xref: /openbmc/linux/mm/migrate.c (revision 371f3fbf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 
75 	return 0;
76 }
77 
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 	lru_add_drain();
82 
83 	return 0;
84 }
85 
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 	struct address_space *mapping;
89 
90 	/*
91 	 * Avoid burning cycles with pages that are yet under __free_pages(),
92 	 * or just got freed under us.
93 	 *
94 	 * In case we 'win' a race for a movable page being freed under us and
95 	 * raise its refcount preventing __free_pages() from doing its job
96 	 * the put_page() at the end of this block will take care of
97 	 * release this page, thus avoiding a nasty leakage.
98 	 */
99 	if (unlikely(!get_page_unless_zero(page)))
100 		goto out;
101 
102 	/*
103 	 * Check PageMovable before holding a PG_lock because page's owner
104 	 * assumes anybody doesn't touch PG_lock of newly allocated page
105 	 * so unconditionally grabbing the lock ruins page's owner side.
106 	 */
107 	if (unlikely(!__PageMovable(page)))
108 		goto out_putpage;
109 	/*
110 	 * As movable pages are not isolated from LRU lists, concurrent
111 	 * compaction threads can race against page migration functions
112 	 * as well as race against the releasing a page.
113 	 *
114 	 * In order to avoid having an already isolated movable page
115 	 * being (wrongly) re-isolated while it is under migration,
116 	 * or to avoid attempting to isolate pages being released,
117 	 * lets be sure we have the page lock
118 	 * before proceeding with the movable page isolation steps.
119 	 */
120 	if (unlikely(!trylock_page(page)))
121 		goto out_putpage;
122 
123 	if (!PageMovable(page) || PageIsolated(page))
124 		goto out_no_isolated;
125 
126 	mapping = page_mapping(page);
127 	VM_BUG_ON_PAGE(!mapping, page);
128 
129 	if (!mapping->a_ops->isolate_page(page, mode))
130 		goto out_no_isolated;
131 
132 	/* Driver shouldn't use PG_isolated bit of page->flags */
133 	WARN_ON_ONCE(PageIsolated(page));
134 	__SetPageIsolated(page);
135 	unlock_page(page);
136 
137 	return 0;
138 
139 out_no_isolated:
140 	unlock_page(page);
141 out_putpage:
142 	put_page(page);
143 out:
144 	return -EBUSY;
145 }
146 
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 	struct address_space *mapping;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageMovable(page), page);
154 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 
156 	mapping = page_mapping(page);
157 	mapping->a_ops->putback_page(page);
158 	__ClearPageIsolated(page);
159 }
160 
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171 	struct page *page;
172 	struct page *page2;
173 
174 	list_for_each_entry_safe(page, page2, l, lru) {
175 		if (unlikely(PageHuge(page))) {
176 			putback_active_hugepage(page);
177 			continue;
178 		}
179 		list_del(&page->lru);
180 		/*
181 		 * We isolated non-lru movable page so here we can use
182 		 * __PageMovable because LRU page's mapping cannot have
183 		 * PAGE_MAPPING_MOVABLE.
184 		 */
185 		if (unlikely(__PageMovable(page))) {
186 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 			lock_page(page);
188 			if (PageMovable(page))
189 				putback_movable_page(page);
190 			else
191 				__ClearPageIsolated(page);
192 			unlock_page(page);
193 			put_page(page);
194 		} else {
195 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 					page_is_file_lru(page), -thp_nr_pages(page));
197 			putback_lru_page(page);
198 		}
199 	}
200 }
201 
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 				 unsigned long addr, void *old)
207 {
208 	struct page_vma_mapped_walk pvmw = {
209 		.page = old,
210 		.vma = vma,
211 		.address = addr,
212 		.flags = PVMW_SYNC | PVMW_MIGRATION,
213 	};
214 	struct page *new;
215 	pte_t pte;
216 	swp_entry_t entry;
217 
218 	VM_BUG_ON_PAGE(PageTail(page), page);
219 	while (page_vma_mapped_walk(&pvmw)) {
220 		if (PageKsm(page))
221 			new = page;
222 		else
223 			new = page - pvmw.page->index +
224 				linear_page_index(vma, pvmw.address);
225 
