1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct address_space *mapping; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mapping = page_mapping(page); 101 VM_BUG_ON_PAGE(!mapping, page); 102 103 if (!mapping->a_ops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 struct address_space *mapping; 124 125 mapping = page_mapping(page); 126 mapping->a_ops->putback_page(page); 127 ClearPageIsolated(page); 128 } 129 130 /* 131 * Put previously isolated pages back onto the appropriate lists 132 * from where they were once taken off for compaction/migration. 133 * 134 * This function shall be used whenever the isolated pageset has been 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 136 * and isolate_huge_page(). 137 */ 138 void putback_movable_pages(struct list_head *l) 139 { 140 struct page *page; 141 struct page *page2; 142 143 list_for_each_entry_safe(page, page2, l, lru) { 144 if (unlikely(PageHuge(page))) { 145 putback_active_hugepage(page); 146 continue; 147 } 148 list_del(&page->lru); 149 /* 150 * We isolated non-lru movable page so here we can use 151 * __PageMovable because LRU page's mapping cannot have 152 * PAGE_MAPPING_MOVABLE. 153 */ 154 if (unlikely(__PageMovable(page))) { 155 VM_BUG_ON_PAGE(!PageIsolated(page), page); 156 lock_page(page); 157 if (PageMovable(page)) 158 putback_movable_page(page); 159 else 160 ClearPageIsolated(page); 161 unlock_page(page); 162 put_page(page); 163 } else { 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 165 page_is_file_lru(page), -thp_nr_pages(page)); 166 putback_lru_page(page); 167 } 168 } 169 } 170 171 /* 172 * Restore a potential migration pte to a working pte entry 173 */ 174 static bool remove_migration_pte(struct folio *folio, 175 struct vm_area_struct *vma, unsigned long addr, void *old) 176 { 177 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 178 179 while (page_vma_mapped_walk(&pvmw)) { 180 pte_t pte; 181 swp_entry_t entry; 182 struct page *new; 183 unsigned long idx = 0; 184 185 /* pgoff is invalid for ksm pages, but they are never large */ 186 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 187 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 188 new = folio_page(folio, idx); 189 190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 191 /* PMD-mapped THP migration entry */ 192 if (!pvmw.pte) { 193 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 194 !folio_test_pmd_mappable(folio), folio); 195 remove_migration_pmd(&pvmw, new); 196 continue; 197 } 198 #endif 199 200 folio_get(folio); 201 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 202 if (pte_swp_soft_dirty(*pvmw.pte)) 203 pte = pte_mksoft_dirty(pte); 204 205 /* 206 * Recheck VMA as permissions can change since migration started 207 */ 208 entry = pte_to_swp_entry(*pvmw.pte); 209 if (is_writable_migration_entry(entry)) 210 pte = maybe_mkwrite(pte, vma); 211 else if (pte_swp_uffd_wp(*pvmw.pte)) 212 pte = pte_mkuffd_wp(pte); 213 214 if (unlikely(is_device_private_page(new))) { 215 if (pte_write(pte)) 216 entry = make_writable_device_private_entry( 217 page_to_pfn(new)); 218 else 219 entry = make_readable_device_private_entry( 220 page_to_pfn(new)); 221 pte = swp_entry_to_pte(entry); 222 if (pte_swp_soft_dirty(*pvmw.pte)) 223 pte = pte_swp_mksoft_dirty(pte); 224 if (pte_swp_uffd_wp(*pvmw.pte)) 225 pte = pte_swp_mkuffd_wp(pte); 226 } 227 228 #ifdef CONFIG_HUGETLB_PAGE 229 if (folio_test_hugetlb(folio)) { 230 unsigned int shift = huge_page_shift(hstate_vma(vma)); 231 232 pte = pte_mkhuge(pte); 233 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 234 if (folio_test_anon(folio)) 235 hugepage_add_anon_rmap(new, vma, pvmw.address); 236 else 237 page_dup_rmap(new, true); 238 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 239 } else 240 #endif 241 { 242 if (folio_test_anon(folio)) 243 page_add_anon_rmap(new, vma, pvmw.address, false); 244 else 245 page_add_file_rmap(new, vma, false); 246 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 247 } 248 if (vma->vm_flags & VM_LOCKED) 249 mlock_page_drain_local(); 250 251 trace_remove_migration_pte(pvmw.address, pte_val(pte), 252 compound_order(new)); 253 254 /* No need to invalidate - it was non-present before */ 255 update_mmu_cache(vma, pvmw.address, pvmw.pte); 256 } 257 258 return true; 259 } 260 261 /* 262 * Get rid of all migration entries and replace them by 263 * references to the indicated page. 264 */ 265 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 266 { 267 struct rmap_walk_control rwc = { 268 .rmap_one = remove_migration_pte, 269 .arg = src, 270 }; 271 272 if (locked) 273 rmap_walk_locked(dst, &rwc); 274 else 275 rmap_walk(dst, &rwc); 276 } 277 278 /* 279 * Something used the pte of a page under migration. We need to 280 * get to the page and wait until migration is finished. 281 * When we return from this function the fault will be retried. 282 */ 283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 284 spinlock_t *ptl) 285 { 286 pte_t pte; 287 swp_entry_t entry; 288 289 spin_lock(ptl); 290 pte = *ptep; 291 if (!is_swap_pte(pte)) 292 goto out; 293 294 entry = pte_to_swp_entry(pte); 295 if (!is_migration_entry(entry)) 296 goto out; 297 298 migration_entry_wait_on_locked(entry, ptep, ptl); 299 return; 300 out: 301 pte_unmap_unlock(ptep, ptl); 302 } 303 304 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 305 unsigned long address) 306 { 307 spinlock_t *ptl = pte_lockptr(mm, pmd); 308 pte_t *ptep = pte_offset_map(pmd, address); 309 __migration_entry_wait(mm, ptep, ptl); 310 } 311 312 void migration_entry_wait_huge(struct vm_area_struct *vma, 313 struct mm_struct *mm, pte_t *pte) 314 { 315 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 316 __migration_entry_wait(mm, pte, ptl); 317 } 318 319 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 320 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 321 { 322 spinlock_t *ptl; 323 324 ptl = pmd_lock(mm, pmd); 325 if (!is_pmd_migration_entry(*pmd)) 326 goto unlock; 327 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 328 return; 329 unlock: 330 spin_unlock(ptl); 331 } 332 #endif 333 334 static int expected_page_refs(struct address_space *mapping, struct page *page) 335 { 336 int expected_count = 1; 337 338 if (mapping) 339 expected_count += compound_nr(page) + page_has_private(page); 340 return expected_count; 341 } 342 343 /* 344 * Replace the page in the mapping. 345 * 346 * The number of remaining references must be: 347 * 1 for anonymous pages without a mapping 348 * 2 for pages with a mapping 349 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 350 */ 351 int folio_migrate_mapping(struct address_space *mapping, 352 struct folio *newfolio, struct folio *folio, int extra_count) 353 { 354 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 355 struct zone *oldzone, *newzone; 356 int dirty; 357 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; 358 long nr = folio_nr_pages(folio); 359 360 if (!mapping) { 361 /* Anonymous page without mapping */ 362 if (folio_ref_count(folio) != expected_count) 363 return -EAGAIN; 364 365 /* No turning back from here */ 366 newfolio->index = folio->index; 367 newfolio->mapping = folio->mapping; 368 if (folio_test_swapbacked(folio)) 369 __folio_set_swapbacked(newfolio); 370 371 return MIGRATEPAGE_SUCCESS; 372 } 373 374 oldzone = folio_zone(folio); 375 newzone = folio_zone(newfolio); 376 377 xas_lock_irq(&xas); 378 if (!folio_ref_freeze(folio, expected_count)) { 379 xas_unlock_irq(&xas); 380 return -EAGAIN; 381 } 382 383 /* 384 * Now we know that no one else is looking at the folio: 385 * no turning back from here. 386 */ 387 newfolio->index = folio->index; 388 newfolio->mapping = folio->mapping; 389 folio_ref_add(newfolio, nr); /* add cache reference */ 390 if (folio_test_swapbacked(folio)) { 391 __folio_set_swapbacked(newfolio); 392 if (folio_test_swapcache(folio)) { 393 folio_set_swapcache(newfolio); 394 newfolio->private = folio_get_private(folio); 395 } 396 } else { 397 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 398 } 399 400 /* Move dirty while page refs frozen and newpage not yet exposed */ 401 dirty = folio_test_dirty(folio); 402 if (dirty) { 403 folio_clear_dirty(folio); 404 folio_set_dirty(newfolio); 405 } 406 407 xas_store(&xas, newfolio); 408 409 /* 410 * Drop cache reference from old page by unfreezing 411 * to one less reference. 412 * We know this isn't the last reference. 413 */ 414 folio_ref_unfreeze(folio, expected_count - nr); 415 416 xas_unlock(&xas); 417 /* Leave irq disabled to prevent preemption while updating stats */ 418 419 /* 420 * If moved to a different zone then also account 421 * the page for that zone. Other VM counters will be 422 * taken care of when we establish references to the 423 * new page and drop references to the old page. 424 * 425 * Note that anonymous pages are accounted for 426 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 427 * are mapped to swap space. 