xref: /openbmc/linux/mm/migrate.c (revision 3932b9ca)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Put previously isolated pages back onto the appropriate lists
76  * from where they were once taken off for compaction/migration.
77  *
78  * This function shall be used whenever the isolated pageset has been
79  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80  * and isolate_huge_page().
81  */
82 void putback_movable_pages(struct list_head *l)
83 {
84 	struct page *page;
85 	struct page *page2;
86 
87 	list_for_each_entry_safe(page, page2, l, lru) {
88 		if (unlikely(PageHuge(page))) {
89 			putback_active_hugepage(page);
90 			continue;
91 		}
92 		list_del(&page->lru);
93 		dec_zone_page_state(page, NR_ISOLATED_ANON +
94 				page_is_file_cache(page));
95 		if (unlikely(isolated_balloon_page(page)))
96 			balloon_page_putback(page);
97 		else
98 			putback_lru_page(page);
99 	}
100 }
101 
102 /*
103  * Restore a potential migration pte to a working pte entry
104  */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 				 unsigned long addr, void *old)
107 {
108 	struct mm_struct *mm = vma->vm_mm;
109 	swp_entry_t entry;
110  	pmd_t *pmd;
111 	pte_t *ptep, pte;
112  	spinlock_t *ptl;
113 
114 	if (unlikely(PageHuge(new))) {
115 		ptep = huge_pte_offset(mm, addr);
116 		if (!ptep)
117 			goto out;
118 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 	} else {
120 		pmd = mm_find_pmd(mm, addr);
121 		if (!pmd)
122 			goto out;
123 
124 		ptep = pte_offset_map(pmd, addr);
125 
126 		/*
127 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
128 		 * can race mremap's move_ptes(), which skips anon_vma lock.
129 		 */
130 
131 		ptl = pte_lockptr(mm, pmd);
132 	}
133 
134  	spin_lock(ptl);
135 	pte = *ptep;
136 	if (!is_swap_pte(pte))
137 		goto unlock;
138 
139 	entry = pte_to_swp_entry(pte);
140 
141 	if (!is_migration_entry(entry) ||
142 	    migration_entry_to_page(entry) != old)
143 		goto unlock;
144 
145 	get_page(new);
146 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 	if (pte_swp_soft_dirty(*ptep))
148 		pte = pte_mksoft_dirty(pte);
149 
150 	/* Recheck VMA as permissions can change since migration started  */
151 	if (is_write_migration_entry(entry))
152 		pte = maybe_mkwrite(pte, vma);
153 
154 #ifdef CONFIG_HUGETLB_PAGE
155 	if (PageHuge(new)) {
156 		pte = pte_mkhuge(pte);
157 		pte = arch_make_huge_pte(pte, vma, new, 0);
158 	}
159 #endif
160 	flush_dcache_page(new);
161 	set_pte_at(mm, addr, ptep, pte);
162 
163 	if (PageHuge(new)) {
164 		if (PageAnon(new))
165 			hugepage_add_anon_rmap(new, vma, addr);
166 		else
167 			page_dup_rmap(new);
168 	} else if (PageAnon(new))
169 		page_add_anon_rmap(new, vma, addr);
170 	else
171 		page_add_file_rmap(new);
172 
173 	/* No need to invalidate - it was non-present before */
174 	update_mmu_cache(vma, addr, ptep);
175 unlock:
176 	pte_unmap_unlock(ptep, ptl);
177 out:
178 	return SWAP_AGAIN;
179 }
180 
181 /*
182  * Congratulations to trinity for discovering this bug.
183  * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
184  * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
185  * replace the specified range by file ptes throughout (maybe populated after).
186  * If page migration finds a page within that range, while it's still located
187  * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
188  * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
189  * But if the migrating page is in a part of the vma outside the range to be
190  * remapped, then it will not be cleared, and remove_migration_ptes() needs to
191  * deal with it.  Fortunately, this part of the vma is of course still linear,
192  * so we just need to use linear location on the nonlinear list.
193  */
194 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
195 		struct address_space *mapping, void *arg)
196 {
197 	struct vm_area_struct *vma;
198 	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
199 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
200 	unsigned long addr;
201 
202 	list_for_each_entry(vma,
203 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
204 
205 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
206 		if (addr >= vma->vm_start && addr < vma->vm_end)
207 			remove_migration_pte(page, vma, addr, arg);
208 	}
209 	return SWAP_AGAIN;
210 }
211 
212 /*
213  * Get rid of all migration entries and replace them by
214  * references to the indicated page.
215  */
216 static void remove_migration_ptes(struct page *old, struct page *new)
217 {
218 	struct rmap_walk_control rwc = {
219 		.rmap_one = remove_migration_pte,
220 		.arg = old,
221 		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
222 	};
223 
224 	rmap_walk(new, &rwc);
225 }
226 
227 /*
228  * Something used the pte of a page under migration. We need to
229  * get to the page and wait until migration is finished.
230  * When we return from this function the fault will be retried.
231  */
232 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
233 				spinlock_t *ptl)
234 {
235 	pte_t pte;
236 	swp_entry_t entry;
237 	struct page *page;
238 
239 	spin_lock(ptl);
240 	pte = *ptep;
241 	if (!is_swap_pte(pte))
242 		goto out;
243 
244 	entry = pte_to_swp_entry(pte);
245 	if (!is_migration_entry(entry))
246 		goto out;
247 
248 	page = migration_entry_to_page(entry);
249 
250 	/*
251 	 * Once radix-tree replacement of page migration started, page_count
252 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
253 	 * against a page without get_page().
254 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
255 	 * will occur again.
256 	 */
257 	if (!get_page_unless_zero(page))
258 		goto out;
259 	pte_unmap_unlock(ptep, ptl);
260 	wait_on_page_locked(page);
261 	put_page(page);
262 	return;
263 out:
264 	pte_unmap_unlock(ptep, ptl);
265 }
266 
267 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
268 				unsigned long address)
269 {
270 	spinlock_t *ptl = pte_lockptr(mm, pmd);
271 	pte_t *ptep = pte_offset_map(pmd, address);
272 	__migration_entry_wait(mm, ptep, ptl);
273 }
274 
275 void migration_entry_wait_huge(struct vm_area_struct *vma,
276 		struct mm_struct *mm, pte_t *pte)
277 {
278 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
279 	__migration_entry_wait(mm, pte, ptl);
280 }
281 
282 #ifdef CONFIG_BLOCK
283 /* Returns true if all buffers are successfully locked */
284 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
285 							enum migrate_mode mode)
286 {
287 	struct buffer_head *bh = head;
288 
289 	/* Simple case, sync compaction */
290 	if (mode != MIGRATE_ASYNC) {
291 		do {
292 			get_bh(bh);
293 			lock_buffer(bh);
294 			bh = bh->b_this_page;
295 
296 		} while (bh != head);
297 
298 		return true;
299 	}
300 
301 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
302 	do {
303 		get_bh(bh);
304 		if (!trylock_buffer(bh)) {
305 			/*
306 			 * We failed to lock the buffer and cannot stall in
307 			 * async migration. Release the taken locks
308 			 */
309 			struct buffer_head *failed_bh = bh;
310 			put_bh(failed_bh);
311 			bh = head;
312 			while (bh != failed_bh) {
313 				unlock_buffer(bh);
314 				put_bh(bh);
315 				bh = bh->b_this_page;
316 			}
317 			return false;
318 		}
319 
320 		bh = bh->b_this_page;
321 	} while (bh != head);
322 	return true;
323 }
324 #else
325 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
326 							enum migrate_mode mode)
327 {
328 	return true;
329 }
330 #endif /* CONFIG_BLOCK */
331 
332 /*
333  * Replace the page in the mapping.
