1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/gfp.h> 39 #include <linux/balloon_compaction.h> 40 #include <linux/mmu_notifier.h> 41 #include <linux/page_idle.h> 42 #include <linux/page_owner.h> 43 44 #include <asm/tlbflush.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/migrate.h> 48 49 #include "internal.h" 50 51 /* 52 * migrate_prep() needs to be called before we start compiling a list of pages 53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 54 * undesirable, use migrate_prep_local() 55 */ 56 int migrate_prep(void) 57 { 58 /* 59 * Clear the LRU lists so pages can be isolated. 60 * Note that pages may be moved off the LRU after we have 61 * drained them. Those pages will fail to migrate like other 62 * pages that may be busy. 63 */ 64 lru_add_drain_all(); 65 66 return 0; 67 } 68 69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 70 int migrate_prep_local(void) 71 { 72 lru_add_drain(); 73 74 return 0; 75 } 76 77 int isolate_movable_page(struct page *page, isolate_mode_t mode) 78 { 79 struct address_space *mapping; 80 81 /* 82 * Avoid burning cycles with pages that are yet under __free_pages(), 83 * or just got freed under us. 84 * 85 * In case we 'win' a race for a movable page being freed under us and 86 * raise its refcount preventing __free_pages() from doing its job 87 * the put_page() at the end of this block will take care of 88 * release this page, thus avoiding a nasty leakage. 89 */ 90 if (unlikely(!get_page_unless_zero(page))) 91 goto out; 92 93 /* 94 * Check PageMovable before holding a PG_lock because page's owner 95 * assumes anybody doesn't touch PG_lock of newly allocated page 96 * so unconditionally grapping the lock ruins page's owner side. 97 */ 98 if (unlikely(!__PageMovable(page))) 99 goto out_putpage; 100 /* 101 * As movable pages are not isolated from LRU lists, concurrent 102 * compaction threads can race against page migration functions 103 * as well as race against the releasing a page. 104 * 105 * In order to avoid having an already isolated movable page 106 * being (wrongly) re-isolated while it is under migration, 107 * or to avoid attempting to isolate pages being released, 108 * lets be sure we have the page lock 109 * before proceeding with the movable page isolation steps. 110 */ 111 if (unlikely(!trylock_page(page))) 112 goto out_putpage; 113 114 if (!PageMovable(page) || PageIsolated(page)) 115 goto out_no_isolated; 116 117 mapping = page_mapping(page); 118 VM_BUG_ON_PAGE(!mapping, page); 119 120 if (!mapping->a_ops->isolate_page(page, mode)) 121 goto out_no_isolated; 122 123 /* Driver shouldn't use PG_isolated bit of page->flags */ 124 WARN_ON_ONCE(PageIsolated(page)); 125 __SetPageIsolated(page); 126 unlock_page(page); 127 128 return 0; 129 130 out_no_isolated: 131 unlock_page(page); 132 out_putpage: 133 put_page(page); 134 out: 135 return -EBUSY; 136 } 137 138 /* It should be called on page which is PG_movable */ 139 void putback_movable_page(struct page *page) 140 { 141 struct address_space *mapping; 142 143 VM_BUG_ON_PAGE(!PageLocked(page), page); 144 VM_BUG_ON_PAGE(!PageMovable(page), page); 145 VM_BUG_ON_PAGE(!PageIsolated(page), page); 146 147 mapping = page_mapping(page); 148 mapping->a_ops->putback_page(page); 149 __ClearPageIsolated(page); 150 } 151 152 /* 153 * Put previously isolated pages back onto the appropriate lists 154 * from where they were once taken off for compaction/migration. 155 * 156 * This function shall be used whenever the isolated pageset has been 157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 158 * and isolate_huge_page(). 159 */ 160 void putback_movable_pages(struct list_head *l) 161 { 162 struct page *page; 163 struct page *page2; 164 165 list_for_each_entry_safe(page, page2, l, lru) { 166 if (unlikely(PageHuge(page))) { 167 putback_active_hugepage(page); 168 continue; 169 } 170 list_del(&page->lru); 171 /* 172 * We isolated non-lru movable page so here we can use 173 * __PageMovable because LRU page's mapping cannot have 174 * PAGE_MAPPING_MOVABLE. 175 */ 176 if (unlikely(__PageMovable(page))) { 177 VM_BUG_ON_PAGE(!PageIsolated(page), page); 178 lock_page(page); 179 if (PageMovable(page)) 180 putback_movable_page(page); 181 else 182 __ClearPageIsolated(page); 183 unlock_page(page); 184 put_page(page); 185 } else { 186 putback_lru_page(page); 187 dec_node_page_state(page, NR_ISOLATED_ANON + 188 page_is_file_cache(page)); 189 } 190 } 191 } 192 193 /* 194 * Restore a potential migration pte to a working pte entry 195 */ 196 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma, 197 unsigned long addr, void *old) 198 { 199 struct page_vma_mapped_walk pvmw = { 200 .page = old, 201 .vma = vma, 202 .address = addr, 203 .flags = PVMW_SYNC | PVMW_MIGRATION, 204 }; 205 struct page *new; 206 pte_t pte; 207 swp_entry_t entry; 208 209 VM_BUG_ON_PAGE(PageTail(page), page); 210 while (page_vma_mapped_walk(&pvmw)) { 211 new = page - pvmw.page->index + 212 linear_page_index(vma, pvmw.address); 213 214 get_page(new); 215 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 216 if (pte_swp_soft_dirty(*pvmw.pte)) 217 pte = pte_mksoft_dirty(pte); 218 219 /* 220 * Recheck VMA as permissions can change since migration started 221 */ 222 entry = pte_to_swp_entry(*pvmw.pte); 223 if (is_write_migration_entry(entry)) 224 pte = maybe_mkwrite(pte, vma); 225 226 #ifdef CONFIG_HUGETLB_PAGE 227 if (PageHuge(new)) { 228 pte = pte_mkhuge(pte); 229 pte = arch_make_huge_pte(pte, vma, new, 0); 230 } 231 #endif 232 flush_dcache_page(new); 233 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 234 235 if (PageHuge(new)) { 236 if (PageAnon(new)) 237 hugepage_add_anon_rmap(new, vma, pvmw.address); 238 else 239 page_dup_rmap(new, true); 240 } else if (PageAnon(new)) 241 page_add_anon_rmap(new, vma, pvmw.address, false); 242 else 243 page_add_file_rmap(new, false); 244 245 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 246 mlock_vma_page(new); 247 248 /* No need to invalidate - it was non-present before */ 249 update_mmu_cache(vma, pvmw.address, pvmw.pte); 250 } 251 252 return SWAP_AGAIN; 253 } 254 255 /* 256 * Get rid of all migration entries and replace them by 257 * references to the indicated page. 258 */ 259 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 260 { 261 struct rmap_walk_control rwc = { 262 .rmap_one = remove_migration_pte, 263 .arg = old, 264 }; 265 266 if (locked) 267 rmap_walk_locked(new, &rwc); 268 else 269 rmap_walk(new, &rwc); 270 } 271 272 /* 273 * Something used the pte of a page under migration. We need to 274 * get to the page and wait until migration is finished. 275 * When we return from this function the fault will be retried. 276 */ 277 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 278 spinlock_t *ptl) 279 { 280 pte_t pte; 281 swp_entry_t entry; 282 struct page *page; 283 284 spin_lock(ptl); 285 pte = *ptep; 286 if (!is_swap_pte(pte)) 287 goto out; 288 289 entry = pte_to_swp_entry(pte); 290 if (!is_migration_entry(entry)) 291 goto out; 292 293 page = migration_entry_to_page(entry); 294 295 /* 296 * Once radix-tree replacement of page migration started, page_count 297 * *must* be zero. And, we don't want to call wait_on_page_locked() 298 * against a page without get_page(). 