428 */ 429 if (newzone != oldzone) { 430 struct lruvec *old_lruvec, *new_lruvec; 431 struct mem_cgroup *memcg; 432 433 memcg = folio_memcg(folio); 434 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 435 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 436 437 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 438 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 439 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 440 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 441 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 442 } 443 #ifdef CONFIG_SWAP 444 if (folio_test_swapcache(folio)) { 445 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 446 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 447 } 448 #endif 449 if (dirty && mapping_can_writeback(mapping)) { 450 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 451 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 452 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 453 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 454 } 455 } 456 local_irq_enable(); 457 458 return MIGRATEPAGE_SUCCESS; 459 } 460 EXPORT_SYMBOL(folio_migrate_mapping); 461 462 /* 463 * The expected number of remaining references is the same as that 464 * of folio_migrate_mapping(). 465 */ 466 int migrate_huge_page_move_mapping(struct address_space *mapping, 467 struct page *newpage, struct page *page) 468 { 469 XA_STATE(xas, &mapping->i_pages, page_index(page)); 470 int expected_count; 471 472 xas_lock_irq(&xas); 473 expected_count = 2 + page_has_private(page); 474 if (!page_ref_freeze(page, expected_count)) { 475 xas_unlock_irq(&xas); 476 return -EAGAIN; 477 } 478 479 newpage->index = page->index; 480 newpage->mapping = page->mapping; 481 482 get_page(newpage); 483 484 xas_store(&xas, newpage); 485 486 page_ref_unfreeze(page, expected_count - 1); 487 488 xas_unlock_irq(&xas); 489 490 return MIGRATEPAGE_SUCCESS; 491 } 492 493 /* 494 * Copy the flags and some other ancillary information 495 */ 496 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 497 { 498 int cpupid; 499 500 if (folio_test_error(folio)) 501 folio_set_error(newfolio); 502 if (folio_test_referenced(folio)) 503 folio_set_referenced(newfolio); 504 if (folio_test_uptodate(folio)) 505 folio_mark_uptodate(newfolio); 506 if (folio_test_clear_active(folio)) { 507 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 508 folio_set_active(newfolio); 509 } else if (folio_test_clear_unevictable(folio)) 510 folio_set_unevictable(newfolio); 511 if (folio_test_workingset(folio)) 512 folio_set_workingset(newfolio); 513 if (folio_test_checked(folio)) 514 folio_set_checked(newfolio); 515 if (folio_test_mappedtodisk(folio)) 516 folio_set_mappedtodisk(newfolio); 517 518 /* Move dirty on pages not done by folio_migrate_mapping() */ 519 if (folio_test_dirty(folio)) 520 folio_set_dirty(newfolio); 521 522 if (folio_test_young(folio)) 523 folio_set_young(newfolio); 524 if (folio_test_idle(folio)) 525 folio_set_idle(newfolio); 526 527 /* 528 * Copy NUMA information to the new page, to prevent over-eager 529 * future migrations of this same page. 530 */ 531 cpupid = page_cpupid_xchg_last(&folio->page, -1); 532 page_cpupid_xchg_last(&newfolio->page, cpupid); 533 534 folio_migrate_ksm(newfolio, folio); 535 /* 536 * Please do not reorder this without considering how mm/ksm.c's 537 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 538 */ 539 if (folio_test_swapcache(folio)) 540 folio_clear_swapcache(folio); 541 folio_clear_private(folio); 542 543 /* page->private contains hugetlb specific flags */ 544 if (!folio_test_hugetlb(folio)) 545 folio->private = NULL; 546 547 /* 548 * If any waiters have accumulated on the new page then 549 * wake them up. 550 */ 551 if (folio_test_writeback(newfolio)) 552 folio_end_writeback(newfolio); 553 554 /* 555 * PG_readahead shares the same bit with PG_reclaim. The above 556 * end_page_writeback() may clear PG_readahead mistakenly, so set the 557 * bit after that. 558 */ 559 if (folio_test_readahead(folio)) 560 folio_set_readahead(newfolio); 561 562 folio_copy_owner(newfolio, folio); 563 564 if (!folio_test_hugetlb(folio)) 565 mem_cgroup_migrate(folio, newfolio); 566 } 567 EXPORT_SYMBOL(folio_migrate_flags); 568 569 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 570 { 571 folio_copy(newfolio, folio); 572 folio_migrate_flags(newfolio, folio); 573 } 574 EXPORT_SYMBOL(folio_migrate_copy); 575 576 /************************************************************ 577 * Migration functions 578 ***********************************************************/ 579 580 /* 581 * Common logic to directly migrate a single LRU page suitable for 582 * pages that do not use PagePrivate/PagePrivate2. 583 * 584 * Pages are locked upon entry and exit. 585 */ 586 int migrate_page(struct address_space *mapping, 587 struct page *newpage, struct page *page, 588 enum migrate_mode mode) 589 { 590 struct folio *newfolio = page_folio(newpage); 591 struct folio *folio = page_folio(page); 592 int rc; 593 594 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */ 595 596 rc = folio_migrate_mapping(mapping, newfolio, folio, 0); 597 598 if (rc != MIGRATEPAGE_SUCCESS) 599 return rc; 600 601 if (mode != MIGRATE_SYNC_NO_COPY) 602 folio_migrate_copy(newfolio, folio); 603 else 604 folio_migrate_flags(newfolio, folio); 605 return MIGRATEPAGE_SUCCESS; 606 } 607 EXPORT_SYMBOL(migrate_page); 608 609 #ifdef CONFIG_BLOCK 610 /* Returns true if all buffers are successfully locked */ 611 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 612 enum migrate_mode mode) 613 { 614 struct buffer_head *bh = head; 615 616 /* Simple case, sync compaction */ 617 if (mode != MIGRATE_ASYNC) { 618 do { 619 lock_buffer(bh); 620 bh = bh->b_this_page; 621 622 } while (bh != head); 623 624 return true; 625 } 626 627 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 628 do { 629 if (!trylock_buffer(bh)) { 630 /* 631 * We failed to lock the buffer and cannot stall in 632 * async migration. Release the taken locks 633 */ 634 struct buffer_head *failed_bh = bh; 635 bh = head; 636 while (bh != failed_bh) { 637 unlock_buffer(bh); 638 bh = bh->b_this_page; 639 } 640 return false; 641 } 642 643 bh = bh->b_this_page; 644 } while (bh != head); 645 return true; 646 } 647 648 static int __buffer_migrate_page(struct address_space *mapping, 649 struct page *newpage, struct page *page, enum migrate_mode mode, 650 bool check_refs) 651 { 652 struct buffer_head *bh, *head; 653 int rc; 654 int expected_count; 655 656 if (!page_has_buffers(page)) 657 return migrate_page(mapping, newpage, page, mode); 658 659 /* Check whether page does not have extra refs before we do more work */ 660 expected_count = expected_page_refs(mapping, page); 661 if (page_count(page) != expected_count) 662 return -EAGAIN; 663 664 head = page_buffers(page); 665 if (!buffer_migrate_lock_buffers(head, mode)) 666 return -EAGAIN; 667 668 if (check_refs) { 669 bool busy; 670 bool invalidated = false; 671 672 recheck_buffers: 673 busy = false; 674 spin_lock(&mapping->private_lock); 675 bh = head; 676 do { 677 if (atomic_read(&bh->b_count)) { 678 busy = true; 679 break; 680 } 681 bh = bh->b_this_page; 682 } while (bh != head); 683 if (busy) { 684 if (invalidated) { 685 rc = -EAGAIN; 686 goto unlock_buffers; 687 } 688 spin_unlock(&mapping->private_lock); 689 invalidate_bh_lrus(); 690 invalidated = true; 691 goto recheck_buffers; 692 } 693 } 694 695 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 696 if (rc != MIGRATEPAGE_SUCCESS) 697 goto unlock_buffers; 698 699 attach_page_private(newpage, detach_page_private(page)); 700 701 bh = head; 702 do { 703 set_bh_page(bh, newpage, bh_offset(bh)); 704 bh = bh->b_this_page; 705 706 } while (bh != head); 707 708 if (mode != MIGRATE_SYNC_NO_COPY) 709 migrate_page_copy(newpage, page); 710 else 711 migrate_page_states(newpage, page); 712 713 rc = MIGRATEPAGE_SUCCESS; 714 unlock_buffers: 715 if (check_refs) 716 spin_unlock(&mapping->private_lock); 717 bh = head; 718 do { 719 unlock_buffer(bh); 720 bh = bh->b_this_page; 721 722 } while (bh != head); 723 724 return rc; 725 } 726 727 /* 728 * Migration function for pages with buffers. This function can only be used 729 * if the underlying filesystem guarantees that no other references to "page" 730 * exist. For example attached buffer heads are accessed only under page lock. 731 */ 732 int buffer_migrate_page(struct address_space *mapping, 733 struct page *newpage, struct page *page, enum migrate_mode mode) 734 { 735 return __buffer_migrate_page(mapping, newpage, page, mode, false); 736 } 737 EXPORT_SYMBOL(buffer_migrate_page); 738 739 /* 740 * Same as above except that this variant is more careful and checks that there 741 * are also no buffer head references. This function is the right one for 742 * mappings where buffer heads are directly looked up and referenced (such as 743 * block device mappings). 