334  *
335  * The number of remaining references must be:
336  * 1 for anonymous pages without a mapping
337  * 2 for pages with a mapping
338  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
339  */
340 int migrate_page_move_mapping(struct address_space *mapping,
341 		struct page *newpage, struct page *page,
342 		struct buffer_head *head, enum migrate_mode mode,
343 		int extra_count)
344 {
345 	int expected_count = 1 + extra_count;
346 	void **pslot;
347 
348 	if (!mapping) {
349 		/* Anonymous page without mapping */
350 		if (page_count(page) != expected_count)
351 			return -EAGAIN;
352 		return MIGRATEPAGE_SUCCESS;
353 	}
354 
355 	spin_lock_irq(&mapping->tree_lock);
356 
357 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
358  					page_index(page));
359 
360 	expected_count += 1 + page_has_private(page);
361 	if (page_count(page) != expected_count ||
362 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
363 		spin_unlock_irq(&mapping->tree_lock);
364 		return -EAGAIN;
365 	}
366 
367 	if (!page_freeze_refs(page, expected_count)) {
368 		spin_unlock_irq(&mapping->tree_lock);
369 		return -EAGAIN;
370 	}
371 
372 	/*
373 	 * In the async migration case of moving a page with buffers, lock the
374 	 * buffers using trylock before the mapping is moved. If the mapping
375 	 * was moved, we later failed to lock the buffers and could not move
376 	 * the mapping back due to an elevated page count, we would have to
377 	 * block waiting on other references to be dropped.
378 	 */
379 	if (mode == MIGRATE_ASYNC && head &&
380 			!buffer_migrate_lock_buffers(head, mode)) {
381 		page_unfreeze_refs(page, expected_count);
382 		spin_unlock_irq(&mapping->tree_lock);
383 		return -EAGAIN;
384 	}
385 
386 	/*
387 	 * Now we know that no one else is looking at the page.
388 	 */
389 	get_page(newpage);	/* add cache reference */
390 	if (PageSwapCache(page)) {
391 		SetPageSwapCache(newpage);
392 		set_page_private(newpage, page_private(page));
393 	}
394 
395 	radix_tree_replace_slot(pslot, newpage);
396 
397 	/*
398 	 * Drop cache reference from old page by unfreezing
399 	 * to one less reference.
400 	 * We know this isn't the last reference.
401 	 */
402 	page_unfreeze_refs(page, expected_count - 1);
403 
404 	/*
405 	 * If moved to a different zone then also account
406 	 * the page for that zone. Other VM counters will be
407 	 * taken care of when we establish references to the
408 	 * new page and drop references to the old page.
409 	 *
410 	 * Note that anonymous pages are accounted for
411 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
412 	 * are mapped to swap space.
413 	 */
414 	__dec_zone_page_state(page, NR_FILE_PAGES);
415 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
416 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
417 		__dec_zone_page_state(page, NR_SHMEM);
418 		__inc_zone_page_state(newpage, NR_SHMEM);
419 	}
420 	spin_unlock_irq(&mapping->tree_lock);
421 
422 	return MIGRATEPAGE_SUCCESS;
423 }
424 
425 /*
426  * The expected number of remaining references is the same as that
427  * of migrate_page_move_mapping().
428  */
429 int migrate_huge_page_move_mapping(struct address_space *mapping,
430 				   struct page *newpage, struct page *page)
431 {
432 	int expected_count;
433 	void **pslot;
434 
435 	if (!mapping) {
436 		if (page_count(page) != 1)
437 			return -EAGAIN;
438 		return MIGRATEPAGE_SUCCESS;
439 	}
440 
441 	spin_lock_irq(&mapping->tree_lock);
442 
443 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
444 					page_index(page));
445 
446 	expected_count = 2 + page_has_private(page);
447 	if (page_count(page) != expected_count ||
448 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
449 		spin_unlock_irq(&mapping->tree_lock);
450 		return -EAGAIN;
451 	}
452 
453 	if (!page_freeze_refs(page, expected_count)) {
454 		spin_unlock_irq(&mapping->tree_lock);
455 		return -EAGAIN;
456 	}
457 
458 	get_page(newpage);
459 
460 	radix_tree_replace_slot(pslot, newpage);
461 
462 	page_unfreeze_refs(page, expected_count - 1);
463 
464 	spin_unlock_irq(&mapping->tree_lock);
465 	return MIGRATEPAGE_SUCCESS;
466 }
467 
468 /*
469  * Gigantic pages are so large that we do not guarantee that page++ pointer
470  * arithmetic will work across the entire page.  We need something more
471  * specialized.
472  */
473 static void __copy_gigantic_page(struct page *dst, struct page *src,
474 				int nr_pages)
475 {
476 	int i;
477 	struct page *dst_base = dst;
478 	struct page *src_base = src;
479 
480 	for (i = 0; i < nr_pages; ) {
481 		cond_resched();
482 		copy_highpage(dst, src);
483 
484 		i++;
485 		dst = mem_map_next(dst, dst_base, i);
486 		src = mem_map_next(src, src_base, i);
487 	}
488 }
489 
490 static void copy_huge_page(struct page *dst, struct page *src)
491 {
492 	int i;
493 	int nr_pages;
494 
495 	if (PageHuge(src)) {
496 		/* hugetlbfs page */
497 		struct hstate *h = page_hstate(src);
498 		nr_pages = pages_per_huge_page(h);
499 
500 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
501 			__copy_gigantic_page(dst, src, nr_pages);
502 			return;
503 		}
504 	} else {
505 		/* thp page */
506 		BUG_ON(!PageTransHuge(src));
507 		nr_pages = hpage_nr_pages(src);
508 	}
509 
510 	for (i = 0; i < nr_pages; i++) {
511 		cond_resched();
512 		copy_highpage(dst + i, src + i);
513 	}
514 }
515 
516 /*
517  * Copy the page to its new location
518  */
519 void migrate_page_copy(struct page *newpage, struct page *page)
520 {
521 	int cpupid;
522 
523 	if (PageHuge(page) || PageTransHuge(page))
524 		copy_huge_page(newpage, page);
525 	else
526 		copy_highpage(newpage, page);
527 
528 	if (PageError(page))
529 		SetPageError(newpage);
530 	if (PageReferenced(page))
531 		SetPageReferenced(newpage);
532 	if (PageUptodate(page))
533 		SetPageUptodate(newpage);
534 	if (TestClearPageActive(page)) {
535 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
536 		SetPageActive(newpage);
537 	} else if (TestClearPageUnevictable(page))
538 		SetPageUnevictable(newpage);
539 	if (PageChecked(page))
540 		SetPageChecked(newpage);
541 	if (PageMappedToDisk(page))
542 		SetPageMappedToDisk(newpage);
543 
544 	if (PageDirty(page)) {
545 		clear_page_dirty_for_io(page);
546 		/*
547 		 * Want to mark the page and the radix tree as dirty, and
548 		 * redo the accounting that clear_page_dirty_for_io undid,
549 		 * but we can't use set_page_dirty because that function
550 		 * is actually a signal that all of the page has become dirty.
