xref: /openbmc/linux/mm/migrate.c (revision 3fe87967)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 
44 #include <asm/tlbflush.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
48 
49 #include "internal.h"
50 
51 /*
52  * migrate_prep() needs to be called before we start compiling a list of pages
53  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54  * undesirable, use migrate_prep_local()
55  */
56 int migrate_prep(void)
57 {
58 	/*
59 	 * Clear the LRU lists so pages can be isolated.
60 	 * Note that pages may be moved off the LRU after we have
61 	 * drained them. Those pages will fail to migrate like other
62 	 * pages that may be busy.
63 	 */
64 	lru_add_drain_all();
65 
66 	return 0;
67 }
68 
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
71 {
72 	lru_add_drain();
73 
74 	return 0;
75 }
76 
77 int isolate_movable_page(struct page *page, isolate_mode_t mode)
78 {
79 	struct address_space *mapping;
80 
81 	/*
82 	 * Avoid burning cycles with pages that are yet under __free_pages(),
83 	 * or just got freed under us.
84 	 *
85 	 * In case we 'win' a race for a movable page being freed under us and
86 	 * raise its refcount preventing __free_pages() from doing its job
87 	 * the put_page() at the end of this block will take care of
88 	 * release this page, thus avoiding a nasty leakage.
89 	 */
90 	if (unlikely(!get_page_unless_zero(page)))
91 		goto out;
92 
93 	/*
94 	 * Check PageMovable before holding a PG_lock because page's owner
95 	 * assumes anybody doesn't touch PG_lock of newly allocated page
96 	 * so unconditionally grapping the lock ruins page's owner side.
97 	 */
98 	if (unlikely(!__PageMovable(page)))
99 		goto out_putpage;
100 	/*
101 	 * As movable pages are not isolated from LRU lists, concurrent
102 	 * compaction threads can race against page migration functions
103 	 * as well as race against the releasing a page.
104 	 *
105 	 * In order to avoid having an already isolated movable page
106 	 * being (wrongly) re-isolated while it is under migration,
107 	 * or to avoid attempting to isolate pages being released,
108 	 * lets be sure we have the page lock
109 	 * before proceeding with the movable page isolation steps.
110 	 */
111 	if (unlikely(!trylock_page(page)))
112 		goto out_putpage;
113 
114 	if (!PageMovable(page) || PageIsolated(page))
115 		goto out_no_isolated;
116 
117 	mapping = page_mapping(page);
118 	VM_BUG_ON_PAGE(!mapping, page);
119 
120 	if (!mapping->a_ops->isolate_page(page, mode))
121 		goto out_no_isolated;
122 
123 	/* Driver shouldn't use PG_isolated bit of page->flags */
124 	WARN_ON_ONCE(PageIsolated(page));
125 	__SetPageIsolated(page);
126 	unlock_page(page);
127 
128 	return 0;
129 
130 out_no_isolated:
131 	unlock_page(page);
132 out_putpage:
133 	put_page(page);
134 out:
135 	return -EBUSY;
136 }
137 
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
140 {
141 	struct address_space *mapping;
142 
143 	VM_BUG_ON_PAGE(!PageLocked(page), page);
144 	VM_BUG_ON_PAGE(!PageMovable(page), page);
145 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
146 
147 	mapping = page_mapping(page);
148 	mapping->a_ops->putback_page(page);
149 	__ClearPageIsolated(page);
150 }
151 
152 /*
153  * Put previously isolated pages back onto the appropriate lists
154  * from where they were once taken off for compaction/migration.
155  *
156  * This function shall be used whenever the isolated pageset has been
157  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158  * and isolate_huge_page().
159  */
160 void putback_movable_pages(struct list_head *l)
161 {
162 	struct page *page;
163 	struct page *page2;
164 
165 	list_for_each_entry_safe(page, page2, l, lru) {
166 		if (unlikely(PageHuge(page))) {
167 			putback_active_hugepage(page);
168 			continue;
169 		}
170 		list_del(&page->lru);
171 		/*
172 		 * We isolated non-lru movable page so here we can use
173 		 * __PageMovable because LRU page's mapping cannot have
174 		 * PAGE_MAPPING_MOVABLE.
175 		 */
176 		if (unlikely(__PageMovable(page))) {
177 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
178 			lock_page(page);
179 			if (PageMovable(page))
180 				putback_movable_page(page);
181 			else
182 				__ClearPageIsolated(page);
183 			unlock_page(page);
184 			put_page(page);
185 		} else {
186 			putback_lru_page(page);
187 			dec_node_page_state(page, NR_ISOLATED_ANON +
188 					page_is_file_cache(page));
189 		}
190 	}
191 }
192 
193 /*
194  * Restore a potential migration pte to a working pte entry
195  */
196 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma,
197 				 unsigned long addr, void *old)
198 {
199 	struct page_vma_mapped_walk pvmw = {
200 		.page = old,
201 		.vma = vma,
202 		.address = addr,
203 		.flags = PVMW_SYNC | PVMW_MIGRATION,
204 	};
205 	struct page *new;
206 	pte_t pte;
207 	swp_entry_t entry;
208 
209 	VM_BUG_ON_PAGE(PageTail(page), page);
210 	while (page_vma_mapped_walk(&pvmw)) {
211 		new = page - pvmw.page->index +
212 			linear_page_index(vma, pvmw.address);
213 
214 		get_page(new);
215 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
216 		if (pte_swp_soft_dirty(*pvmw.pte))
217 			pte = pte_mksoft_dirty(pte);
218 
219 		/*
220 		 * Recheck VMA as permissions can change since migration started
221 		 */
222 		entry = pte_to_swp_entry(*pvmw.pte);
223 		if (is_write_migration_entry(entry))
224 			pte = maybe_mkwrite(pte, vma);
225 
226 #ifdef CONFIG_HUGETLB_PAGE
227 		if (PageHuge(new)) {
228 			pte = pte_mkhuge(pte);
229 			pte = arch_make_huge_pte(pte, vma, new, 0);
230 		}
231 #endif
232 		flush_dcache_page(new);
233 		set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
234 
235 		if (PageHuge(new)) {
236 			if (PageAnon(new))
237 				hugepage_add_anon_rmap(new, vma, pvmw.address);
238 			else
239 				page_dup_rmap(new, true);
240 		} else if (PageAnon(new))
241 			page_add_anon_rmap(new, vma, pvmw.address, false);
242 		else
243 			page_add_file_rmap(new, false);
244 
245 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
246 			mlock_vma_page(new);
247 
248 		/* No need to invalidate - it was non-present before */
249 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
250 	}
251 
252 	return SWAP_AGAIN;
253 }
254 
255 /*
256  * Get rid of all migration entries and replace them by
257  * references to the indicated page.
258  */
259 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
260 {
261 	struct rmap_walk_control rwc = {
262 		.rmap_one = remove_migration_pte,
263 		.arg = old,
264 	};
265 
266 	if (locked)
267 		rmap_walk_locked(new, &rwc);
268 	else
269 		rmap_walk(new, &rwc);
270 }
271 
272 /*
273  * Something used the pte of a page under migration. We need to
274  * get to the page and wait until migration is finished.
275  * When we return from this function the fault will be retried.
276  */
277 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
278 				spinlock_t *ptl)
279 {
280 	pte_t pte;
281 	swp_entry_t entry;
282 	struct page *page;
283 
284 	spin_lock(ptl);
285 	pte = *ptep;
286 	if (!is_swap_pte(pte))
287 		goto out;
288 
289 	entry = pte_to_swp_entry(pte);
290 	if (!is_migration_entry(entry))
291 		goto out;
292 
293 	page = migration_entry_to_page(entry);
294 
295 	/*
296 	 * Once radix-tree replacement of page migration started, page_count
297 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
298 	 * against a page without get_page().
299 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
300 	 * will occur again.