744 */ 745 int buffer_migrate_page_norefs(struct address_space *mapping, 746 struct page *newpage, struct page *page, enum migrate_mode mode) 747 { 748 return __buffer_migrate_page(mapping, newpage, page, mode, true); 749 } 750 #endif 751 752 /* 753 * Writeback a page to clean the dirty state 754 */ 755 static int writeout(struct address_space *mapping, struct page *page) 756 { 757 struct folio *folio = page_folio(page); 758 struct writeback_control wbc = { 759 .sync_mode = WB_SYNC_NONE, 760 .nr_to_write = 1, 761 .range_start = 0, 762 .range_end = LLONG_MAX, 763 .for_reclaim = 1 764 }; 765 int rc; 766 767 if (!mapping->a_ops->writepage) 768 /* No write method for the address space */ 769 return -EINVAL; 770 771 if (!clear_page_dirty_for_io(page)) 772 /* Someone else already triggered a write */ 773 return -EAGAIN; 774 775 /* 776 * A dirty page may imply that the underlying filesystem has 777 * the page on some queue. So the page must be clean for 778 * migration. Writeout may mean we loose the lock and the 779 * page state is no longer what we checked for earlier. 780 * At this point we know that the migration attempt cannot 781 * be successful. 782 */ 783 remove_migration_ptes(folio, folio, false); 784 785 rc = mapping->a_ops->writepage(page, &wbc); 786 787 if (rc != AOP_WRITEPAGE_ACTIVATE) 788 /* unlocked. Relock */ 789 lock_page(page); 790 791 return (rc < 0) ? -EIO : -EAGAIN; 792 } 793 794 /* 795 * Default handling if a filesystem does not provide a migration function. 796 */ 797 static int fallback_migrate_page(struct address_space *mapping, 798 struct page *newpage, struct page *page, enum migrate_mode mode) 799 { 800 if (PageDirty(page)) { 801 /* Only writeback pages in full synchronous migration */ 802 switch (mode) { 803 case MIGRATE_SYNC: 804 case MIGRATE_SYNC_NO_COPY: 805 break; 806 default: 807 return -EBUSY; 808 } 809 return writeout(mapping, page); 810 } 811 812 /* 813 * Buffers may be managed in a filesystem specific way. 814 * We must have no buffers or drop them. 815 */ 816 if (page_has_private(page) && 817 !try_to_release_page(page, GFP_KERNEL)) 818 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 819 820 return migrate_page(mapping, newpage, page, mode); 821 } 822 823 /* 824 * Move a page to a newly allocated page 825 * The page is locked and all ptes have been successfully removed. 826 * 827 * The new page will have replaced the old page if this function 828 * is successful. 829 * 830 * Return value: 831 * < 0 - error code 832 * MIGRATEPAGE_SUCCESS - success 833 */ 834 static int move_to_new_page(struct page *newpage, struct page *page, 835 enum migrate_mode mode) 836 { 837 struct address_space *mapping; 838 int rc = -EAGAIN; 839 bool is_lru = !__PageMovable(page); 840 841 VM_BUG_ON_PAGE(!PageLocked(page), page); 842 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 843 844 mapping = page_mapping(page); 845 846 if (likely(is_lru)) { 847 if (!mapping) 848 rc = migrate_page(mapping, newpage, page, mode); 849 else if (mapping->a_ops->migratepage) 850 /* 851 * Most pages have a mapping and most filesystems 852 * provide a migratepage callback. Anonymous pages 853 * are part of swap space which also has its own 854 * migratepage callback. This is the most common path 855 * for page migration. 856 */ 857 rc = mapping->a_ops->migratepage(mapping, newpage, 858 page, mode); 859 else 860 rc = fallback_migrate_page(mapping, newpage, 861 page, mode); 862 } else { 863 /* 864 * In case of non-lru page, it could be released after 865 * isolation step. In that case, we shouldn't try migration. 866 */ 867 VM_BUG_ON_PAGE(!PageIsolated(page), page); 868 if (!PageMovable(page)) { 869 rc = MIGRATEPAGE_SUCCESS; 870 ClearPageIsolated(page); 871 goto out; 872 } 873 874 rc = mapping->a_ops->migratepage(mapping, newpage, 875 page, mode); 876 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 877 !PageIsolated(page)); 878 } 879 880 /* 881 * When successful, old pagecache page->mapping must be cleared before 882 * page is freed; but stats require that PageAnon be left as PageAnon. 883 */ 884 if (rc == MIGRATEPAGE_SUCCESS) { 885 if (__PageMovable(page)) { 886 VM_BUG_ON_PAGE(!PageIsolated(page), page); 887 888 /* 889 * We clear PG_movable under page_lock so any compactor 890 * cannot try to migrate this page. 891 */ 892 ClearPageIsolated(page); 893 } 894 895 /* 896 * Anonymous and movable page->mapping will be cleared by 897 * free_pages_prepare so don't reset it here for keeping 898 * the type to work PageAnon, for example. 899 */ 900 if (!PageMappingFlags(page)) 901 page->mapping = NULL; 902 903 if (likely(!is_zone_device_page(newpage))) 904 flush_dcache_folio(page_folio(newpage)); 905 } 906 out: 907 return rc; 908 } 909 910 static int __unmap_and_move(struct page *page, struct page *newpage, 911 int force, enum migrate_mode mode) 912 { 913 struct folio *folio = page_folio(page); 914 struct folio *dst = page_folio(newpage); 915 int rc = -EAGAIN; 916 bool page_was_mapped = false; 917 struct anon_vma *anon_vma = NULL; 918 bool is_lru = !__PageMovable(page); 919 920 if (!trylock_page(page)) { 921 if (!force || mode == MIGRATE_ASYNC) 922 goto out; 923 924 /* 925 * It's not safe for direct compaction to call lock_page. 926 * For example, during page readahead pages are added locked 927 * to the LRU. Later, when the IO completes the pages are 928 * marked uptodate and unlocked. However, the queueing 929 * could be merging multiple pages for one bio (e.g. 930 * mpage_readahead). If an allocation happens for the 931 * second or third page, the process can end up locking 932 * the same page twice and deadlocking. Rather than 933 * trying to be clever about what pages can be locked, 934 * avoid the use of lock_page for direct compaction 935 * altogether. 936 */ 937 if (current->flags & PF_MEMALLOC) 938 goto out; 939 940 lock_page(page); 941 } 942 943 if (PageWriteback(page)) { 944 /* 945 * Only in the case of a full synchronous migration is it 946 * necessary to wait for PageWriteback. In the async case, 947 * the retry loop is too short and in the sync-light case, 948 * the overhead of stalling is too much 949 */ 950 switch (mode) { 951 case MIGRATE_SYNC: 952 case MIGRATE_SYNC_NO_COPY: 953 break; 954 default: 955 rc = -EBUSY; 956 goto out_unlock; 957 } 958 if (!force) 959 goto out_unlock; 960 wait_on_page_writeback(page); 961 } 962 963 /* 964 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 965 * we cannot notice that anon_vma is freed while we migrates a page. 966 * This get_anon_vma() delays freeing anon_vma pointer until the end 967 * of migration. File cache pages are no problem because of page_lock() 968 * File Caches may use write_page() or lock_page() in migration, then, 969 * just care Anon page here. 970 * 971 * Only page_get_anon_vma() understands the subtleties of 972 * getting a hold on an anon_vma from outside one of its mms. 973 * But if we cannot get anon_vma, then we won't need it anyway, 974 * because that implies that the anon page is no longer mapped 975 * (and cannot be remapped so long as we hold the page lock). 976 */ 977 if (PageAnon(page) && !PageKsm(page)) 978 anon_vma = page_get_anon_vma(page); 979 980 /* 981 * Block others from accessing the new page when we get around to 982 * establishing additional references. We are usually the only one 983 * holding a reference to newpage at this point. We used to have a BUG 984 * here if trylock_page(newpage) fails, but would like to allow for 985 * cases where there might be a race with the previous use of newpage. 986 * This is much like races on refcount of oldpage: just don't BUG(). 987 */ 988 if (unlikely(!trylock_page(newpage))) 989 goto out_unlock; 990 991 if (unlikely(!is_lru)) { 992 rc = move_to_new_page(newpage, page, mode); 993 goto out_unlock_both; 994 } 995 996 /* 997 * Corner case handling: 998 * 1. When a new swap-cache page is read into, it is added to the LRU 999 * and treated as swapcache but it has no rmap yet. 1000 * Calling try_to_unmap() against a page->mapping==NULL page will 1001 * trigger a BUG. So handle it here. 1002 * 2. An orphaned page (see truncate_cleanup_page) might have 1003 * fs-private metadata. The page can be picked up due to memory 1004 * offlining. Everywhere else except page reclaim, the page is 1005 * invisible to the vm, so the page can not be migrated. So try to 1006 * free the metadata, so the page can be freed. 1007 */ 1008 if (!page->mapping) { 1009 VM_BUG_ON_PAGE(PageAnon(page), page); 1010 if (page_has_private(page)) { 1011 try_to_free_buffers(page); 1012 goto out_unlock_both; 1013 } 1014 } else if (page_mapped(page)) { 1015 /* Establish migration ptes */ 1016 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1017 page); 1018 try_to_migrate(folio, 0); 1019 page_was_mapped = true; 1020 } 1021 1022 if (!page_mapped(page)) 1023 rc = move_to_new_page(newpage, page, mode); 1024 1025 /* 1026 * When successful, push newpage to LRU immediately: so that if it 1027 * turns out to be an mlocked page, remove_migration_ptes() will 1028 * automatically build up the correct newpage->mlock_count for it. 1029 * 1030 * We would like to do something similar for the old page, when 1031 * unsuccessful, and other cases when a page has been temporarily 1032 * isolated from the unevictable LRU: but this case is the easiest. 