xref: /openbmc/linux/mm/migrate.c (revision 3a0e75ad)
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44 
45 #include <asm/tlbflush.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
49 
50 #include "internal.h"
51 
52 /*
53  * migrate_prep() needs to be called before we start compiling a list of pages
54  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55  * undesirable, use migrate_prep_local()
56  */
57 int migrate_prep(void)
58 {
59 	/*
60 	 * Clear the LRU lists so pages can be isolated.
61 	 * Note that pages may be moved off the LRU after we have
62 	 * drained them. Those pages will fail to migrate like other
63 	 * pages that may be busy.
64 	 */
65 	lru_add_drain_all();
66 
67 	return 0;
68 }
69 
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
72 {
73 	lru_add_drain();
74 
75 	return 0;
76 }
77 
78 int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 {
80 	struct address_space *mapping;
81 
82 	/*
83 	 * Avoid burning cycles with pages that are yet under __free_pages(),
84 	 * or just got freed under us.
85 	 *
86 	 * In case we 'win' a race for a movable page being freed under us and
87 	 * raise its refcount preventing __free_pages() from doing its job
88 	 * the put_page() at the end of this block will take care of
89 	 * release this page, thus avoiding a nasty leakage.
90 	 */
91 	if (unlikely(!get_page_unless_zero(page)))
92 		goto out;
93 
94 	/*
95 	 * Check PageMovable before holding a PG_lock because page's owner
96 	 * assumes anybody doesn't touch PG_lock of newly allocated page
97 	 * so unconditionally grapping the lock ruins page's owner side.
98 	 */
99 	if (unlikely(!__PageMovable(page)))
100 		goto out_putpage;
101 	/*
102 	 * As movable pages are not isolated from LRU lists, concurrent
103 	 * compaction threads can race against page migration functions
104 	 * as well as race against the releasing a page.
105 	 *
106 	 * In order to avoid having an already isolated movable page
107 	 * being (wrongly) re-isolated while it is under migration,
108 	 * or to avoid attempting to isolate pages being released,
109 	 * lets be sure we have the page lock
110 	 * before proceeding with the movable page isolation steps.
111 	 */
112 	if (unlikely(!trylock_page(page)))
113 		goto out_putpage;
114 
115 	if (!PageMovable(page) || PageIsolated(page))
116 		goto out_no_isolated;
117 
118 	mapping = page_mapping(page);
119 	VM_BUG_ON_PAGE(!mapping, page);
120 
121 	if (!mapping->a_ops->isolate_page(page, mode))
122 		goto out_no_isolated;
123 
124 	/* Driver shouldn't use PG_isolated bit of page->flags */
125 	WARN_ON_ONCE(PageIsolated(page));
126 	__SetPageIsolated(page);
127 	unlock_page(page);
128 
129 	return 0;
130 
131 out_no_isolated:
132 	unlock_page(page);
133 out_putpage:
134 	put_page(page);
135 out:
136 	return -EBUSY;
137 }
138 
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
141 {
142 	struct address_space *mapping;
143 
144 	VM_BUG_ON_PAGE(!PageLocked(page), page);
145 	VM_BUG_ON_PAGE(!PageMovable(page), page);
146 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
147 
148 	mapping = page_mapping(page);
149 	mapping->a_ops->putback_page(page);
150 	__ClearPageIsolated(page);
151 }
152 
153 /*
154  * Put previously isolated pages back onto the appropriate lists
155  * from where they were once taken off for compaction/migration.
156  *
157  * This function shall be used whenever the isolated pageset has been
158  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159  * and isolate_huge_page().
160  */
161 void putback_movable_pages(struct list_head *l)
162 {
163 	struct page *page;
164 	struct page *page2;
165 
166 	list_for_each_entry_safe(page, page2, l, lru) {
167 		if (unlikely(PageHuge(page))) {
168 			putback_active_hugepage(page);
169 			continue;
170 		}
171 		list_del(&page->lru);
172 		/*
173 		 * We isolated non-lru movable page so here we can use
174 		 * __PageMovable because LRU page's mapping cannot have
175 		 * PAGE_MAPPING_MOVABLE.
176 		 */
177 		if (unlikely(__PageMovable(page))) {
178 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 			lock_page(page);
180 			if (PageMovable(page))
181 				putback_movable_page(page);
182 			else
183 				__ClearPageIsolated(page);
184 			unlock_page(page);
185 			put_page(page);
186 		} else {
187 			putback_lru_page(page);
188 			dec_node_page_state(page, NR_ISOLATED_ANON +
189 					page_is_file_cache(page));
190 		}
191 	}
192 }
193 
194 /*
195  * Restore a potential migration pte to a working pte entry
196  */
197 static int remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198 				 unsigned long addr, void *old)
199 {
200 	struct page_vma_mapped_walk pvmw = {
201 		.page = old,
202 		.vma = vma,
203 		.address = addr,
204 		.flags = PVMW_SYNC | PVMW_MIGRATION,
205 	};
206 	struct page *new;
207 	pte_t pte;
208 	swp_entry_t entry;
209 
210 	VM_BUG_ON_PAGE(PageTail(page), page);
211 	while (page_vma_mapped_walk(&pvmw)) {
212 		new = page - pvmw.page->index +
213 			linear_page_index(vma, pvmw.address);
214 
215 		get_page(new);
216 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
217 		if (pte_swp_soft_dirty(*pvmw.pte))
218 			pte = pte_mksoft_dirty(pte);
219 
220 		/*
221 		 * Recheck VMA as permissions can change since migration started
222 		 */
223 		entry = pte_to_swp_entry(*pvmw.pte);
224 		if (is_write_migration_entry(entry))
225 			pte = maybe_mkwrite(pte, vma);
226 
227 #ifdef CONFIG_HUGETLB_PAGE
228 		if (PageHuge(new)) {
229 			pte = pte_mkhuge(pte);
230 			pte = arch_make_huge_pte(pte, vma, new, 0);
231 		}
232 #endif
233 		flush_dcache_page(new);
234 		set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
235 
236 		if (PageHuge(new)) {
237 			if (PageAnon(new))
238 				hugepage_add_anon_rmap(new, vma, pvmw.address);
239 			else
240 				page_dup_rmap(new, true);
241 		} else if (PageAnon(new))
242 			page_add_anon_rmap(new, vma, pvmw.address, false);
243 		else
244 			page_add_file_rmap(new, false);
245 
246 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 			mlock_vma_page(new);
248 
249 		/* No need to invalidate - it was non-present before */
250 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
251 	}
252 
253 	return SWAP_AGAIN;
254 }
255 
256 /*
257  * Get rid of all migration entries and replace them by
258  * references to the indicated page.
259  */
260 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
261 {
262 	struct rmap_walk_control rwc = {
263 		.rmap_one = remove_migration_pte,
264 		.arg = old,
265 	};
266 
267 	if (locked)
268 		rmap_walk_locked(new, &rwc);
269 	else
270 		rmap_walk(new, &rwc);
271 }
272 
273 /*
274  * Something used the pte of a page under migration. We need to
275  * get to the page and wait until migration is finished.
276  * When we return from this function the fault will be retried.
277  */
278 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
279 				spinlock_t *ptl)
280 {
281 	pte_t pte;
282 	swp_entry_t entry;
283 	struct page *page;
284 
285 	spin_lock(ptl);
286 	pte = *ptep;
287 	if (!is_swap_pte(pte))
288 		goto out;
289 
290 	entry = pte_to_swp_entry(pte);
291 	if (!is_migration_entry(entry))
292 		goto out;
293 
294 	page = migration_entry_to_page(entry);
295 
296 	/*
297 	 * Once radix-tree replacement of page migration started, page_count
298 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
299 	 * against a page without get_page().
300 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
301 	 * will occur again.