301 	 */
302 	if (!get_page_unless_zero(page))
303 		goto out;
304 	pte_unmap_unlock(ptep, ptl);
305 	wait_on_page_locked(page);
306 	put_page(page);
307 	return;
308 out:
309 	pte_unmap_unlock(ptep, ptl);
310 }
311 
312 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
313 				unsigned long address)
314 {
315 	spinlock_t *ptl = pte_lockptr(mm, pmd);
316 	pte_t *ptep = pte_offset_map(pmd, address);
317 	__migration_entry_wait(mm, ptep, ptl);
318 }
319 
320 void migration_entry_wait_huge(struct vm_area_struct *vma,
321 		struct mm_struct *mm, pte_t *pte)
322 {
323 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
324 	__migration_entry_wait(mm, pte, ptl);
325 }
326 
327 #ifdef CONFIG_BLOCK
328 /* Returns true if all buffers are successfully locked */
329 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
330 							enum migrate_mode mode)
331 {
332 	struct buffer_head *bh = head;
333 
334 	/* Simple case, sync compaction */
335 	if (mode != MIGRATE_ASYNC) {
336 		do {
337 			get_bh(bh);
338 			lock_buffer(bh);
339 			bh = bh->b_this_page;
340 
341 		} while (bh != head);
342 
343 		return true;
344 	}
345 
346 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
347 	do {
348 		get_bh(bh);
349 		if (!trylock_buffer(bh)) {
350 			/*
351 			 * We failed to lock the buffer and cannot stall in
352 			 * async migration. Release the taken locks
353 			 */
354 			struct buffer_head *failed_bh = bh;
355 			put_bh(failed_bh);
356 			bh = head;
357 			while (bh != failed_bh) {
358 				unlock_buffer(bh);
359 				put_bh(bh);
360 				bh = bh->b_this_page;
361 			}
362 			return false;
363 		}
364 
365 		bh = bh->b_this_page;
366 	} while (bh != head);
367 	return true;
368 }
369 #else
370 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
371 							enum migrate_mode mode)
372 {
373 	return true;
374 }
375 #endif /* CONFIG_BLOCK */
376 
377 /*
378  * Replace the page in the mapping.
379  *
380  * The number of remaining references must be:
381  * 1 for anonymous pages without a mapping
382  * 2 for pages with a mapping
383  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
384  */
385 int migrate_page_move_mapping(struct address_space *mapping,
386 		struct page *newpage, struct page *page,
387 		struct buffer_head *head, enum migrate_mode mode,
388 		int extra_count)
389 {
390 	struct zone *oldzone, *newzone;
391 	int dirty;
392 	int expected_count = 1 + extra_count;
393 	void **pslot;
394 
395 	if (!mapping) {
396 		/* Anonymous page without mapping */
397 		if (page_count(page) != expected_count)
398 			return -EAGAIN;
399 
400 		/* No turning back from here */
401 		newpage->index = page->index;
402 		newpage->mapping = page->mapping;
403 		if (PageSwapBacked(page))
404 			__SetPageSwapBacked(newpage);
405 
406 		return MIGRATEPAGE_SUCCESS;
407 	}
408 
409 	oldzone = page_zone(page);
410 	newzone = page_zone(newpage);
411 
412 	spin_lock_irq(&mapping->tree_lock);
413 
414 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
415  					page_index(page));
416 
417 	expected_count += 1 + page_has_private(page);
418 	if (page_count(page) != expected_count ||
419 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
420 		spin_unlock_irq(&mapping->tree_lock);
421 		return -EAGAIN;
422 	}
423 
424 	if (!page_ref_freeze(page, expected_count)) {
425 		spin_unlock_irq(&mapping->tree_lock);
426 		return -EAGAIN;
427 	}
428 
429 	/*
430 	 * In the async migration case of moving a page with buffers, lock the
431 	 * buffers using trylock before the mapping is moved. If the mapping
432 	 * was moved, we later failed to lock the buffers and could not move
433 	 * the mapping back due to an elevated page count, we would have to
434 	 * block waiting on other references to be dropped.
435 	 */
436 	if (mode == MIGRATE_ASYNC && head &&
437 			!buffer_migrate_lock_buffers(head, mode)) {
438 		page_ref_unfreeze(page, expected_count);
439 		spin_unlock_irq(&mapping->tree_lock);
440 		return -EAGAIN;
441 	}
442 
443 	/*
444 	 * Now we know that no one else is looking at the page:
445 	 * no turning back from here.
446 	 */
447 	newpage->index = page->index;
448 	newpage->mapping = page->mapping;
449 	get_page(newpage);	/* add cache reference */
450 	if (PageSwapBacked(page)) {
451 		__SetPageSwapBacked(newpage);
452 		if (PageSwapCache(page)) {
453 			SetPageSwapCache(newpage);
454 			set_page_private(newpage, page_private(page));
455 		}
456 	} else {
457 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
458 	}
459 
460 	/* Move dirty while page refs frozen and newpage not yet exposed */
461 	dirty = PageDirty(page);
462 	if (dirty) {
463 		ClearPageDirty(page);
464 		SetPageDirty(newpage);
465 	}
466 
467 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
468 
469 	/*
470 	 * Drop cache reference from old page by unfreezing
471 	 * to one less reference.
472 	 * We know this isn't the last reference.
473 	 */
474 	page_ref_unfreeze(page, expected_count - 1);
475 
476 	spin_unlock(&mapping->tree_lock);
477 	/* Leave irq disabled to prevent preemption while updating stats */
478 
479 	/*
480 	 * If moved to a different zone then also account
481 	 * the page for that zone. Other VM counters will be
482 	 * taken care of when we establish references to the
483 	 * new page and drop references to the old page.
484 	 *
485 	 * Note that anonymous pages are accounted for
486 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 	 * are mapped to swap space.
488 	 */
489 	if (newzone != oldzone) {
490 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
491 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
492 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
493 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
494 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
495 		}
496 		if (dirty && mapping_cap_account_dirty(mapping)) {
497 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
498 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
499 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
500 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
501 		}
502 	}
503 	local_irq_enable();
504 
505 	return MIGRATEPAGE_SUCCESS;
506 }
507 EXPORT_SYMBOL(migrate_page_move_mapping);
508 
509 /*
510  * The expected number of remaining references is the same as that
511  * of migrate_page_move_mapping().
512  */
513 int migrate_huge_page_move_mapping(struct address_space *mapping,
514 				   struct page *newpage, struct page *page)
515 {
516 	int expected_count;
517 	void **pslot;
518 
519 	spin_lock_irq(&mapping->tree_lock);
520 
521 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
522 					page_index(page));
523 
524 	expected_count = 2 + page_has_private(page);
525 	if (page_count(page) != expected_count ||
526 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
527 		spin_unlock_irq(&mapping->tree_lock);
528 		return -EAGAIN;
529 	}
530 
531 	if (!page_ref_freeze(page, expected_count)) {
532 		spin_unlock_irq(&mapping->tree_lock);
533 		return -EAGAIN;
534 	}
535 
536 	newpage->index = page->index;
537 	newpage->mapping = page->mapping;
538 
539 	get_page(newpage);
540 
541 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
542 
543 	page_ref_unfreeze(page, expected_count - 1);
544 
545 	spin_unlock_irq(&mapping->tree_lock);
546 
547 	return MIGRATEPAGE_SUCCESS;
548 }
549 
550 /*
551  * Gigantic pages are so large that we do not guarantee that page++ pointer
552  * arithmetic will work across the entire page.  We need something more
553  * specialized.