1033 */ 1034 if (rc == MIGRATEPAGE_SUCCESS) { 1035 lru_cache_add(newpage); 1036 if (page_was_mapped) 1037 lru_add_drain(); 1038 } 1039 1040 if (page_was_mapped) 1041 remove_migration_ptes(folio, 1042 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false); 1043 1044 out_unlock_both: 1045 unlock_page(newpage); 1046 out_unlock: 1047 /* Drop an anon_vma reference if we took one */ 1048 if (anon_vma) 1049 put_anon_vma(anon_vma); 1050 unlock_page(page); 1051 out: 1052 /* 1053 * If migration is successful, decrease refcount of the newpage, 1054 * which will not free the page because new page owner increased 1055 * refcounter. 1056 */ 1057 if (rc == MIGRATEPAGE_SUCCESS) 1058 put_page(newpage); 1059 1060 return rc; 1061 } 1062 1063 /* 1064 * Obtain the lock on page, remove all ptes and migrate the page 1065 * to the newly allocated page in newpage. 1066 */ 1067 static int unmap_and_move(new_page_t get_new_page, 1068 free_page_t put_new_page, 1069 unsigned long private, struct page *page, 1070 int force, enum migrate_mode mode, 1071 enum migrate_reason reason, 1072 struct list_head *ret) 1073 { 1074 int rc = MIGRATEPAGE_SUCCESS; 1075 struct page *newpage = NULL; 1076 1077 if (!thp_migration_supported() && PageTransHuge(page)) 1078 return -ENOSYS; 1079 1080 if (page_count(page) == 1) { 1081 /* page was freed from under us. So we are done. */ 1082 ClearPageActive(page); 1083 ClearPageUnevictable(page); 1084 if (unlikely(__PageMovable(page))) { 1085 lock_page(page); 1086 if (!PageMovable(page)) 1087 ClearPageIsolated(page); 1088 unlock_page(page); 1089 } 1090 goto out; 1091 } 1092 1093 newpage = get_new_page(page, private); 1094 if (!newpage) 1095 return -ENOMEM; 1096 1097 rc = __unmap_and_move(page, newpage, force, mode); 1098 if (rc == MIGRATEPAGE_SUCCESS) 1099 set_page_owner_migrate_reason(newpage, reason); 1100 1101 out: 1102 if (rc != -EAGAIN) { 1103 /* 1104 * A page that has been migrated has all references 1105 * removed and will be freed. A page that has not been 1106 * migrated will have kept its references and be restored. 1107 */ 1108 list_del(&page->lru); 1109 } 1110 1111 /* 1112 * If migration is successful, releases reference grabbed during 1113 * isolation. Otherwise, restore the page to right list unless 1114 * we want to retry. 1115 */ 1116 if (rc == MIGRATEPAGE_SUCCESS) { 1117 /* 1118 * Compaction can migrate also non-LRU pages which are 1119 * not accounted to NR_ISOLATED_*. They can be recognized 1120 * as __PageMovable 1121 */ 1122 if (likely(!__PageMovable(page))) 1123 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1124 page_is_file_lru(page), -thp_nr_pages(page)); 1125 1126 if (reason != MR_MEMORY_FAILURE) 1127 /* 1128 * We release the page in page_handle_poison. 1129 */ 1130 put_page(page); 1131 } else { 1132 if (rc != -EAGAIN) 1133 list_add_tail(&page->lru, ret); 1134 1135 if (put_new_page) 1136 put_new_page(newpage, private); 1137 else 1138 put_page(newpage); 1139 } 1140 1141 return rc; 1142 } 1143 1144 /* 1145 * Counterpart of unmap_and_move_page() for hugepage migration. 1146 * 1147 * This function doesn't wait the completion of hugepage I/O 1148 * because there is no race between I/O and migration for hugepage. 1149 * Note that currently hugepage I/O occurs only in direct I/O 1150 * where no lock is held and PG_writeback is irrelevant, 1151 * and writeback status of all subpages are counted in the reference 1152 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1153 * under direct I/O, the reference of the head page is 512 and a bit more.) 1154 * This means that when we try to migrate hugepage whose subpages are 1155 * doing direct I/O, some references remain after try_to_unmap() and 1156 * hugepage migration fails without data corruption. 1157 * 1158 * There is also no race when direct I/O is issued on the page under migration, 1159 * because then pte is replaced with migration swap entry and direct I/O code 1160 * will wait in the page fault for migration to complete. 1161 */ 1162 static int unmap_and_move_huge_page(new_page_t get_new_page, 1163 free_page_t put_new_page, unsigned long private, 1164 struct page *hpage, int force, 1165 enum migrate_mode mode, int reason, 1166 struct list_head *ret) 1167 { 1168 struct folio *dst, *src = page_folio(hpage); 1169 int rc = -EAGAIN; 1170 int page_was_mapped = 0; 1171 struct page *new_hpage; 1172 struct anon_vma *anon_vma = NULL; 1173 struct address_space *mapping = NULL; 1174 1175 /* 1176 * Migratability of hugepages depends on architectures and their size. 1177 * This check is necessary because some callers of hugepage migration 1178 * like soft offline and memory hotremove don't walk through page 1179 * tables or check whether the hugepage is pmd-based or not before 1180 * kicking migration. 1181 */ 1182 if (!hugepage_migration_supported(page_hstate(hpage))) { 1183 list_move_tail(&hpage->lru, ret); 1184 return -ENOSYS; 1185 } 1186 1187 if (page_count(hpage) == 1) { 1188 /* page was freed from under us. So we are done. */ 1189 putback_active_hugepage(hpage); 1190 return MIGRATEPAGE_SUCCESS; 1191 } 1192 1193 new_hpage = get_new_page(hpage, private); 1194 if (!new_hpage) 1195 return -ENOMEM; 1196 dst = page_folio(new_hpage); 1197 1198 if (!trylock_page(hpage)) { 1199 if (!force) 1200 goto out; 1201 switch (mode) { 1202 case MIGRATE_SYNC: 1203 case MIGRATE_SYNC_NO_COPY: 1204 break; 1205 default: 1206 goto out; 1207 } 1208 lock_page(hpage); 1209 } 1210 1211 /* 1212 * Check for pages which are in the process of being freed. Without 1213 * page_mapping() set, hugetlbfs specific move page routine will not 1214 * be called and we could leak usage counts for subpools. 1215 */ 1216 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1217 rc = -EBUSY; 1218 goto out_unlock; 1219 } 1220 1221 if (PageAnon(hpage)) 1222 anon_vma = page_get_anon_vma(hpage); 1223 1224 if (unlikely(!trylock_page(new_hpage))) 1225 goto put_anon; 1226 1227 if (page_mapped(hpage)) { 1228 enum ttu_flags ttu = 0; 1229 1230 if (!PageAnon(hpage)) { 1231 /* 1232 * In shared mappings, try_to_unmap could potentially 1233 * call huge_pmd_unshare. Because of this, take 1234 * semaphore in write mode here and set TTU_RMAP_LOCKED 1235 * to let lower levels know we have taken the lock. 1236 */ 1237 mapping = hugetlb_page_mapping_lock_write(hpage); 1238 if (unlikely(!mapping)) 1239 goto unlock_put_anon; 1240 1241 ttu = TTU_RMAP_LOCKED; 1242 } 1243 1244 try_to_migrate(src, ttu); 1245 page_was_mapped = 1; 1246 1247 if (ttu & TTU_RMAP_LOCKED) 1248 i_mmap_unlock_write(mapping); 1249 } 1250 1251 if (!page_mapped(hpage)) 1252 rc = move_to_new_page(new_hpage, hpage, mode); 1253 1254 if (page_was_mapped) 1255 remove_migration_ptes(src, 1256 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1257 1258 unlock_put_anon: 1259 unlock_page(new_hpage); 1260 1261 put_anon: 1262 if (anon_vma) 1263 put_anon_vma(anon_vma); 1264 1265 if (rc == MIGRATEPAGE_SUCCESS) { 1266 move_hugetlb_state(hpage, new_hpage, reason); 1267 put_new_page = NULL; 1268 } 1269 1270 out_unlock: 1271 unlock_page(hpage); 1272 out: 1273 if (rc == MIGRATEPAGE_SUCCESS) 1274 putback_active_hugepage(hpage); 1275 else if (rc != -EAGAIN) 1276 list_move_tail(&hpage->lru, ret); 1277 1278 /* 1279 * If migration was not successful and there's a freeing callback, use 1280 * it. Otherwise, put_page() will drop the reference grabbed during 1281 * isolation. 1282 */ 1283 if (put_new_page) 1284 put_new_page(new_hpage, private); 1285 else 1286 putback_active_hugepage(new_hpage); 1287 1288 return rc; 1289 } 1290 1291 static inline int try_split_thp(struct page *page, struct page **page2, 1292 struct list_head *from) 1293 { 1294 int rc = 0; 1295 1296 lock_page(page); 1297 rc = split_huge_page_to_list(page, from); 1298 unlock_page(page); 1299 if (!rc) 1300 list_safe_reset_next(page, *page2, lru); 1301 1302 return rc; 1303 } 1304 1305 /* 1306 * migrate_pages - migrate the pages specified in a list, to the free pages 1307 * supplied as the target for the page migration 1308 * 1309 * @from: The list of pages to be migrated. 1310 * @get_new_page: The function used to allocate free pages to be used 1311 * as the target of the page migration. 1312 * @put_new_page: The function used to free target pages if migration 1313 * fails, or NULL if no special handling is necessary. 1314 * @private: Private data to be passed on to get_new_page() 1315 * @mode: The migration mode that specifies the constraints for 1316 * page migration, if any. 1317 * @reason: The reason for page migration. 