551 		 * Whereas only part of our page may be dirty.
552 		 */
553 		if (PageSwapBacked(page))
554 			SetPageDirty(newpage);
555 		else
556 			__set_page_dirty_nobuffers(newpage);
557  	}
558 
559 	/*
560 	 * Copy NUMA information to the new page, to prevent over-eager
561 	 * future migrations of this same page.
562 	 */
563 	cpupid = page_cpupid_xchg_last(page, -1);
564 	page_cpupid_xchg_last(newpage, cpupid);
565 
566 	mlock_migrate_page(newpage, page);
567 	ksm_migrate_page(newpage, page);
568 	/*
569 	 * Please do not reorder this without considering how mm/ksm.c's
570 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
571 	 */
572 	ClearPageSwapCache(page);
573 	ClearPagePrivate(page);
574 	set_page_private(page, 0);
575 
576 	/*
577 	 * If any waiters have accumulated on the new page then
578 	 * wake them up.
579 	 */
580 	if (PageWriteback(newpage))
581 		end_page_writeback(newpage);
582 }
583 
584 /************************************************************
585  *                    Migration functions
586  ***********************************************************/
587 
588 /*
589  * Common logic to directly migrate a single page suitable for
590  * pages that do not use PagePrivate/PagePrivate2.
591  *
592  * Pages are locked upon entry and exit.
593  */
594 int migrate_page(struct address_space *mapping,
595 		struct page *newpage, struct page *page,
596 		enum migrate_mode mode)
597 {
598 	int rc;
599 
600 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
601 
602 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
603 
604 	if (rc != MIGRATEPAGE_SUCCESS)
605 		return rc;
606 
607 	migrate_page_copy(newpage, page);
608 	return MIGRATEPAGE_SUCCESS;
609 }
610 EXPORT_SYMBOL(migrate_page);
611 
612 #ifdef CONFIG_BLOCK
613 /*
614  * Migration function for pages with buffers. This function can only be used
615  * if the underlying filesystem guarantees that no other references to "page"
616  * exist.
617  */
618 int buffer_migrate_page(struct address_space *mapping,
619 		struct page *newpage, struct page *page, enum migrate_mode mode)
620 {
621 	struct buffer_head *bh, *head;
622 	int rc;
623 
624 	if (!page_has_buffers(page))
625 		return migrate_page(mapping, newpage, page, mode);
626 
627 	head = page_buffers(page);
628 
629 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
630 
631 	if (rc != MIGRATEPAGE_SUCCESS)
632 		return rc;
633 
634 	/*
635 	 * In the async case, migrate_page_move_mapping locked the buffers
636 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
637 	 * need to be locked now
638 	 */
639 	if (mode != MIGRATE_ASYNC)
640 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
641 
642 	ClearPagePrivate(page);
643 	set_page_private(newpage, page_private(page));
644 	set_page_private(page, 0);
645 	put_page(page);
646 	get_page(newpage);
647 
648 	bh = head;
649 	do {
650 		set_bh_page(bh, newpage, bh_offset(bh));
651 		bh = bh->b_this_page;
652 
653 	} while (bh != head);
654 
655 	SetPagePrivate(newpage);
656 
657 	migrate_page_copy(newpage, page);
658 
659 	bh = head;
660 	do {
661 		unlock_buffer(bh);
662  		put_bh(bh);
663 		bh = bh->b_this_page;
664 
665 	} while (bh != head);
666 
667 	return MIGRATEPAGE_SUCCESS;
668 }
669 EXPORT_SYMBOL(buffer_migrate_page);
670 #endif
671 
672 /*
673  * Writeback a page to clean the dirty state
674  */
675 static int writeout(struct address_space *mapping, struct page *page)
676 {
677 	struct writeback_control wbc = {
678 		.sync_mode = WB_SYNC_NONE,
679 		.nr_to_write = 1,
680 		.range_start = 0,
681 		.range_end = LLONG_MAX,
682 		.for_reclaim = 1
683 	};
684 	int rc;
685 
686 	if (!mapping->a_ops->writepage)
687 		/* No write method for the address space */
688 		return -EINVAL;
689 
690 	if (!clear_page_dirty_for_io(page))
691 		/* Someone else already triggered a write */
692 		return -EAGAIN;
693 
694 	/*
695 	 * A dirty page may imply that the underlying filesystem has
696 	 * the page on some queue. So the page must be clean for
697 	 * migration. Writeout may mean we loose the lock and the
698 	 * page state is no longer what we checked for earlier.
699 	 * At this point we know that the migration attempt cannot
700 	 * be successful.
701 	 */
702 	remove_migration_ptes(page, page);
703 
704 	rc = mapping->a_ops->writepage(page, &wbc);
705 
706 	if (rc != AOP_WRITEPAGE_ACTIVATE)
707 		/* unlocked. Relock */
708 		lock_page(page);
709 
710 	return (rc < 0) ? -EIO : -EAGAIN;
711 }
712 
713 /*
714  * Default handling if a filesystem does not provide a migration function.
715  */
716 static int fallback_migrate_page(struct address_space *mapping,
717 	struct page *newpage, struct page *page, enum migrate_mode mode)
718 {
719 	if (PageDirty(page)) {
720 		/* Only writeback pages in full synchronous migration */
721 		if (mode != MIGRATE_SYNC)
722 			return -EBUSY;
723 		return writeout(mapping, page);
724 	}
725 
726 	/*
727 	 * Buffers may be managed in a filesystem specific way.
728 	 * We must have no buffers or drop them.
729 	 */
730 	if (page_has_private(page) &&
731 	    !try_to_release_page(page, GFP_KERNEL))
732 		return -EAGAIN;
733 
734 	return migrate_page(mapping, newpage, page, mode);
735 }
736 
737 /*
738  * Move a page to a newly allocated page
739  * The page is locked and all ptes have been successfully removed.
740  *
741  * The new page will have replaced the old page if this function
742  * is successful.
743  *
744  * Return value:
745  *   < 0 - error code
746  *  MIGRATEPAGE_SUCCESS - success
747  */
748 static int move_to_new_page(struct page *newpage, struct page *page,
749 				int remap_swapcache, enum migrate_mode mode)
750 {
751 	struct address_space *mapping;
752 	int rc;
753 
754 	/*
755 	 * Block others from accessing the page when we get around to
756 	 * establishing additional references. We are the only one
757 	 * holding a reference to the new page at this point.
758 	 */
759 	if (!trylock_page(newpage))
760 		BUG();
761 
762 	/* Prepare mapping for the new page.*/
763 	newpage->index = page->index;
764 	newpage->mapping = page->mapping;
765 	if (PageSwapBacked(page))
766 		SetPageSwapBacked(newpage);
767 
768 	mapping = page_mapping(page);
769 	if (!mapping)
770 		rc = migrate_page(mapping, newpage, page, mode);
771 	else if (mapping->a_ops->migratepage)
772 		/*
773 		 * Most pages have a mapping and most filesystems provide a
774 		 * migratepage callback. Anonymous pages are part of swap
775 		 * space which also has its own migratepage callback. This
776 		 * is the most common path for page migration.