554  */
555 static void __copy_gigantic_page(struct page *dst, struct page *src,
556 				int nr_pages)
557 {
558 	int i;
559 	struct page *dst_base = dst;
560 	struct page *src_base = src;
561 
562 	for (i = 0; i < nr_pages; ) {
563 		cond_resched();
564 		copy_highpage(dst, src);
565 
566 		i++;
567 		dst = mem_map_next(dst, dst_base, i);
568 		src = mem_map_next(src, src_base, i);
569 	}
570 }
571 
572 static void copy_huge_page(struct page *dst, struct page *src)
573 {
574 	int i;
575 	int nr_pages;
576 
577 	if (PageHuge(src)) {
578 		/* hugetlbfs page */
579 		struct hstate *h = page_hstate(src);
580 		nr_pages = pages_per_huge_page(h);
581 
582 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
583 			__copy_gigantic_page(dst, src, nr_pages);
584 			return;
585 		}
586 	} else {
587 		/* thp page */
588 		BUG_ON(!PageTransHuge(src));
589 		nr_pages = hpage_nr_pages(src);
590 	}
591 
592 	for (i = 0; i < nr_pages; i++) {
593 		cond_resched();
594 		copy_highpage(dst + i, src + i);
595 	}
596 }
597 
598 /*
599  * Copy the page to its new location
600  */
601 void migrate_page_copy(struct page *newpage, struct page *page)
602 {
603 	int cpupid;
604 
605 	if (PageHuge(page) || PageTransHuge(page))
606 		copy_huge_page(newpage, page);
607 	else
608 		copy_highpage(newpage, page);
609 
610 	if (PageError(page))
611 		SetPageError(newpage);
612 	if (PageReferenced(page))
613 		SetPageReferenced(newpage);
614 	if (PageUptodate(page))
615 		SetPageUptodate(newpage);
616 	if (TestClearPageActive(page)) {
617 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 		SetPageActive(newpage);
619 	} else if (TestClearPageUnevictable(page))
620 		SetPageUnevictable(newpage);
621 	if (PageChecked(page))
622 		SetPageChecked(newpage);
623 	if (PageMappedToDisk(page))
624 		SetPageMappedToDisk(newpage);
625 
626 	/* Move dirty on pages not done by migrate_page_move_mapping() */
627 	if (PageDirty(page))
628 		SetPageDirty(newpage);
629 
630 	if (page_is_young(page))
631 		set_page_young(newpage);
632 	if (page_is_idle(page))
633 		set_page_idle(newpage);
634 
635 	/*
636 	 * Copy NUMA information to the new page, to prevent over-eager
637 	 * future migrations of this same page.
638 	 */
639 	cpupid = page_cpupid_xchg_last(page, -1);
640 	page_cpupid_xchg_last(newpage, cpupid);
641 
642 	ksm_migrate_page(newpage, page);
643 	/*
644 	 * Please do not reorder this without considering how mm/ksm.c's
645 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
646 	 */
647 	if (PageSwapCache(page))
648 		ClearPageSwapCache(page);
649 	ClearPagePrivate(page);
650 	set_page_private(page, 0);
651 
652 	/*
653 	 * If any waiters have accumulated on the new page then
654 	 * wake them up.
655 	 */
656 	if (PageWriteback(newpage))
657 		end_page_writeback(newpage);
658 
659 	copy_page_owner(page, newpage);
660 
661 	mem_cgroup_migrate(page, newpage);
662 }
663 EXPORT_SYMBOL(migrate_page_copy);
664 
665 /************************************************************
666  *                    Migration functions
667  ***********************************************************/
668 
669 /*
670  * Common logic to directly migrate a single LRU page suitable for
671  * pages that do not use PagePrivate/PagePrivate2.
672  *
673  * Pages are locked upon entry and exit.
674  */
675 int migrate_page(struct address_space *mapping,
676 		struct page *newpage, struct page *page,
677 		enum migrate_mode mode)
678 {
679 	int rc;
680 
681 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
682 
683 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
684 
685 	if (rc != MIGRATEPAGE_SUCCESS)
686 		return rc;
687 
688 	migrate_page_copy(newpage, page);
689 	return MIGRATEPAGE_SUCCESS;
690 }
691 EXPORT_SYMBOL(migrate_page);
692 
693 #ifdef CONFIG_BLOCK
694 /*
695  * Migration function for pages with buffers. This function can only be used
696  * if the underlying filesystem guarantees that no other references to "page"
697  * exist.
698  */
699 int buffer_migrate_page(struct address_space *mapping,
700 		struct page *newpage, struct page *page, enum migrate_mode mode)
701 {
702 	struct buffer_head *bh, *head;
703 	int rc;
704 
705 	if (!page_has_buffers(page))
706 		return migrate_page(mapping, newpage, page, mode);
707 
708 	head = page_buffers(page);
709 
710 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
711 
712 	if (rc != MIGRATEPAGE_SUCCESS)
713 		return rc;
714 
715 	/*
716 	 * In the async case, migrate_page_move_mapping locked the buffers
717 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
718 	 * need to be locked now
719 	 */
720 	if (mode != MIGRATE_ASYNC)
721 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
722 
723 	ClearPagePrivate(page);
724 	set_page_private(newpage, page_private(page));
725 	set_page_private(page, 0);
726 	put_page(page);
727 	get_page(newpage);
728 
729 	bh = head;
730 	do {
731 		set_bh_page(bh, newpage, bh_offset(bh));
732 		bh = bh->b_this_page;
733 
734 	} while (bh != head);
735 
736 	SetPagePrivate(newpage);
737 
738 	migrate_page_copy(newpage, page);
739 
740 	bh = head;
741 	do {
742 		unlock_buffer(bh);
743  		put_bh(bh);
744 		bh = bh->b_this_page;
745 
746 	} while (bh != head);
747 
748 	return MIGRATEPAGE_SUCCESS;
749 }
750 EXPORT_SYMBOL(buffer_migrate_page);
751 #endif
752 
753 /*
754  * Writeback a page to clean the dirty state
755  */
756 static int writeout(struct address_space *mapping, struct page *page)
757 {
758 	struct writeback_control wbc = {
759 		.sync_mode = WB_SYNC_NONE,
760 		.nr_to_write = 1,
761 		.range_start = 0,
762 		.range_end = LLONG_MAX,
763 		.for_reclaim = 1
764 	};
765 	int rc;
766 
767 	if (!mapping->a_ops->writepage)
768 		/* No write method for the address space */
769 		return -EINVAL;
770 
771 	if (!clear_page_dirty_for_io(page))
772 		/* Someone else already triggered a write */
773 		return -EAGAIN;
774 
775 	/*
776 	 * A dirty page may imply that the underlying filesystem has
777 	 * the page on some queue. So the page must be clean for
778 	 * migration. Writeout may mean we loose the lock and the
779 	 * page state is no longer what we checked for earlier.
780 	 * At this point we know that the migration attempt cannot
781 	 * be successful.
782 	 */
783 	remove_migration_ptes(page, page, false);
784 
785 	rc = mapping->a_ops->writepage(page, &wbc);
786 
787 	if (rc != AOP_WRITEPAGE_ACTIVATE)
788 		/* unlocked. Relock */
789 		lock_page(page);
790 
791 	return (rc < 0) ? -EIO : -EAGAIN;
792 }
793 
794 /*
795  * Default handling if a filesystem does not provide a migration function.
796  */
797 static int fallback_migrate_page(struct address_space *mapping,
798 	struct page *newpage, struct page *page, enum migrate_mode mode)
799 {
800 	if (PageDirty(page)) {
801 		/* Only writeback pages in full synchronous migration */
802 		if (mode != MIGRATE_SYNC)
803 			return -EBUSY;
804 		return writeout(mapping, page);
805 	}
806 
807 	/*
808 	 * Buffers may be managed in a filesystem specific way.
809 	 * We must have no buffers or drop them.
810 	 */
811 	if (page_has_private(page) &&
812 	    !try_to_release_page(page, GFP_KERNEL))
813 		return -EAGAIN;
814 
815 	return migrate_page(mapping, newpage, page, mode);
816 }
817 
818 /*
819  * Move a page to a newly allocated page
820  * The page is locked and all ptes have been successfully removed.
821  *
822  * The new page will have replaced the old page if this function
823  * is successful.