302 	 */
303 	if (!get_page_unless_zero(page))
304 		goto out;
305 	pte_unmap_unlock(ptep, ptl);
306 	wait_on_page_locked(page);
307 	put_page(page);
308 	return;
309 out:
310 	pte_unmap_unlock(ptep, ptl);
311 }
312 
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314 				unsigned long address)
315 {
316 	spinlock_t *ptl = pte_lockptr(mm, pmd);
317 	pte_t *ptep = pte_offset_map(pmd, address);
318 	__migration_entry_wait(mm, ptep, ptl);
319 }
320 
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322 		struct mm_struct *mm, pte_t *pte)
323 {
324 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325 	__migration_entry_wait(mm, pte, ptl);
326 }
327 
328 #ifdef CONFIG_BLOCK
329 /* Returns true if all buffers are successfully locked */
330 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
331 							enum migrate_mode mode)
332 {
333 	struct buffer_head *bh = head;
334 
335 	/* Simple case, sync compaction */
336 	if (mode != MIGRATE_ASYNC) {
337 		do {
338 			get_bh(bh);
339 			lock_buffer(bh);
340 			bh = bh->b_this_page;
341 
342 		} while (bh != head);
343 
344 		return true;
345 	}
346 
347 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
348 	do {
349 		get_bh(bh);
350 		if (!trylock_buffer(bh)) {
351 			/*
352 			 * We failed to lock the buffer and cannot stall in
353 			 * async migration. Release the taken locks
354 			 */
355 			struct buffer_head *failed_bh = bh;
356 			put_bh(failed_bh);
357 			bh = head;
358 			while (bh != failed_bh) {
359 				unlock_buffer(bh);
360 				put_bh(bh);
361 				bh = bh->b_this_page;
362 			}
363 			return false;
364 		}
365 
366 		bh = bh->b_this_page;
367 	} while (bh != head);
368 	return true;
369 }
370 #else
371 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
372 							enum migrate_mode mode)
373 {
374 	return true;
375 }
376 #endif /* CONFIG_BLOCK */
377 
378 /*
379  * Replace the page in the mapping.
380  *
381  * The number of remaining references must be:
382  * 1 for anonymous pages without a mapping
383  * 2 for pages with a mapping
384  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
385  */
386 int migrate_page_move_mapping(struct address_space *mapping,
387 		struct page *newpage, struct page *page,
388 		struct buffer_head *head, enum migrate_mode mode,
389 		int extra_count)
390 {
391 	struct zone *oldzone, *newzone;
392 	int dirty;
393 	int expected_count = 1 + extra_count;
394 	void **pslot;
395 
396 	if (!mapping) {
397 		/* Anonymous page without mapping */
398 		if (page_count(page) != expected_count)
399 			return -EAGAIN;
400 
401 		/* No turning back from here */
402 		newpage->index = page->index;
403 		newpage->mapping = page->mapping;
404 		if (PageSwapBacked(page))
405 			__SetPageSwapBacked(newpage);
406 
407 		return MIGRATEPAGE_SUCCESS;
408 	}
409 
410 	oldzone = page_zone(page);
411 	newzone = page_zone(newpage);
412 
413 	spin_lock_irq(&mapping->tree_lock);
414 
415 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
416  					page_index(page));
417 
418 	expected_count += 1 + page_has_private(page);
419 	if (page_count(page) != expected_count ||
420 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
421 		spin_unlock_irq(&mapping->tree_lock);
422 		return -EAGAIN;
423 	}
424 
425 	if (!page_ref_freeze(page, expected_count)) {
426 		spin_unlock_irq(&mapping->tree_lock);
427 		return -EAGAIN;
428 	}
429 
430 	/*
431 	 * In the async migration case of moving a page with buffers, lock the
432 	 * buffers using trylock before the mapping is moved. If the mapping
433 	 * was moved, we later failed to lock the buffers and could not move
434 	 * the mapping back due to an elevated page count, we would have to
435 	 * block waiting on other references to be dropped.
436 	 */
437 	if (mode == MIGRATE_ASYNC && head &&
438 			!buffer_migrate_lock_buffers(head, mode)) {
439 		page_ref_unfreeze(page, expected_count);
440 		spin_unlock_irq(&mapping->tree_lock);
441 		return -EAGAIN;
442 	}
443 
444 	/*
445 	 * Now we know that no one else is looking at the page:
446 	 * no turning back from here.
447 	 */
448 	newpage->index = page->index;
449 	newpage->mapping = page->mapping;
450 	get_page(newpage);	/* add cache reference */
451 	if (PageSwapBacked(page)) {
452 		__SetPageSwapBacked(newpage);
453 		if (PageSwapCache(page)) {
454 			SetPageSwapCache(newpage);
455 			set_page_private(newpage, page_private(page));
456 		}
457 	} else {
458 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
459 	}
460 
461 	/* Move dirty while page refs frozen and newpage not yet exposed */
462 	dirty = PageDirty(page);
463 	if (dirty) {
464 		ClearPageDirty(page);
465 		SetPageDirty(newpage);
466 	}
467 
468 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
469 
470 	/*
471 	 * Drop cache reference from old page by unfreezing
472 	 * to one less reference.
473 	 * We know this isn't the last reference.
474 	 */
475 	page_ref_unfreeze(page, expected_count - 1);
476 
477 	spin_unlock(&mapping->tree_lock);
478 	/* Leave irq disabled to prevent preemption while updating stats */
479 
480 	/*
481 	 * If moved to a different zone then also account
482 	 * the page for that zone. Other VM counters will be
483 	 * taken care of when we establish references to the
484 	 * new page and drop references to the old page.
485 	 *
486 	 * Note that anonymous pages are accounted for
487 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
488 	 * are mapped to swap space.
489 	 */
490 	if (newzone != oldzone) {
491 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
492 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
493 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
494 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
495 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
496 		}
497 		if (dirty && mapping_cap_account_dirty(mapping)) {
498 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
499 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
500 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
501 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
502 		}
503 	}
504 	local_irq_enable();
505 
506 	return MIGRATEPAGE_SUCCESS;
507 }
508 EXPORT_SYMBOL(migrate_page_move_mapping);
509 
510 /*
511  * The expected number of remaining references is the same as that
512  * of migrate_page_move_mapping().
513  */
514 int migrate_huge_page_move_mapping(struct address_space *mapping,
515 				   struct page *newpage, struct page *page)
516 {
517 	int expected_count;
518 	void **pslot;
519 
520 	spin_lock_irq(&mapping->tree_lock);
521 
522 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
523 					page_index(page));
524 
525 	expected_count = 2 + page_has_private(page);
526 	if (page_count(page) != expected_count ||
527 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
528 		spin_unlock_irq(&mapping->tree_lock);
529 		return -EAGAIN;
530 	}
531 
532 	if (!page_ref_freeze(page, expected_count)) {
533 		spin_unlock_irq(&mapping->tree_lock);
534 		return -EAGAIN;
535 	}
536 
537 	newpage->index = page->index;
538 	newpage->mapping = page->mapping;
539 
540 	get_page(newpage);
541 
542 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
543 
544 	page_ref_unfreeze(page, expected_count - 1);
545 
546 	spin_unlock_irq(&mapping->tree_lock);
547 
548 	return MIGRATEPAGE_SUCCESS;
549 }
550 
551 /*
552  * Gigantic pages are so large that we do not guarantee that page++ pointer
553  * arithmetic will work across the entire page.  We need something more
554  * specialized.