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 		/* PMD-mapped THP migration entry */
228 		if (!pvmw.pte) {
229 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 			remove_migration_pmd(&pvmw, new);
231 			continue;
232 		}
233 #endif
234 
235 		get_page(new);
236 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 		if (pte_swp_soft_dirty(*pvmw.pte))
238 			pte = pte_mksoft_dirty(pte);
239 
240 		/*
241 		 * Recheck VMA as permissions can change since migration started
242 		 */
243 		entry = pte_to_swp_entry(*pvmw.pte);
244 		if (is_write_migration_entry(entry))
245 			pte = maybe_mkwrite(pte, vma);
246 		else if (pte_swp_uffd_wp(*pvmw.pte))
247 			pte = pte_mkuffd_wp(pte);
248 
249 		if (unlikely(is_device_private_page(new))) {
250 			entry = make_device_private_entry(new, pte_write(pte));
251 			pte = swp_entry_to_pte(entry);
252 			if (pte_swp_soft_dirty(*pvmw.pte))
253 				pte = pte_swp_mksoft_dirty(pte);
254 			if (pte_swp_uffd_wp(*pvmw.pte))
255 				pte = pte_swp_mkuffd_wp(pte);
256 		}
257 
258 #ifdef CONFIG_HUGETLB_PAGE
259 		if (PageHuge(new)) {
260 			pte = pte_mkhuge(pte);
261 			pte = arch_make_huge_pte(pte, vma, new, 0);
262 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 			if (PageAnon(new))
264 				hugepage_add_anon_rmap(new, vma, pvmw.address);
265 			else
266 				page_dup_rmap(new, true);
267 		} else
268 #endif
269 		{
270 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 
272 			if (PageAnon(new))
273 				page_add_anon_rmap(new, vma, pvmw.address, false);
274 			else
275 				page_add_file_rmap(new, false);
276 		}
277 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 			mlock_vma_page(new);
279 
280 		if (PageTransHuge(page) && PageMlocked(page))
281 			clear_page_mlock(page);
282 
283 		/* No need to invalidate - it was non-present before */
284 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 	}
286 
287 	return true;
288 }
289 
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 	struct rmap_walk_control rwc = {
297 		.rmap_one = remove_migration_pte,
298 		.arg = old,
299 	};
300 
301 	if (locked)
302 		rmap_walk_locked(new, &rwc);
303 	else
304 		rmap_walk(new, &rwc);
305 }
306 
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 				spinlock_t *ptl)
314 {
315 	pte_t pte;
316 	swp_entry_t entry;
317 	struct page *page;
318 
319 	spin_lock(ptl);
320 	pte = *ptep;
321 	if (!is_swap_pte(pte))
322 		goto out;
323 
324 	entry = pte_to_swp_entry(pte);
325 	if (!is_migration_entry(entry))
326 		goto out;
327 
328 	page = migration_entry_to_page(entry);
329 
330 	/*
331 	 * Once page cache replacement of page migration started, page_count
332 	 * is zero; but we must not call put_and_wait_on_page_locked() without
333 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 	 */
335 	if (!get_page_unless_zero(page))
336 		goto out;
337 	pte_unmap_unlock(ptep, ptl);
338 	put_and_wait_on_page_locked(page);
339 	return;
340 out:
341 	pte_unmap_unlock(ptep, ptl);
342 }
343 
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 				unsigned long address)
346 {
347 	spinlock_t *ptl = pte_lockptr(mm, pmd);
348 	pte_t *ptep = pte_offset_map(pmd, address);
349 	__migration_entry_wait(mm, ptep, ptl);
350 }
351 
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 		struct mm_struct *mm, pte_t *pte)
354 {
355 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 	__migration_entry_wait(mm, pte, ptl);
357 }
358 
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 	spinlock_t *ptl;
363 	struct page *page;
364 
365 	ptl = pmd_lock(mm, pmd);
366 	if (!is_pmd_migration_entry(*pmd))
367 		goto unlock;
368 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 	if (!get_page_unless_zero(page))
370 		goto unlock;
371 	spin_unlock(ptl);
372 	put_and_wait_on_page_locked(page);
373 	return;
374 unlock:
375 	spin_unlock(ptl);
376 }
377 #endif
378 
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 	int expected_count = 1;
382 
383 	/*
384 	 * Device private pages have an extra refcount as they are
385 	 * ZONE_DEVICE pages.