824  *
825  * Return value:
826  *   < 0 - error code
827  *  MIGRATEPAGE_SUCCESS - success
828  */
829 static int move_to_new_page(struct page *newpage, struct page *page,
830 				enum migrate_mode mode)
831 {
832 	struct address_space *mapping;
833 	int rc = -EAGAIN;
834 	bool is_lru = !__PageMovable(page);
835 
836 	VM_BUG_ON_PAGE(!PageLocked(page), page);
837 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
838 
839 	mapping = page_mapping(page);
840 
841 	if (likely(is_lru)) {
842 		if (!mapping)
843 			rc = migrate_page(mapping, newpage, page, mode);
844 		else if (mapping->a_ops->migratepage)
845 			/*
846 			 * Most pages have a mapping and most filesystems
847 			 * provide a migratepage callback. Anonymous pages
848 			 * are part of swap space which also has its own
849 			 * migratepage callback. This is the most common path
850 			 * for page migration.
851 			 */
852 			rc = mapping->a_ops->migratepage(mapping, newpage,
853 							page, mode);
854 		else
855 			rc = fallback_migrate_page(mapping, newpage,
856 							page, mode);
857 	} else {
858 		/*
859 		 * In case of non-lru page, it could be released after
860 		 * isolation step. In that case, we shouldn't try migration.
861 		 */
862 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
863 		if (!PageMovable(page)) {
864 			rc = MIGRATEPAGE_SUCCESS;
865 			__ClearPageIsolated(page);
866 			goto out;
867 		}
868 
869 		rc = mapping->a_ops->migratepage(mapping, newpage,
870 						page, mode);
871 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
872 			!PageIsolated(page));
873 	}
874 
875 	/*
876 	 * When successful, old pagecache page->mapping must be cleared before
877 	 * page is freed; but stats require that PageAnon be left as PageAnon.
878 	 */
879 	if (rc == MIGRATEPAGE_SUCCESS) {
880 		if (__PageMovable(page)) {
881 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
882 
883 			/*
884 			 * We clear PG_movable under page_lock so any compactor
885 			 * cannot try to migrate this page.
886 			 */
887 			__ClearPageIsolated(page);
888 		}
889 
890 		/*
891 		 * Anonymous and movable page->mapping will be cleard by
892 		 * free_pages_prepare so don't reset it here for keeping
893 		 * the type to work PageAnon, for example.
894 		 */
895 		if (!PageMappingFlags(page))
896 			page->mapping = NULL;
897 	}
898 out:
899 	return rc;
900 }
901 
902 static int __unmap_and_move(struct page *page, struct page *newpage,
903 				int force, enum migrate_mode mode)
904 {
905 	int rc = -EAGAIN;
906 	int page_was_mapped = 0;
907 	struct anon_vma *anon_vma = NULL;
908 	bool is_lru = !__PageMovable(page);
909 
910 	if (!trylock_page(page)) {
911 		if (!force || mode == MIGRATE_ASYNC)
912 			goto out;
913 
914 		/*
915 		 * It's not safe for direct compaction to call lock_page.
916 		 * For example, during page readahead pages are added locked
917 		 * to the LRU. Later, when the IO completes the pages are
918 		 * marked uptodate and unlocked. However, the queueing
919 		 * could be merging multiple pages for one bio (e.g.
920 		 * mpage_readpages). If an allocation happens for the
921 		 * second or third page, the process can end up locking
922 		 * the same page twice and deadlocking. Rather than
923 		 * trying to be clever about what pages can be locked,
924 		 * avoid the use of lock_page for direct compaction
925 		 * altogether.
926 		 */
927 		if (current->flags & PF_MEMALLOC)
928 			goto out;
929 
930 		lock_page(page);
931 	}
932 
933 	if (PageWriteback(page)) {
934 		/*
935 		 * Only in the case of a full synchronous migration is it
936 		 * necessary to wait for PageWriteback. In the async case,
937 		 * the retry loop is too short and in the sync-light case,
938 		 * the overhead of stalling is too much
939 		 */
940 		if (mode != MIGRATE_SYNC) {
941 			rc = -EBUSY;
942 			goto out_unlock;
943 		}
944 		if (!force)
945 			goto out_unlock;
946 		wait_on_page_writeback(page);
947 	}
948 
949 	/*
950 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
951 	 * we cannot notice that anon_vma is freed while we migrates a page.
952 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
953 	 * of migration. File cache pages are no problem because of page_lock()
954 	 * File Caches may use write_page() or lock_page() in migration, then,
955 	 * just care Anon page here.
956 	 *
957 	 * Only page_get_anon_vma() understands the subtleties of
958 	 * getting a hold on an anon_vma from outside one of its mms.
959 	 * But if we cannot get anon_vma, then we won't need it anyway,
960 	 * because that implies that the anon page is no longer mapped
961 	 * (and cannot be remapped so long as we hold the page lock).
962 	 */
963 	if (PageAnon(page) && !PageKsm(page))
964 		anon_vma = page_get_anon_vma(page);
965 
966 	/*
967 	 * Block others from accessing the new page when we get around to
968 	 * establishing additional references. We are usually the only one
969 	 * holding a reference to newpage at this point. We used to have a BUG
970 	 * here if trylock_page(newpage) fails, but would like to allow for
971 	 * cases where there might be a race with the previous use of newpage.
972 	 * This is much like races on refcount of oldpage: just don't BUG().
973 	 */
974 	if (unlikely(!trylock_page(newpage)))
975 		goto out_unlock;
976 
977 	if (unlikely(!is_lru)) {
978 		rc = move_to_new_page(newpage, page, mode);
979 		goto out_unlock_both;
980 	}
981 
982 	/*
983 	 * Corner case handling:
984 	 * 1. When a new swap-cache page is read into, it is added to the LRU
985 	 * and treated as swapcache but it has no rmap yet.
986 	 * Calling try_to_unmap() against a page->mapping==NULL page will
987 	 * trigger a BUG.  So handle it here.
988 	 * 2. An orphaned page (see truncate_complete_page) might have
989 	 * fs-private metadata. The page can be picked up due to memory
990 	 * offlining.  Everywhere else except page reclaim, the page is
991 	 * invisible to the vm, so the page can not be migrated.  So try to
992 	 * free the metadata, so the page can be freed.
993 	 */
994 	if (!page->mapping) {
995 		VM_BUG_ON_PAGE(PageAnon(page), page);
996 		if (page_has_private(page)) {
997 			try_to_free_buffers(page);
998 			goto out_unlock_both;
999 		}
1000 	} else if (page_mapped(page)) {
1001 		/* Establish migration ptes */
1002 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1003 				page);
1004 		try_to_unmap(page,
1005 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1006 		page_was_mapped = 1;
1007 	}
1008 
1009 	if (!page_mapped(page))
1010 		rc = move_to_new_page(newpage, page, mode);
1011 
1012 	if (page_was_mapped)
1013 		remove_migration_ptes(page,
1014 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1015 
1016 out_unlock_both:
1017 	unlock_page(newpage);
1018 out_unlock:
1019 	/* Drop an anon_vma reference if we took one */
1020 	if (anon_vma)
1021 		put_anon_vma(anon_vma);
1022 	unlock_page(page);
1023 out:
1024 	/*
1025 	 * If migration is successful, decrease refcount of the newpage
1026 	 * which will not free the page because new page owner increased
1027 	 * refcounter. As well, if it is LRU page, add the page to LRU
1028 	 * list in here.
1029 	 */
1030 	if (rc == MIGRATEPAGE_SUCCESS) {
1031 		if (unlikely(__PageMovable(newpage)))
1032 			put_page(newpage);
1033 		else
1034 			putback_lru_page(newpage);
1035 	}
1036 
1037 	return rc;
1038 }
1039 
1040 /*
1041  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1042  * around it.
1043  */
1044 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1045 #define ICE_noinline noinline
1046 #else
1047 #define ICE_noinline
1048 #endif
1049 
1050 /*
1051  * Obtain the lock on page, remove all ptes and migrate the page
1052  * to the newly allocated page in newpage.