555  */
556 static void __copy_gigantic_page(struct page *dst, struct page *src,
557 				int nr_pages)
558 {
559 	int i;
560 	struct page *dst_base = dst;
561 	struct page *src_base = src;
562 
563 	for (i = 0; i < nr_pages; ) {
564 		cond_resched();
565 		copy_highpage(dst, src);
566 
567 		i++;
568 		dst = mem_map_next(dst, dst_base, i);
569 		src = mem_map_next(src, src_base, i);
570 	}
571 }
572 
573 static void copy_huge_page(struct page *dst, struct page *src)
574 {
575 	int i;
576 	int nr_pages;
577 
578 	if (PageHuge(src)) {
579 		/* hugetlbfs page */
580 		struct hstate *h = page_hstate(src);
581 		nr_pages = pages_per_huge_page(h);
582 
583 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
584 			__copy_gigantic_page(dst, src, nr_pages);
585 			return;
586 		}
587 	} else {
588 		/* thp page */
589 		BUG_ON(!PageTransHuge(src));
590 		nr_pages = hpage_nr_pages(src);
591 	}
592 
593 	for (i = 0; i < nr_pages; i++) {
594 		cond_resched();
595 		copy_highpage(dst + i, src + i);
596 	}
597 }
598 
599 /*
600  * Copy the page to its new location
601  */
602 void migrate_page_copy(struct page *newpage, struct page *page)
603 {
604 	int cpupid;
605 
606 	if (PageHuge(page) || PageTransHuge(page))
607 		copy_huge_page(newpage, page);
608 	else
609 		copy_highpage(newpage, page);
610 
611 	if (PageError(page))
612 		SetPageError(newpage);
613 	if (PageReferenced(page))
614 		SetPageReferenced(newpage);
615 	if (PageUptodate(page))
616 		SetPageUptodate(newpage);
617 	if (TestClearPageActive(page)) {
618 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
619 		SetPageActive(newpage);
620 	} else if (TestClearPageUnevictable(page))
621 		SetPageUnevictable(newpage);
622 	if (PageChecked(page))
623 		SetPageChecked(newpage);
624 	if (PageMappedToDisk(page))
625 		SetPageMappedToDisk(newpage);
626 
627 	/* Move dirty on pages not done by migrate_page_move_mapping() */
628 	if (PageDirty(page))
629 		SetPageDirty(newpage);
630 
631 	if (page_is_young(page))
632 		set_page_young(newpage);
633 	if (page_is_idle(page))
634 		set_page_idle(newpage);
635 
636 	/*
637 	 * Copy NUMA information to the new page, to prevent over-eager
638 	 * future migrations of this same page.
639 	 */
640 	cpupid = page_cpupid_xchg_last(page, -1);
641 	page_cpupid_xchg_last(newpage, cpupid);
642 
643 	ksm_migrate_page(newpage, page);
644 	/*
645 	 * Please do not reorder this without considering how mm/ksm.c's
646 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
647 	 */
648 	if (PageSwapCache(page))
649 		ClearPageSwapCache(page);
650 	ClearPagePrivate(page);
651 	set_page_private(page, 0);
652 
653 	/*
654 	 * If any waiters have accumulated on the new page then
655 	 * wake them up.
656 	 */
657 	if (PageWriteback(newpage))
658 		end_page_writeback(newpage);
659 
660 	copy_page_owner(page, newpage);
661 
662 	mem_cgroup_migrate(page, newpage);
663 }
664 EXPORT_SYMBOL(migrate_page_copy);
665 
666 /************************************************************
667  *                    Migration functions
668  ***********************************************************/
669 
670 /*
671  * Common logic to directly migrate a single LRU page suitable for
672  * pages that do not use PagePrivate/PagePrivate2.
673  *
674  * Pages are locked upon entry and exit.
675  */
676 int migrate_page(struct address_space *mapping,
677 		struct page *newpage, struct page *page,
678 		enum migrate_mode mode)
679 {
680 	int rc;
681 
682 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
683 
684 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
685 
686 	if (rc != MIGRATEPAGE_SUCCESS)
687 		return rc;
688 
689 	migrate_page_copy(newpage, page);
690 	return MIGRATEPAGE_SUCCESS;
691 }
692 EXPORT_SYMBOL(migrate_page);
693 
694 #ifdef CONFIG_BLOCK
695 /*
696  * Migration function for pages with buffers. This function can only be used
697  * if the underlying filesystem guarantees that no other references to "page"
698  * exist.
699  */
700 int buffer_migrate_page(struct address_space *mapping,
701 		struct page *newpage, struct page *page, enum migrate_mode mode)
702 {
703 	struct buffer_head *bh, *head;
704 	int rc;
705 
706 	if (!page_has_buffers(page))
707 		return migrate_page(mapping, newpage, page, mode);
708 
709 	head = page_buffers(page);
710 
711 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
712 
713 	if (rc != MIGRATEPAGE_SUCCESS)
714 		return rc;
715 
716 	/*
717 	 * In the async case, migrate_page_move_mapping locked the buffers
718 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
719 	 * need to be locked now
720 	 */
721 	if (mode != MIGRATE_ASYNC)
722 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
723 
724 	ClearPagePrivate(page);
725 	set_page_private(newpage, page_private(page));
726 	set_page_private(page, 0);
727 	put_page(page);
728 	get_page(newpage);
729 
730 	bh = head;
731 	do {
732 		set_bh_page(bh, newpage, bh_offset(bh));
733 		bh = bh->b_this_page;
734 
735 	} while (bh != head);
736 
737 	SetPagePrivate(newpage);
738 
739 	migrate_page_copy(newpage, page);
740 
741 	bh = head;
742 	do {
743 		unlock_buffer(bh);
744  		put_bh(bh);
745 		bh = bh->b_this_page;
746 
747 	} while (bh != head);
748 
749 	return MIGRATEPAGE_SUCCESS;
750 }
751 EXPORT_SYMBOL(buffer_migrate_page);
752 #endif
753 
754 /*
755  * Writeback a page to clean the dirty state
756  */
757 static int writeout(struct address_space *mapping, struct page *page)
758 {
759 	struct writeback_control wbc = {
760 		.sync_mode = WB_SYNC_NONE,
761 		.nr_to_write = 1,
762 		.range_start = 0,
763 		.range_end = LLONG_MAX,
764 		.for_reclaim = 1
765 	};
766 	int rc;
767 
768 	if (!mapping->a_ops->writepage)
769 		/* No write method for the address space */
770 		return -EINVAL;
771 
772 	if (!clear_page_dirty_for_io(page))
773 		/* Someone else already triggered a write */
774 		return -EAGAIN;
775 
776 	/*
777 	 * A dirty page may imply that the underlying filesystem has
778 	 * the page on some queue. So the page must be clean for
779 	 * migration. Writeout may mean we loose the lock and the
780 	 * page state is no longer what we checked for earlier.
781 	 * At this point we know that the migration attempt cannot
782 	 * be successful.
783 	 */
784 	remove_migration_ptes(page, page, false);
785 
786 	rc = mapping->a_ops->writepage(page, &wbc);
787 
788 	if (rc != AOP_WRITEPAGE_ACTIVATE)
789 		/* unlocked. Relock */
790 		lock_page(page);
791 
792 	return (rc < 0) ? -EIO : -EAGAIN;
793 }
794 
795 /*
796  * Default handling if a filesystem does not provide a migration function.
797  */
798 static int fallback_migrate_page(struct address_space *mapping,
799 	struct page *newpage, struct page *page, enum migrate_mode mode)
800 {
801 	if (PageDirty(page)) {
802 		/* Only writeback pages in full synchronous migration */
803 		if (mode != MIGRATE_SYNC)
804 			return -EBUSY;
805 		return writeout(mapping, page);
806 	}
807 
808 	/*
809 	 * Buffers may be managed in a filesystem specific way.
810 	 * We must have no buffers or drop them.
811 	 */
812 	if (page_has_private(page) &&
813 	    !try_to_release_page(page, GFP_KERNEL))
814 		return -EAGAIN;
815 
816 	return migrate_page(mapping, newpage, page, mode);
817 }
818 
819 /*
820  * Move a page to a newly allocated page
821  * The page is locked and all ptes have been successfully removed.
822  *
823  * The new page will have replaced the old page if this function
824  * is successful.