1318 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1319 * the caller passes a non-NULL pointer. 1320 * 1321 * The function returns after 10 attempts or if no pages are movable any more 1322 * because the list has become empty or no retryable pages exist any more. 1323 * It is caller's responsibility to call putback_movable_pages() to return pages 1324 * to the LRU or free list only if ret != 0. 1325 * 1326 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1327 * an error code. The number of THP splits will be considered as the number of 1328 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1329 */ 1330 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1331 free_page_t put_new_page, unsigned long private, 1332 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1333 { 1334 int retry = 1; 1335 int thp_retry = 1; 1336 int nr_failed = 0; 1337 int nr_failed_pages = 0; 1338 int nr_succeeded = 0; 1339 int nr_thp_succeeded = 0; 1340 int nr_thp_failed = 0; 1341 int nr_thp_split = 0; 1342 int pass = 0; 1343 bool is_thp = false; 1344 struct page *page; 1345 struct page *page2; 1346 int rc, nr_subpages; 1347 LIST_HEAD(ret_pages); 1348 LIST_HEAD(thp_split_pages); 1349 bool nosplit = (reason == MR_NUMA_MISPLACED); 1350 bool no_subpage_counting = false; 1351 1352 trace_mm_migrate_pages_start(mode, reason); 1353 1354 thp_subpage_migration: 1355 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1356 retry = 0; 1357 thp_retry = 0; 1358 1359 list_for_each_entry_safe(page, page2, from, lru) { 1360 retry: 1361 /* 1362 * THP statistics is based on the source huge page. 1363 * Capture required information that might get lost 1364 * during migration. 1365 */ 1366 is_thp = PageTransHuge(page) && !PageHuge(page); 1367 nr_subpages = compound_nr(page); 1368 cond_resched(); 1369 1370 if (PageHuge(page)) 1371 rc = unmap_and_move_huge_page(get_new_page, 1372 put_new_page, private, page, 1373 pass > 2, mode, reason, 1374 &ret_pages); 1375 else 1376 rc = unmap_and_move(get_new_page, put_new_page, 1377 private, page, pass > 2, mode, 1378 reason, &ret_pages); 1379 /* 1380 * The rules are: 1381 * Success: non hugetlb page will be freed, hugetlb 1382 * page will be put back 1383 * -EAGAIN: stay on the from list 1384 * -ENOMEM: stay on the from list 1385 * Other errno: put on ret_pages list then splice to 1386 * from list 1387 */ 1388 switch(rc) { 1389 /* 1390 * THP migration might be unsupported or the 1391 * allocation could've failed so we should 1392 * retry on the same page with the THP split 1393 * to base pages. 1394 * 1395 * Head page is retried immediately and tail 1396 * pages are added to the tail of the list so 1397 * we encounter them after the rest of the list 1398 * is processed. 1399 */ 1400 case -ENOSYS: 1401 /* THP migration is unsupported */ 1402 if (is_thp) { 1403 nr_thp_failed++; 1404 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1405 nr_thp_split++; 1406 goto retry; 1407 } 1408 /* Hugetlb migration is unsupported */ 1409 } else if (!no_subpage_counting) { 1410 nr_failed++; 1411 } 1412 1413 nr_failed_pages += nr_subpages; 1414 break; 1415 case -ENOMEM: 1416 /* 1417 * When memory is low, don't bother to try to migrate 1418 * other pages, just exit. 1419 * THP NUMA faulting doesn't split THP to retry. 1420 */ 1421 if (is_thp && !nosplit) { 1422 nr_thp_failed++; 1423 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1424 nr_thp_split++; 1425 goto retry; 1426 } 1427 } else if (!no_subpage_counting) { 1428 nr_failed++; 1429 } 1430 1431 nr_failed_pages += nr_subpages; 1432 /* 1433 * There might be some subpages of fail-to-migrate THPs 1434 * left in thp_split_pages list. Move them back to migration 1435 * list so that they could be put back to the right list by 1436 * the caller otherwise the page refcnt will be leaked. 1437 */ 1438 list_splice_init(&thp_split_pages, from); 1439 nr_thp_failed += thp_retry; 1440 goto out; 1441 case -EAGAIN: 1442 if (is_thp) 1443 thp_retry++; 1444 else 1445 retry++; 1446 break; 1447 case MIGRATEPAGE_SUCCESS: 1448 nr_succeeded += nr_subpages; 1449 if (is_thp) 1450 nr_thp_succeeded++; 1451 break; 1452 default: 1453 /* 1454 * Permanent failure (-EBUSY, etc.): 1455 * unlike -EAGAIN case, the failed page is 1456 * removed from migration page list and not 1457 * retried in the next outer loop. 1458 */ 1459 if (is_thp) 1460 nr_thp_failed++; 1461 else if (!no_subpage_counting) 1462 nr_failed++; 1463 1464 nr_failed_pages += nr_subpages; 1465 break; 1466 } 1467 } 1468 } 1469 nr_failed += retry; 1470 nr_thp_failed += thp_retry; 1471 /* 1472 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1473 * counting in this round, since all subpages of a THP is counted 1474 * as 1 failure in the first round. 1475 */ 1476 if (!list_empty(&thp_split_pages)) { 1477 /* 1478 * Move non-migrated pages (after 10 retries) to ret_pages 1479 * to avoid migrating them again. 1480 */ 1481 list_splice_init(from, &ret_pages); 1482 list_splice_init(&thp_split_pages, from); 1483 no_subpage_counting = true; 1484 retry = 1; 1485 goto thp_subpage_migration; 1486 } 1487 1488 rc = nr_failed + nr_thp_failed; 1489 out: 1490 /* 1491 * Put the permanent failure page back to migration list, they 1492 * will be put back to the right list by the caller. 1493 */ 1494 list_splice(&ret_pages, from); 1495 1496 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1497 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1498 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1499 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1500 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1501 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1502 nr_thp_failed, nr_thp_split, mode, reason); 1503 1504 if (ret_succeeded) 1505 *ret_succeeded = nr_succeeded; 1506 1507 return rc; 1508 } 1509 1510 struct page *alloc_migration_target(struct page *page, unsigned long private) 1511 { 1512 struct folio *folio = page_folio(page); 1513 struct migration_target_control *mtc; 1514 gfp_t gfp_mask; 1515 unsigned int order = 0; 1516 struct folio *new_folio = NULL; 1517 int nid; 1518 int zidx; 1519 1520 mtc = (struct migration_target_control *)private; 1521 gfp_mask = mtc->gfp_mask; 1522 nid = mtc->nid; 1523 if (nid == NUMA_NO_NODE) 1524 nid = folio_nid(folio); 1525 1526 if (folio_test_hugetlb(folio)) { 1527 struct hstate *h = page_hstate(&folio->page); 1528 1529 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1530 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1531 } 1532 1533 if (folio_test_large(folio)) { 1534 /* 1535 * clear __GFP_RECLAIM to make the migration callback 1536 * consistent with regular THP allocations. 1537 */ 1538 gfp_mask &= ~__GFP_RECLAIM; 1539 gfp_mask |= GFP_TRANSHUGE; 1540 order = folio_order(folio); 1541 } 1542 zidx = zone_idx(folio_zone(folio)); 1543 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1544 gfp_mask |= __GFP_HIGHMEM; 1545 1546 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1547 1548 return &new_folio->page; 1549 } 1550 1551 #ifdef CONFIG_NUMA 1552 1553 static int store_status(int __user *status, int start, int value, int nr) 1554 { 1555 while (nr-- > 0) { 1556 if (put_user(value, status + start)) 1557 return -EFAULT; 1558 start++; 1559 } 1560 1561 return 0; 1562 } 1563 1564 static int do_move_pages_to_node(struct mm_struct *mm, 1565 struct list_head *pagelist, int node) 1566 { 1567 int err; 1568 struct migration_target_control mtc = { 1569 .nid = node, 1570 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1571 }; 1572 1573 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1574 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1575 if (err) 1576 putback_movable_pages(pagelist); 1577 return err; 1578 } 1579 1580 /* 1581 * Resolves the given address to a struct page, isolates it from the LRU and 1582 * puts it to the given pagelist. 1583 * Returns: 1584 * errno - if the page cannot be found/isolated 1585 * 0 - when it doesn't have to be migrated because it is already on the 1586 * target node 1587 * 1 - when it has been queued 1588 */ 1589 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1590 int node, struct list_head *pagelist, bool migrate_all) 1591 { 1592 struct vm_area_struct *vma; 1593 struct page *page; 1594 int err; 1595 1596 mmap_read_lock(mm); 1597 err = -EFAULT; 1598 vma = vma_lookup(mm, addr); 1599 if (!vma || !vma_migratable(vma)) 1600 goto out; 1601 1602 /* FOLL_DUMP to ignore special (like zero) pages */ 1603 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1604 1605 err = PTR_ERR(page); 1606 if (IS_ERR(page)) 1607 goto out; 1608 1609 err = -ENOENT; 1610 if (!page) 1611 goto out; 1612 1613 err = 0; 1614 if (page_to_nid(page) == node) 1615 goto out_putpage; 1616 1617 err = -EACCES; 1618 if (page_mapcount(page) > 1 && !migrate_all) 1619 goto out_putpage; 1620 1621 if (PageHuge(page)) { 1622 if (PageHead(page)) { 1623 isolate_huge_page(page, pagelist); 1624 err = 1; 1625 } 1626 } else { 1627 struct page *head; 1628 1629 head = compound_head(page); 1630 err = isolate_lru_page(head); 1631 if (err) 1632 goto out_putpage; 1633 1634 err = 1; 1635 list_add_tail(&head->lru, pagelist); 1636 mod_node_page_state(page_pgdat(head), 1637 NR_ISOLATED_ANON + page_is_file_lru(head), 1638 thp_nr_pages(head)); 1639 } 1640 out_putpage: 1641 /* 1642 * Either remove the duplicate refcount from 1643 * isolate_lru_page() or drop the page ref if it was 1644 * not isolated. 