299 * So, we use get_page_unless_zero(), here. Even failed, page fault 300 * will occur again. 301 */ 302 if (!get_page_unless_zero(page)) 303 goto out; 304 pte_unmap_unlock(ptep, ptl); 305 wait_on_page_locked(page); 306 put_page(page); 307 return; 308 out: 309 pte_unmap_unlock(ptep, ptl); 310 } 311 312 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 313 unsigned long address) 314 { 315 spinlock_t *ptl = pte_lockptr(mm, pmd); 316 pte_t *ptep = pte_offset_map(pmd, address); 317 __migration_entry_wait(mm, ptep, ptl); 318 } 319 320 void migration_entry_wait_huge(struct vm_area_struct *vma, 321 struct mm_struct *mm, pte_t *pte) 322 { 323 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 324 __migration_entry_wait(mm, pte, ptl); 325 } 326 327 #ifdef CONFIG_BLOCK 328 /* Returns true if all buffers are successfully locked */ 329 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 330 enum migrate_mode mode) 331 { 332 struct buffer_head *bh = head; 333 334 /* Simple case, sync compaction */ 335 if (mode != MIGRATE_ASYNC) { 336 do { 337 get_bh(bh); 338 lock_buffer(bh); 339 bh = bh->b_this_page; 340 341 } while (bh != head); 342 343 return true; 344 } 345 346 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 347 do { 348 get_bh(bh); 349 if (!trylock_buffer(bh)) { 350 /* 351 * We failed to lock the buffer and cannot stall in 352 * async migration. Release the taken locks 353 */ 354 struct buffer_head *failed_bh = bh; 355 put_bh(failed_bh); 356 bh = head; 357 while (bh != failed_bh) { 358 unlock_buffer(bh); 359 put_bh(bh); 360 bh = bh->b_this_page; 361 } 362 return false; 363 } 364 365 bh = bh->b_this_page; 366 } while (bh != head); 367 return true; 368 } 369 #else 370 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 371 enum migrate_mode mode) 372 { 373 return true; 374 } 375 #endif /* CONFIG_BLOCK */ 376 377 /* 378 * Replace the page in the mapping. 379 * 380 * The number of remaining references must be: 381 * 1 for anonymous pages without a mapping 382 * 2 for pages with a mapping 383 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 384 */ 385 int migrate_page_move_mapping(struct address_space *mapping, 386 struct page *newpage, struct page *page, 387 struct buffer_head *head, enum migrate_mode mode, 388 int extra_count) 389 { 390 struct zone *oldzone, *newzone; 391 int dirty; 392 int expected_count = 1 + extra_count; 393 void **pslot; 394 395 if (!mapping) { 396 /* Anonymous page without mapping */ 397 if (page_count(page) != expected_count) 398 return -EAGAIN; 399 400 /* No turning back from here */ 401 newpage->index = page->index; 402 newpage->mapping = page->mapping; 403 if (PageSwapBacked(page)) 404 __SetPageSwapBacked(newpage); 405 406 return MIGRATEPAGE_SUCCESS; 407 } 408 409 oldzone = page_zone(page); 410 newzone = page_zone(newpage); 411 412 spin_lock_irq(&mapping->tree_lock); 413 414 pslot = radix_tree_lookup_slot(&mapping->page_tree, 415 page_index(page)); 416 417 expected_count += 1 + page_has_private(page); 418 if (page_count(page) != expected_count || 419 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 420 spin_unlock_irq(&mapping->tree_lock); 421 return -EAGAIN; 422 } 423 424 if (!page_ref_freeze(page, expected_count)) { 425 spin_unlock_irq(&mapping->tree_lock); 426 return -EAGAIN; 427 } 428 429 /* 430 * In the async migration case of moving a page with buffers, lock the 431 * buffers using trylock before the mapping is moved. If the mapping 432 * was moved, we later failed to lock the buffers and could not move 433 * the mapping back due to an elevated page count, we would have to 434 * block waiting on other references to be dropped. 435 */ 436 if (mode == MIGRATE_ASYNC && head && 437 !buffer_migrate_lock_buffers(head, mode)) { 438 page_ref_unfreeze(page, expected_count); 439 spin_unlock_irq(&mapping->tree_lock); 440 return -EAGAIN; 441 } 442 443 /* 444 * Now we know that no one else is looking at the page: 445 * no turning back from here. 446 */ 447 newpage->index = page->index; 448 newpage->mapping = page->mapping; 449 get_page(newpage); /* add cache reference */ 450 if (PageSwapBacked(page)) { 451 __SetPageSwapBacked(newpage); 452 if (PageSwapCache(page)) { 453 SetPageSwapCache(newpage); 454 set_page_private(newpage, page_private(page)); 455 } 456 } else { 457 VM_BUG_ON_PAGE(PageSwapCache(page), page); 458 } 459 460 /* Move dirty while page refs frozen and newpage not yet exposed */ 461 dirty = PageDirty(page); 462 if (dirty) { 463 ClearPageDirty(page); 464 SetPageDirty(newpage); 465 } 466 467 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 468 469 /* 470 * Drop cache reference from old page by unfreezing 471 * to one less reference. 472 * We know this isn't the last reference. 473 */ 474 page_ref_unfreeze(page, expected_count - 1); 475 476 spin_unlock(&mapping->tree_lock); 477 /* Leave irq disabled to prevent preemption while updating stats */ 478 479 /* 480 * If moved to a different zone then also account 481 * the page for that zone. Other VM counters will be 482 * taken care of when we establish references to the 483 * new page and drop references to the old page. 484 * 485 * Note that anonymous pages are accounted for 486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 487 * are mapped to swap space. 488 */ 489 if (newzone != oldzone) { 490 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 491 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 492 if (PageSwapBacked(page) && !PageSwapCache(page)) { 493 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 494 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 495 } 496 if (dirty && mapping_cap_account_dirty(mapping)) { 497 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 498 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 499 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 500 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 501 } 502 } 503 local_irq_enable(); 504 505 return MIGRATEPAGE_SUCCESS; 506 } 507 EXPORT_SYMBOL(migrate_page_move_mapping); 508 509 /* 510 * The expected number of remaining references is the same as that 511 * of migrate_page_move_mapping(). 512 */ 513 int migrate_huge_page_move_mapping(struct address_space *mapping, 514 struct page *newpage, struct page *page) 515 { 516 int expected_count; 517 void **pslot; 518 519 spin_lock_irq(&mapping->tree_lock); 520 521 pslot = radix_tree_lookup_slot(&mapping->page_tree, 522 page_index(page)); 523 524 expected_count = 2 + page_has_private(page); 525 if (page_count(page) != expected_count || 526 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 527 spin_unlock_irq(&mapping->tree_lock); 528 return -EAGAIN; 529 } 530 531 if (!page_ref_freeze(page, expected_count)) { 532 spin_unlock_irq(&mapping->tree_lock); 533 return -EAGAIN; 534 } 535 536 newpage->index = page->index; 537 newpage->mapping = page->mapping; 538 539 get_page(newpage); 540 541 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 542 543 page_ref_unfreeze(page, expected_count - 1); 544 545 spin_unlock_irq(&mapping->tree_lock); 546 547 return MIGRATEPAGE_SUCCESS; 548 } 549 550 /* 551 * Gigantic pages are so large that we do not guarantee that page++ pointer 552 * arithmetic will work across the entire page. We need something more 553 * specialized. 