1053  */
1054 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1055 				   free_page_t put_new_page,
1056 				   unsigned long private, struct page *page,
1057 				   int force, enum migrate_mode mode,
1058 				   enum migrate_reason reason)
1059 {
1060 	int rc = MIGRATEPAGE_SUCCESS;
1061 	int *result = NULL;
1062 	struct page *newpage;
1063 
1064 	newpage = get_new_page(page, private, &result);
1065 	if (!newpage)
1066 		return -ENOMEM;
1067 
1068 	if (page_count(page) == 1) {
1069 		/* page was freed from under us. So we are done. */
1070 		ClearPageActive(page);
1071 		ClearPageUnevictable(page);
1072 		if (unlikely(__PageMovable(page))) {
1073 			lock_page(page);
1074 			if (!PageMovable(page))
1075 				__ClearPageIsolated(page);
1076 			unlock_page(page);
1077 		}
1078 		if (put_new_page)
1079 			put_new_page(newpage, private);
1080 		else
1081 			put_page(newpage);
1082 		goto out;
1083 	}
1084 
1085 	if (unlikely(PageTransHuge(page))) {
1086 		lock_page(page);
1087 		rc = split_huge_page(page);
1088 		unlock_page(page);
1089 		if (rc)
1090 			goto out;
1091 	}
1092 
1093 	rc = __unmap_and_move(page, newpage, force, mode);
1094 	if (rc == MIGRATEPAGE_SUCCESS)
1095 		set_page_owner_migrate_reason(newpage, reason);
1096 
1097 out:
1098 	if (rc != -EAGAIN) {
1099 		/*
1100 		 * A page that has been migrated has all references
1101 		 * removed and will be freed. A page that has not been
1102 		 * migrated will have kepts its references and be
1103 		 * restored.
1104 		 */
1105 		list_del(&page->lru);
1106 
1107 		/*
1108 		 * Compaction can migrate also non-LRU pages which are
1109 		 * not accounted to NR_ISOLATED_*. They can be recognized
1110 		 * as __PageMovable
1111 		 */
1112 		if (likely(!__PageMovable(page)))
1113 			dec_node_page_state(page, NR_ISOLATED_ANON +
1114 					page_is_file_cache(page));
1115 	}
1116 
1117 	/*
1118 	 * If migration is successful, releases reference grabbed during
1119 	 * isolation. Otherwise, restore the page to right list unless
1120 	 * we want to retry.
1121 	 */
1122 	if (rc == MIGRATEPAGE_SUCCESS) {
1123 		put_page(page);
1124 		if (reason == MR_MEMORY_FAILURE) {
1125 			/*
1126 			 * Set PG_HWPoison on just freed page
1127 			 * intentionally. Although it's rather weird,
1128 			 * it's how HWPoison flag works at the moment.
1129 			 */
1130 			if (!test_set_page_hwpoison(page))
1131 				num_poisoned_pages_inc();
1132 		}
1133 	} else {
1134 		if (rc != -EAGAIN) {
1135 			if (likely(!__PageMovable(page))) {
1136 				putback_lru_page(page);
1137 				goto put_new;
1138 			}
1139 
1140 			lock_page(page);
1141 			if (PageMovable(page))
1142 				putback_movable_page(page);
1143 			else
1144 				__ClearPageIsolated(page);
1145 			unlock_page(page);
1146 			put_page(page);
1147 		}
1148 put_new:
1149 		if (put_new_page)
1150 			put_new_page(newpage, private);
1151 		else
1152 			put_page(newpage);
1153 	}
1154 
1155 	if (result) {
1156 		if (rc)
1157 			*result = rc;
1158 		else
1159 			*result = page_to_nid(newpage);
1160 	}
1161 	return rc;
1162 }
1163 
1164 /*
1165  * Counterpart of unmap_and_move_page() for hugepage migration.
1166  *
1167  * This function doesn't wait the completion of hugepage I/O
1168  * because there is no race between I/O and migration for hugepage.
1169  * Note that currently hugepage I/O occurs only in direct I/O
1170  * where no lock is held and PG_writeback is irrelevant,
1171  * and writeback status of all subpages are counted in the reference
1172  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1173  * under direct I/O, the reference of the head page is 512 and a bit more.)
1174  * This means that when we try to migrate hugepage whose subpages are
1175  * doing direct I/O, some references remain after try_to_unmap() and
1176  * hugepage migration fails without data corruption.
1177  *
1178  * There is also no race when direct I/O is issued on the page under migration,
1179  * because then pte is replaced with migration swap entry and direct I/O code
1180  * will wait in the page fault for migration to complete.
1181  */
1182 static int unmap_and_move_huge_page(new_page_t get_new_page,
1183 				free_page_t put_new_page, unsigned long private,
1184 				struct page *hpage, int force,
1185 				enum migrate_mode mode, int reason)
1186 {
1187 	int rc = -EAGAIN;
1188 	int *result = NULL;
1189 	int page_was_mapped = 0;
1190 	struct page *new_hpage;
1191 	struct anon_vma *anon_vma = NULL;
1192 
1193 	/*
1194 	 * Movability of hugepages depends on architectures and hugepage size.
1195 	 * This check is necessary because some callers of hugepage migration
1196 	 * like soft offline and memory hotremove don't walk through page
1197 	 * tables or check whether the hugepage is pmd-based or not before
1198 	 * kicking migration.
1199 	 */
1200 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1201 		putback_active_hugepage(hpage);
1202 		return -ENOSYS;
1203 	}
1204 
1205 	new_hpage = get_new_page(hpage, private, &result);
1206 	if (!new_hpage)
1207 		return -ENOMEM;
1208 
1209 	if (!trylock_page(hpage)) {
1210 		if (!force || mode != MIGRATE_SYNC)
1211 			goto out;
1212 		lock_page(hpage);
1213 	}
1214 
1215 	if (PageAnon(hpage))
1216 		anon_vma = page_get_anon_vma(hpage);
1217 
1218 	if (unlikely(!trylock_page(new_hpage)))
1219 		goto put_anon;
1220 
1221 	if (page_mapped(hpage)) {
1222 		try_to_unmap(hpage,
1223 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1224 		page_was_mapped = 1;
1225 	}
1226 
1227 	if (!page_mapped(hpage))
1228 		rc = move_to_new_page(new_hpage, hpage, mode);
1229 
1230 	if (page_was_mapped)
1231 		remove_migration_ptes(hpage,
1232 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1233 
1234 	unlock_page(new_hpage);
1235 
1236 put_anon:
1237 	if (anon_vma)
1238 		put_anon_vma(anon_vma);
1239 
1240 	if (rc == MIGRATEPAGE_SUCCESS) {
1241 		hugetlb_cgroup_migrate(hpage, new_hpage);
1242 		put_new_page = NULL;
1243 		set_page_owner_migrate_reason(new_hpage, reason);
1244 	}
1245 
1246 	unlock_page(hpage);
1247 out:
1248 	if (rc != -EAGAIN)
1249 		putback_active_hugepage(hpage);
1250 
1251 	/*
1252 	 * If migration was not successful and there's a freeing callback, use
1253 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1254 	 * isolation.
1255 	 */
1256 	if (put_new_page)
1257 		put_new_page(new_hpage, private);
1258 	else
1259 		putback_active_hugepage(new_hpage);
1260 
1261 	if (result) {
1262 		if (rc)
1263 			*result = rc;
1264 		else
1265 			*result = page_to_nid(new_hpage);
1266 	}
1267 	return rc;
1268 }
1269 
1270 /*
1271  * migrate_pages - migrate the pages specified in a list, to the free pages
1272  *		   supplied as the target for the page migration
1273  *
1274  * @from:		The list of pages to be migrated.
1275  * @get_new_page:	The function used to allocate free pages to be used
1276  *			as the target of the page migration.
1277  * @put_new_page:	The function used to free target pages if migration
1278  *			fails, or NULL if no special handling is necessary.