777 		 */
778 		rc = mapping->a_ops->migratepage(mapping,
779 						newpage, page, mode);
780 	else
781 		rc = fallback_migrate_page(mapping, newpage, page, mode);
782 
783 	if (rc != MIGRATEPAGE_SUCCESS) {
784 		newpage->mapping = NULL;
785 	} else {
786 		mem_cgroup_migrate(page, newpage, false);
787 		if (remap_swapcache)
788 			remove_migration_ptes(page, newpage);
789 		page->mapping = NULL;
790 	}
791 
792 	unlock_page(newpage);
793 
794 	return rc;
795 }
796 
797 static int __unmap_and_move(struct page *page, struct page *newpage,
798 				int force, enum migrate_mode mode)
799 {
800 	int rc = -EAGAIN;
801 	int remap_swapcache = 1;
802 	struct anon_vma *anon_vma = NULL;
803 
804 	if (!trylock_page(page)) {
805 		if (!force || mode == MIGRATE_ASYNC)
806 			goto out;
807 
808 		/*
809 		 * It's not safe for direct compaction to call lock_page.
810 		 * For example, during page readahead pages are added locked
811 		 * to the LRU. Later, when the IO completes the pages are
812 		 * marked uptodate and unlocked. However, the queueing
813 		 * could be merging multiple pages for one bio (e.g.
814 		 * mpage_readpages). If an allocation happens for the
815 		 * second or third page, the process can end up locking
816 		 * the same page twice and deadlocking. Rather than
817 		 * trying to be clever about what pages can be locked,
818 		 * avoid the use of lock_page for direct compaction
819 		 * altogether.
820 		 */
821 		if (current->flags & PF_MEMALLOC)
822 			goto out;
823 
824 		lock_page(page);
825 	}
826 
827 	if (PageWriteback(page)) {
828 		/*
829 		 * Only in the case of a full synchronous migration is it
830 		 * necessary to wait for PageWriteback. In the async case,
831 		 * the retry loop is too short and in the sync-light case,
832 		 * the overhead of stalling is too much
833 		 */
834 		if (mode != MIGRATE_SYNC) {
835 			rc = -EBUSY;
836 			goto out_unlock;
837 		}
838 		if (!force)
839 			goto out_unlock;
840 		wait_on_page_writeback(page);
841 	}
842 	/*
843 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
844 	 * we cannot notice that anon_vma is freed while we migrates a page.
845 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
846 	 * of migration. File cache pages are no problem because of page_lock()
847 	 * File Caches may use write_page() or lock_page() in migration, then,
848 	 * just care Anon page here.
849 	 */
850 	if (PageAnon(page) && !PageKsm(page)) {
851 		/*
852 		 * Only page_lock_anon_vma_read() understands the subtleties of
853 		 * getting a hold on an anon_vma from outside one of its mms.
854 		 */
855 		anon_vma = page_get_anon_vma(page);
856 		if (anon_vma) {
857 			/*
858 			 * Anon page
859 			 */
860 		} else if (PageSwapCache(page)) {
861 			/*
862 			 * We cannot be sure that the anon_vma of an unmapped
863 			 * swapcache page is safe to use because we don't
864 			 * know in advance if the VMA that this page belonged
865 			 * to still exists. If the VMA and others sharing the
866 			 * data have been freed, then the anon_vma could
867 			 * already be invalid.
868 			 *
869 			 * To avoid this possibility, swapcache pages get
870 			 * migrated but are not remapped when migration
871 			 * completes
872 			 */
873 			remap_swapcache = 0;
874 		} else {
875 			goto out_unlock;
876 		}
877 	}
878 
879 	if (unlikely(balloon_page_movable(page))) {
880 		/*
881 		 * A ballooned page does not need any special attention from
882 		 * physical to virtual reverse mapping procedures.
883 		 * Skip any attempt to unmap PTEs or to remap swap cache,
884 		 * in order to avoid burning cycles at rmap level, and perform
885 		 * the page migration right away (proteced by page lock).
886 		 */
887 		rc = balloon_page_migrate(newpage, page, mode);
888 		goto out_unlock;
889 	}
890 
891 	/*
892 	 * Corner case handling:
893 	 * 1. When a new swap-cache page is read into, it is added to the LRU
894 	 * and treated as swapcache but it has no rmap yet.
895 	 * Calling try_to_unmap() against a page->mapping==NULL page will
896 	 * trigger a BUG.  So handle it here.
897 	 * 2. An orphaned page (see truncate_complete_page) might have
898 	 * fs-private metadata. The page can be picked up due to memory
899 	 * offlining.  Everywhere else except page reclaim, the page is
900 	 * invisible to the vm, so the page can not be migrated.  So try to
901 	 * free the metadata, so the page can be freed.
902 	 */
903 	if (!page->mapping) {
904 		VM_BUG_ON_PAGE(PageAnon(page), page);
905 		if (page_has_private(page)) {
906 			try_to_free_buffers(page);
907 			goto out_unlock;
908 		}
909 		goto skip_unmap;
910 	}
911 
912 	/* Establish migration ptes or remove ptes */
913 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
914 
915 skip_unmap:
916 	if (!page_mapped(page))
917 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
918 
919 	if (rc && remap_swapcache)
920 		remove_migration_ptes(page, page);
921 
922 	/* Drop an anon_vma reference if we took one */
923 	if (anon_vma)
924 		put_anon_vma(anon_vma);
925 
926 out_unlock:
927 	unlock_page(page);
928 out:
929 	return rc;
930 }
931 
932 /*
933  * Obtain the lock on page, remove all ptes and migrate the page
934  * to the newly allocated page in newpage.
935  */
936 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
937 			unsigned long private, struct page *page, int force,
938 			enum migrate_mode mode)
939 {
940 	int rc = 0;
941 	int *result = NULL;
942 	struct page *newpage = get_new_page(page, private, &result);
943 
944 	if (!newpage)
945 		return -ENOMEM;
946 
947 	if (page_count(page) == 1) {
948 		/* page was freed from under us. So we are done. */
949 		goto out;
950 	}
951 
952 	if (unlikely(PageTransHuge(page)))
953 		if (unlikely(split_huge_page(page)))
954 			goto out;
955 
956 	rc = __unmap_and_move(page, newpage, force, mode);
957 
958 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
959 		/*
960 		 * A ballooned page has been migrated already.
961 		 * Now, it's the time to wrap-up counters,
962 		 * handle the page back to Buddy and return.
963 		 */
964 		dec_zone_page_state(page, NR_ISOLATED_ANON +
965 				    page_is_file_cache(page));
966 		balloon_page_free(page);
967 		return MIGRATEPAGE_SUCCESS;
968 	}
969 out:
970 	if (rc != -EAGAIN) {
971 		/*
972 		 * A page that has been migrated has all references
973 		 * removed and will be freed. A page that has not been
974 		 * migrated will have kepts its references and be
975 		 * restored.
976 		 */
977 		list_del(&page->lru);
978 		dec_zone_page_state(page, NR_ISOLATED_ANON +
979 				page_is_file_cache(page));
980 		putback_lru_page(page);
981 	}
982 
983 	/*
984 	 * If migration was not successful and there's a freeing callback, use
985 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
986 	 * during isolation.