554 */ 555 static void __copy_gigantic_page(struct page *dst, struct page *src, 556 int nr_pages) 557 { 558 int i; 559 struct page *dst_base = dst; 560 struct page *src_base = src; 561 562 for (i = 0; i < nr_pages; ) { 563 cond_resched(); 564 copy_highpage(dst, src); 565 566 i++; 567 dst = mem_map_next(dst, dst_base, i); 568 src = mem_map_next(src, src_base, i); 569 } 570 } 571 572 static void copy_huge_page(struct page *dst, struct page *src) 573 { 574 int i; 575 int nr_pages; 576 577 if (PageHuge(src)) { 578 /* hugetlbfs page */ 579 struct hstate *h = page_hstate(src); 580 nr_pages = pages_per_huge_page(h); 581 582 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 583 __copy_gigantic_page(dst, src, nr_pages); 584 return; 585 } 586 } else { 587 /* thp page */ 588 BUG_ON(!PageTransHuge(src)); 589 nr_pages = hpage_nr_pages(src); 590 } 591 592 for (i = 0; i < nr_pages; i++) { 593 cond_resched(); 594 copy_highpage(dst + i, src + i); 595 } 596 } 597 598 /* 599 * Copy the page to its new location 600 */ 601 void migrate_page_copy(struct page *newpage, struct page *page) 602 { 603 int cpupid; 604 605 if (PageHuge(page) || PageTransHuge(page)) 606 copy_huge_page(newpage, page); 607 else 608 copy_highpage(newpage, page); 609 610 if (PageError(page)) 611 SetPageError(newpage); 612 if (PageReferenced(page)) 613 SetPageReferenced(newpage); 614 if (PageUptodate(page)) 615 SetPageUptodate(newpage); 616 if (TestClearPageActive(page)) { 617 VM_BUG_ON_PAGE(PageUnevictable(page), page); 618 SetPageActive(newpage); 619 } else if (TestClearPageUnevictable(page)) 620 SetPageUnevictable(newpage); 621 if (PageChecked(page)) 622 SetPageChecked(newpage); 623 if (PageMappedToDisk(page)) 624 SetPageMappedToDisk(newpage); 625 626 /* Move dirty on pages not done by migrate_page_move_mapping() */ 627 if (PageDirty(page)) 628 SetPageDirty(newpage); 629 630 if (page_is_young(page)) 631 set_page_young(newpage); 632 if (page_is_idle(page)) 633 set_page_idle(newpage); 634 635 /* 636 * Copy NUMA information to the new page, to prevent over-eager 637 * future migrations of this same page. 638 */ 639 cpupid = page_cpupid_xchg_last(page, -1); 640 page_cpupid_xchg_last(newpage, cpupid); 641 642 ksm_migrate_page(newpage, page); 643 /* 644 * Please do not reorder this without considering how mm/ksm.c's 645 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 646 */ 647 if (PageSwapCache(page)) 648 ClearPageSwapCache(page); 649 ClearPagePrivate(page); 650 set_page_private(page, 0); 651 652 /* 653 * If any waiters have accumulated on the new page then 654 * wake them up. 655 */ 656 if (PageWriteback(newpage)) 657 end_page_writeback(newpage); 658 659 copy_page_owner(page, newpage); 660 661 mem_cgroup_migrate(page, newpage); 662 } 663 EXPORT_SYMBOL(migrate_page_copy); 664 665 /************************************************************ 666 * Migration functions 667 ***********************************************************/ 668 669 /* 670 * Common logic to directly migrate a single LRU page suitable for 671 * pages that do not use PagePrivate/PagePrivate2. 672 * 673 * Pages are locked upon entry and exit. 674 */ 675 int migrate_page(struct address_space *mapping, 676 struct page *newpage, struct page *page, 677 enum migrate_mode mode) 678 { 679 int rc; 680 681 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 682 683 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 684 685 if (rc != MIGRATEPAGE_SUCCESS) 686 return rc; 687 688 migrate_page_copy(newpage, page); 689 return MIGRATEPAGE_SUCCESS; 690 } 691 EXPORT_SYMBOL(migrate_page); 692 693 #ifdef CONFIG_BLOCK 694 /* 695 * Migration function for pages with buffers. This function can only be used 696 * if the underlying filesystem guarantees that no other references to "page" 697 * exist. 698 */ 699 int buffer_migrate_page(struct address_space *mapping, 700 struct page *newpage, struct page *page, enum migrate_mode mode) 701 { 702 struct buffer_head *bh, *head; 703 int rc; 704 705 if (!page_has_buffers(page)) 706 return migrate_page(mapping, newpage, page, mode); 707 708 head = page_buffers(page); 709 710 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 711 712 if (rc != MIGRATEPAGE_SUCCESS) 713 return rc; 714 715 /* 716 * In the async case, migrate_page_move_mapping locked the buffers 717 * with an IRQ-safe spinlock held. In the sync case, the buffers 718 * need to be locked now 719 */ 720 if (mode != MIGRATE_ASYNC) 721 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 722 723 ClearPagePrivate(page); 724 set_page_private(newpage, page_private(page)); 725 set_page_private(page, 0); 726 put_page(page); 727 get_page(newpage); 728 729 bh = head; 730 do { 731 set_bh_page(bh, newpage, bh_offset(bh)); 732 bh = bh->b_this_page; 733 734 } while (bh != head); 735 736 SetPagePrivate(newpage); 737 738 migrate_page_copy(newpage, page); 739 740 bh = head; 741 do { 742 unlock_buffer(bh); 743 put_bh(bh); 744 bh = bh->b_this_page; 745 746 } while (bh != head); 747 748 return MIGRATEPAGE_SUCCESS; 749 } 750 EXPORT_SYMBOL(buffer_migrate_page); 751 #endif 752 753 /* 754 * Writeback a page to clean the dirty state 755 */ 756 static int writeout(struct address_space *mapping, struct page *page) 757 { 758 struct writeback_control wbc = { 759 .sync_mode = WB_SYNC_NONE, 760 .nr_to_write = 1, 761 .range_start = 0, 762 .range_end = LLONG_MAX, 763 .for_reclaim = 1 764 }; 765 int rc; 766 767 if (!mapping->a_ops->writepage) 768 /* No write method for the address space */ 769 return -EINVAL; 770 771 if (!clear_page_dirty_for_io(page)) 772 /* Someone else already triggered a write */ 773 return -EAGAIN; 774 775 /* 776 * A dirty page may imply that the underlying filesystem has 777 * the page on some queue. So the page must be clean for 778 * migration. Writeout may mean we loose the lock and the 779 * page state is no longer what we checked for earlier. 780 * At this point we know that the migration attempt cannot 781 * be successful. 782 */ 783 remove_migration_ptes(page, page, false); 784 785 rc = mapping->a_ops->writepage(page, &wbc); 786 787 if (rc != AOP_WRITEPAGE_ACTIVATE) 788 /* unlocked. Relock */ 789 lock_page(page); 790 791 return (rc < 0) ? -EIO : -EAGAIN; 792 } 793 794 /* 795 * Default handling if a filesystem does not provide a migration function. 796 */ 797 static int fallback_migrate_page(struct address_space *mapping, 798 struct page *newpage, struct page *page, enum migrate_mode mode) 799 { 800 if (PageDirty(page)) { 801 /* Only writeback pages in full synchronous migration */ 802 if (mode != MIGRATE_SYNC) 803 return -EBUSY; 804 return writeout(mapping, page); 805 } 806 807 /* 808 * Buffers may be managed in a filesystem specific way. 809 * We must have no buffers or drop them. 810 */ 811 if (page_has_private(page) && 812 !try_to_release_page(page, GFP_KERNEL)) 813 return -EAGAIN; 814 815 return migrate_page(mapping, newpage, page, mode); 816 } 817 818 /* 819 * Move a page to a newly allocated page 820 * The page is locked and all ptes have been successfully removed. 