the src array and takes a reference on the page, in
2473  * order to pin the page until we lock it and unmap it.
2474  */
2475 static void migrate_vma_collect(struct migrate_vma *migrate)
2476 {
2477 	struct mmu_notifier_range range;
2478 
2479 	/*
2480 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2481 	 * that the registered device driver can skip invalidating device
2482 	 * private page mappings that won't be migrated.
2483 	 */
2484 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2485 		migrate->vma->vm_mm, migrate->start, migrate->end,
2486 		migrate->pgmap_owner);
2487 	mmu_notifier_invalidate_range_start(&range);
2488 
2489 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2490 			&migrate_vma_walk_ops, migrate);
2491 
2492 	mmu_notifier_invalidate_range_end(&range);
2493 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2494 }
2495 
2496 /*
2497  * migrate_vma_check_page() - check if page is pinned or not
2498  * @page: struct page to check
2499  *
2500  * Pinned pages cannot be migrated. This is the same test as in
2501  * migrate_page_move_mapping(), except that here we allow migration of a
2502  * ZONE_DEVICE page.
2503  */
2504 static bool migrate_vma_check_page(struct page *page)
2505 {
2506 	/*
2507 	 * One extra ref because caller holds an extra reference, either from
2508 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2509 	 * a device page.
2510 	 */
2511 	int extra = 1;
2512 
2513 	/*
2514 	 * FIXME support THP (transparent huge page), it is bit more complex to
2515 	 * check them than regular pages, because they can be mapped with a pmd
2516 	 * or with a pte (split pte mapping).
2517 	 */
2518 	if (PageCompound(page))
2519 		return false;
2520 
2521 	/* Page from ZONE_DEVICE have one extra reference */
2522 	if (is_zone_device_page(page)) {
2523 		/*
2524 		 * Private page can never be pin as they have no valid pte and
2525 		 * GUP will fail for those. Yet if there is a pending migration
2526 		 * a thread might try to wait on the pte migration entry and
2527 		 * will bump the page reference count. Sadly there is no way to
2528 		 * differentiate a regular pin from migration wait. Hence to
2529 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2530 		 * infinite loop (one stoping migration because the other is
2531 		 * waiting on pte migration entry). We always return true here.
2532 		 *
2533 		 * FIXME proper solution is to rework migration_entry_wait() so
2534 		 * it does not need to take a reference on page.
2535 		 */
2536 		return is_device_private_page(page);
2537 	}
2538 
2539 	/* For file back page */
2540 	if (page_mapping(page))
2541 		extra += 1 + page_has_private(page);
2542 
2543 	if ((page_count(page) - extra) > page_mapcount(page))
2544 		return false;
2545 
2546 	return true;
2547 }
2548 
2549 /*
2550  * migrate_vma_prepare() - lock pages and isolate them from the lru
2551  * @migrate: migrate struct containing all migration information
2552  *
2553  * This locks pages that have been collected by migrate_vma_collect(). Once each
2554  * page is locked it is isolated from the lru (for non-device pages). Finally,
2555  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2556  * migrated by concurrent kernel threads.
2557  */
2558 static void migrate_vma_prepare(struct migrate_vma *migrate)
2559 {
2560 	const unsigned long npages = migrate->npages;
2561 	const unsigned long start = migrate->start;
2562 	unsigned long addr, i, restore = 0;
2563 	bool allow_drain = true;
2564 
2565 	lru_add_drain();
2566 
2567 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2568 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2569 		bool remap = true;
2570 
2571 		if (!page)
2572 			continue;
2573 
2574 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2575 			/*
2576 			 * Because we are migrating several pages there can be
2577 			 * a deadlock between 2 concurrent migration where each
2578 			 * are waiting on each other page lock.
2579 			 *
2580 			 * Make migrate_vma() a best effort thing and backoff
2581 			 * for any page we can not lock right away.