987 	 */
988 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
989 		ClearPageSwapBacked(newpage);
990 		put_new_page(newpage, private);
991 	} else
992 		putback_lru_page(newpage);
993 
994 	if (result) {
995 		if (rc)
996 			*result = rc;
997 		else
998 			*result = page_to_nid(newpage);
999 	}
1000 	return rc;
1001 }
1002 
1003 /*
1004  * Counterpart of unmap_and_move_page() for hugepage migration.
1005  *
1006  * This function doesn't wait the completion of hugepage I/O
1007  * because there is no race between I/O and migration for hugepage.
1008  * Note that currently hugepage I/O occurs only in direct I/O
1009  * where no lock is held and PG_writeback is irrelevant,
1010  * and writeback status of all subpages are counted in the reference
1011  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1012  * under direct I/O, the reference of the head page is 512 and a bit more.)
1013  * This means that when we try to migrate hugepage whose subpages are
1014  * doing direct I/O, some references remain after try_to_unmap() and
1015  * hugepage migration fails without data corruption.
1016  *
1017  * There is also no race when direct I/O is issued on the page under migration,
1018  * because then pte is replaced with migration swap entry and direct I/O code
1019  * will wait in the page fault for migration to complete.
1020  */
1021 static int unmap_and_move_huge_page(new_page_t get_new_page,
1022 				free_page_t put_new_page, unsigned long private,
1023 				struct page *hpage, int force,
1024 				enum migrate_mode mode)
1025 {
1026 	int rc = 0;
1027 	int *result = NULL;
1028 	struct page *new_hpage;
1029 	struct anon_vma *anon_vma = NULL;
1030 
1031 	/*
1032 	 * Movability of hugepages depends on architectures and hugepage size.
1033 	 * This check is necessary because some callers of hugepage migration
1034 	 * like soft offline and memory hotremove don't walk through page
1035 	 * tables or check whether the hugepage is pmd-based or not before
1036 	 * kicking migration.
1037 	 */
1038 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1039 		putback_active_hugepage(hpage);
1040 		return -ENOSYS;
1041 	}
1042 
1043 	new_hpage = get_new_page(hpage, private, &result);
1044 	if (!new_hpage)
1045 		return -ENOMEM;
1046 
1047 	rc = -EAGAIN;
1048 
1049 	if (!trylock_page(hpage)) {
1050 		if (!force || mode != MIGRATE_SYNC)
1051 			goto out;
1052 		lock_page(hpage);
1053 	}
1054 
1055 	if (PageAnon(hpage))
1056 		anon_vma = page_get_anon_vma(hpage);
1057 
1058 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1059 
1060 	if (!page_mapped(hpage))
1061 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1062 
1063 	if (rc != MIGRATEPAGE_SUCCESS)
1064 		remove_migration_ptes(hpage, hpage);
1065 
1066 	if (anon_vma)
1067 		put_anon_vma(anon_vma);
1068 
1069 	if (rc == MIGRATEPAGE_SUCCESS)
1070 		hugetlb_cgroup_migrate(hpage, new_hpage);
1071 
1072 	unlock_page(hpage);
1073 out:
1074 	if (rc != -EAGAIN)
1075 		putback_active_hugepage(hpage);
1076 
1077 	/*
1078 	 * If migration was not successful and there's a freeing callback, use
1079 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1080 	 * isolation.
1081 	 */
1082 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1083 		put_new_page(new_hpage, private);
1084 	else
1085 		put_page(new_hpage);
1086 
1087 	if (result) {
1088 		if (rc)
1089 			*result = rc;
1090 		else
1091 			*result = page_to_nid(new_hpage);
1092 	}
1093 	return rc;
1094 }
1095 
1096 /*
1097  * migrate_pages - migrate the pages specified in a list, to the free pages
1098  *		   supplied as the target for the page migration
1099  *
1100  * @from:		The list of pages to be migrated.
1101  * @get_new_page:	The function used to allocate free pages to be used
1102  *			as the target of the page migration.
1103  * @put_new_page:	The function used to free target pages if migration
1104  *			fails, or NULL if no special handling is necessary.
1105  * @private:		Private data to be passed on to get_new_page()
1106  * @mode:		The migration mode that specifies the constraints for
1107  *			page migration, if any.
1108  * @reason:		The reason for page migration.
1109  *
1110  * The function returns after 10 attempts or if no pages are movable any more
1111  * because the list has become empty or no retryable pages exist any more.
1112  * The caller should call putback_lru_pages() to return pages to the LRU
1113  * or free list only if ret != 0.
1114  *
1115  * Returns the number of pages that were not migrated, or an error code.
1116  */
1117 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1118 		free_page_t put_new_page, unsigned long private,
1119 		enum migrate_mode mode, int reason)
1120 {
1121 	int retry = 1;
1122 	int nr_failed = 0;
1123 	int nr_succeeded = 0;
1124 	int pass = 0;
1125 	struct page *page;
1126 	struct page *page2;
1127 	int swapwrite = current->flags & PF_SWAPWRITE;
1128 	int rc;
1129 
1130 	if (!swapwrite)
1131 		current->flags |= PF_SWAPWRITE;
1132 
1133 	for(pass = 0; pass < 10 && retry; pass++) {
1134 		retry = 0;
1135 
1136 		list_for_each_entry_safe(page, page2, from, lru) {
1137 			cond_resched();
1138 
1139 			if (PageHuge(page))
1140 				rc = unmap_and_move_huge_page(get_new_page,
1141 						put_new_page, private, page,
1142 						pass > 2, mode);
1143 			else
1144 				rc = unmap_and_move(get_new_page, put_new_page,
1145 						private, page, pass > 2, mode);
1146 
1147 			switch(rc) {
1148 			case -ENOMEM:
1149 				goto out;
1150 			case -EAGAIN:
1151 				retry++;
1152 				break;
1153 			case MIGRATEPAGE_SUCCESS:
1154 				nr_succeeded++;
1155 				break;
1156 			default:
1157 				/*
1158 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1159 				 * unlike -EAGAIN case, the failed page is
1160 				 * removed from migration page list and not
1161 				 * retried in the next outer loop.
1162 				 */
1163 				nr_failed++;
1164 				break;
1165 			}
1166 		}
1167 	}
1168 	rc = nr_failed + retry;
1169 out:
1170 	if (nr_succeeded)
1171 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1172 	if (nr_failed)
1173 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1174 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1175 
1176 	if (!swapwrite)
1177 		current->flags &= ~PF_SWAPWRITE;
1178 
1179 	return rc;
1180 }
1181 
1182 #ifdef CONFIG_NUMA
1183 /*
1184  * Move a list of individual pages
1185  */
1186 struct page_to_node {
1187 	unsigned long addr;
1188 	struct page *page;
1189 	int node;
1190 	int status;
1191 };
1192 
1193 static struct page *new_page_node(struct page *p, unsigned long private,
1194 		int **result)
1195 {
1196 	struct page_to_node *pm = (struct page_to_node *)private;
1197 
1198 	while (pm->node != MAX_NUMNODES && pm->page != p)
1199 		pm++;
1200 
1201 	if (pm->node == MAX_NUMNODES)
1202 		return NULL;
1203 
1204 	*result = &pm->status;
1205 
1206 	if (PageHuge(p))
1207 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1208 					pm->node);
1209 	else
1210 		return alloc_pages_exact_node(pm->node,
1211 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1212 }
1213 
1214 /*
1215  * Move a set of pages as indicated in the pm array. The addr
1216  * field must be set to the virtual address of the page to be moved
1217  * and the node number must contain a valid target node.