821 * 822 * The new page will have replaced the old page if this function 823 * is successful. 824 * 825 * Return value: 826 * < 0 - error code 827 * MIGRATEPAGE_SUCCESS - success 828 */ 829 static int move_to_new_page(struct page *newpage, struct page *page, 830 enum migrate_mode mode) 831 { 832 struct address_space *mapping; 833 int rc = -EAGAIN; 834 bool is_lru = !__PageMovable(page); 835 836 VM_BUG_ON_PAGE(!PageLocked(page), page); 837 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 838 839 mapping = page_mapping(page); 840 841 if (likely(is_lru)) { 842 if (!mapping) 843 rc = migrate_page(mapping, newpage, page, mode); 844 else if (mapping->a_ops->migratepage) 845 /* 846 * Most pages have a mapping and most filesystems 847 * provide a migratepage callback. Anonymous pages 848 * are part of swap space which also has its own 849 * migratepage callback. This is the most common path 850 * for page migration. 851 */ 852 rc = mapping->a_ops->migratepage(mapping, newpage, 853 page, mode); 854 else 855 rc = fallback_migrate_page(mapping, newpage, 856 page, mode); 857 } else { 858 /* 859 * In case of non-lru page, it could be released after 860 * isolation step. In that case, we shouldn't try migration. 861 */ 862 VM_BUG_ON_PAGE(!PageIsolated(page), page); 863 if (!PageMovable(page)) { 864 rc = MIGRATEPAGE_SUCCESS; 865 __ClearPageIsolated(page); 866 goto out; 867 } 868 869 rc = mapping->a_ops->migratepage(mapping, newpage, 870 page, mode); 871 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 872 !PageIsolated(page)); 873 } 874 875 /* 876 * When successful, old pagecache page->mapping must be cleared before 877 * page is freed; but stats require that PageAnon be left as PageAnon. 878 */ 879 if (rc == MIGRATEPAGE_SUCCESS) { 880 if (__PageMovable(page)) { 881 VM_BUG_ON_PAGE(!PageIsolated(page), page); 882 883 /* 884 * We clear PG_movable under page_lock so any compactor 885 * cannot try to migrate this page. 886 */ 887 __ClearPageIsolated(page); 888 } 889 890 /* 891 * Anonymous and movable page->mapping will be cleard by 892 * free_pages_prepare so don't reset it here for keeping 893 * the type to work PageAnon, for example. 894 */ 895 if (!PageMappingFlags(page)) 896 page->mapping = NULL; 897 } 898 out: 899 return rc; 900 } 901 902 static int __unmap_and_move(struct page *page, struct page *newpage, 903 int force, enum migrate_mode mode) 904 { 905 int rc = -EAGAIN; 906 int page_was_mapped = 0; 907 struct anon_vma *anon_vma = NULL; 908 bool is_lru = !__PageMovable(page); 909 910 if (!trylock_page(page)) { 911 if (!force || mode == MIGRATE_ASYNC) 912 goto out; 913 914 /* 915 * It's not safe for direct compaction to call lock_page. 916 * For example, during page readahead pages are added locked 917 * to the LRU. Later, when the IO completes the pages are 918 * marked uptodate and unlocked. However, the queueing 919 * could be merging multiple pages for one bio (e.g. 920 * mpage_readpages). If an allocation happens for the 921 * second or third page, the process can end up locking 922 * the same page twice and deadlocking. Rather than 923 * trying to be clever about what pages can be locked, 924 * avoid the use of lock_page for direct compaction 925 * altogether. 926 */ 927 if (current->flags & PF_MEMALLOC) 928 goto out; 929 930 lock_page(page); 931 } 932 933 if (PageWriteback(page)) { 934 /* 935 * Only in the case of a full synchronous migration is it 936 * necessary to wait for PageWriteback. In the async case, 937 * the retry loop is too short and in the sync-light case, 938 * the overhead of stalling is too much 939 */ 940 if (mode != MIGRATE_SYNC) { 941 rc = -EBUSY; 942 goto out_unlock; 943 } 944 if (!force) 945 goto out_unlock; 946 wait_on_page_writeback(page); 947 } 948 949 /* 950 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 951 * we cannot notice that anon_vma is freed while we migrates a page. 952 * This get_anon_vma() delays freeing anon_vma pointer until the end 953 * of migration. File cache pages are no problem because of page_lock() 954 * File Caches may use write_page() or lock_page() in migration, then, 955 * just care Anon page here. 956 * 957 * Only page_get_anon_vma() understands the subtleties of 958 * getting a hold on an anon_vma from outside one of its mms. 959 * But if we cannot get anon_vma, then we won't need it anyway, 960 * because that implies that the anon page is no longer mapped 961 * (and cannot be remapped so long as we hold the page lock). 962 */ 963 if (PageAnon(page) && !PageKsm(page)) 964 anon_vma = page_get_anon_vma(page); 965 966 /* 967 * Block others from accessing the new page when we get around to 968 * establishing additional references. We are usually the only one 969 * holding a reference to newpage at this point. We used to have a BUG 970 * here if trylock_page(newpage) fails, but would like to allow for 971 * cases where there might be a race with the previous use of newpage. 972 * This is much like races on refcount of oldpage: just don't BUG(). 973 */ 974 if (unlikely(!trylock_page(newpage))) 975 goto out_unlock; 976 977 if (unlikely(!is_lru)) { 978 rc = move_to_new_page(newpage, page, mode); 979 goto out_unlock_both; 980 } 981 982 /* 983 * Corner case handling: 984 * 1. When a new swap-cache page is read into, it is added to the LRU 985 * and treated as swapcache but it has no rmap yet. 986 * Calling try_to_unmap() against a page->mapping==NULL page will 987 * trigger a BUG. So handle it here. 988 * 2. An orphaned page (see truncate_complete_page) might have 989 * fs-private metadata. The page can be picked up due to memory 990 * offlining. Everywhere else except page reclaim, the page is 991 * invisible to the vm, so the page can not be migrated. So try to 992 * free the metadata, so the page can be freed. 993 */ 994 if (!page->mapping) { 995 VM_BUG_ON_PAGE(PageAnon(page), page); 996 if (page_has_private(page)) { 997 try_to_free_buffers(page); 998 goto out_unlock_both; 999 } 1000 } else if (page_mapped(page)) { 1001 /* Establish migration ptes */ 1002 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1003 page); 1004 try_to_unmap(page, 1005 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1006 page_was_mapped = 1; 1007 } 1008 1009 if (!page_mapped(page)) 1010 rc = move_to_new_page(newpage, page, mode); 1011 1012 if (page_was_mapped) 1013 remove_migration_ptes(page, 1014 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1015 1016 out_unlock_both: 1017 unlock_page(newpage); 1018 out_unlock: 1019 /* Drop an anon_vma reference if we took one */ 1020 if (anon_vma) 1021 put_anon_vma(anon_vma); 1022 unlock_page(page); 1023 out: 1024 /* 1025 * If migration is successful, decrease refcount of the newpage 1026 * which will not free the page because new page owner increased 1027 * refcounter. As well, if it is LRU page, add the page to LRU 1028 * list in here. 1029 */ 1030 if (rc == MIGRATEPAGE_SUCCESS) { 1031 if (unlikely(__PageMovable(newpage))) 1032 put_page(newpage); 1033 else 1034 putback_lru_page(newpage); 1035 } 1036 1037 return rc; 1038 } 1039 1040 /* 1041 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1042 * around it. 1043 */ 1044 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1045 #define ICE_noinline noinline 1046 #else 1047 #define ICE_noinline 1048 #endif 1049 1050 /* 1051 * Obtain the lock on page, remove all ptes and migrate the page 1052 * to the newly allocated page in newpage. 