2582 			 */
2583 			if (!trylock_page(page)) {
2584 				migrate->src[i] = 0;
2585 				migrate->cpages--;
2586 				put_page(page);
2587 				continue;
2588 			}
2589 			remap = false;
2590 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2591 		}
2592 
2593 		/* ZONE_DEVICE pages are not on LRU */
2594 		if (!is_zone_device_page(page)) {
2595 			if (!PageLRU(page) && allow_drain) {
2596 				/* Drain CPU's pagevec */
2597 				lru_add_drain_all();
2598 				allow_drain = false;
2599 			}
2600 
2601 			if (isolate_lru_page(page)) {
2602 				if (remap) {
2603 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2604 					migrate->cpages--;
2605 					restore++;
2606 				} else {
2607 					migrate->src[i] = 0;
2608 					unlock_page(page);
2609 					migrate->cpages--;
2610 					put_page(page);
2611 				}
2612 				continue;
2613 			}
2614 
2615 			/* Drop the reference we took in collect */
2616 			put_page(page);
2617 		}
2618 
2619 		if (!migrate_vma_check_page(page)) {
2620 			if (remap) {
2621 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2622 				migrate->cpages--;
2623 				restore++;
2624 
2625 				if (!is_zone_device_page(page)) {
2626 					get_page(page);
2627 					putback_lru_page(page);
2628 				}
2629 			} else {
2630 				migrate->src[i] = 0;
2631 				unlock_page(page);
2632 				migrate->cpages--;
2633 
2634 				if (!is_zone_device_page(page))
2635 					putback_lru_page(page);
2636 				else
2637 					put_page(page);
2638 			}
2639 		}
2640 	}
2641 
2642 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2643 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2644 
2645 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2646 			continue;
2647 
2648 		remove_migration_pte(page, migrate->vma, addr, page);
2649 
2650 		migrate->src[i] = 0;
2651 		unlock_page(page);
2652 		put_page(page);
2653 		restore--;
2654 	}
2655 }
2656 
2657 /*
2658  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2659  * @migrate: migrate struct containing all migration information
2660  *
2661  * Replace page mapping (CPU page table pte) with a special migration pte entry
2662  * and check again if it has been pinned. Pinned pages are restored because we
2663  * cannot migrate them.
2664  *
2665  * This is the last step before we call the device driver callback to allocate
2666  * destination memory and copy contents of original page over to new page.
2667  */
2668 static void migrate_vma_unmap(struct migrate_vma *migrate)
2669 {
2670 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2671 	const unsigned long npages = migrate->npages;
2672 	const unsigned long start = migrate->start;
2673 	unsigned long addr, i, restore = 0;
2674 
2675 	for (i = 0; i < npages; i++) {
2676 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2677 
2678 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2679 			continue;
2680 
2681 		if (page_mapped(page)) {
2682 			try_to_unmap(page, flags);
2683 			if (page_mapped(page))
2684 				goto restore;
2685 		}
2686 
2687 		if (migrate_vma_check_page(page))
2688 			continue;
2689 
2690 restore:
2691 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2692 		migrate->cpages--;
2693 		restore++;
2694 	}
2695 
2696 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2697 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2698 
2699 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2700 			continue;
2701 
2702 		remove_migration_ptes(page, page, false);
2703 
2704 		migrate->src[i] = 0;
2705 		unlock_page(page);
2706 		restore--;
2707 
2708 		if (is_zone_device_page(page))
2709 			put_page(page);
2710 		else
2711 			putback_lru_page(page);
2712 	}
2713 }
2714 
2715 /**
2716  * migrate_vma_setup() - prepare to migrate a range of memory
2717  * @args: contains the vma, start, and pfns arrays for the migration
2718  *
2719  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2720  * without an error.
2721  *
2722  * Prepare to migrate a range of memory virtual address range by collecting all
2723  * the pages backing each virtual address in the range, saving them inside the
2724  * src array.  Then lock those pages and unmap them. Once the pages are locked
2725  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2726  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2727  * corresponding src array entry.  Then restores any pages that are pinned, by
2728  * remapping and unlocking those pages.