825  *
826  * Return value:
827  *   < 0 - error code
828  *  MIGRATEPAGE_SUCCESS - success
829  */
830 static int move_to_new_page(struct page *newpage, struct page *page,
831 				enum migrate_mode mode)
832 {
833 	struct address_space *mapping;
834 	int rc = -EAGAIN;
835 	bool is_lru = !__PageMovable(page);
836 
837 	VM_BUG_ON_PAGE(!PageLocked(page), page);
838 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
839 
840 	mapping = page_mapping(page);
841 
842 	if (likely(is_lru)) {
843 		if (!mapping)
844 			rc = migrate_page(mapping, newpage, page, mode);
845 		else if (mapping->a_ops->migratepage)
846 			/*
847 			 * Most pages have a mapping and most filesystems
848 			 * provide a migratepage callback. Anonymous pages
849 			 * are part of swap space which also has its own
850 			 * migratepage callback. This is the most common path
851 			 * for page migration.
852 			 */
853 			rc = mapping->a_ops->migratepage(mapping, newpage,
854 							page, mode);
855 		else
856 			rc = fallback_migrate_page(mapping, newpage,
857 							page, mode);
858 	} else {
859 		/*
860 		 * In case of non-lru page, it could be released after
861 		 * isolation step. In that case, we shouldn't try migration.
862 		 */
863 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
864 		if (!PageMovable(page)) {
865 			rc = MIGRATEPAGE_SUCCESS;
866 			__ClearPageIsolated(page);
867 			goto out;
868 		}
869 
870 		rc = mapping->a_ops->migratepage(mapping, newpage,
871 						page, mode);
872 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
873 			!PageIsolated(page));
874 	}
875 
876 	/*
877 	 * When successful, old pagecache page->mapping must be cleared before
878 	 * page is freed; but stats require that PageAnon be left as PageAnon.
879 	 */
880 	if (rc == MIGRATEPAGE_SUCCESS) {
881 		if (__PageMovable(page)) {
882 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
883 
884 			/*
885 			 * We clear PG_movable under page_lock so any compactor
886 			 * cannot try to migrate this page.
887 			 */
888 			__ClearPageIsolated(page);
889 		}
890 
891 		/*
892 		 * Anonymous and movable page->mapping will be cleard by
893 		 * free_pages_prepare so don't reset it here for keeping
894 		 * the type to work PageAnon, for example.
895 		 */
896 		if (!PageMappingFlags(page))
897 			page->mapping = NULL;
898 	}
899 out:
900 	return rc;
901 }
902 
903 static int __unmap_and_move(struct page *page, struct page *newpage,
904 				int force, enum migrate_mode mode)
905 {
906 	int rc = -EAGAIN;
907 	int page_was_mapped = 0;
908 	struct anon_vma *anon_vma = NULL;
909 	bool is_lru = !__PageMovable(page);
910 
911 	if (!trylock_page(page)) {
912 		if (!force || mode == MIGRATE_ASYNC)
913 			goto out;
914 
915 		/*
916 		 * It's not safe for direct compaction to call lock_page.
917 		 * For example, during page readahead pages are added locked
918 		 * to the LRU. Later, when the IO completes the pages are
919 		 * marked uptodate and unlocked. However, the queueing
920 		 * could be merging multiple pages for one bio (e.g.
921 		 * mpage_readpages). If an allocation happens for the
922 		 * second or third page, the process can end up locking
923 		 * the same page twice and deadlocking. Rather than
924 		 * trying to be clever about what pages can be locked,
925 		 * avoid the use of lock_page for direct compaction
926 		 * altogether.
927 		 */
928 		if (current->flags & PF_MEMALLOC)
929 			goto out;
930 
931 		lock_page(page);
932 	}
933 
934 	if (PageWriteback(page)) {
935 		/*
936 		 * Only in the case of a full synchronous migration is it
937 		 * necessary to wait for PageWriteback. In the async case,
938 		 * the retry loop is too short and in the sync-light case,
939 		 * the overhead of stalling is too much
940 		 */
941 		if (mode != MIGRATE_SYNC) {
942 			rc = -EBUSY;
943 			goto out_unlock;
944 		}
945 		if (!force)
946 			goto out_unlock;
947 		wait_on_page_writeback(page);
948 	}
949 
950 	/*
951 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
952 	 * we cannot notice that anon_vma is freed while we migrates a page.
953 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
954 	 * of migration. File cache pages are no problem because of page_lock()
955 	 * File Caches may use write_page() or lock_page() in migration, then,
956 	 * just care Anon page here.
957 	 *
958 	 * Only page_get_anon_vma() understands the subtleties of
959 	 * getting a hold on an anon_vma from outside one of its mms.
960 	 * But if we cannot get anon_vma, then we won't need it anyway,
961 	 * because that implies that the anon page is no longer mapped
962 	 * (and cannot be remapped so long as we hold the page lock).
963 	 */
964 	if (PageAnon(page) && !PageKsm(page))
965 		anon_vma = page_get_anon_vma(page);
966 
967 	/*
968 	 * Block others from accessing the new page when we get around to
969 	 * establishing additional references. We are usually the only one
970 	 * holding a reference to newpage at this point. We used to have a BUG
971 	 * here if trylock_page(newpage) fails, but would like to allow for
972 	 * cases where there might be a race with the previous use of newpage.
973 	 * This is much like races on refcount of oldpage: just don't BUG().
974 	 */
975 	if (unlikely(!trylock_page(newpage)))
976 		goto out_unlock;
977 
978 	if (unlikely(!is_lru)) {
979 		rc = move_to_new_page(newpage, page, mode);
980 		goto out_unlock_both;
981 	}
982 
983 	/*
984 	 * Corner case handling:
985 	 * 1. When a new swap-cache page is read into, it is added to the LRU
986 	 * and treated as swapcache but it has no rmap yet.
987 	 * Calling try_to_unmap() against a page->mapping==NULL page will
988 	 * trigger a BUG.  So handle it here.
989 	 * 2. An orphaned page (see truncate_complete_page) might have
990 	 * fs-private metadata. The page can be picked up due to memory
991 	 * offlining.  Everywhere else except page reclaim, the page is
992 	 * invisible to the vm, so the page can not be migrated.  So try to
993 	 * free the metadata, so the page can be freed.
994 	 */
995 	if (!page->mapping) {
996 		VM_BUG_ON_PAGE(PageAnon(page), page);
997 		if (page_has_private(page)) {
998 			try_to_free_buffers(page);
999 			goto out_unlock_both;
1000 		}
1001 	} else if (page_mapped(page)) {
1002 		/* Establish migration ptes */
1003 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1004 				page);
1005 		try_to_unmap(page,
1006 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1007 		page_was_mapped = 1;
1008 	}
1009 
1010 	if (!page_mapped(page))
1011 		rc = move_to_new_page(newpage, page, mode);
1012 
1013 	if (page_was_mapped)
1014 		remove_migration_ptes(page,
1015 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1016 
1017 out_unlock_both:
1018 	unlock_page(newpage);
1019 out_unlock:
1020 	/* Drop an anon_vma reference if we took one */
1021 	if (anon_vma)
1022 		put_anon_vma(anon_vma);
1023 	unlock_page(page);
1024 out:
1025 	/*
1026 	 * If migration is successful, decrease refcount of the newpage
1027 	 * which will not free the page because new page owner increased
1028 	 * refcounter. As well, if it is LRU page, add the page to LRU
1029 	 * list in here.
1030 	 */
1031 	if (rc == MIGRATEPAGE_SUCCESS) {
1032 		if (unlikely(__PageMovable(newpage)))
1033 			put_page(newpage);
1034 		else
1035 			putback_lru_page(newpage);
1036 	}
1037 
1038 	return rc;
1039 }
1040 
1041 /*
1042  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1043  * around it.
1044  */
1045 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1046 #define ICE_noinline noinline
1047 #else
1048 #define ICE_noinline
1049 #endif
1050 
1051 /*
1052  * Obtain the lock on page, remove all ptes and migrate the page
1053  * to the newly allocated page in newpage.