1218  * The pm array ends with node = MAX_NUMNODES.
1219  */
1220 static int do_move_page_to_node_array(struct mm_struct *mm,
1221 				      struct page_to_node *pm,
1222 				      int migrate_all)
1223 {
1224 	int err;
1225 	struct page_to_node *pp;
1226 	LIST_HEAD(pagelist);
1227 
1228 	down_read(&mm->mmap_sem);
1229 
1230 	/*
1231 	 * Build a list of pages to migrate
1232 	 */
1233 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1234 		struct vm_area_struct *vma;
1235 		struct page *page;
1236 
1237 		err = -EFAULT;
1238 		vma = find_vma(mm, pp->addr);
1239 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1240 			goto set_status;
1241 
1242 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1243 
1244 		err = PTR_ERR(page);
1245 		if (IS_ERR(page))
1246 			goto set_status;
1247 
1248 		err = -ENOENT;
1249 		if (!page)
1250 			goto set_status;
1251 
1252 		/* Use PageReserved to check for zero page */
1253 		if (PageReserved(page))
1254 			goto put_and_set;
1255 
1256 		pp->page = page;
1257 		err = page_to_nid(page);
1258 
1259 		if (err == pp->node)
1260 			/*
1261 			 * Node already in the right place
1262 			 */
1263 			goto put_and_set;
1264 
1265 		err = -EACCES;
1266 		if (page_mapcount(page) > 1 &&
1267 				!migrate_all)
1268 			goto put_and_set;
1269 
1270 		if (PageHuge(page)) {
1271 			isolate_huge_page(page, &pagelist);
1272 			goto put_and_set;
1273 		}
1274 
1275 		err = isolate_lru_page(page);
1276 		if (!err) {
1277 			list_add_tail(&page->lru, &pagelist);
1278 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1279 					    page_is_file_cache(page));
1280 		}
1281 put_and_set:
1282 		/*
1283 		 * Either remove the duplicate refcount from
1284 		 * isolate_lru_page() or drop the page ref if it was
1285 		 * not isolated.
1286 		 */
1287 		put_page(page);
1288 set_status:
1289 		pp->status = err;
1290 	}
1291 
1292 	err = 0;
1293 	if (!list_empty(&pagelist)) {
1294 		err = migrate_pages(&pagelist, new_page_node, NULL,
1295 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1296 		if (err)
1297 			putback_movable_pages(&pagelist);
1298 	}
1299 
1300 	up_read(&mm->mmap_sem);
1301 	return err;
1302 }
1303 
1304 /*
1305  * Migrate an array of page address onto an array of nodes and fill
1306  * the corresponding array of status.
1307  */
1308 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1309 			 unsigned long nr_pages,
1310 			 const void __user * __user *pages,
1311 			 const int __user *nodes,
1312 			 int __user *status, int flags)
1313 {
1314 	struct page_to_node *pm;
1315 	unsigned long chunk_nr_pages;
1316 	unsigned long chunk_start;
1317 	int err;
1318 
1319 	err = -ENOMEM;
1320 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1321 	if (!pm)
1322 		goto out;
1323 
1324 	migrate_prep();
1325 
1326 	/*
1327 	 * Store a chunk of page_to_node array in a page,
1328 	 * but keep the last one as a marker
1329 	 */
1330 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1331 
1332 	for (chunk_start = 0;
1333 	     chunk_start < nr_pages;
1334 	     chunk_start += chunk_nr_pages) {
1335 		int j;
1336 
1337 		if (chunk_start + chunk_nr_pages > nr_pages)
1338 			chunk_nr_pages = nr_pages - chunk_start;
1339 
1340 		/* fill the chunk pm with addrs and nodes from user-space */
1341 		for (j = 0; j < chunk_nr_pages; j++) {
1342 			const void __user *p;
1343 			int node;
1344 
1345 			err = -EFAULT;
1346 			if (get_user(p, pages + j + chunk_start))
1347 				goto out_pm;
1348 			pm[j].addr = (unsigned long) p;
1349 
1350 			if (get_user(node, nodes + j + chunk_start))
1351 				goto out_pm;
1352 
1353 			err = -ENODEV;
1354 			if (node < 0 || node >= MAX_NUMNODES)
1355 				goto out_pm;
1356 
1357 			if (!node_state(node, N_MEMORY))
1358 				goto out_pm;
1359 
1360 			err = -EACCES;
1361 			if (!node_isset(node, task_nodes))
1362 				goto out_pm;
1363 
1364 			pm[j].node = node;
1365 		}
1366 
1367 		/* End marker for this chunk */
1368 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1369 
1370 		/* Migrate this chunk */
1371 		err = do_move_page_to_node_array(mm, pm,
1372 						 flags & MPOL_MF_MOVE_ALL);
1373 		if (err < 0)
1374 			goto out_pm;
1375 
1376 		/* Return status information */
1377 		for (j = 0; j < chunk_nr_pages; j++)
1378 			if (put_user(pm[j].status, status + j + chunk_start)) {
1379 				err = -EFAULT;
1380 				goto out_pm;
1381 			}
1382 	}
1383 	err = 0;
1384 
1385 out_pm:
1386 	free_page((unsigned long)pm);
1387 out:
1388 	return err;
1389 }
1390 
1391 /*
1392  * Determine the nodes of an array of pages and store it in an array of status.
1393  */
1394 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1395 				const void __user **pages, int *status)
1396 {
1397 	unsigned long i;
1398 
1399 	down_read(&mm->mmap_sem);
1400 
1401 	for (i = 0; i < nr_pages; i++) {
1402 		unsigned long addr = (unsigned long)(*pages);
1403 		struct vm_area_struct *vma;
1404 		struct page *page;
1405 		int err = -EFAULT;
1406 
1407 		vma = find_vma(mm, addr);
1408 		if (!vma || addr < vma->vm_start)
1409 			goto set_status;
1410 
1411 		page = follow_page(vma, addr, 0);
1412 
1413 		err = PTR_ERR(page);
1414 		if (IS_ERR(page))
1415 			goto set_status;
1416 
1417 		err = -ENOENT;
1418 		/* Use PageReserved to check for zero page */
1419 		if (!page || PageReserved(page))
1420 			goto set_status;
1421 
1422 		err = page_to_nid(page);
1423 set_status:
1424 		*status = err;
1425 
1426 		pages++;
1427 		status++;
1428 	}
1429 
1430 	up_read(&mm->mmap_sem);
1431 }
1432 
1433 /*
1434  * Determine the nodes of a user array of pages and store it in
1435  * a user array of status.
1436  */
1437 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1438 			 const void __user * __user *pages,
1439 			 int __user *status)
1440 {
1441 #define DO_PAGES_STAT_CHUNK_NR 16
1442 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1443 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1444 
1445 	while (nr_pages) {
1446 		unsigned long chunk_nr;
1447 
1448 		chunk_nr = nr_pages;
1449 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1450 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1451 
1452 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1453 			break;
1454 
1455 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1456 
1457 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1458 			break;
1459 
1460 		pages += chunk_nr;
1461 		status += chunk_nr;
1462 		nr_pages -= chunk_nr;
1463 	}
1464 	return nr_pages ? -EFAULT : 0;
1465 }
1466 
1467 /*
1468  * Move a list of pages in the address space of the currently executing
1469  * process.