2729  *
2730  * The caller should then allocate destination memory and copy source memory to
2731  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2732  * flag set).  Once these are allocated and copied, the caller must update each
2733  * corresponding entry in the dst array with the pfn value of the destination
2734  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2735  * (destination pages must have their struct pages locked, via lock_page()).
2736  *
2737  * Note that the caller does not have to migrate all the pages that are marked
2738  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2739  * device memory to system memory.  If the caller cannot migrate a device page
2740  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2741  * consequences for the userspace process, so it must be avoided if at all
2742  * possible.
2743  *
2744  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2745  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2746  * allowing the caller to allocate device memory for those unback virtual
2747  * address.  For this the caller simply has to allocate device memory and
2748  * properly set the destination entry like for regular migration.  Note that
2749  * this can still fails and thus inside the device driver must check if the
2750  * migration was successful for those entries after calling migrate_vma_pages()
2751  * just like for regular migration.
2752  *
2753  * After that, the callers must call migrate_vma_pages() to go over each entry
2754  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2755  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2756  * then migrate_vma_pages() to migrate struct page information from the source
2757  * struct page to the destination struct page.  If it fails to migrate the
2758  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2759  * src array.
2760  *
2761  * At this point all successfully migrated pages have an entry in the src
2762  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2763  * array entry with MIGRATE_PFN_VALID flag set.
2764  *
2765  * Once migrate_vma_pages() returns the caller may inspect which pages were
2766  * successfully migrated, and which were not.  Successfully migrated pages will
2767  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2768  *
2769  * It is safe to update device page table after migrate_vma_pages() because
2770  * both destination and source page are still locked, and the mmap_lock is held
2771  * in read mode (hence no one can unmap the range being migrated).
2772  *
2773  * Once the caller is done cleaning up things and updating its page table (if it
2774  * chose to do so, this is not an obligation) it finally calls
2775  * migrate_vma_finalize() to update the CPU page table to point to new pages
2776  * for successfully migrated pages or otherwise restore the CPU page table to
2777  * point to the original source pages.
2778  */
2779 int migrate_vma_setup(struct migrate_vma *args)
2780 {
2781 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2782 
2783 	args->start &= PAGE_MASK;
2784 	args->end &= PAGE_MASK;
2785 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2786 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2787 		return -EINVAL;
2788 	if (nr_pages <= 0)
2789 		return -EINVAL;
2790 	if (args->start < args->vma->vm_start ||
2791 	    args->start >= args->vma->vm_end)
2792 		return -EINVAL;
2793 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2794 		return -EINVAL;
2795 	if (!args->src || !args->dst)
2796 		return -EINVAL;
2797 
2798 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2799 	args->cpages = 0;
2800 	args->npages = 0;
2801 
2802 	migrate_vma_collect(args);
2803 
2804 	if (args->cpages)
2805 		migrate_vma_prepare(args);
2806 	if (args->cpages)
2807 		migrate_vma_unmap(args);
2808 
2809 	/*
2810 	 * At this point pages are locked and unmapped, and thus they have
2811 	 * stable content and can safely be copied to destination memory that
2812 	 * is allocated by the drivers.
2813 	 */
2814 	return 0;
2815 
2816 }
2817 EXPORT_SYMBOL(migrate_vma_setup);
2818 
2819 /*
2820  * This code closely matches the code in:
2821  *   __handle_mm_fault()
2822  *     handle_pte_fault()
2823  *       do_anonymous_page()
2824  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2825  * private page.