1645 */ 1646 put_page(page); 1647 out: 1648 mmap_read_unlock(mm); 1649 return err; 1650 } 1651 1652 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1653 struct list_head *pagelist, int __user *status, 1654 int start, int i, unsigned long nr_pages) 1655 { 1656 int err; 1657 1658 if (list_empty(pagelist)) 1659 return 0; 1660 1661 err = do_move_pages_to_node(mm, pagelist, node); 1662 if (err) { 1663 /* 1664 * Positive err means the number of failed 1665 * pages to migrate. Since we are going to 1666 * abort and return the number of non-migrated 1667 * pages, so need to include the rest of the 1668 * nr_pages that have not been attempted as 1669 * well. 1670 */ 1671 if (err > 0) 1672 err += nr_pages - i - 1; 1673 return err; 1674 } 1675 return store_status(status, start, node, i - start); 1676 } 1677 1678 /* 1679 * Migrate an array of page address onto an array of nodes and fill 1680 * the corresponding array of status. 1681 */ 1682 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1683 unsigned long nr_pages, 1684 const void __user * __user *pages, 1685 const int __user *nodes, 1686 int __user *status, int flags) 1687 { 1688 int current_node = NUMA_NO_NODE; 1689 LIST_HEAD(pagelist); 1690 int start, i; 1691 int err = 0, err1; 1692 1693 lru_cache_disable(); 1694 1695 for (i = start = 0; i < nr_pages; i++) { 1696 const void __user *p; 1697 unsigned long addr; 1698 int node; 1699 1700 err = -EFAULT; 1701 if (get_user(p, pages + i)) 1702 goto out_flush; 1703 if (get_user(node, nodes + i)) 1704 goto out_flush; 1705 addr = (unsigned long)untagged_addr(p); 1706 1707 err = -ENODEV; 1708 if (node < 0 || node >= MAX_NUMNODES) 1709 goto out_flush; 1710 if (!node_state(node, N_MEMORY)) 1711 goto out_flush; 1712 1713 err = -EACCES; 1714 if (!node_isset(node, task_nodes)) 1715 goto out_flush; 1716 1717 if (current_node == NUMA_NO_NODE) { 1718 current_node = node; 1719 start = i; 1720 } else if (node != current_node) { 1721 err = move_pages_and_store_status(mm, current_node, 1722 &pagelist, status, start, i, nr_pages); 1723 if (err) 1724 goto out; 1725 start = i; 1726 current_node = node; 1727 } 1728 1729 /* 1730 * Errors in the page lookup or isolation are not fatal and we simply 1731 * report them via status 1732 */ 1733 err = add_page_for_migration(mm, addr, current_node, 1734 &pagelist, flags & MPOL_MF_MOVE_ALL); 1735 1736 if (err > 0) { 1737 /* The page is successfully queued for migration */ 1738 continue; 1739 } 1740 1741 /* 1742 * The move_pages() man page does not have an -EEXIST choice, so 1743 * use -EFAULT instead. 1744 */ 1745 if (err == -EEXIST) 1746 err = -EFAULT; 1747 1748 /* 1749 * If the page is already on the target node (!err), store the 1750 * node, otherwise, store the err. 1751 */ 1752 err = store_status(status, i, err ? : current_node, 1); 1753 if (err) 1754 goto out_flush; 1755 1756 err = move_pages_and_store_status(mm, current_node, &pagelist, 1757 status, start, i, nr_pages); 1758 if (err) 1759 goto out; 1760 current_node = NUMA_NO_NODE; 1761 } 1762 out_flush: 1763 /* Make sure we do not overwrite the existing error */ 1764 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1765 status, start, i, nr_pages); 1766 if (err >= 0) 1767 err = err1; 1768 out: 1769 lru_cache_enable(); 1770 return err; 1771 } 1772 1773 /* 1774 * Determine the nodes of an array of pages and store it in an array of status. 1775 */ 1776 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1777 const void __user **pages, int *status) 1778 { 1779 unsigned long i; 1780 1781 mmap_read_lock(mm); 1782 1783 for (i = 0; i < nr_pages; i++) { 1784 unsigned long addr = (unsigned long)(*pages); 1785 struct vm_area_struct *vma; 1786 struct page *page; 1787 int err = -EFAULT; 1788 1789 vma = vma_lookup(mm, addr); 1790 if (!vma) 1791 goto set_status; 1792 1793 /* FOLL_DUMP to ignore special (like zero) pages */ 1794 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1795 1796 err = PTR_ERR(page); 1797 if (IS_ERR(page)) 1798 goto set_status; 1799 1800 if (page) { 1801 err = page_to_nid(page); 1802 put_page(page); 1803 } else { 1804 err = -ENOENT; 1805 } 1806 set_status: 1807 *status = err; 1808 1809 pages++; 1810 status++; 1811 } 1812 1813 mmap_read_unlock(mm); 1814 } 1815 1816 static int get_compat_pages_array(const void __user *chunk_pages[], 1817 const void __user * __user *pages, 1818 unsigned long chunk_nr) 1819 { 1820 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1821 compat_uptr_t p; 1822 int i; 1823 1824 for (i = 0; i < chunk_nr; i++) { 1825 if (get_user(p, pages32 + i)) 1826 return -EFAULT; 1827 chunk_pages[i] = compat_ptr(p); 1828 } 1829 1830 return 0; 1831 } 1832 1833 /* 1834 * Determine the nodes of a user array of pages and store it in 1835 * a user array of status. 1836 */ 1837 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1838 const void __user * __user *pages, 1839 int __user *status) 1840 { 1841 #define DO_PAGES_STAT_CHUNK_NR 16UL 1842 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1843 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1844 1845 while (nr_pages) { 1846 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 1847 1848 if (in_compat_syscall()) { 1849 if (get_compat_pages_array(chunk_pages, pages, 1850 chunk_nr)) 1851 break; 1852 } else { 1853 if (copy_from_user(chunk_pages, pages, 1854 chunk_nr * sizeof(*chunk_pages))) 1855 break; 1856 } 1857 1858 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1859 1860 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1861 break; 1862 1863 pages += chunk_nr; 1864 status += chunk_nr; 1865 nr_pages -= chunk_nr; 1866 } 1867 return nr_pages ? -EFAULT : 0; 1868 } 1869 1870 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1871 { 1872 struct task_struct *task; 1873 struct mm_struct *mm; 1874 1875 /* 1876 * There is no need to check if current process has the right to modify 1877 * the specified process when they are same. 1878 */ 1879 if (!pid) { 1880 mmget(current->mm); 1881 *mem_nodes = cpuset_mems_allowed(current); 1882 return current->mm; 1883 } 1884 1885 /* Find the mm_struct */ 1886 rcu_read_lock(); 1887 task = find_task_by_vpid(pid); 1888 if (!task) { 1889 rcu_read_unlock(); 1890 return ERR_PTR(-ESRCH); 1891 } 1892 get_task_struct(task); 1893 1894 /* 1895 * Check if this process has the right to modify the specified 1896 * process. Use the regular "ptrace_may_access()" checks. 1897 */ 1898 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1899 rcu_read_unlock(); 1900 mm = ERR_PTR(-EPERM); 1901 goto out; 1902 } 1903 rcu_read_unlock(); 1904 1905 mm = ERR_PTR(security_task_movememory(task)); 1906 if (IS_ERR(mm)) 1907 goto out; 1908 *mem_nodes = cpuset_mems_allowed(task); 1909 mm = get_task_mm(task); 1910 out: 1911 put_task_struct(task); 1912 if (!mm) 1913 mm = ERR_PTR(-EINVAL); 1914 return mm; 1915 } 1916 1917 /* 1918 * Move a list of pages in the address space of the currently executing 1919 * process. 1920 */ 1921 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1922 const void __user * __user *pages, 1923 const int __user *nodes, 1924 int __user *status, int flags) 1925 { 1926 struct mm_struct *mm; 1927 int err; 1928 nodemask_t task_nodes; 1929 1930 /* Check flags */ 1931 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1932 return -EINVAL; 1933 1934 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1935 return -EPERM; 1936 1937 mm = find_mm_struct(pid, &task_nodes); 1938 if (IS_ERR(mm)) 1939 return PTR_ERR(mm); 1940 1941 if (nodes) 1942 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1943 nodes, status, flags); 1944 else 1945 err = do_pages_stat(mm, nr_pages, pages, status); 1946 1947 mmput(mm); 1948 return err; 1949 } 1950 1951 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1952 const void __user * __user *, pages, 1953 const int __user *, nodes, 1954 int __user *, status, int, flags) 1955 { 1956 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1957 } 1958 1959 #ifdef CONFIG_NUMA_BALANCING 1960 /* 1961 * Returns true if this is a safe migration target node for misplaced NUMA 1962 * pages. Currently it only checks the watermarks which is crude. 