1054  */
1055 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1056 				   free_page_t put_new_page,
1057 				   unsigned long private, struct page *page,
1058 				   int force, enum migrate_mode mode,
1059 				   enum migrate_reason reason)
1060 {
1061 	int rc = MIGRATEPAGE_SUCCESS;
1062 	int *result = NULL;
1063 	struct page *newpage;
1064 
1065 	newpage = get_new_page(page, private, &result);
1066 	if (!newpage)
1067 		return -ENOMEM;
1068 
1069 	if (page_count(page) == 1) {
1070 		/* page was freed from under us. So we are done. */
1071 		ClearPageActive(page);
1072 		ClearPageUnevictable(page);
1073 		if (unlikely(__PageMovable(page))) {
1074 			lock_page(page);
1075 			if (!PageMovable(page))
1076 				__ClearPageIsolated(page);
1077 			unlock_page(page);
1078 		}
1079 		if (put_new_page)
1080 			put_new_page(newpage, private);
1081 		else
1082 			put_page(newpage);
1083 		goto out;
1084 	}
1085 
1086 	if (unlikely(PageTransHuge(page))) {
1087 		lock_page(page);
1088 		rc = split_huge_page(page);
1089 		unlock_page(page);
1090 		if (rc)
1091 			goto out;
1092 	}
1093 
1094 	rc = __unmap_and_move(page, newpage, force, mode);
1095 	if (rc == MIGRATEPAGE_SUCCESS)
1096 		set_page_owner_migrate_reason(newpage, reason);
1097 
1098 out:
1099 	if (rc != -EAGAIN) {
1100 		/*
1101 		 * A page that has been migrated has all references
1102 		 * removed and will be freed. A page that has not been
1103 		 * migrated will have kepts its references and be
1104 		 * restored.
1105 		 */
1106 		list_del(&page->lru);
1107 
1108 		/*
1109 		 * Compaction can migrate also non-LRU pages which are
1110 		 * not accounted to NR_ISOLATED_*. They can be recognized
1111 		 * as __PageMovable
1112 		 */
1113 		if (likely(!__PageMovable(page)))
1114 			dec_node_page_state(page, NR_ISOLATED_ANON +
1115 					page_is_file_cache(page));
1116 	}
1117 
1118 	/*
1119 	 * If migration is successful, releases reference grabbed during
1120 	 * isolation. Otherwise, restore the page to right list unless
1121 	 * we want to retry.
1122 	 */
1123 	if (rc == MIGRATEPAGE_SUCCESS) {
1124 		put_page(page);
1125 		if (reason == MR_MEMORY_FAILURE) {
1126 			/*
1127 			 * Set PG_HWPoison on just freed page
1128 			 * intentionally. Although it's rather weird,
1129 			 * it's how HWPoison flag works at the moment.
1130 			 */
1131 			if (!test_set_page_hwpoison(page))
1132 				num_poisoned_pages_inc();
1133 		}
1134 	} else {
1135 		if (rc != -EAGAIN) {
1136 			if (likely(!__PageMovable(page))) {
1137 				putback_lru_page(page);
1138 				goto put_new;
1139 			}
1140 
1141 			lock_page(page);
1142 			if (PageMovable(page))
1143 				putback_movable_page(page);
1144 			else
1145 				__ClearPageIsolated(page);
1146 			unlock_page(page);
1147 			put_page(page);
1148 		}
1149 put_new:
1150 		if (put_new_page)
1151 			put_new_page(newpage, private);
1152 		else
1153 			put_page(newpage);
1154 	}
1155 
1156 	if (result) {
1157 		if (rc)
1158 			*result = rc;
1159 		else
1160 			*result = page_to_nid(newpage);
1161 	}
1162 	return rc;
1163 }
1164 
1165 /*
1166  * Counterpart of unmap_and_move_page() for hugepage migration.
1167  *
1168  * This function doesn't wait the completion of hugepage I/O
1169  * because there is no race between I/O and migration for hugepage.
1170  * Note that currently hugepage I/O occurs only in direct I/O
1171  * where no lock is held and PG_writeback is irrelevant,
1172  * and writeback status of all subpages are counted in the reference
1173  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1174  * under direct I/O, the reference of the head page is 512 and a bit more.)
1175  * This means that when we try to migrate hugepage whose subpages are
1176  * doing direct I/O, some references remain after try_to_unmap() and
1177  * hugepage migration fails without data corruption.
1178  *
1179  * There is also no race when direct I/O is issued on the page under migration,
1180  * because then pte is replaced with migration swap entry and direct I/O code
1181  * will wait in the page fault for migration to complete.
1182  */
1183 static int unmap_and_move_huge_page(new_page_t get_new_page,
1184 				free_page_t put_new_page, unsigned long private,
1185 				struct page *hpage, int force,
1186 				enum migrate_mode mode, int reason)
1187 {
1188 	int rc = -EAGAIN;
1189 	int *result = NULL;
1190 	int page_was_mapped = 0;
1191 	struct page *new_hpage;
1192 	struct anon_vma *anon_vma = NULL;
1193 
1194 	/*
1195 	 * Movability of hugepages depends on architectures and hugepage size.
1196 	 * This check is necessary because some callers of hugepage migration
1197 	 * like soft offline and memory hotremove don't walk through page
1198 	 * tables or check whether the hugepage is pmd-based or not before
1199 	 * kicking migration.
1200 	 */
1201 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1202 		putback_active_hugepage(hpage);
1203 		return -ENOSYS;
1204 	}
1205 
1206 	new_hpage = get_new_page(hpage, private, &result);
1207 	if (!new_hpage)
1208 		return -ENOMEM;
1209 
1210 	if (!trylock_page(hpage)) {
1211 		if (!force || mode != MIGRATE_SYNC)
1212 			goto out;
1213 		lock_page(hpage);
1214 	}
1215 
1216 	if (PageAnon(hpage))
1217 		anon_vma = page_get_anon_vma(hpage);
1218 
1219 	if (unlikely(!trylock_page(new_hpage)))
1220 		goto put_anon;
1221 
1222 	if (page_mapped(hpage)) {
1223 		try_to_unmap(hpage,
1224 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1225 		page_was_mapped = 1;
1226 	}
1227 
1228 	if (!page_mapped(hpage))
1229 		rc = move_to_new_page(new_hpage, hpage, mode);
1230 
1231 	if (page_was_mapped)
1232 		remove_migration_ptes(hpage,
1233 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1234 
1235 	unlock_page(new_hpage);
1236 
1237 put_anon:
1238 	if (anon_vma)
1239 		put_anon_vma(anon_vma);
1240 
1241 	if (rc == MIGRATEPAGE_SUCCESS) {
1242 		hugetlb_cgroup_migrate(hpage, new_hpage);
1243 		put_new_page = NULL;
1244 		set_page_owner_migrate_reason(new_hpage, reason);
1245 	}
1246 
1247 	unlock_page(hpage);
1248 out:
1249 	if (rc != -EAGAIN)
1250 		putback_active_hugepage(hpage);
1251 
1252 	/*
1253 	 * If migration was not successful and there's a freeing callback, use
1254 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1255 	 * isolation.
1256 	 */
1257 	if (put_new_page)
1258 		put_new_page(new_hpage, private);
1259 	else
1260 		putback_active_hugepage(new_hpage);
1261 
1262 	if (result) {
1263 		if (rc)
1264 			*result = rc;
1265 		else
1266 			*result = page_to_nid(new_hpage);
1267 	}
1268 	return rc;
1269 }
1270 
1271 /*
1272  * migrate_pages - migrate the pages specified in a list, to the free pages
1273  *		   supplied as the target for the page migration
1274  *
1275  * @from:		The list of pages to be migrated.
1276  * @get_new_page:	The function used to allocate free pages to be used
1277  *			as the target of the page migration.
1278  * @put_new_page:	The function used to free target pages if migration
1279  *			fails, or NULL if no special handling is necessary.