2826  */
2827 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2828 				    unsigned long addr,
2829 				    struct page *page,
2830 				    unsigned long *src,
2831 				    unsigned long *dst)
2832 {
2833 	struct vm_area_struct *vma = migrate->vma;
2834 	struct mm_struct *mm = vma->vm_mm;
2835 	bool flush = false;
2836 	spinlock_t *ptl;
2837 	pte_t entry;
2838 	pgd_t *pgdp;
2839 	p4d_t *p4dp;
2840 	pud_t *pudp;
2841 	pmd_t *pmdp;
2842 	pte_t *ptep;
2843 
2844 	/* Only allow populating anonymous memory */
2845 	if (!vma_is_anonymous(vma))
2846 		goto abort;
2847 
2848 	pgdp = pgd_offset(mm, addr);
2849 	p4dp = p4d_alloc(mm, pgdp, addr);
2850 	if (!p4dp)
2851 		goto abort;
2852 	pudp = pud_alloc(mm, p4dp, addr);
2853 	if (!pudp)
2854 		goto abort;
2855 	pmdp = pmd_alloc(mm, pudp, addr);
2856 	if (!pmdp)
2857 		goto abort;
2858 
2859 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2860 		goto abort;
2861 
2862 	/*
2863 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2864 	 * pte_offset_map() on pmds where a huge pmd might be created
2865 	 * from a different thread.
2866 	 *
2867 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2868 	 * parallel threads are excluded by other means.
2869 	 *
2870 	 * Here we only have mmap_read_lock(mm).
2871 	 */
2872 	if (pte_alloc(mm, pmdp))
2873 		goto abort;
2874 
2875 	/* See the comment in pte_alloc_one_map() */
2876 	if (unlikely(pmd_trans_unstable(pmdp)))
2877 		goto abort;
2878 
2879 	if (unlikely(anon_vma_prepare(vma)))
2880 		goto abort;
2881 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2882 		goto abort;
2883 
2884 	/*
2885 	 * The memory barrier inside __SetPageUptodate makes sure that
2886 	 * preceding stores to the page contents become visible before
2887 	 * the set_pte_at() write.
2888 	 */
2889 	__SetPageUptodate(page);
2890 
2891 	if (is_zone_device_page(page)) {
2892 		if (is_device_private_page(page)) {
2893 			swp_entry_t swp_entry;
2894 
2895 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2896 			entry = swp_entry_to_pte(swp_entry);
2897 		}
2898 	} else {
2899 		entry = mk_pte(page, vma->vm_page_prot);
2900 		if (vma->vm_flags & VM_WRITE)
2901 			entry = pte_mkwrite(pte_mkdirty(entry));
2902 	}
2903 
2904 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2905 
2906 	if (check_stable_address_space(mm))
2907 		goto unlock_abort;
2908 
2909 	if (pte_present(*ptep)) {
2910 		unsigned long pfn = pte_pfn(*ptep);
2911 
2912 		if (!is_zero_pfn(pfn))
2913 			goto unlock_abort;
2914 		flush = true;
2915 	} else if (!pte_none(*ptep))
2916 		goto unlock_abort;
2917 
2918 	/*
2919 	 * Check for userfaultfd but do not deliver the fault. Instead,
2920 	 * just back off.
2921 	 */
2922 	if (userfaultfd_missing(vma))
2923 		goto unlock_abort;
2924 
2925 	inc_mm_counter(mm, MM_ANONPAGES);
2926 	page_add_new_anon_rmap(page, vma, addr, false);
2927 	if (!is_zone_device_page(page))
2928 		lru_cache_add_inactive_or_unevictable(page, vma);
2929 	get_page(page);
2930 
2931 	if (flush) {
2932 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2933 		ptep_clear_flush_notify(vma, addr, ptep);
2934 		set_pte_at_notify(mm, addr, ptep, entry);
2935 		update_mmu_cache(vma, addr, ptep);
2936 	} else {
2937 		/* No need to invalidate - it was non-present before */
2938 		set_pte_at(mm, addr, ptep, entry);
2939 		update_mmu_cache(vma, addr, ptep);
2940 	}
2941 
2942 	pte_unmap_unlock(ptep, ptl);
2943 	*src = MIGRATE_PFN_MIGRATE;
2944 	return;
2945 
2946 unlock_abort:
2947 	pte_unmap_unlock(ptep, ptl);
2948 abort:
2949 	*src &= ~MIGRATE_PFN_MIGRATE;
2950 }
2951 
2952 /**
2953  * migrate_vma_pages() - migrate meta-data from src page to dst page
2954  * @migrate: migrate struct containing all migration information
2955  *
2956  * This migrates struct page meta-data from source struct page to destination
2957  * struct page. This effectively finishes the migration from source page to the
2958  * destination page.