1470  */
1471 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1472 		const void __user * __user *, pages,
1473 		const int __user *, nodes,
1474 		int __user *, status, int, flags)
1475 {
1476 	const struct cred *cred = current_cred(), *tcred;
1477 	struct task_struct *task;
1478 	struct mm_struct *mm;
1479 	int err;
1480 	nodemask_t task_nodes;
1481 
1482 	/* Check flags */
1483 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1484 		return -EINVAL;
1485 
1486 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1487 		return -EPERM;
1488 
1489 	/* Find the mm_struct */
1490 	rcu_read_lock();
1491 	task = pid ? find_task_by_vpid(pid) : current;
1492 	if (!task) {
1493 		rcu_read_unlock();
1494 		return -ESRCH;
1495 	}
1496 	get_task_struct(task);
1497 
1498 	/*
1499 	 * Check if this process has the right to modify the specified
1500 	 * process. The right exists if the process has administrative
1501 	 * capabilities, superuser privileges or the same
1502 	 * userid as the target process.
1503 	 */
1504 	tcred = __task_cred(task);
1505 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1506 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1507 	    !capable(CAP_SYS_NICE)) {
1508 		rcu_read_unlock();
1509 		err = -EPERM;
1510 		goto out;
1511 	}
1512 	rcu_read_unlock();
1513 
1514  	err = security_task_movememory(task);
1515  	if (err)
1516 		goto out;
1517 
1518 	task_nodes = cpuset_mems_allowed(task);
1519 	mm = get_task_mm(task);
1520 	put_task_struct(task);
1521 
1522 	if (!mm)
1523 		return -EINVAL;
1524 
1525 	if (nodes)
1526 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1527 				    nodes, status, flags);
1528 	else
1529 		err = do_pages_stat(mm, nr_pages, pages, status);
1530 
1531 	mmput(mm);
1532 	return err;
1533 
1534 out:
1535 	put_task_struct(task);
1536 	return err;
1537 }
1538 
1539 /*
1540  * Call migration functions in the vma_ops that may prepare
1541  * memory in a vm for migration. migration functions may perform
1542  * the migration for vmas that do not have an underlying page struct.
1543  */
1544 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1545 	const nodemask_t *from, unsigned long flags)
1546 {
1547  	struct vm_area_struct *vma;
1548  	int err = 0;
1549 
1550 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1551  		if (vma->vm_ops && vma->vm_ops->migrate) {
1552  			err = vma->vm_ops->migrate(vma, to, from, flags);
1553  			if (err)
1554  				break;
1555  		}
1556  	}
1557  	return err;
1558 }
1559 
1560 #ifdef CONFIG_NUMA_BALANCING
1561 /*
1562  * Returns true if this is a safe migration target node for misplaced NUMA
1563  * pages. Currently it only checks the watermarks which crude
1564  */
1565 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1566 				   unsigned long nr_migrate_pages)
1567 {
1568 	int z;
1569 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1570 		struct zone *zone = pgdat->node_zones + z;
1571 
1572 		if (!populated_zone(zone))
1573 			continue;
1574 
1575 		if (!zone_reclaimable(zone))
1576 			continue;
1577 
1578 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1579 		if (!zone_watermark_ok(zone, 0,
1580 				       high_wmark_pages(zone) +
1581 				       nr_migrate_pages,
1582 				       0, 0))
1583 			continue;
1584 		return true;
1585 	}
1586 	return false;
1587 }
1588 
1589 static struct page *alloc_misplaced_dst_page(struct page *page,
1590 					   unsigned long data,
1591 					   int **result)
1592 {
1593 	int nid = (int) data;
1594 	struct page *newpage;
1595 
1596 	newpage = alloc_pages_exact_node(nid,
1597 					 (GFP_HIGHUSER_MOVABLE |
1598 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1599 					  __GFP_NORETRY | __GFP_NOWARN) &
1600 					 ~GFP_IOFS, 0);
1601 
1602 	return newpage;
1603 }
1604 
1605 /*
1606  * page migration rate limiting control.
1607  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1608  * window of time. Default here says do not migrate more than 1280M per second.
1609  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1610  * as it is faults that reset the window, pte updates will happen unconditionally
1611  * if there has not been a fault since @pteupdate_interval_millisecs after the
1612  * throttle window closed.
1613  */
1614 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1615 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1616 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1617 
1618 /* Returns true if NUMA migration is currently rate limited */
1619 bool migrate_ratelimited(int node)
1620 {
1621 	pg_data_t *pgdat = NODE_DATA(node);
1622 
1623 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1624 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1625 		return false;
1626 
1627 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1628 		return false;
1629 
1630 	return true;
1631 }
1632 
1633 /* Returns true if the node is migrate rate-limited after the update */
1634 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1635 					unsigned long nr_pages)
1636 {
1637 	/*
1638 	 * Rate-limit the amount of data that is being migrated to a node.
1639 	 * Optimal placement is no good if the memory bus is saturated and
1640 	 * all the time is being spent migrating!
1641 	 */
1642 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1643 		spin_lock(&pgdat->numabalancing_migrate_lock);
1644 		pgdat->numabalancing_migrate_nr_pages = 0;
1645 		pgdat->numabalancing_migrate_next_window = jiffies +
1646 			msecs_to_jiffies(migrate_interval_millisecs);
1647 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1648 	}
1649 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1650 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1651 								nr_pages);
1652 		return true;
1653 	}
1654 
1655 	/*
1656 	 * This is an unlocked non-atomic update so errors are possible.
1657 	 * The consequences are failing to migrate when we potentiall should
1658 	 * have which is not severe enough to warrant locking. If it is ever
1659 	 * a problem, it can be converted to a per-cpu counter.
1660 	 */
1661 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1662 	return false;
1663 }
1664 
1665 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1666 {
1667 	int page_lru;
1668 
1669 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1670 
1671 	/* Avoid migrating to a node that is nearly full */
1672 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1673 		return 0;
1674 
1675 	if (isolate_lru_page(page))
1676 		return 0;
1677 
1678 	/*
1679 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1680 	 * check on page_count(), so we must do it here, now that the page
1681 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1682 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1683 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1684 	 */
1685 	if (PageTransHuge(page) && page_count(page) != 3) {
1686 		putback_lru_page(page);
1687 		return 0;
1688 	}
1689 
1690 	page_lru = page_is_file_cache(page);
1691 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1692 				hpage_nr_pages(page));
1693 
1694 	/*
1695 	 * Isolating the page has taken another reference, so the
1696 	 * caller's reference can be safely dropped without the page
1697 	 * disappearing underneath us during migration.
1698 	 */
1699 	put_page(page);
1700 	return 1;
1701 }
1702 
1703 bool pmd_trans_migrating(pmd_t pmd)
1704 {
1705 	struct page *page = pmd_page(pmd);
1706 	return PageLocked(page);
1707 }
1708 
1709 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1710 {
1711 	struct page *page = pmd_page(*pmd);
1712 	wait_on_page_locked(page);
1713 }
1714 
1715 /*
1716  * Attempt to migrate a misplaced page to the specified destination
1717  * node. Caller is expected to have an elevated reference count on
1718  * the page that will be dropped by this function before returning.