1280  * @private:		Private data to be passed on to get_new_page()
1281  * @mode:		The migration mode that specifies the constraints for
1282  *			page migration, if any.
1283  * @reason:		The reason for page migration.
1284  *
1285  * The function returns after 10 attempts or if no pages are movable any more
1286  * because the list has become empty or no retryable pages exist any more.
1287  * The caller should call putback_movable_pages() to return pages to the LRU
1288  * or free list only if ret != 0.
1289  *
1290  * Returns the number of pages that were not migrated, or an error code.
1291  */
1292 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1293 		free_page_t put_new_page, unsigned long private,
1294 		enum migrate_mode mode, int reason)
1295 {
1296 	int retry = 1;
1297 	int nr_failed = 0;
1298 	int nr_succeeded = 0;
1299 	int pass = 0;
1300 	struct page *page;
1301 	struct page *page2;
1302 	int swapwrite = current->flags & PF_SWAPWRITE;
1303 	int rc;
1304 
1305 	if (!swapwrite)
1306 		current->flags |= PF_SWAPWRITE;
1307 
1308 	for(pass = 0; pass < 10 && retry; pass++) {
1309 		retry = 0;
1310 
1311 		list_for_each_entry_safe(page, page2, from, lru) {
1312 			cond_resched();
1313 
1314 			if (PageHuge(page))
1315 				rc = unmap_and_move_huge_page(get_new_page,
1316 						put_new_page, private, page,
1317 						pass > 2, mode, reason);
1318 			else
1319 				rc = unmap_and_move(get_new_page, put_new_page,
1320 						private, page, pass > 2, mode,
1321 						reason);
1322 
1323 			switch(rc) {
1324 			case -ENOMEM:
1325 				nr_failed++;
1326 				goto out;
1327 			case -EAGAIN:
1328 				retry++;
1329 				break;
1330 			case MIGRATEPAGE_SUCCESS:
1331 				nr_succeeded++;
1332 				break;
1333 			default:
1334 				/*
1335 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1336 				 * unlike -EAGAIN case, the failed page is
1337 				 * removed from migration page list and not
1338 				 * retried in the next outer loop.
1339 				 */
1340 				nr_failed++;
1341 				break;
1342 			}
1343 		}
1344 	}
1345 	nr_failed += retry;
1346 	rc = nr_failed;
1347 out:
1348 	if (nr_succeeded)
1349 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1350 	if (nr_failed)
1351 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1352 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1353 
1354 	if (!swapwrite)
1355 		current->flags &= ~PF_SWAPWRITE;
1356 
1357 	return rc;
1358 }
1359 
1360 #ifdef CONFIG_NUMA
1361 /*
1362  * Move a list of individual pages
1363  */
1364 struct page_to_node {
1365 	unsigned long addr;
1366 	struct page *page;
1367 	int node;
1368 	int status;
1369 };
1370 
1371 static struct page *new_page_node(struct page *p, unsigned long private,
1372 		int **result)
1373 {
1374 	struct page_to_node *pm = (struct page_to_node *)private;
1375 
1376 	while (pm->node != MAX_NUMNODES && pm->page != p)
1377 		pm++;
1378 
1379 	if (pm->node == MAX_NUMNODES)
1380 		return NULL;
1381 
1382 	*result = &pm->status;
1383 
1384 	if (PageHuge(p))
1385 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1386 					pm->node);
1387 	else
1388 		return __alloc_pages_node(pm->node,
1389 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1390 }
1391 
1392 /*
1393  * Move a set of pages as indicated in the pm array. The addr
1394  * field must be set to the virtual address of the page to be moved
1395  * and the node number must contain a valid target node.
1396  * The pm array ends with node = MAX_NUMNODES.
1397  */
1398 static int do_move_page_to_node_array(struct mm_struct *mm,
1399 				      struct page_to_node *pm,
1400 				      int migrate_all)
1401 {
1402 	int err;
1403 	struct page_to_node *pp;
1404 	LIST_HEAD(pagelist);
1405 
1406 	down_read(&mm->mmap_sem);
1407 
1408 	/*
1409 	 * Build a list of pages to migrate
1410 	 */
1411 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1412 		struct vm_area_struct *vma;
1413 		struct page *page;
1414 
1415 		err = -EFAULT;
1416 		vma = find_vma(mm, pp->addr);
1417 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1418 			goto set_status;
1419 
1420 		/* FOLL_DUMP to ignore special (like zero) pages */
1421 		page = follow_page(vma, pp->addr,
1422 				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1423 
1424 		err = PTR_ERR(page);
1425 		if (IS_ERR(page))
1426 			goto set_status;
1427 
1428 		err = -ENOENT;
1429 		if (!page)
1430 			goto set_status;
1431 
1432 		pp->page = page;
1433 		err = page_to_nid(page);
1434 
1435 		if (err == pp->node)
1436 			/*
1437 			 * Node already in the right place
1438 			 */
1439 			goto put_and_set;
1440 
1441 		err = -EACCES;
1442 		if (page_mapcount(page) > 1 &&
1443 				!migrate_all)
1444 			goto put_and_set;
1445 
1446 		if (PageHuge(page)) {
1447 			if (PageHead(page))
1448 				isolate_huge_page(page, &pagelist);
1449 			goto put_and_set;
1450 		}
1451 
1452 		err = isolate_lru_page(page);
1453 		if (!err) {
1454 			list_add_tail(&page->lru, &pagelist);
1455 			inc_node_page_state(page, NR_ISOLATED_ANON +
1456 					    page_is_file_cache(page));
1457 		}
1458 put_and_set:
1459 		/*
1460 		 * Either remove the duplicate refcount from
1461 		 * isolate_lru_page() or drop the page ref if it was
1462 		 * not isolated.
1463 		 */
1464 		put_page(page);
1465 set_status:
1466 		pp->status = err;
1467 	}
1468 
1469 	err = 0;
1470 	if (!list_empty(&pagelist)) {
1471 		err = migrate_pages(&pagelist, new_page_node, NULL,
1472 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1473 		if (err)
1474 			putback_movable_pages(&pagelist);
1475 	}
1476 
1477 	up_read(&mm->mmap_sem);
1478 	return err;
1479 }
1480 
1481 /*
1482  * Migrate an array of page address onto an array of nodes and fill
1483  * the corresponding array of status.
1484  */
1485 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1486 			 unsigned long nr_pages,
1487 			 const void __user * __user *pages,
1488 			 const int __user *nodes,
1489 			 int __user *status, int flags)
1490 {
1491 	struct page_to_node *pm;
1492 	unsigned long chunk_nr_pages;
1493 	unsigned long chunk_start;
1494 	int err;
1495 
1496 	err = -ENOMEM;
1497 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1498 	if (!pm)
1499 		goto out;
1500 
1501 	migrate_prep();
1502 
1503 	/*
1504 	 * Store a chunk of page_to_node array in a page,
1505 	 * but keep the last one as a marker
1506 	 */
1507 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1508 
1509 	for (chunk_start = 0;
1510 	     chunk_start < nr_pages;
1511 	     chunk_start += chunk_nr_pages) {
1512 		int j;
1513 
1514 		if (chunk_start + chunk_nr_pages > nr_pages)
1515 			chunk_nr_pages = nr_pages - chunk_start;
1516 
1517 		/* fill the chunk pm with addrs and nodes from user-space */
1518 		for (j = 0; j < chunk_nr_pages; j++) {
1519 			const void __user *p;
1520 			int node;
1521 
1522 			err = -EFAULT;
1523 			if (get_user(p, pages + j + chunk_start))
1524 				goto out_pm;
1525 			pm[j].addr = (unsigned long) p;
1526 
1527 			if (get_user(node, nodes + j + chunk_start))
1528 				goto out_pm;
1529 
1530 			err = -ENODEV;
1531 			if (node < 0 || node >= MAX_NUMNODES)
1532 				goto out_pm;
1533 
1534 			if (!node_state(node, N_MEMORY))
1535 				goto out_pm;
1536 
1537 			err = -EACCES;
1538 			if (!node_isset(node, task_nodes))
1539 				goto out_pm;
1540 
1541 			pm[j].node = node;
1542 		}
1543 
1544 		/* End marker for this chunk */
1545 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1546 
1547 		/* Migrate this chunk */
1548 		err = do_move_page_to_node_array(mm, pm,
1549 						 flags & MPOL_MF_MOVE_ALL);
1550 		if (err < 0)
1551 			goto out_pm;
1552 
1553 		/* Return status information */
1554 		for (j = 0; j < chunk_nr_pages; j++)
1555 			if (put_user(pm[j].status, status + j + chunk_start)) {
1556 				err = -EFAULT;
1557 				goto out_pm;
1558 			}
1559 	}
1560 	err = 0;
1561 
1562 out_pm:
1563 	free_page((unsigned long)pm);
1564 out:
1565 	return err;
1566 }
1567 
1568 /*
1569  * Determine the nodes of an array of pages and store it in an array of status.