1963 */ 1964 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1965 unsigned long nr_migrate_pages) 1966 { 1967 int z; 1968 1969 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1970 struct zone *zone = pgdat->node_zones + z; 1971 1972 if (!managed_zone(zone)) 1973 continue; 1974 1975 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1976 if (!zone_watermark_ok(zone, 0, 1977 high_wmark_pages(zone) + 1978 nr_migrate_pages, 1979 ZONE_MOVABLE, 0)) 1980 continue; 1981 return true; 1982 } 1983 return false; 1984 } 1985 1986 static struct page *alloc_misplaced_dst_page(struct page *page, 1987 unsigned long data) 1988 { 1989 int nid = (int) data; 1990 int order = compound_order(page); 1991 gfp_t gfp = __GFP_THISNODE; 1992 struct folio *new; 1993 1994 if (order > 0) 1995 gfp |= GFP_TRANSHUGE_LIGHT; 1996 else { 1997 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 1998 __GFP_NOWARN; 1999 gfp &= ~__GFP_RECLAIM; 2000 } 2001 new = __folio_alloc_node(gfp, order, nid); 2002 2003 return &new->page; 2004 } 2005 2006 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2007 { 2008 int nr_pages = thp_nr_pages(page); 2009 int order = compound_order(page); 2010 2011 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2012 2013 /* Do not migrate THP mapped by multiple processes */ 2014 if (PageTransHuge(page) && total_mapcount(page) > 1) 2015 return 0; 2016 2017 /* Avoid migrating to a node that is nearly full */ 2018 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2019 int z; 2020 2021 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2022 return 0; 2023 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2024 if (managed_zone(pgdat->node_zones + z)) 2025 break; 2026 } 2027 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2028 return 0; 2029 } 2030 2031 if (isolate_lru_page(page)) 2032 return 0; 2033 2034 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2035 nr_pages); 2036 2037 /* 2038 * Isolating the page has taken another reference, so the 2039 * caller's reference can be safely dropped without the page 2040 * disappearing underneath us during migration. 2041 */ 2042 put_page(page); 2043 return 1; 2044 } 2045 2046 /* 2047 * Attempt to migrate a misplaced page to the specified destination 2048 * node. Caller is expected to have an elevated reference count on 2049 * the page that will be dropped by this function before returning. 2050 */ 2051 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2052 int node) 2053 { 2054 pg_data_t *pgdat = NODE_DATA(node); 2055 int isolated; 2056 int nr_remaining; 2057 unsigned int nr_succeeded; 2058 LIST_HEAD(migratepages); 2059 int nr_pages = thp_nr_pages(page); 2060 2061 /* 2062 * Don't migrate file pages that are mapped in multiple processes 2063 * with execute permissions as they are probably shared libraries. 2064 */ 2065 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2066 (vma->vm_flags & VM_EXEC)) 2067 goto out; 2068 2069 /* 2070 * Also do not migrate dirty pages as not all filesystems can move 2071 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2072 */ 2073 if (page_is_file_lru(page) && PageDirty(page)) 2074 goto out; 2075 2076 isolated = numamigrate_isolate_page(pgdat, page); 2077 if (!isolated) 2078 goto out; 2079 2080 list_add(&page->lru, &migratepages); 2081 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2082 NULL, node, MIGRATE_ASYNC, 2083 MR_NUMA_MISPLACED, &nr_succeeded); 2084 if (nr_remaining) { 2085 if (!list_empty(&migratepages)) { 2086 list_del(&page->lru); 2087 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2088 page_is_file_lru(page), -nr_pages); 2089 putback_lru_page(page); 2090 } 2091 isolated = 0; 2092 } 2093 if (nr_succeeded) { 2094 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2095 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2096 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2097 nr_succeeded); 2098 } 2099 BUG_ON(!list_empty(&migratepages)); 2100 return isolated; 2101 2102 out: 2103 put_page(page); 2104 return 0; 2105 } 2106 #endif /* CONFIG_NUMA_BALANCING */ 2107 2108 /* 2109 * node_demotion[] example: 2110 * 2111 * Consider a system with two sockets. Each socket has 2112 * three classes of memory attached: fast, medium and slow. 2113 * Each memory class is placed in its own NUMA node. The 2114 * CPUs are placed in the node with the "fast" memory. The 2115 * 6 NUMA nodes (0-5) might be split among the sockets like 2116 * this: 2117 * 2118 * Socket A: 0, 1, 2 2119 * Socket B: 3, 4, 5 2120 * 2121 * When Node 0 fills up, its memory should be migrated to 2122 * Node 1. When Node 1 fills up, it should be migrated to 2123 * Node 2. The migration path start on the nodes with the 2124 * processors (since allocations default to this node) and 2125 * fast memory, progress through medium and end with the 2126 * slow memory: 2127 * 2128 * 0 -> 1 -> 2 -> stop 2129 * 3 -> 4 -> 5 -> stop 2130 * 2131 * This is represented in the node_demotion[] like this: 2132 * 2133 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1 2134 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2 2135 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate 2136 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4 2137 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5 2138 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate 2139 * 2140 * Moreover some systems may have multiple slow memory nodes. 2141 * Suppose a system has one socket with 3 memory nodes, node 0 2142 * is fast memory type, and node 1/2 both are slow memory 2143 * type, and the distance between fast memory node and slow 2144 * memory node is same. So the migration path should be: 2145 * 2146 * 0 -> 1/2 -> stop 2147 * 2148 * This is represented in the node_demotion[] like this: 2149 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 2150 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate 2151 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate 2152 */ 2153 2154 /* 2155 * Writes to this array occur without locking. Cycles are 2156 * not allowed: Node X demotes to Y which demotes to X... 2157 * 2158 * If multiple reads are performed, a single rcu_read_lock() 2159 * must be held over all reads to ensure that no cycles are 2160 * observed. 2161 */ 2162 #define DEFAULT_DEMOTION_TARGET_NODES 15 2163 2164 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES 2165 #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1) 2166 #else 2167 #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES 2168 #endif 2169 2170 struct demotion_nodes { 2171 unsigned short nr; 2172 short nodes[DEMOTION_TARGET_NODES]; 2173 }; 2174 2175 static struct demotion_nodes *node_demotion __read_mostly; 2176 2177 /** 2178 * next_demotion_node() - Get the next node in the demotion path 2179 * @node: The starting node to lookup the next node 2180 * 2181 * Return: node id for next memory node in the demotion path hierarchy 2182 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 2183 * @node online or guarantee that it *continues* to be the next demotion 2184 * target. 2185 */ 2186 int next_demotion_node(int node) 2187 { 2188 struct demotion_nodes *nd; 2189 unsigned short target_nr, index; 2190 int target; 2191 2192 if (!node_demotion) 2193 return NUMA_NO_NODE; 2194 2195 nd = &node_demotion[node]; 2196 2197 /* 2198 * node_demotion[] is updated without excluding this 2199 * function from running. RCU doesn't provide any 2200 * compiler barriers, so the READ_ONCE() is required 2201 * to avoid compiler reordering or read merging. 2202 * 2203 * Make sure to use RCU over entire code blocks if 2204 * node_demotion[] reads need to be consistent. 2205 */ 2206 rcu_read_lock(); 2207 target_nr = READ_ONCE(nd->nr); 2208 2209 switch (target_nr) { 2210 case 0: 2211 target = NUMA_NO_NODE; 2212 goto out; 2213 case 1: 2214 index = 0; 2215 break; 2216 default: 2217 /* 2218 * If there are multiple target nodes, just select one 2219 * target node randomly. 2220 * 2221 * In addition, we can also use round-robin to select 2222 * target node, but we should introduce another variable 2223 * for node_demotion[] to record last selected target node, 2224 * that may cause cache ping-pong due to the changing of 2225 * last target node. Or introducing per-cpu data to avoid 2226 * caching issue, which seems more complicated. So selecting 2227 * target node randomly seems better until now. 2228 */ 2229 index = get_random_int() % target_nr; 2230 break; 2231 } 2232 2233 target = READ_ONCE(nd->nodes[index]); 2234 2235 out: 2236 rcu_read_unlock(); 2237 return target; 2238 } 2239 2240 /* Disable reclaim-based migration. */ 2241 static void __disable_all_migrate_targets(void) 2242 { 2243 int node, i; 2244 2245 if (!node_demotion) 2246 return; 2247 2248 for_each_online_node(node) { 2249 node_demotion[node].nr = 0; 2250 for (i = 0; i < DEMOTION_TARGET_NODES; i++) 2251 node_demotion[node].nodes[i] = NUMA_NO_NODE; 2252 } 2253 } 2254 2255 static void disable_all_migrate_targets(void) 2256 { 2257 __disable_all_migrate_targets(); 2258 2259 /* 2260 * Ensure that the "disable" is visible across the system. 2261 * Readers will see either a combination of before+disable 2262 * state or disable+after. They will never see before and 2263 * after state together. 