1053 */ 1054 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1055 free_page_t put_new_page, 1056 unsigned long private, struct page *page, 1057 int force, enum migrate_mode mode, 1058 enum migrate_reason reason) 1059 { 1060 int rc = MIGRATEPAGE_SUCCESS; 1061 int *result = NULL; 1062 struct page *newpage; 1063 1064 newpage = get_new_page(page, private, &result); 1065 if (!newpage) 1066 return -ENOMEM; 1067 1068 if (page_count(page) == 1) { 1069 /* page was freed from under us. So we are done. */ 1070 ClearPageActive(page); 1071 ClearPageUnevictable(page); 1072 if (unlikely(__PageMovable(page))) { 1073 lock_page(page); 1074 if (!PageMovable(page)) 1075 __ClearPageIsolated(page); 1076 unlock_page(page); 1077 } 1078 if (put_new_page) 1079 put_new_page(newpage, private); 1080 else 1081 put_page(newpage); 1082 goto out; 1083 } 1084 1085 if (unlikely(PageTransHuge(page))) { 1086 lock_page(page); 1087 rc = split_huge_page(page); 1088 unlock_page(page); 1089 if (rc) 1090 goto out; 1091 } 1092 1093 rc = __unmap_and_move(page, newpage, force, mode); 1094 if (rc == MIGRATEPAGE_SUCCESS) 1095 set_page_owner_migrate_reason(newpage, reason); 1096 1097 out: 1098 if (rc != -EAGAIN) { 1099 /* 1100 * A page that has been migrated has all references 1101 * removed and will be freed. A page that has not been 1102 * migrated will have kepts its references and be 1103 * restored. 1104 */ 1105 list_del(&page->lru); 1106 1107 /* 1108 * Compaction can migrate also non-LRU pages which are 1109 * not accounted to NR_ISOLATED_*. They can be recognized 1110 * as __PageMovable 1111 */ 1112 if (likely(!__PageMovable(page))) 1113 dec_node_page_state(page, NR_ISOLATED_ANON + 1114 page_is_file_cache(page)); 1115 } 1116 1117 /* 1118 * If migration is successful, releases reference grabbed during 1119 * isolation. Otherwise, restore the page to right list unless 1120 * we want to retry. 1121 */ 1122 if (rc == MIGRATEPAGE_SUCCESS) { 1123 put_page(page); 1124 if (reason == MR_MEMORY_FAILURE) { 1125 /* 1126 * Set PG_HWPoison on just freed page 1127 * intentionally. Although it's rather weird, 1128 * it's how HWPoison flag works at the moment. 1129 */ 1130 if (!test_set_page_hwpoison(page)) 1131 num_poisoned_pages_inc(); 1132 } 1133 } else { 1134 if (rc != -EAGAIN) { 1135 if (likely(!__PageMovable(page))) { 1136 putback_lru_page(page); 1137 goto put_new; 1138 } 1139 1140 lock_page(page); 1141 if (PageMovable(page)) 1142 putback_movable_page(page); 1143 else 1144 __ClearPageIsolated(page); 1145 unlock_page(page); 1146 put_page(page); 1147 } 1148 put_new: 1149 if (put_new_page) 1150 put_new_page(newpage, private); 1151 else 1152 put_page(newpage); 1153 } 1154 1155 if (result) { 1156 if (rc) 1157 *result = rc; 1158 else 1159 *result = page_to_nid(newpage); 1160 } 1161 return rc; 1162 } 1163 1164 /* 1165 * Counterpart of unmap_and_move_page() for hugepage migration. 1166 * 1167 * This function doesn't wait the completion of hugepage I/O 1168 * because there is no race between I/O and migration for hugepage. 1169 * Note that currently hugepage I/O occurs only in direct I/O 1170 * where no lock is held and PG_writeback is irrelevant, 1171 * and writeback status of all subpages are counted in the reference 1172 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1173 * under direct I/O, the reference of the head page is 512 and a bit more.) 1174 * This means that when we try to migrate hugepage whose subpages are 1175 * doing direct I/O, some references remain after try_to_unmap() and 1176 * hugepage migration fails without data corruption. 1177 * 1178 * There is also no race when direct I/O is issued on the page under migration, 1179 * because then pte is replaced with migration swap entry and direct I/O code 1180 * will wait in the page fault for migration to complete. 1181 */ 1182 static int unmap_and_move_huge_page(new_page_t get_new_page, 1183 free_page_t put_new_page, unsigned long private, 1184 struct page *hpage, int force, 1185 enum migrate_mode mode, int reason) 1186 { 1187 int rc = -EAGAIN; 1188 int *result = NULL; 1189 int page_was_mapped = 0; 1190 struct page *new_hpage; 1191 struct anon_vma *anon_vma = NULL; 1192 1193 /* 1194 * Movability of hugepages depends on architectures and hugepage size. 1195 * This check is necessary because some callers of hugepage migration 1196 * like soft offline and memory hotremove don't walk through page 1197 * tables or check whether the hugepage is pmd-based or not before 1198 * kicking migration. 1199 */ 1200 if (!hugepage_migration_supported(page_hstate(hpage))) { 1201 putback_active_hugepage(hpage); 1202 return -ENOSYS; 1203 } 1204 1205 new_hpage = get_new_page(hpage, private, &result); 1206 if (!new_hpage) 1207 return -ENOMEM; 1208 1209 if (!trylock_page(hpage)) { 1210 if (!force || mode != MIGRATE_SYNC) 1211 goto out; 1212 lock_page(hpage); 1213 } 1214 1215 if (PageAnon(hpage)) 1216 anon_vma = page_get_anon_vma(hpage); 1217 1218 if (unlikely(!trylock_page(new_hpage))) 1219 goto put_anon; 1220 1221 if (page_mapped(hpage)) { 1222 try_to_unmap(hpage, 1223 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1224 page_was_mapped = 1; 1225 } 1226 1227 if (!page_mapped(hpage)) 1228 rc = move_to_new_page(new_hpage, hpage, mode); 1229 1230 if (page_was_mapped) 1231 remove_migration_ptes(hpage, 1232 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1233 1234 unlock_page(new_hpage); 1235 1236 put_anon: 1237 if (anon_vma) 1238 put_anon_vma(anon_vma); 1239 1240 if (rc == MIGRATEPAGE_SUCCESS) { 1241 hugetlb_cgroup_migrate(hpage, new_hpage); 1242 put_new_page = NULL; 1243 set_page_owner_migrate_reason(new_hpage, reason); 1244 } 1245 1246 unlock_page(hpage); 1247 out: 1248 if (rc != -EAGAIN) 1249 putback_active_hugepage(hpage); 1250 1251 /* 1252 * If migration was not successful and there's a freeing callback, use 1253 * it. Otherwise, put_page() will drop the reference grabbed during 1254 * isolation. 1255 */ 1256 if (put_new_page) 1257 put_new_page(new_hpage, private); 1258 else 1259 putback_active_hugepage(new_hpage); 1260 1261 if (result) { 1262 if (rc) 1263 *result = rc; 1264 else 1265 *result = page_to_nid(new_hpage); 1266 } 1267 return rc; 1268 } 1269 1270 /* 1271 * migrate_pages - migrate the pages specified in a list, to the free pages 1272 * supplied as the target for the page migration 1273 * 1274 * @from: The list of pages to be migrated. 1275 * @get_new_page: The function used to allocate free pages to be used 1276 * as the target of the page migration. 1277 * @put_new_page: The function used to free target pages if migration 1278 * fails, or NULL if no special handling is necessary. 1279 * @private: Private data to be passed on to get_new_page() 1280 * @mode: The migration mode that specifies the constraints for 1281 * page migration, if any. 1282 * @reason: The reason for page migration. 