1570  */
1571 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1572 				const void __user **pages, int *status)
1573 {
1574 	unsigned long i;
1575 
1576 	down_read(&mm->mmap_sem);
1577 
1578 	for (i = 0; i < nr_pages; i++) {
1579 		unsigned long addr = (unsigned long)(*pages);
1580 		struct vm_area_struct *vma;
1581 		struct page *page;
1582 		int err = -EFAULT;
1583 
1584 		vma = find_vma(mm, addr);
1585 		if (!vma || addr < vma->vm_start)
1586 			goto set_status;
1587 
1588 		/* FOLL_DUMP to ignore special (like zero) pages */
1589 		page = follow_page(vma, addr, FOLL_DUMP);
1590 
1591 		err = PTR_ERR(page);
1592 		if (IS_ERR(page))
1593 			goto set_status;
1594 
1595 		err = page ? page_to_nid(page) : -ENOENT;
1596 set_status:
1597 		*status = err;
1598 
1599 		pages++;
1600 		status++;
1601 	}
1602 
1603 	up_read(&mm->mmap_sem);
1604 }
1605 
1606 /*
1607  * Determine the nodes of a user array of pages and store it in
1608  * a user array of status.
1609  */
1610 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1611 			 const void __user * __user *pages,
1612 			 int __user *status)
1613 {
1614 #define DO_PAGES_STAT_CHUNK_NR 16
1615 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1616 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1617 
1618 	while (nr_pages) {
1619 		unsigned long chunk_nr;
1620 
1621 		chunk_nr = nr_pages;
1622 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1623 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1624 
1625 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1626 			break;
1627 
1628 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1629 
1630 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1631 			break;
1632 
1633 		pages += chunk_nr;
1634 		status += chunk_nr;
1635 		nr_pages -= chunk_nr;
1636 	}
1637 	return nr_pages ? -EFAULT : 0;
1638 }
1639 
1640 /*
1641  * Move a list of pages in the address space of the currently executing
1642  * process.
1643  */
1644 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1645 		const void __user * __user *, pages,
1646 		const int __user *, nodes,
1647 		int __user *, status, int, flags)
1648 {
1649 	const struct cred *cred = current_cred(), *tcred;
1650 	struct task_struct *task;
1651 	struct mm_struct *mm;
1652 	int err;
1653 	nodemask_t task_nodes;
1654 
1655 	/* Check flags */
1656 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1657 		return -EINVAL;
1658 
1659 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1660 		return -EPERM;
1661 
1662 	/* Find the mm_struct */
1663 	rcu_read_lock();
1664 	task = pid ? find_task_by_vpid(pid) : current;
1665 	if (!task) {
1666 		rcu_read_unlock();
1667 		return -ESRCH;
1668 	}
1669 	get_task_struct(task);
1670 
1671 	/*
1672 	 * Check if this process has the right to modify the specified
1673 	 * process. The right exists if the process has administrative
1674 	 * capabilities, superuser privileges or the same
1675 	 * userid as the target process.
1676 	 */
1677 	tcred = __task_cred(task);
1678 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1679 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1680 	    !capable(CAP_SYS_NICE)) {
1681 		rcu_read_unlock();
1682 		err = -EPERM;
1683 		goto out;
1684 	}
1685 	rcu_read_unlock();
1686 
1687  	err = security_task_movememory(task);
1688  	if (err)
1689 		goto out;
1690 
1691 	task_nodes = cpuset_mems_allowed(task);
1692 	mm = get_task_mm(task);
1693 	put_task_struct(task);
1694 
1695 	if (!mm)
1696 		return -EINVAL;
1697 
1698 	if (nodes)
1699 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1700 				    nodes, status, flags);
1701 	else
1702 		err = do_pages_stat(mm, nr_pages, pages, status);
1703 
1704 	mmput(mm);
1705 	return err;
1706 
1707 out:
1708 	put_task_struct(task);
1709 	return err;
1710 }
1711 
1712 #ifdef CONFIG_NUMA_BALANCING
1713 /*
1714  * Returns true if this is a safe migration target node for misplaced NUMA
1715  * pages. Currently it only checks the watermarks which crude
1716  */
1717 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1718 				   unsigned long nr_migrate_pages)
1719 {
1720 	int z;
1721 
1722 	if (!pgdat_reclaimable(pgdat))
1723 		return false;
1724 
1725 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1726 		struct zone *zone = pgdat->node_zones + z;
1727 
1728 		if (!populated_zone(zone))
1729 			continue;
1730 
1731 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1732 		if (!zone_watermark_ok(zone, 0,
1733 				       high_wmark_pages(zone) +
1734 				       nr_migrate_pages,
1735 				       0, 0))
1736 			continue;
1737 		return true;
1738 	}
1739 	return false;
1740 }
1741 
1742 static struct page *alloc_misplaced_dst_page(struct page *page,
1743 					   unsigned long data,
1744 					   int **result)
1745 {
1746 	int nid = (int) data;
1747 	struct page *newpage;
1748 
1749 	newpage = __alloc_pages_node(nid,
1750 					 (GFP_HIGHUSER_MOVABLE |
1751 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1752 					  __GFP_NORETRY | __GFP_NOWARN) &
1753 					 ~__GFP_RECLAIM, 0);
1754 
1755 	return newpage;
1756 }
1757 
1758 /*
1759  * page migration rate limiting control.
1760  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1761  * window of time. Default here says do not migrate more than 1280M per second.
1762  */
1763 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1764 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1765 
1766 /* Returns true if the node is migrate rate-limited after the update */
1767 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1768 					unsigned long nr_pages)
1769 {
1770 	/*
1771 	 * Rate-limit the amount of data that is being migrated to a node.
1772 	 * Optimal placement is no good if the memory bus is saturated and
1773 	 * all the time is being spent migrating!
1774 	 */
1775 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1776 		spin_lock(&pgdat->numabalancing_migrate_lock);
1777 		pgdat->numabalancing_migrate_nr_pages = 0;
1778 		pgdat->numabalancing_migrate_next_window = jiffies +
1779 			msecs_to_jiffies(migrate_interval_millisecs);
1780 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1781 	}
1782 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1783 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1784 								nr_pages);
1785 		return true;
1786 	}
1787 
1788 	/*
1789 	 * This is an unlocked non-atomic update so errors are possible.
1790 	 * The consequences are failing to migrate when we potentiall should
1791 	 * have which is not severe enough to warrant locking. If it is ever
1792 	 * a problem, it can be converted to a per-cpu counter.