2264 * 2265 * The before+after state together might have cycles and 2266 * could cause readers to do things like loop until this 2267 * function finishes. This ensures they can only see a 2268 * single "bad" read and would, for instance, only loop 2269 * once. 2270 */ 2271 synchronize_rcu(); 2272 } 2273 2274 /* 2275 * Find an automatic demotion target for 'node'. 2276 * Failing here is OK. It might just indicate 2277 * being at the end of a chain. 2278 */ 2279 static int establish_migrate_target(int node, nodemask_t *used, 2280 int best_distance) 2281 { 2282 int migration_target, index, val; 2283 struct demotion_nodes *nd; 2284 2285 if (!node_demotion) 2286 return NUMA_NO_NODE; 2287 2288 nd = &node_demotion[node]; 2289 2290 migration_target = find_next_best_node(node, used); 2291 if (migration_target == NUMA_NO_NODE) 2292 return NUMA_NO_NODE; 2293 2294 /* 2295 * If the node has been set a migration target node before, 2296 * which means it's the best distance between them. Still 2297 * check if this node can be demoted to other target nodes 2298 * if they have a same best distance. 2299 */ 2300 if (best_distance != -1) { 2301 val = node_distance(node, migration_target); 2302 if (val > best_distance) 2303 goto out_clear; 2304 } 2305 2306 index = nd->nr; 2307 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, 2308 "Exceeds maximum demotion target nodes\n")) 2309 goto out_clear; 2310 2311 nd->nodes[index] = migration_target; 2312 nd->nr++; 2313 2314 return migration_target; 2315 out_clear: 2316 node_clear(migration_target, *used); 2317 return NUMA_NO_NODE; 2318 } 2319 2320 /* 2321 * When memory fills up on a node, memory contents can be 2322 * automatically migrated to another node instead of 2323 * discarded at reclaim. 2324 * 2325 * Establish a "migration path" which will start at nodes 2326 * with CPUs and will follow the priorities used to build the 2327 * page allocator zonelists. 2328 * 2329 * The difference here is that cycles must be avoided. If 2330 * node0 migrates to node1, then neither node1, nor anything 2331 * node1 migrates to can migrate to node0. Also one node can 2332 * be migrated to multiple nodes if the target nodes all have 2333 * a same best-distance against the source node. 2334 * 2335 * This function can run simultaneously with readers of 2336 * node_demotion[]. However, it can not run simultaneously 2337 * with itself. Exclusion is provided by memory hotplug events 2338 * being single-threaded. 2339 */ 2340 static void __set_migration_target_nodes(void) 2341 { 2342 nodemask_t next_pass; 2343 nodemask_t this_pass; 2344 nodemask_t used_targets = NODE_MASK_NONE; 2345 int node, best_distance; 2346 2347 /* 2348 * Avoid any oddities like cycles that could occur 2349 * from changes in the topology. This will leave 2350 * a momentary gap when migration is disabled. 2351 */ 2352 disable_all_migrate_targets(); 2353 2354 /* 2355 * Allocations go close to CPUs, first. Assume that 2356 * the migration path starts at the nodes with CPUs. 2357 */ 2358 next_pass = node_states[N_CPU]; 2359 again: 2360 this_pass = next_pass; 2361 next_pass = NODE_MASK_NONE; 2362 /* 2363 * To avoid cycles in the migration "graph", ensure 2364 * that migration sources are not future targets by 2365 * setting them in 'used_targets'. Do this only 2366 * once per pass so that multiple source nodes can 2367 * share a target node. 2368 * 2369 * 'used_targets' will become unavailable in future 2370 * passes. This limits some opportunities for 2371 * multiple source nodes to share a destination. 2372 */ 2373 nodes_or(used_targets, used_targets, this_pass); 2374 2375 for_each_node_mask(node, this_pass) { 2376 best_distance = -1; 2377 2378 /* 2379 * Try to set up the migration path for the node, and the target 2380 * migration nodes can be multiple, so doing a loop to find all 2381 * the target nodes if they all have a best node distance. 2382 */ 2383 do { 2384 int target_node = 2385 establish_migrate_target(node, &used_targets, 2386 best_distance); 2387 2388 if (target_node == NUMA_NO_NODE) 2389 break; 2390 2391 if (best_distance == -1) 2392 best_distance = node_distance(node, target_node); 2393 2394 /* 2395 * Visit targets from this pass in the next pass. 2396 * Eventually, every node will have been part of 2397 * a pass, and will become set in 'used_targets'. 2398 */ 2399 node_set(target_node, next_pass); 2400 } while (1); 2401 } 2402 /* 2403 * 'next_pass' contains nodes which became migration 2404 * targets in this pass. Make additional passes until 2405 * no more migrations targets are available. 2406 */ 2407 if (!nodes_empty(next_pass)) 2408 goto again; 2409 } 2410 2411 /* 2412 * For callers that do not hold get_online_mems() already. 2413 */ 2414 void set_migration_target_nodes(void) 2415 { 2416 get_online_mems(); 2417 __set_migration_target_nodes(); 2418 put_online_mems(); 2419 } 2420 2421 /* 2422 * This leaves migrate-on-reclaim transiently disabled between 2423 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 2424 * whether reclaim-based migration is enabled or not, which 2425 * ensures that the user can turn reclaim-based migration at 2426 * any time without needing to recalculate migration targets. 2427 * 2428 * These callbacks already hold get_online_mems(). That is why 2429 * __set_migration_target_nodes() can be used as opposed to 2430 * set_migration_target_nodes(). 2431 */ 2432 #ifdef CONFIG_MEMORY_HOTPLUG 2433 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 2434 unsigned long action, void *_arg) 2435 { 2436 struct memory_notify *arg = _arg; 2437 2438 /* 2439 * Only update the node migration order when a node is 2440 * changing status, like online->offline. This avoids 2441 * the overhead of synchronize_rcu() in most cases. 2442 */ 2443 if (arg->status_change_nid < 0) 2444 return notifier_from_errno(0); 2445 2446 switch (action) { 2447 case MEM_GOING_OFFLINE: 2448 /* 2449 * Make sure there are not transient states where 2450 * an offline node is a migration target. This 2451 * will leave migration disabled until the offline 2452 * completes and the MEM_OFFLINE case below runs. 2453 */ 2454 disable_all_migrate_targets(); 2455 break; 2456 case MEM_OFFLINE: 2457 case MEM_ONLINE: 2458 /* 2459 * Recalculate the target nodes once the node 2460 * reaches its final state (online or offline). 2461 */ 2462 __set_migration_target_nodes(); 2463 break; 2464 case MEM_CANCEL_OFFLINE: 2465 /* 2466 * MEM_GOING_OFFLINE disabled all the migration 2467 * targets. Reenable them. 2468 */ 2469 __set_migration_target_nodes(); 2470 break; 2471 case MEM_GOING_ONLINE: 2472 case MEM_CANCEL_ONLINE: 2473 break; 2474 } 2475 2476 return notifier_from_errno(0); 2477 } 2478 #endif 2479 2480 void __init migrate_on_reclaim_init(void) 2481 { 2482 node_demotion = kcalloc(nr_node_ids, 2483 sizeof(struct demotion_nodes), 2484 GFP_KERNEL); 2485 WARN_ON(!node_demotion); 2486 #ifdef CONFIG_MEMORY_HOTPLUG 2487 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 2488 #endif 2489 /* 2490 * At this point, all numa nodes with memory/CPus have their state 2491 * properly set, so we can build the demotion order now. 2492 * Let us hold the cpu_hotplug lock just, as we could possibily have 2493 * CPU hotplug events during boot. 2494 */ 2495 cpus_read_lock(); 2496 set_migration_target_nodes(); 2497 cpus_read_unlock(); 2498 } 2499 2500 bool numa_demotion_enabled = false; 2501 2502 #ifdef CONFIG_SYSFS 2503 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 2504 struct kobj_attribute *attr, char *buf) 2505 { 2506 return sysfs_emit(buf, "%s\n", 2507 numa_demotion_enabled ? "true" : "false"); 2508 } 2509 2510 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 2511 struct kobj_attribute *attr, 2512 const char *buf, size_t count) 2513 { 2514 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 2515 numa_demotion_enabled = true; 2516 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 2517 numa_demotion_enabled = false; 2518 else 2519 return -EINVAL; 2520 2521 return count; 2522 } 2523 2524 static struct kobj_attribute numa_demotion_enabled_attr = 2525 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 2526 numa_demotion_enabled_store); 2527 2528 static struct attribute *numa_attrs[] = { 2529 &numa_demotion_enabled_attr.attr, 2530 NULL, 2531 }; 2532 2533 static const struct attribute_group numa_attr_group = { 2534 .attrs = numa_attrs, 2535 }; 2536 2537 static int __init numa_init_sysfs(void) 2538 { 2539 int err; 2540 struct kobject *numa_kobj; 2541 2542 numa_kobj = kobject_create_and_add("numa", mm_kobj); 2543 if (!numa_kobj) { 2544 pr_err("failed to create numa kobject\n"); 2545 return -ENOMEM; 2546 } 2547 err = sysfs_create_group(numa_kobj, &numa_attr_group); 2548 if (err) { 2549 pr_err("failed to register numa group\n"); 2550 goto delete_obj; 2551 } 2552 return 0; 2553 2554 delete_obj: 2555 kobject_put(numa_kobj); 2556 return err; 2557 } 2558 subsys_initcall(numa_init_sysfs); 2559 #endif /* CONFIG_SYSFS */ 2560 #endif /* CONFIG_NUMA */ 2561