1279  * @private:		Private data to be passed on to get_new_page()
1280  * @mode:		The migration mode that specifies the constraints for
1281  *			page migration, if any.
1282  * @reason:		The reason for page migration.
1283  *
1284  * The function returns after 10 attempts or if no pages are movable any more
1285  * because the list has become empty or no retryable pages exist any more.
1286  * The caller should call putback_movable_pages() to return pages to the LRU
1287  * or free list only if ret != 0.
1288  *
1289  * Returns the number of pages that were not migrated, or an error code.
1290  */
1291 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1292 		free_page_t put_new_page, unsigned long private,
1293 		enum migrate_mode mode, int reason)
1294 {
1295 	int retry = 1;
1296 	int nr_failed = 0;
1297 	int nr_succeeded = 0;
1298 	int pass = 0;
1299 	struct page *page;
1300 	struct page *page2;
1301 	int swapwrite = current->flags & PF_SWAPWRITE;
1302 	int rc;
1303 
1304 	if (!swapwrite)
1305 		current->flags |= PF_SWAPWRITE;
1306 
1307 	for(pass = 0; pass < 10 && retry; pass++) {
1308 		retry = 0;
1309 
1310 		list_for_each_entry_safe(page, page2, from, lru) {
1311 			cond_resched();
1312 
1313 			if (PageHuge(page))
1314 				rc = unmap_and_move_huge_page(get_new_page,
1315 						put_new_page, private, page,
1316 						pass > 2, mode, reason);
1317 			else
1318 				rc = unmap_and_move(get_new_page, put_new_page,
1319 						private, page, pass > 2, mode,
1320 						reason);
1321 
1322 			switch(rc) {
1323 			case -ENOMEM:
1324 				nr_failed++;
1325 				goto out;
1326 			case -EAGAIN:
1327 				retry++;
1328 				break;
1329 			case MIGRATEPAGE_SUCCESS:
1330 				nr_succeeded++;
1331 				break;
1332 			default:
1333 				/*
1334 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1335 				 * unlike -EAGAIN case, the failed page is
1336 				 * removed from migration page list and not
1337 				 * retried in the next outer loop.
1338 				 */
1339 				nr_failed++;
1340 				break;
1341 			}
1342 		}
1343 	}
1344 	nr_failed += retry;
1345 	rc = nr_failed;
1346 out:
1347 	if (nr_succeeded)
1348 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1349 	if (nr_failed)
1350 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1351 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1352 
1353 	if (!swapwrite)
1354 		current->flags &= ~PF_SWAPWRITE;
1355 
1356 	return rc;
1357 }
1358 
1359 #ifdef CONFIG_NUMA
1360 /*
1361  * Move a list of individual pages
1362  */
1363 struct page_to_node {
1364 	unsigned long addr;
1365 	struct page *page;
1366 	int node;
1367 	int status;
1368 };
1369 
1370 static struct page *new_page_node(struct page *p, unsigned long private,
1371 		int **result)
1372 {
1373 	struct page_to_node *pm = (struct page_to_node *)private;
1374 
1375 	while (pm->node != MAX_NUMNODES && pm->page != p)
1376 		pm++;
1377 
1378 	if (pm->node == MAX_NUMNODES)
1379 		return NULL;
1380 
1381 	*result = &pm->status;
1382 
1383 	if (PageHuge(p))
1384 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1385 					pm->node);
1386 	else
1387 		return __alloc_pages_node(pm->node,
1388 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1389 }
1390 
1391 /*
1392  * Move a set of pages as indicated in the pm array. The addr
1393  * field must be set to the virtual address of the page to be moved
1394  * and the node number must contain a valid target node.
1395  * The pm array ends with node = MAX_NUMNODES.
1396  */
1397 static int do_move_page_to_node_array(struct mm_struct *mm,
1398 				      struct page_to_node *pm,
1399 				      int migrate_all)
1400 {
1401 	int err;
1402 	struct page_to_node *pp;
1403 	LIST_HEAD(pagelist);
1404 
1405 	down_read(&mm->mmap_sem);
1406 
1407 	/*
1408 	 * Build a list of pages to migrate
1409 	 */
1410 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1411 		struct vm_area_struct *vma;
1412 		struct page *page;
1413 
1414 		err = -EFAULT;
1415 		vma = find_vma(mm, pp->addr);
1416 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1417 			goto set_status;
1418 
1419 		/* FOLL_DUMP to ignore special (like zero) pages */
1420 		page = follow_page(vma, pp->addr,
1421 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1422 
1423 		err = PTR_ERR(page);
1424 		if (IS_ERR(page))
1425 			goto set_status;
1426 
1427 		err = -ENOENT;
1428 		if (!page)
1429 			goto set_status;
1430 
1431 		pp->page = page;
1432 		err = page_to_nid(page);
1433 
1434 		if (err == pp->node)
1435 			/*
1436 			 * Node already in the right place
1437 			 */
1438 			goto put_and_set;
1439 
1440 		err = -EACCES;
1441 		if (page_mapcount(page) > 1 &&
1442 				!migrate_all)
1443 			goto put_and_set;
1444 
1445 		if (PageHuge(page)) {
1446 			if (PageHead(page))
1447 				isolate_huge_page(page, &pagelist);
1448 			goto put_and_set;
1449 		}
1450 
1451 		err = isolate_lru_page(page);
1452 		if (!err) {
1453 			list_add_tail(&page->lru, &pagelist);
1454 			inc_node_page_state(page, NR_ISOLATED_ANON +
1455 					    page_is_file_cache(page));
1456 		}
1457 put_and_set:
1458 		/*
1459 		 * Either remove the duplicate refcount from
1460 		 * isolate_lru_page() or drop the page ref if it was
1461 		 * not isolated.
1462 		 */
1463 		put_page(page);
1464 set_status:
1465 		pp->status = err;
1466 	}
1467 
1468 	err = 0;
1469 	if (!list_empty(&pagelist)) {
1470 		err = migrate_pages(&pagelist, new_page_node, NULL,
1471 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1472 		if (err)
1473 			putback_movable_pages(&pagelist);
1474 	}
1475 
1476 	up_read(&mm->mmap_sem);
1477 	return err;
1478 }
1479 
1480 /*
1481  * Migrate an array of page address onto an array of nodes and fill
1482  * the corresponding array of status.
1483  */
1484 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1485 			 unsigned long nr_pages,
1486 			 const void __user * __user *pages,
1487 			 const int __user *nodes,
1488 			 int __user *status, int flags)
1489 {
1490 	struct page_to_node *pm;
1491 	unsigned long chunk_nr_pages;
1492 	unsigned long chunk_start;
1493 	int err;
1494 
1495 	err = -ENOMEM;
1496 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1497 	if (!pm)
1498 		goto out;
1499 
1500 	migrate_prep();
1501 
1502 	/*
1503 	 * Store a chunk of page_to_node array in a page,
1504 	 * but keep the last one as a marker
1505 	 */
1506 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1507 
1508 	for (chunk_start = 0;
1509 	     chunk_start < nr_pages;
1510 	     chunk_start += chunk_nr_pages) {
1511 		int j;
1512 
1513 		if (chunk_start + chunk_nr_pages > nr_pages)
1514 			chunk_nr_pages = nr_pages - chunk_start;
1515 
1516 		/* fill the chunk pm with addrs and nodes from user-space */
1517 		for (j = 0; j < chunk_nr_pages; j++) {
1518 			const void __user *p;
1519 			int node;
1520 
1521 			err = -EFAULT;
1522 			if (get_user(p, pages + j + chunk_start))
1523 				goto out_pm;
1524 			pm[j].addr = (unsigned long) p;
1525 
1526 			if (get_user(node, nodes + j + chunk_start))
1527 				goto out_pm;
1528 
1529 			err = -ENODEV;
1530 			if (node < 0 || node >= MAX_NUMNODES)
1531 				goto out_pm;
1532 
1533 			if (!node_state(node, N_MEMORY))
1534 				goto out_pm;
1535 
1536 			err = -EACCES;
1537 			if (!node_isset(node, task_nodes))
1538 				goto out_pm;
1539 
1540 			pm[j].node = node;
1541 		}
1542 
1543 		/* End marker for this chunk */
1544 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1545 
1546 		/* Migrate this chunk */
1547 		err = do_move_page_to_node_array(mm, pm,
1548 						 flags & MPOL_MF_MOVE_ALL);
1549 		if (err < 0)
1550 			goto out_pm;
1551 
1552 		/* Return status information */
1553 		for (j = 0; j < chunk_nr_pages; j++)
1554 			if (put_user(pm[j].status, status + j + chunk_start)) {
1555 				err = -EFAULT;
1556 				goto out_pm;
1557 			}
1558 	}
1559 	err = 0;
1560 
1561 out_pm:
1562 	free_page((unsigned long)pm);
1563 out:
1564 	return err;
1565 }
1566 
1567 /*
1568  * Determine the nodes of an array of pages and store it in an array of status.