1283 * 1284 * The function returns after 10 attempts or if no pages are movable any more 1285 * because the list has become empty or no retryable pages exist any more. 1286 * The caller should call putback_movable_pages() to return pages to the LRU 1287 * or free list only if ret != 0. 1288 * 1289 * Returns the number of pages that were not migrated, or an error code. 1290 */ 1291 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1292 free_page_t put_new_page, unsigned long private, 1293 enum migrate_mode mode, int reason) 1294 { 1295 int retry = 1; 1296 int nr_failed = 0; 1297 int nr_succeeded = 0; 1298 int pass = 0; 1299 struct page *page; 1300 struct page *page2; 1301 int swapwrite = current->flags & PF_SWAPWRITE; 1302 int rc; 1303 1304 if (!swapwrite) 1305 current->flags |= PF_SWAPWRITE; 1306 1307 for(pass = 0; pass < 10 && retry; pass++) { 1308 retry = 0; 1309 1310 list_for_each_entry_safe(page, page2, from, lru) { 1311 cond_resched(); 1312 1313 if (PageHuge(page)) 1314 rc = unmap_and_move_huge_page(get_new_page, 1315 put_new_page, private, page, 1316 pass > 2, mode, reason); 1317 else 1318 rc = unmap_and_move(get_new_page, put_new_page, 1319 private, page, pass > 2, mode, 1320 reason); 1321 1322 switch(rc) { 1323 case -ENOMEM: 1324 nr_failed++; 1325 goto out; 1326 case -EAGAIN: 1327 retry++; 1328 break; 1329 case MIGRATEPAGE_SUCCESS: 1330 nr_succeeded++; 1331 break; 1332 default: 1333 /* 1334 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1335 * unlike -EAGAIN case, the failed page is 1336 * removed from migration page list and not 1337 * retried in the next outer loop. 1338 */ 1339 nr_failed++; 1340 break; 1341 } 1342 } 1343 } 1344 nr_failed += retry; 1345 rc = nr_failed; 1346 out: 1347 if (nr_succeeded) 1348 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1349 if (nr_failed) 1350 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1351 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1352 1353 if (!swapwrite) 1354 current->flags &= ~PF_SWAPWRITE; 1355 1356 return rc; 1357 } 1358 1359 #ifdef CONFIG_NUMA 1360 /* 1361 * Move a list of individual pages 1362 */ 1363 struct page_to_node { 1364 unsigned long addr; 1365 struct page *page; 1366 int node; 1367 int status; 1368 }; 1369 1370 static struct page *new_page_node(struct page *p, unsigned long private, 1371 int **result) 1372 { 1373 struct page_to_node *pm = (struct page_to_node *)private; 1374 1375 while (pm->node != MAX_NUMNODES && pm->page != p) 1376 pm++; 1377 1378 if (pm->node == MAX_NUMNODES) 1379 return NULL; 1380 1381 *result = &pm->status; 1382 1383 if (PageHuge(p)) 1384 return alloc_huge_page_node(page_hstate(compound_head(p)), 1385 pm->node); 1386 else 1387 return __alloc_pages_node(pm->node, 1388 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1389 } 1390 1391 /* 1392 * Move a set of pages as indicated in the pm array. The addr 1393 * field must be set to the virtual address of the page to be moved 1394 * and the node number must contain a valid target node. 1395 * The pm array ends with node = MAX_NUMNODES. 1396 */ 1397 static int do_move_page_to_node_array(struct mm_struct *mm, 1398 struct page_to_node *pm, 1399 int migrate_all) 1400 { 1401 int err; 1402 struct page_to_node *pp; 1403 LIST_HEAD(pagelist); 1404 1405 down_read(&mm->mmap_sem); 1406 1407 /* 1408 * Build a list of pages to migrate 1409 */ 1410 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1411 struct vm_area_struct *vma; 1412 struct page *page; 1413 1414 err = -EFAULT; 1415 vma = find_vma(mm, pp->addr); 1416 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1417 goto set_status; 1418 1419 /* FOLL_DUMP to ignore special (like zero) pages */ 1420 page = follow_page(vma, pp->addr, 1421 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1422 1423 err = PTR_ERR(page); 1424 if (IS_ERR(page)) 1425 goto set_status; 1426 1427 err = -ENOENT; 1428 if (!page) 1429 goto set_status; 1430 1431 pp->page = page; 1432 err = page_to_nid(page); 1433 1434 if (err == pp->node) 1435 /* 1436 * Node already in the right place 1437 */ 1438 goto put_and_set; 1439 1440 err = -EACCES; 1441 if (page_mapcount(page) > 1 && 1442 !migrate_all) 1443 goto put_and_set; 1444 1445 if (PageHuge(page)) { 1446 if (PageHead(page)) 1447 isolate_huge_page(page, &pagelist); 1448 goto put_and_set; 1449 } 1450 1451 err = isolate_lru_page(page); 1452 if (!err) { 1453 list_add_tail(&page->lru, &pagelist); 1454 inc_node_page_state(page, NR_ISOLATED_ANON + 1455 page_is_file_cache(page)); 1456 } 1457 put_and_set: 1458 /* 1459 * Either remove the duplicate refcount from 1460 * isolate_lru_page() or drop the page ref if it was 1461 * not isolated. 1462 */ 1463 put_page(page); 1464 set_status: 1465 pp->status = err; 1466 } 1467 1468 err = 0; 1469 if (!list_empty(&pagelist)) { 1470 err = migrate_pages(&pagelist, new_page_node, NULL, 1471 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1472 if (err) 1473 putback_movable_pages(&pagelist); 1474 } 1475 1476 up_read(&mm->mmap_sem); 1477 return err; 1478 } 1479 1480 /* 1481 * Migrate an array of page address onto an array of nodes and fill 1482 * the corresponding array of status. 1483 */ 1484 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1485 unsigned long nr_pages, 1486 const void __user * __user *pages, 1487 const int __user *nodes, 1488 int __user *status, int flags) 1489 { 1490 struct page_to_node *pm; 1491 unsigned long chunk_nr_pages; 1492 unsigned long chunk_start; 1493 int err; 1494 1495 err = -ENOMEM; 1496 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1497 if (!pm) 1498 goto out; 1499 1500 migrate_prep(); 1501 1502 /* 1503 * Store a chunk of page_to_node array in a page, 1504 * but keep the last one as a marker 1505 */ 1506 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1507 1508 for (chunk_start = 0; 1509 chunk_start < nr_pages; 1510 chunk_start += chunk_nr_pages) { 1511 int j; 1512 1513 if (chunk_start + chunk_nr_pages > nr_pages) 1514 chunk_nr_pages = nr_pages - chunk_start; 1515 1516 /* fill the chunk pm with addrs and nodes from user-space */ 1517 for (j = 0; j < chunk_nr_pages; j++) { 1518 const void __user *p; 1519 int node; 1520 1521 err = -EFAULT; 1522 if (get_user(p, pages + j + chunk_start)) 1523 goto out_pm; 1524 pm[j].addr = (unsigned long) p; 1525 1526 if (get_user(node, nodes + j + chunk_start)) 1527 goto out_pm; 1528 1529 err = -ENODEV; 1530 if (node < 0 || node >= MAX_NUMNODES) 1531 goto out_pm; 1532 1533 if (!node_state(node, N_MEMORY)) 1534 goto out_pm; 1535 1536 err = -EACCES; 1537 if (!node_isset(node, task_nodes)) 1538 goto out_pm; 1539 1540 pm[j].node = node; 1541 } 1542 1543 /* End marker for this chunk */ 1544 pm[chunk_nr_pages].node = MAX_NUMNODES; 1545 1546 /* Migrate this chunk */ 1547 err = do_move_page_to_node_array(mm, pm, 1548 flags & MPOL_MF_MOVE_ALL); 1549 if (err < 0) 1550 goto out_pm; 1551 1552 /* Return status information */ 1553 for (j = 0; j < chunk_nr_pages; j++) 1554 if (put_user(pm[j].status, status + j + chunk_start)) { 1555 err = -EFAULT; 1556 goto out_pm; 1557 } 1558 } 1559 err = 0; 1560 1561 out_pm: 1562 free_page((unsigned long)pm); 1563 out: 1564 return err; 1565 } 1566 1567 /* 1568 * Determine the nodes of an array of pages and store it in an array of status. 