386 	 */
387 	expected_count += is_device_private_page(page);
388 	if (mapping)
389 		expected_count += thp_nr_pages(page) + page_has_private(page);
390 
391 	return expected_count;
392 }
393 
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 		struct page *newpage, struct page *page, int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(mapping, page) + extra_count;
409 	int nr = thp_nr_pages(page);
410 
411 	if (!mapping) {
412 		/* Anonymous page without mapping */
413 		if (page_count(page) != expected_count)
414 			return -EAGAIN;
415 
416 		/* No turning back from here */
417 		newpage->index = page->index;
418 		newpage->mapping = page->mapping;
419 		if (PageSwapBacked(page))
420 			__SetPageSwapBacked(newpage);
421 
422 		return MIGRATEPAGE_SUCCESS;
423 	}
424 
425 	oldzone = page_zone(page);
426 	newzone = page_zone(newpage);
427 
428 	xas_lock_irq(&xas);
429 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
430 		xas_unlock_irq(&xas);
431 		return -EAGAIN;
432 	}
433 
434 	if (!page_ref_freeze(page, expected_count)) {
435 		xas_unlock_irq(&xas);
436 		return -EAGAIN;
437 	}
438 
439 	/*
440 	 * Now we know that no one else is looking at the page:
441 	 * no turning back from here.
442 	 */
443 	newpage->index = page->index;
444 	newpage->mapping = page->mapping;
445 	page_ref_add(newpage, nr); /* add cache reference */
446 	if (PageSwapBacked(page)) {
447 		__SetPageSwapBacked(newpage);
448 		if (PageSwapCache(page)) {
449 			SetPageSwapCache(newpage);
450 			set_page_private(newpage, page_private(page));
451 		}
452 	} else {
453 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
454 	}
455 
456 	/* Move dirty while page refs frozen and newpage not yet exposed */
457 	dirty = PageDirty(page);
458 	if (dirty) {
459 		ClearPageDirty(page);
460 		SetPageDirty(newpage);
461 	}
462 
463 	xas_store(&xas, newpage);
464 	if (PageTransHuge(page)) {
465 		int i;
466 
467 		for (i = 1; i < nr; i++) {
468 			xas_next(&xas);
469 			xas_store(&xas, newpage);
470 		}
471 	}
472 
473 	/*
474 	 * Drop cache reference from old page by unfreezing
475 	 * to one less reference.
476 	 * We know this isn't the last reference.
477 	 */
478 	page_ref_unfreeze(page, expected_count - nr);
479 
480 	xas_unlock(&xas);
481 	/* Leave irq disabled to prevent preemption while updating stats */
482 
483 	/*
484 	 * If moved to a different zone then also account
485 	 * the page for that zone. Other VM counters will be
486 	 * taken care of when we establish references to the
487 	 * new page and drop references to the old page.
488 	 *
489 	 * Note that anonymous pages are accounted for
490 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
491 	 * are mapped to swap space.
492 	 */
493 	if (newzone != oldzone) {
494 		struct lruvec *old_lruvec, *new_lruvec;
495 		struct mem_cgroup *memcg;
496 
497 		memcg = page_memcg(page);
498 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
499 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
500 
501 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
502 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
503 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
504 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
505 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
506 		}
507 		if (dirty && mapping_can_writeback(mapping)) {
508 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
509 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
510 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
511 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
512 		}
513 	}
514 	local_irq_enable();
515 
516 	return MIGRATEPAGE_SUCCESS;
517 }
518 EXPORT_SYMBOL(migrate_page_move_mapping);
519 
520 /*
521  * The expected number of remaining references is the same as that
522  * of migrate_page_move_mapping().
523  */
524 int migrate_huge_page_move_mapping(struct address_space *mapping,
525 				   struct page *newpage, struct page *page)
526 {
527 	XA_STATE(xas, &mapping->i_pages, page_index(page));
528 	int expected_count;
529 
530 	xas_lock_irq(&xas);
531 	expected_count = 2 + page_has_private(page);
532 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
533 		xas_unlock_irq(&xas);
534 		return -EAGAIN;
535 	}
536 
537 	if (!page_ref_freeze(page, expected_count)) {
538 		xas_unlock_irq(&xas);
539 		return -EAGAIN;
540 	}
541 
542 	newpage->index = page->index;
543 	newpage->mapping = page->mapping;
544 
545 	get_page(newpage);
546 
547 	xas_store(&xas, newpage);
548 
549 	page_ref_unfreeze(page, expected_count - 1);
550 
551 	xas_unlock_irq(&xas);
552 
553 	return MIGRATEPAGE_SUCCESS;
554 }
555 
556 /*
557  * Gigantic pages are so large that we do not guarantee that page++ pointer
558  * arithmetic will work across the entire page.  We need something more
559  * specialized.