1569  */
1570 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1571 				const void __user **pages, int *status)
1572 {
1573 	unsigned long i;
1574 
1575 	down_read(&mm->mmap_sem);
1576 
1577 	for (i = 0; i < nr_pages; i++) {
1578 		unsigned long addr = (unsigned long)(*pages);
1579 		struct vm_area_struct *vma;
1580 		struct page *page;
1581 		int err = -EFAULT;
1582 
1583 		vma = find_vma(mm, addr);
1584 		if (!vma || addr < vma->vm_start)
1585 			goto set_status;
1586 
1587 		/* FOLL_DUMP to ignore special (like zero) pages */
1588 		page = follow_page(vma, addr, FOLL_DUMP);
1589 
1590 		err = PTR_ERR(page);
1591 		if (IS_ERR(page))
1592 			goto set_status;
1593 
1594 		err = page ? page_to_nid(page) : -ENOENT;
1595 set_status:
1596 		*status = err;
1597 
1598 		pages++;
1599 		status++;
1600 	}
1601 
1602 	up_read(&mm->mmap_sem);
1603 }
1604 
1605 /*
1606  * Determine the nodes of a user array of pages and store it in
1607  * a user array of status.
1608  */
1609 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1610 			 const void __user * __user *pages,
1611 			 int __user *status)
1612 {
1613 #define DO_PAGES_STAT_CHUNK_NR 16
1614 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1615 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1616 
1617 	while (nr_pages) {
1618 		unsigned long chunk_nr;
1619 
1620 		chunk_nr = nr_pages;
1621 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1622 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1623 
1624 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1625 			break;
1626 
1627 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1628 
1629 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1630 			break;
1631 
1632 		pages += chunk_nr;
1633 		status += chunk_nr;
1634 		nr_pages -= chunk_nr;
1635 	}
1636 	return nr_pages ? -EFAULT : 0;
1637 }
1638 
1639 /*
1640  * Move a list of pages in the address space of the currently executing
1641  * process.
1642  */
1643 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1644 		const void __user * __user *, pages,
1645 		const int __user *, nodes,
1646 		int __user *, status, int, flags)
1647 {
1648 	const struct cred *cred = current_cred(), *tcred;
1649 	struct task_struct *task;
1650 	struct mm_struct *mm;
1651 	int err;
1652 	nodemask_t task_nodes;
1653 
1654 	/* Check flags */
1655 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1656 		return -EINVAL;
1657 
1658 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1659 		return -EPERM;
1660 
1661 	/* Find the mm_struct */
1662 	rcu_read_lock();
1663 	task = pid ? find_task_by_vpid(pid) : current;
1664 	if (!task) {
1665 		rcu_read_unlock();
1666 		return -ESRCH;
1667 	}
1668 	get_task_struct(task);
1669 
1670 	/*
1671 	 * Check if this process has the right to modify the specified
1672 	 * process. The right exists if the process has administrative
1673 	 * capabilities, superuser privileges or the same
1674 	 * userid as the target process.
1675 	 */
1676 	tcred = __task_cred(task);
1677 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1678 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1679 	    !capable(CAP_SYS_NICE)) {
1680 		rcu_read_unlock();
1681 		err = -EPERM;
1682 		goto out;
1683 	}
1684 	rcu_read_unlock();
1685 
1686  	err = security_task_movememory(task);
1687  	if (err)
1688 		goto out;
1689 
1690 	task_nodes = cpuset_mems_allowed(task);
1691 	mm = get_task_mm(task);
1692 	put_task_struct(task);
1693 
1694 	if (!mm)
1695 		return -EINVAL;
1696 
1697 	if (nodes)
1698 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1699 				    nodes, status, flags);
1700 	else
1701 		err = do_pages_stat(mm, nr_pages, pages, status);
1702 
1703 	mmput(mm);
1704 	return err;
1705 
1706 out:
1707 	put_task_struct(task);
1708 	return err;
1709 }
1710 
1711 #ifdef CONFIG_NUMA_BALANCING
1712 /*
1713  * Returns true if this is a safe migration target node for misplaced NUMA
1714  * pages. Currently it only checks the watermarks which crude
1715  */
1716 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1717 				   unsigned long nr_migrate_pages)
1718 {
1719 	int z;
1720 
1721 	if (!pgdat_reclaimable(pgdat))
1722 		return false;
1723 
1724 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1725 		struct zone *zone = pgdat->node_zones + z;
1726 
1727 		if (!populated_zone(zone))
1728 			continue;
1729 
1730 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1731 		if (!zone_watermark_ok(zone, 0,
1732 				       high_wmark_pages(zone) +
1733 				       nr_migrate_pages,
1734 				       0, 0))
1735 			continue;
1736 		return true;
1737 	}
1738 	return false;
1739 }
1740 
1741 static struct page *alloc_misplaced_dst_page(struct page *page,
1742 					   unsigned long data,
1743 					   int **result)
1744 {
1745 	int nid = (int) data;
1746 	struct page *newpage;
1747 
1748 	newpage = __alloc_pages_node(nid,
1749 					 (GFP_HIGHUSER_MOVABLE |
1750 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1751 					  __GFP_NORETRY | __GFP_NOWARN) &
1752 					 ~__GFP_RECLAIM, 0);
1753 
1754 	return newpage;
1755 }
1756 
1757 /*
1758  * page migration rate limiting control.
1759  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1760  * window of time. Default here says do not migrate more than 1280M per second.
1761  */
1762 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1763 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1764 
1765 /* Returns true if the node is migrate rate-limited after the update */
1766 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1767 					unsigned long nr_pages)
1768 {
1769 	/*
1770 	 * Rate-limit the amount of data that is being migrated to a node.
1771 	 * Optimal placement is no good if the memory bus is saturated and
1772 	 * all the time is being spent migrating!
1773 	 */
1774 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1775 		spin_lock(&pgdat->numabalancing_migrate_lock);
1776 		pgdat->numabalancing_migrate_nr_pages = 0;
1777 		pgdat->numabalancing_migrate_next_window = jiffies +
1778 			msecs_to_jiffies(migrate_interval_millisecs);
1779 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1780 	}
1781 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1782 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1783 								nr_pages);
1784 		return true;
1785 	}
1786 
1787 	/*
1788 	 * This is an unlocked non-atomic update so errors are possible.
1789 	 * The consequences are failing to migrate when we potentiall should
1790 	 * have which is not severe enough to warrant locking. If it is ever
1791 	 * a problem, it can be converted to a per-cpu counter.