1719  */
1720 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1721 			   int node)
1722 {
1723 	pg_data_t *pgdat = NODE_DATA(node);
1724 	int isolated;
1725 	int nr_remaining;
1726 	LIST_HEAD(migratepages);
1727 
1728 	/*
1729 	 * Don't migrate file pages that are mapped in multiple processes
1730 	 * with execute permissions as they are probably shared libraries.
1731 	 */
1732 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1733 	    (vma->vm_flags & VM_EXEC))
1734 		goto out;
1735 
1736 	/*
1737 	 * Rate-limit the amount of data that is being migrated to a node.
1738 	 * Optimal placement is no good if the memory bus is saturated and
1739 	 * all the time is being spent migrating!
1740 	 */
1741 	if (numamigrate_update_ratelimit(pgdat, 1))
1742 		goto out;
1743 
1744 	isolated = numamigrate_isolate_page(pgdat, page);
1745 	if (!isolated)
1746 		goto out;
1747 
1748 	list_add(&page->lru, &migratepages);
1749 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1750 				     NULL, node, MIGRATE_ASYNC,
1751 				     MR_NUMA_MISPLACED);
1752 	if (nr_remaining) {
1753 		if (!list_empty(&migratepages)) {
1754 			list_del(&page->lru);
1755 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1756 					page_is_file_cache(page));
1757 			putback_lru_page(page);
1758 		}
1759 		isolated = 0;
1760 	} else
1761 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1762 	BUG_ON(!list_empty(&migratepages));
1763 	return isolated;
1764 
1765 out:
1766 	put_page(page);
1767 	return 0;
1768 }
1769 #endif /* CONFIG_NUMA_BALANCING */
1770 
1771 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1772 /*
1773  * Migrates a THP to a given target node. page must be locked and is unlocked
1774  * before returning.
1775  */
1776 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1777 				struct vm_area_struct *vma,
1778 				pmd_t *pmd, pmd_t entry,
1779 				unsigned long address,
1780 				struct page *page, int node)
1781 {
1782 	spinlock_t *ptl;
1783 	pg_data_t *pgdat = NODE_DATA(node);
1784 	int isolated = 0;
1785 	struct page *new_page = NULL;
1786 	int page_lru = page_is_file_cache(page);
1787 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1788 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1789 	pmd_t orig_entry;
1790 
1791 	/*
1792 	 * Rate-limit the amount of data that is being migrated to a node.
1793 	 * Optimal placement is no good if the memory bus is saturated and
1794 	 * all the time is being spent migrating!
1795 	 */
1796 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1797 		goto out_dropref;
1798 
1799 	new_page = alloc_pages_node(node,
1800 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1801 		HPAGE_PMD_ORDER);
1802 	if (!new_page)
1803 		goto out_fail;
1804 
1805 	isolated = numamigrate_isolate_page(pgdat, page);
1806 	if (!isolated) {
1807 		put_page(new_page);
1808 		goto out_fail;
1809 	}
1810 
1811 	if (mm_tlb_flush_pending(mm))
1812 		flush_tlb_range(vma, mmun_start, mmun_end);
1813 
1814 	/* Prepare a page as a migration target */
1815 	__set_page_locked(new_page);
1816 	SetPageSwapBacked(new_page);
1817 
1818 	/* anon mapping, we can simply copy page->mapping to the new page: */
1819 	new_page->mapping = page->mapping;
1820 	new_page->index = page->index;
1821 	migrate_page_copy(new_page, page);
1822 	WARN_ON(PageLRU(new_page));
1823 
1824 	/* Recheck the target PMD */
1825 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1826 	ptl = pmd_lock(mm, pmd);
1827 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1828 fail_putback:
1829 		spin_unlock(ptl);
1830 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1831 
1832 		/* Reverse changes made by migrate_page_copy() */
1833 		if (TestClearPageActive(new_page))
1834 			SetPageActive(page);
1835 		if (TestClearPageUnevictable(new_page))
1836 			SetPageUnevictable(page);
1837 		mlock_migrate_page(page, new_page);
1838 
1839 		unlock_page(new_page);
1840 		put_page(new_page);		/* Free it */
1841 
1842 		/* Retake the callers reference and putback on LRU */
1843 		get_page(page);
1844 		putback_lru_page(page);
1845 		mod_zone_page_state(page_zone(page),
1846 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1847 
1848 		goto out_unlock;
1849 	}
1850 
1851 	orig_entry = *pmd;
1852 	entry = mk_pmd(new_page, vma->vm_page_prot);
1853 	entry = pmd_mkhuge(entry);
1854 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1855 
1856 	/*
1857 	 * Clear the old entry under pagetable lock and establish the new PTE.
1858 	 * Any parallel GUP will either observe the old page blocking on the
1859 	 * page lock, block on the page table lock or observe the new page.
1860 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1861 	 * guarantee the copy is visible before the pagetable update.
1862 	 */
1863 	flush_cache_range(vma, mmun_start, mmun_end);
1864 	page_add_anon_rmap(new_page, vma, mmun_start);
1865 	pmdp_clear_flush(vma, mmun_start, pmd);
1866 	set_pmd_at(mm, mmun_start, pmd, entry);
1867 	flush_tlb_range(vma, mmun_start, mmun_end);
1868 	update_mmu_cache_pmd(vma, address, &entry);
1869 
1870 	if (page_count(page) != 2) {
1871 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1872 		flush_tlb_range(vma, mmun_start, mmun_end);
1873 		update_mmu_cache_pmd(vma, address, &entry);
1874 		page_remove_rmap(new_page);
1875 		goto fail_putback;
1876 	}
1877 
1878 	mem_cgroup_migrate(page, new_page, false);
1879 
1880 	page_remove_rmap(page);
1881 
1882 	spin_unlock(ptl);
1883 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1884 
1885 	/* Take an "isolate" reference and put new page on the LRU. */
1886 	get_page(new_page);
1887 	putback_lru_page(new_page);
1888 
1889 	unlock_page(new_page);
1890 	unlock_page(page);
1891 	put_page(page);			/* Drop the rmap reference */
1892 	put_page(page);			/* Drop the LRU isolation reference */
1893 
1894 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1895 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1896 
1897 	mod_zone_page_state(page_zone(page),
1898 			NR_ISOLATED_ANON + page_lru,
1899 			-HPAGE_PMD_NR);
1900 	return isolated;
1901 
1902 out_fail:
1903 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1904 out_dropref:
1905 	ptl = pmd_lock(mm, pmd);
1906 	if (pmd_same(*pmd, entry)) {
1907 		entry = pmd_mknonnuma(entry);
1908 		set_pmd_at(mm, mmun_start, pmd, entry);
1909 		update_mmu_cache_pmd(vma, address, &entry);
1910 	}
1911 	spin_unlock(ptl);
1912 
1913 out_unlock:
1914 	unlock_page(page);
1915 	put_page(page);
1916 	return 0;
1917 }
1918 #endif /* CONFIG_NUMA_BALANCING */
1919 
1920 #endif /* CONFIG_NUMA */
1921