2959  */
2960 void migrate_vma_pages(struct migrate_vma *migrate)
2961 {
2962 	const unsigned long npages = migrate->npages;
2963 	const unsigned long start = migrate->start;
2964 	struct mmu_notifier_range range;
2965 	unsigned long addr, i;
2966 	bool notified = false;
2967 
2968 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2969 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2970 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2971 		struct address_space *mapping;
2972 		int r;
2973 
2974 		if (!newpage) {
2975 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2976 			continue;
2977 		}
2978 
2979 		if (!page) {
2980 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2981 				continue;
2982 			if (!notified) {
2983 				notified = true;
2984 
2985 				mmu_notifier_range_init(&range,
2986 							MMU_NOTIFY_CLEAR, 0,
2987 							NULL,
2988 							migrate->vma->vm_mm,
2989 							addr, migrate->end);
2990 				mmu_notifier_invalidate_range_start(&range);
2991 			}
2992 			migrate_vma_insert_page(migrate, addr, newpage,
2993 						&migrate->src[i],
2994 						&migrate->dst[i]);
2995 			continue;
2996 		}
2997 
2998 		mapping = page_mapping(page);
2999 
3000 		if (is_zone_device_page(newpage)) {
3001 			if (is_device_private_page(newpage)) {
3002 				/*
3003 				 * For now only support private anonymous when
3004 				 * migrating to un-addressable device memory.
3005 				 */
3006 				if (mapping) {
3007 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3008 					continue;
3009 				}
3010 			} else {
3011 				/*
3012 				 * Other types of ZONE_DEVICE page are not
3013 				 * supported.
3014 				 */
3015 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3016 				continue;
3017 			}
3018 		}
3019 
3020 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3021 		if (r != MIGRATEPAGE_SUCCESS)
3022 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3023 	}
3024 
3025 	/*
3026 	 * No need to double call mmu_notifier->invalidate_range() callback as
3027 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3028 	 * did already call it.
3029 	 */
3030 	if (notified)
3031 		mmu_notifier_invalidate_range_only_end(&range);
3032 }
3033 EXPORT_SYMBOL(migrate_vma_pages);
3034 
3035 /**
3036  * migrate_vma_finalize() - restore CPU page table entry
3037  * @migrate: migrate struct containing all migration information
3038  *
3039  * This replaces the special migration pte entry with either a mapping to the
3040  * new page if migration was successful for that page, or to the original page
3041  * otherwise.
3042  *
3043  * This also unlocks the pages and puts them back on the lru, or drops the extra
3044  * refcount, for device pages.
3045  */
3046 void migrate_vma_finalize(struct migrate_vma *migrate)
3047 {
3048 	const unsigned long npages = migrate->npages;
3049 	unsigned long i;
3050 
3051 	for (i = 0; i < npages; i++) {
3052 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3053 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3054 
3055 		if (!page) {
3056 			if (newpage) {
3057 				unlock_page(newpage);
3058 				put_page(newpage);
3059 			}
3060 			continue;
3061 		}
3062 
3063 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3064 			if (newpage) {
3065 				unlock_page(newpage);
3066 				put_page(newpage);
3067 			}
3068 			newpage = page;
3069 		}
3070 
3071 		remove_migration_ptes(page, newpage, false);
3072 		unlock_page(page);
3073 		migrate->cpages--;
3074 
3075 		if (is_zone_device_page(page))
3076 			put_page(page);
3077 		else
3078 			putback_lru_page(page);
3079 
3080 		if (newpage != page) {
3081 			unlock_page(newpage);
3082 			if (is_zone_device_page(newpage))
3083 				put_page(newpage);
3084 			else
3085 				putback_lru_page(newpage);
3086 		}
3087 	}
3088 }
3089 EXPORT_SYMBOL(migrate_vma_finalize);
3090 #endif /* CONFIG_DEVICE_PRIVATE */
3091