1569 */ 1570 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1571 const void __user **pages, int *status) 1572 { 1573 unsigned long i; 1574 1575 down_read(&mm->mmap_sem); 1576 1577 for (i = 0; i < nr_pages; i++) { 1578 unsigned long addr = (unsigned long)(*pages); 1579 struct vm_area_struct *vma; 1580 struct page *page; 1581 int err = -EFAULT; 1582 1583 vma = find_vma(mm, addr); 1584 if (!vma || addr < vma->vm_start) 1585 goto set_status; 1586 1587 /* FOLL_DUMP to ignore special (like zero) pages */ 1588 page = follow_page(vma, addr, FOLL_DUMP); 1589 1590 err = PTR_ERR(page); 1591 if (IS_ERR(page)) 1592 goto set_status; 1593 1594 err = page ? page_to_nid(page) : -ENOENT; 1595 set_status: 1596 *status = err; 1597 1598 pages++; 1599 status++; 1600 } 1601 1602 up_read(&mm->mmap_sem); 1603 } 1604 1605 /* 1606 * Determine the nodes of a user array of pages and store it in 1607 * a user array of status. 1608 */ 1609 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1610 const void __user * __user *pages, 1611 int __user *status) 1612 { 1613 #define DO_PAGES_STAT_CHUNK_NR 16 1614 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1615 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1616 1617 while (nr_pages) { 1618 unsigned long chunk_nr; 1619 1620 chunk_nr = nr_pages; 1621 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1622 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1623 1624 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1625 break; 1626 1627 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1628 1629 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1630 break; 1631 1632 pages += chunk_nr; 1633 status += chunk_nr; 1634 nr_pages -= chunk_nr; 1635 } 1636 return nr_pages ? -EFAULT : 0; 1637 } 1638 1639 /* 1640 * Move a list of pages in the address space of the currently executing 1641 * process. 1642 */ 1643 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1644 const void __user * __user *, pages, 1645 const int __user *, nodes, 1646 int __user *, status, int, flags) 1647 { 1648 const struct cred *cred = current_cred(), *tcred; 1649 struct task_struct *task; 1650 struct mm_struct *mm; 1651 int err; 1652 nodemask_t task_nodes; 1653 1654 /* Check flags */ 1655 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1656 return -EINVAL; 1657 1658 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1659 return -EPERM; 1660 1661 /* Find the mm_struct */ 1662 rcu_read_lock(); 1663 task = pid ? find_task_by_vpid(pid) : current; 1664 if (!task) { 1665 rcu_read_unlock(); 1666 return -ESRCH; 1667 } 1668 get_task_struct(task); 1669 1670 /* 1671 * Check if this process has the right to modify the specified 1672 * process. The right exists if the process has administrative 1673 * capabilities, superuser privileges or the same 1674 * userid as the target process. 1675 */ 1676 tcred = __task_cred(task); 1677 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1678 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1679 !capable(CAP_SYS_NICE)) { 1680 rcu_read_unlock(); 1681 err = -EPERM; 1682 goto out; 1683 } 1684 rcu_read_unlock(); 1685 1686 err = security_task_movememory(task); 1687 if (err) 1688 goto out; 1689 1690 task_nodes = cpuset_mems_allowed(task); 1691 mm = get_task_mm(task); 1692 put_task_struct(task); 1693 1694 if (!mm) 1695 return -EINVAL; 1696 1697 if (nodes) 1698 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1699 nodes, status, flags); 1700 else 1701 err = do_pages_stat(mm, nr_pages, pages, status); 1702 1703 mmput(mm); 1704 return err; 1705 1706 out: 1707 put_task_struct(task); 1708 return err; 1709 } 1710 1711 #ifdef CONFIG_NUMA_BALANCING 1712 /* 1713 * Returns true if this is a safe migration target node for misplaced NUMA 1714 * pages. Currently it only checks the watermarks which crude 1715 */ 1716 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1717 unsigned long nr_migrate_pages) 1718 { 1719 int z; 1720 1721 if (!pgdat_reclaimable(pgdat)) 1722 return false; 1723 1724 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1725 struct zone *zone = pgdat->node_zones + z; 1726 1727 if (!populated_zone(zone)) 1728 continue; 1729 1730 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1731 if (!zone_watermark_ok(zone, 0, 1732 high_wmark_pages(zone) + 1733 nr_migrate_pages, 1734 0, 0)) 1735 continue; 1736 return true; 1737 } 1738 return false; 1739 } 1740 1741 static struct page *alloc_misplaced_dst_page(struct page *page, 1742 unsigned long data, 1743 int **result) 1744 { 1745 int nid = (int) data; 1746 struct page *newpage; 1747 1748 newpage = __alloc_pages_node(nid, 1749 (GFP_HIGHUSER_MOVABLE | 1750 __GFP_THISNODE | __GFP_NOMEMALLOC | 1751 __GFP_NORETRY | __GFP_NOWARN) & 1752 ~__GFP_RECLAIM, 0); 1753 1754 return newpage; 1755 } 1756 1757 /* 1758 * page migration rate limiting control. 1759 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1760 * window of time. Default here says do not migrate more than 1280M per second. 1761 */ 1762 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1763 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1764 1765 /* Returns true if the node is migrate rate-limited after the update */ 1766 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1767 unsigned long nr_pages) 1768 { 1769 /* 1770 * Rate-limit the amount of data that is being migrated to a node. 1771 * Optimal placement is no good if the memory bus is saturated and 1772 * all the time is being spent migrating! 1773 */ 1774 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1775 spin_lock(&pgdat->numabalancing_migrate_lock); 1776 pgdat->numabalancing_migrate_nr_pages = 0; 1777 pgdat->numabalancing_migrate_next_window = jiffies + 1778 msecs_to_jiffies(migrate_interval_millisecs); 1779 spin_unlock(&pgdat->numabalancing_migrate_lock); 1780 } 1781 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1782 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1783 nr_pages); 1784 return true; 1785 } 1786 1787 /* 1788 * This is an unlocked non-atomic update so errors are possible. 1789 * The consequences are failing to migrate when we potentiall should 1790 * have which is not severe enough to warrant locking. If it is ever 1791 * a problem, it can be converted to a per-cpu counter. 1792 */ 1793 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1794 return false; 1795 } 1796 1797 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1798 { 1799 int page_lru; 1800 1801 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1802 1803 /* Avoid migrating to a node that is nearly full */ 1804 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1805 return 0; 1806 1807 if (isolate_lru_page(page)) 1808 return 0; 1809 1810 /* 1811 * migrate_misplaced_transhuge_page() skips page migration's usual 1812 * check on page_count(), so we must do it here, now that the page 1813 * has been isolated: a GUP pin, or any other pin, prevents migration. 1814 * The expected page count is 3: 1 for page's mapcount and 1 for the 1815 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1816 */ 1817 if (PageTransHuge(page) && page_count(page) != 3) { 1818 putback_lru_page(page); 1819 return 0; 1820 } 1821 1822 page_lru = page_is_file_cache(page); 1823 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1824 hpage_nr_pages(page)); 1825 1826 /* 1827 * Isolating the page has taken another reference, so the 1828 * caller's reference can be safely dropped without the page 1829 * disappearing underneath us during migration. 