1793 	 */
1794 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1795 	return false;
1796 }
1797 
1798 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1799 {
1800 	int page_lru;
1801 
1802 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1803 
1804 	/* Avoid migrating to a node that is nearly full */
1805 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1806 		return 0;
1807 
1808 	if (isolate_lru_page(page))
1809 		return 0;
1810 
1811 	/*
1812 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1813 	 * check on page_count(), so we must do it here, now that the page
1814 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1815 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1816 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1817 	 */
1818 	if (PageTransHuge(page) && page_count(page) != 3) {
1819 		putback_lru_page(page);
1820 		return 0;
1821 	}
1822 
1823 	page_lru = page_is_file_cache(page);
1824 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1825 				hpage_nr_pages(page));
1826 
1827 	/*
1828 	 * Isolating the page has taken another reference, so the
1829 	 * caller's reference can be safely dropped without the page
1830 	 * disappearing underneath us during migration.
1831 	 */
1832 	put_page(page);
1833 	return 1;
1834 }
1835 
1836 bool pmd_trans_migrating(pmd_t pmd)
1837 {
1838 	struct page *page = pmd_page(pmd);
1839 	return PageLocked(page);
1840 }
1841 
1842 /*
1843  * Attempt to migrate a misplaced page to the specified destination
1844  * node. Caller is expected to have an elevated reference count on
1845  * the page that will be dropped by this function before returning.
1846  */
1847 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1848 			   int node)
1849 {
1850 	pg_data_t *pgdat = NODE_DATA(node);
1851 	int isolated;
1852 	int nr_remaining;
1853 	LIST_HEAD(migratepages);
1854 
1855 	/*
1856 	 * Don't migrate file pages that are mapped in multiple processes
1857 	 * with execute permissions as they are probably shared libraries.
1858 	 */
1859 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1860 	    (vma->vm_flags & VM_EXEC))
1861 		goto out;
1862 
1863 	/*
1864 	 * Rate-limit the amount of data that is being migrated to a node.
1865 	 * Optimal placement is no good if the memory bus is saturated and
1866 	 * all the time is being spent migrating!
1867 	 */
1868 	if (numamigrate_update_ratelimit(pgdat, 1))
1869 		goto out;
1870 
1871 	isolated = numamigrate_isolate_page(pgdat, page);
1872 	if (!isolated)
1873 		goto out;
1874 
1875 	list_add(&page->lru, &migratepages);
1876 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1877 				     NULL, node, MIGRATE_ASYNC,
1878 				     MR_NUMA_MISPLACED);
1879 	if (nr_remaining) {
1880 		if (!list_empty(&migratepages)) {
1881 			list_del(&page->lru);
1882 			dec_node_page_state(page, NR_ISOLATED_ANON +
1883 					page_is_file_cache(page));
1884 			putback_lru_page(page);
1885 		}
1886 		isolated = 0;
1887 	} else
1888 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1889 	BUG_ON(!list_empty(&migratepages));
1890 	return isolated;
1891 
1892 out:
1893 	put_page(page);
1894 	return 0;
1895 }
1896 #endif /* CONFIG_NUMA_BALANCING */
1897 
1898 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899 /*
1900  * Migrates a THP to a given target node. page must be locked and is unlocked
1901  * before returning.
1902  */
1903 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1904 				struct vm_area_struct *vma,
1905 				pmd_t *pmd, pmd_t entry,
1906 				unsigned long address,
1907 				struct page *page, int node)
1908 {
1909 	spinlock_t *ptl;
1910 	pg_data_t *pgdat = NODE_DATA(node);
1911 	int isolated = 0;
1912 	struct page *new_page = NULL;
1913 	int page_lru = page_is_file_cache(page);
1914 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1915 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1916 	pmd_t orig_entry;
1917 
1918 	/*
1919 	 * Rate-limit the amount of data that is being migrated to a node.
1920 	 * Optimal placement is no good if the memory bus is saturated and
1921 	 * all the time is being spent migrating!
1922 	 */
1923 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1924 		goto out_dropref;
1925 
1926 	new_page = alloc_pages_node(node,
1927 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1928 		HPAGE_PMD_ORDER);
1929 	if (!new_page)
1930 		goto out_fail;
1931 	prep_transhuge_page(new_page);
1932 
1933 	isolated = numamigrate_isolate_page(pgdat, page);
1934 	if (!isolated) {
1935 		put_page(new_page);
1936 		goto out_fail;
1937 	}
1938 	/*
1939 	 * We are not sure a pending tlb flush here is for a huge page
1940 	 * mapping or not. Hence use the tlb range variant
1941 	 */
1942 	if (mm_tlb_flush_pending(mm))
1943 		flush_tlb_range(vma, mmun_start, mmun_end);
1944 
1945 	/* Prepare a page as a migration target */
1946 	__SetPageLocked(new_page);
1947 	__SetPageSwapBacked(new_page);
1948 
1949 	/* anon mapping, we can simply copy page->mapping to the new page: */
1950 	new_page->mapping = page->mapping;
1951 	new_page->index = page->index;
1952 	migrate_page_copy(new_page, page);
1953 	WARN_ON(PageLRU(new_page));
1954 
1955 	/* Recheck the target PMD */
1956 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1957 	ptl = pmd_lock(mm, pmd);
1958 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1959 fail_putback:
1960 		spin_unlock(ptl);
1961 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1962 
1963 		/* Reverse changes made by migrate_page_copy() */
1964 		if (TestClearPageActive(new_page))
1965 			SetPageActive(page);
1966 		if (TestClearPageUnevictable(new_page))
1967 			SetPageUnevictable(page);
1968 
1969 		unlock_page(new_page);
1970 		put_page(new_page);		/* Free it */
1971 
1972 		/* Retake the callers reference and putback on LRU */
1973 		get_page(page);
1974 		putback_lru_page(page);
1975 		mod_node_page_state(page_pgdat(page),
1976 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1977 
1978 		goto out_unlock;
1979 	}
1980 
1981 	orig_entry = *pmd;
1982 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1983 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1984 
1985 	/*
1986 	 * Clear the old entry under pagetable lock and establish the new PTE.
1987 	 * Any parallel GUP will either observe the old page blocking on the
1988 	 * page lock, block on the page table lock or observe the new page.
1989 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1990 	 * guarantee the copy is visible before the pagetable update.
1991 	 */
1992 	flush_cache_range(vma, mmun_start, mmun_end);
1993 	page_add_anon_rmap(new_page, vma, mmun_start, true);
1994 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1995 	set_pmd_at(mm, mmun_start, pmd, entry);
1996 	update_mmu_cache_pmd(vma, address, &entry);
1997 
1998 	if (page_count(page) != 2) {
1999 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2000 		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2001 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2002 		update_mmu_cache_pmd(vma, address, &entry);
2003 		page_remove_rmap(new_page, true);
2004 		goto fail_putback;
2005 	}
2006 
2007 	mlock_migrate_page(new_page, page);
2008 	page_remove_rmap(page, true);
2009 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2010 
2011 	spin_unlock(ptl);
2012 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2013 
2014 	/* Take an "isolate" reference and put new page on the LRU. */
2015 	get_page(new_page);
2016 	putback_lru_page(new_page);
2017 
2018 	unlock_page(new_page);
2019 	unlock_page(page);
2020 	put_page(page);			/* Drop the rmap reference */
2021 	put_page(page);			/* Drop the LRU isolation reference */
2022 
2023 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2024 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2025 
2026 	mod_node_page_state(page_pgdat(page),
2027 			NR_ISOLATED_ANON + page_lru,
2028 			-HPAGE_PMD_NR);
2029 	return isolated;
2030 
2031 out_fail:
2032 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2033 out_dropref:
2034 	ptl = pmd_lock(mm, pmd);
2035 	if (pmd_same(*pmd, entry)) {
2036 		entry = pmd_modify(entry, vma->vm_page_prot);
2037 		set_pmd_at(mm, mmun_start, pmd, entry);
2038 		update_mmu_cache_pmd(vma, address, &entry);
2039 	}
2040 	spin_unlock(ptl);
2041 
2042 out_unlock:
2043 	unlock_page(page);
2044 	put_page(page);
2045 	return 0;
2046 }
2047 #endif /* CONFIG_NUMA_BALANCING */
2048 
2049 #endif /* CONFIG_NUMA */
2050