1792 	 */
1793 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1794 	return false;
1795 }
1796 
1797 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1798 {
1799 	int page_lru;
1800 
1801 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1802 
1803 	/* Avoid migrating to a node that is nearly full */
1804 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1805 		return 0;
1806 
1807 	if (isolate_lru_page(page))
1808 		return 0;
1809 
1810 	/*
1811 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1812 	 * check on page_count(), so we must do it here, now that the page
1813 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1814 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1815 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1816 	 */
1817 	if (PageTransHuge(page) && page_count(page) != 3) {
1818 		putback_lru_page(page);
1819 		return 0;
1820 	}
1821 
1822 	page_lru = page_is_file_cache(page);
1823 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1824 				hpage_nr_pages(page));
1825 
1826 	/*
1827 	 * Isolating the page has taken another reference, so the
1828 	 * caller's reference can be safely dropped without the page
1829 	 * disappearing underneath us during migration.
1830 	 */
1831 	put_page(page);
1832 	return 1;
1833 }
1834 
1835 bool pmd_trans_migrating(pmd_t pmd)
1836 {
1837 	struct page *page = pmd_page(pmd);
1838 	return PageLocked(page);
1839 }
1840 
1841 /*
1842  * Attempt to migrate a misplaced page to the specified destination
1843  * node. Caller is expected to have an elevated reference count on
1844  * the page that will be dropped by this function before returning.
1845  */
1846 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1847 			   int node)
1848 {
1849 	pg_data_t *pgdat = NODE_DATA(node);
1850 	int isolated;
1851 	int nr_remaining;
1852 	LIST_HEAD(migratepages);
1853 
1854 	/*
1855 	 * Don't migrate file pages that are mapped in multiple processes
1856 	 * with execute permissions as they are probably shared libraries.
1857 	 */
1858 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1859 	    (vma->vm_flags & VM_EXEC))
1860 		goto out;
1861 
1862 	/*
1863 	 * Rate-limit the amount of data that is being migrated to a node.
1864 	 * Optimal placement is no good if the memory bus is saturated and
1865 	 * all the time is being spent migrating!
1866 	 */
1867 	if (numamigrate_update_ratelimit(pgdat, 1))
1868 		goto out;
1869 
1870 	isolated = numamigrate_isolate_page(pgdat, page);
1871 	if (!isolated)
1872 		goto out;
1873 
1874 	list_add(&page->lru, &migratepages);
1875 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1876 				     NULL, node, MIGRATE_ASYNC,
1877 				     MR_NUMA_MISPLACED);
1878 	if (nr_remaining) {
1879 		if (!list_empty(&migratepages)) {
1880 			list_del(&page->lru);
1881 			dec_node_page_state(page, NR_ISOLATED_ANON +
1882 					page_is_file_cache(page));
1883 			putback_lru_page(page);
1884 		}
1885 		isolated = 0;
1886 	} else
1887 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1888 	BUG_ON(!list_empty(&migratepages));
1889 	return isolated;
1890 
1891 out:
1892 	put_page(page);
1893 	return 0;
1894 }
1895 #endif /* CONFIG_NUMA_BALANCING */
1896 
1897 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1898 /*
1899  * Migrates a THP to a given target node. page must be locked and is unlocked
1900  * before returning.
1901  */
1902 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1903 				struct vm_area_struct *vma,
1904 				pmd_t *pmd, pmd_t entry,
1905 				unsigned long address,
1906 				struct page *page, int node)
1907 {
1908 	spinlock_t *ptl;
1909 	pg_data_t *pgdat = NODE_DATA(node);
1910 	int isolated = 0;
1911 	struct page *new_page = NULL;
1912 	int page_lru = page_is_file_cache(page);
1913 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1914 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1915 	pmd_t orig_entry;
1916 
1917 	/*
1918 	 * Rate-limit the amount of data that is being migrated to a node.
1919 	 * Optimal placement is no good if the memory bus is saturated and
1920 	 * all the time is being spent migrating!
1921 	 */
1922 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1923 		goto out_dropref;
1924 
1925 	new_page = alloc_pages_node(node,
1926 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1927 		HPAGE_PMD_ORDER);
1928 	if (!new_page)
1929 		goto out_fail;
1930 	prep_transhuge_page(new_page);
1931 
1932 	isolated = numamigrate_isolate_page(pgdat, page);
1933 	if (!isolated) {
1934 		put_page(new_page);
1935 		goto out_fail;
1936 	}
1937 	/*
1938 	 * We are not sure a pending tlb flush here is for a huge page
1939 	 * mapping or not. Hence use the tlb range variant
1940 	 */
1941 	if (mm_tlb_flush_pending(mm))
1942 		flush_tlb_range(vma, mmun_start, mmun_end);
1943 
1944 	/* Prepare a page as a migration target */
1945 	__SetPageLocked(new_page);
1946 	__SetPageSwapBacked(new_page);
1947 
1948 	/* anon mapping, we can simply copy page->mapping to the new page: */
1949 	new_page->mapping = page->mapping;
1950 	new_page->index = page->index;
1951 	migrate_page_copy(new_page, page);
1952 	WARN_ON(PageLRU(new_page));
1953 
1954 	/* Recheck the target PMD */
1955 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1956 	ptl = pmd_lock(mm, pmd);
1957 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1958 fail_putback:
1959 		spin_unlock(ptl);
1960 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1961 
1962 		/* Reverse changes made by migrate_page_copy() */
1963 		if (TestClearPageActive(new_page))
1964 			SetPageActive(page);
1965 		if (TestClearPageUnevictable(new_page))
1966 			SetPageUnevictable(page);
1967 
1968 		unlock_page(new_page);
1969 		put_page(new_page);		/* Free it */
1970 
1971 		/* Retake the callers reference and putback on LRU */
1972 		get_page(page);
1973 		putback_lru_page(page);
1974 		mod_node_page_state(page_pgdat(page),
1975 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1976 
1977 		goto out_unlock;
1978 	}
1979 
1980 	orig_entry = *pmd;
1981 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1982 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1983 
1984 	/*
1985 	 * Clear the old entry under pagetable lock and establish the new PTE.
1986 	 * Any parallel GUP will either observe the old page blocking on the
1987 	 * page lock, block on the page table lock or observe the new page.
1988 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1989 	 * guarantee the copy is visible before the pagetable update.
1990 	 */
1991 	flush_cache_range(vma, mmun_start, mmun_end);
1992 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1993 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1994 	set_pmd_at(mm, mmun_start, pmd, entry);
1995 	update_mmu_cache_pmd(vma, address, &entry);
1996 
1997 	if (page_count(page) != 2) {
1998 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1999 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2000 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2001 		update_mmu_cache_pmd(vma, address, &entry);
2002 		page_remove_rmap(new_page, true);
2003 		goto fail_putback;
2004 	}
2005 
2006 	mlock_migrate_page(new_page, page);
2007 	page_remove_rmap(page, true);
2008 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2009 
2010 	spin_unlock(ptl);
2011 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2012 
2013 	/* Take an "isolate" reference and put new page on the LRU. */
2014 	get_page(new_page);
2015 	putback_lru_page(new_page);
2016 
2017 	unlock_page(new_page);
2018 	unlock_page(page);
2019 	put_page(page);			/* Drop the rmap reference */
2020 	put_page(page);			/* Drop the LRU isolation reference */
2021 
2022 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2023 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2024 
2025 	mod_node_page_state(page_pgdat(page),
2026 			NR_ISOLATED_ANON + page_lru,
2027 			-HPAGE_PMD_NR);
2028 	return isolated;
2029 
2030 out_fail:
2031 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2032 out_dropref:
2033 	ptl = pmd_lock(mm, pmd);
2034 	if (pmd_same(*pmd, entry)) {
2035 		entry = pmd_modify(entry, vma->vm_page_prot);
2036 		set_pmd_at(mm, mmun_start, pmd, entry);
2037 		update_mmu_cache_pmd(vma, address, &entry);
2038 	}
2039 	spin_unlock(ptl);
2040 
2041 out_unlock:
2042 	unlock_page(page);
2043 	put_page(page);
2044 	return 0;
2045 }
2046 #endif /* CONFIG_NUMA_BALANCING */
2047 
2048 #endif /* CONFIG_NUMA */
2049