1830 */ 1831 put_page(page); 1832 return 1; 1833 } 1834 1835 bool pmd_trans_migrating(pmd_t pmd) 1836 { 1837 struct page *page = pmd_page(pmd); 1838 return PageLocked(page); 1839 } 1840 1841 /* 1842 * Attempt to migrate a misplaced page to the specified destination 1843 * node. Caller is expected to have an elevated reference count on 1844 * the page that will be dropped by this function before returning. 1845 */ 1846 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1847 int node) 1848 { 1849 pg_data_t *pgdat = NODE_DATA(node); 1850 int isolated; 1851 int nr_remaining; 1852 LIST_HEAD(migratepages); 1853 1854 /* 1855 * Don't migrate file pages that are mapped in multiple processes 1856 * with execute permissions as they are probably shared libraries. 1857 */ 1858 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1859 (vma->vm_flags & VM_EXEC)) 1860 goto out; 1861 1862 /* 1863 * Rate-limit the amount of data that is being migrated to a node. 1864 * Optimal placement is no good if the memory bus is saturated and 1865 * all the time is being spent migrating! 1866 */ 1867 if (numamigrate_update_ratelimit(pgdat, 1)) 1868 goto out; 1869 1870 isolated = numamigrate_isolate_page(pgdat, page); 1871 if (!isolated) 1872 goto out; 1873 1874 list_add(&page->lru, &migratepages); 1875 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1876 NULL, node, MIGRATE_ASYNC, 1877 MR_NUMA_MISPLACED); 1878 if (nr_remaining) { 1879 if (!list_empty(&migratepages)) { 1880 list_del(&page->lru); 1881 dec_node_page_state(page, NR_ISOLATED_ANON + 1882 page_is_file_cache(page)); 1883 putback_lru_page(page); 1884 } 1885 isolated = 0; 1886 } else 1887 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1888 BUG_ON(!list_empty(&migratepages)); 1889 return isolated; 1890 1891 out: 1892 put_page(page); 1893 return 0; 1894 } 1895 #endif /* CONFIG_NUMA_BALANCING */ 1896 1897 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1898 /* 1899 * Migrates a THP to a given target node. page must be locked and is unlocked 1900 * before returning. 1901 */ 1902 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1903 struct vm_area_struct *vma, 1904 pmd_t *pmd, pmd_t entry, 1905 unsigned long address, 1906 struct page *page, int node) 1907 { 1908 spinlock_t *ptl; 1909 pg_data_t *pgdat = NODE_DATA(node); 1910 int isolated = 0; 1911 struct page *new_page = NULL; 1912 int page_lru = page_is_file_cache(page); 1913 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1914 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1915 pmd_t orig_entry; 1916 1917 /* 1918 * Rate-limit the amount of data that is being migrated to a node. 1919 * Optimal placement is no good if the memory bus is saturated and 1920 * all the time is being spent migrating! 1921 */ 1922 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1923 goto out_dropref; 1924 1925 new_page = alloc_pages_node(node, 1926 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1927 HPAGE_PMD_ORDER); 1928 if (!new_page) 1929 goto out_fail; 1930 prep_transhuge_page(new_page); 1931 1932 isolated = numamigrate_isolate_page(pgdat, page); 1933 if (!isolated) { 1934 put_page(new_page); 1935 goto out_fail; 1936 } 1937 /* 1938 * We are not sure a pending tlb flush here is for a huge page 1939 * mapping or not. Hence use the tlb range variant 1940 */ 1941 if (mm_tlb_flush_pending(mm)) 1942 flush_tlb_range(vma, mmun_start, mmun_end); 1943 1944 /* Prepare a page as a migration target */ 1945 __SetPageLocked(new_page); 1946 __SetPageSwapBacked(new_page); 1947 1948 /* anon mapping, we can simply copy page->mapping to the new page: */ 1949 new_page->mapping = page->mapping; 1950 new_page->index = page->index; 1951 migrate_page_copy(new_page, page); 1952 WARN_ON(PageLRU(new_page)); 1953 1954 /* Recheck the target PMD */ 1955 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1956 ptl = pmd_lock(mm, pmd); 1957 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1958 fail_putback: 1959 spin_unlock(ptl); 1960 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1961 1962 /* Reverse changes made by migrate_page_copy() */ 1963 if (TestClearPageActive(new_page)) 1964 SetPageActive(page); 1965 if (TestClearPageUnevictable(new_page)) 1966 SetPageUnevictable(page); 1967 1968 unlock_page(new_page); 1969 put_page(new_page); /* Free it */ 1970 1971 /* Retake the callers reference and putback on LRU */ 1972 get_page(page); 1973 putback_lru_page(page); 1974 mod_node_page_state(page_pgdat(page), 1975 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1976 1977 goto out_unlock; 1978 } 1979 1980 orig_entry = *pmd; 1981 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1982 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1983 1984 /* 1985 * Clear the old entry under pagetable lock and establish the new PTE. 1986 * Any parallel GUP will either observe the old page blocking on the 1987 * page lock, block on the page table lock or observe the new page. 1988 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1989 * guarantee the copy is visible before the pagetable update. 1990 */ 1991 flush_cache_range(vma, mmun_start, mmun_end); 1992 page_add_anon_rmap(new_page, vma, mmun_start, true); 1993 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1994 set_pmd_at(mm, mmun_start, pmd, entry); 1995 update_mmu_cache_pmd(vma, address, &entry); 1996 1997 if (page_count(page) != 2) { 1998 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1999 flush_pmd_tlb_range(vma, mmun_start, mmun_end); 2000 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 2001 update_mmu_cache_pmd(vma, address, &entry); 2002 page_remove_rmap(new_page, true); 2003 goto fail_putback; 2004 } 2005 2006 mlock_migrate_page(new_page, page); 2007 page_remove_rmap(page, true); 2008 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2009 2010 spin_unlock(ptl); 2011 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2012 2013 /* Take an "isolate" reference and put new page on the LRU. */ 2014 get_page(new_page); 2015 putback_lru_page(new_page); 2016 2017 unlock_page(new_page); 2018 unlock_page(page); 2019 put_page(page); /* Drop the rmap reference */ 2020 put_page(page); /* Drop the LRU isolation reference */ 2021 2022 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2023 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2024 2025 mod_node_page_state(page_pgdat(page), 2026 NR_ISOLATED_ANON + page_lru, 2027 -HPAGE_PMD_NR); 2028 return isolated; 2029 2030 out_fail: 2031 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2032 out_dropref: 2033 ptl = pmd_lock(mm, pmd); 2034 if (pmd_same(*pmd, entry)) { 2035 entry = pmd_modify(entry, vma->vm_page_prot); 2036 set_pmd_at(mm, mmun_start, pmd, entry); 2037 update_mmu_cache_pmd(vma, address, &entry); 2038 } 2039 spin_unlock(ptl); 2040 2041 out_unlock: 2042 unlock_page(page); 2043 put_page(page); 2044 return 0; 2045 } 2046 #endif /* CONFIG_NUMA_BALANCING */ 2047 2048 #endif /* CONFIG_NUMA */ 2049