560  */
561 static void __copy_gigantic_page(struct page *dst, struct page *src,
562 				int nr_pages)
563 {
564 	int i;
565 	struct page *dst_base = dst;
566 	struct page *src_base = src;
567 
568 	for (i = 0; i < nr_pages; ) {
569 		cond_resched();
570 		copy_highpage(dst, src);
571 
572 		i++;
573 		dst = mem_map_next(dst, dst_base, i);
574 		src = mem_map_next(src, src_base, i);
575 	}
576 }
577 
578 static void copy_huge_page(struct page *dst, struct page *src)
579 {
580 	int i;
581 	int nr_pages;
582 
583 	if (PageHuge(src)) {
584 		/* hugetlbfs page */
585 		struct hstate *h = page_hstate(src);
586 		nr_pages = pages_per_huge_page(h);
587 
588 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
589 			__copy_gigantic_page(dst, src, nr_pages);
590 			return;
591 		}
592 	} else {
593 		/* thp page */
594 		BUG_ON(!PageTransHuge(src));
595 		nr_pages = thp_nr_pages(src);
596 	}
597 
598 	for (i = 0; i < nr_pages; i++) {
599 		cond_resched();
600 		copy_highpage(dst + i, src + i);
601 	}
602 }
603 
604 /*
605  * Copy the page to its new location
606  */
607 void migrate_page_states(struct page *newpage, struct page *page)
608 {
609 	int cpupid;
610 
611 	if (PageError(page))
612 		SetPageError(newpage);
613 	if (PageReferenced(page))
614 		SetPageReferenced(newpage);
615 	if (PageUptodate(page))
616 		SetPageUptodate(newpage);
617 	if (TestClearPageActive(page)) {
618 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
619 		SetPageActive(newpage);
620 	} else if (TestClearPageUnevictable(page))
621 		SetPageUnevictable(newpage);
622 	if (PageWorkingset(page))
623 		SetPageWorkingset(newpage);
624 	if (PageChecked(page))
625 		SetPageChecked(newpage);
626 	if (PageMappedToDisk(page))
627 		SetPageMappedToDisk(newpage);
628 
629 	/* Move dirty on pages not done by migrate_page_move_mapping() */
630 	if (PageDirty(page))
631 		SetPageDirty(newpage);
632 
633 	if (page_is_young(page))
634 		set_page_young(newpage);
635 	if (page_is_idle(page))
636 		set_page_idle(newpage);
637 
638 	/*
639 	 * Copy NUMA information to the new page, to prevent over-eager
640 	 * future migrations of this same page.
641 	 */
642 	cpupid = page_cpupid_xchg_last(page, -1);
643 	page_cpupid_xchg_last(newpage, cpupid);
644 
645 	ksm_migrate_page(newpage, page);
646 	/*
647 	 * Please do not reorder this without considering how mm/ksm.c's
648 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
649 	 */
650 	if (PageSwapCache(page))
651 		ClearPageSwapCache(page);
652 	ClearPagePrivate(page);
653 	set_page_private(page, 0);
654 
655 	/*
656 	 * If any waiters have accumulated on the new page then
657 	 * wake them up.
658 	 */
659 	if (PageWriteback(newpage))
660 		end_page_writeback(newpage);
661 
662 	/*
663 	 * PG_readahead shares the same bit with PG_reclaim.  The above
664 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
665 	 * bit after that.
666 	 */
667 	if (PageReadahead(page))
668 		SetPageReadahead(newpage);
669 
670 	copy_page_owner(page, newpage);
671 
672 	if (!PageHuge(page))
673 		mem_cgroup_migrate(page, newpage);
674 }
675 EXPORT_SYMBOL(migrate_page_states);
676 
677 void migrate_page_copy(struct page *newpage, struct page *page)
678 {
679 	if (PageHuge(page) || PageTransHuge(page))
680 		copy_huge_page(newpage, page);
681 	else
682 		copy_highpage(newpage, page);
683 
684 	migrate_page_states(newpage, page);
685 }
686 EXPORT_SYMBOL(migrate_page_copy);
687 
688 /************************************************************
689  *                    Migration functions
690  ***********************************************************/
691 
692 /*
693  * Common logic to directly migrate a single LRU page suitable for
694  * pages that do not use PagePrivate/PagePrivate2.
695  *
696  * Pages are locked upon entry and exit.
697  */
698 int migrate_page(struct address_space *mapping,
699 		struct page *newpage, struct page *page,
700 		enum migrate_mode mode)
701 {
702 	int rc;
703 
704 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
705 
706 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
707 
708 	if (rc != MIGRATEPAGE_SUCCESS)
709 		return rc;
710 
711 	if (mode != MIGRATE_SYNC_NO_COPY)
712 		migrate_page_copy(newpage, page);
713 	else
714 		migrate_page_states(newpage, page);
715 	return MIGRATEPAGE_SUCCESS;
716 }
717 EXPORT_SYMBOL(migrate_page);
718 
719 #ifdef CONFIG_BLOCK
720 /* Returns true if all buffers are successfully locked */
721 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
722 							enum migrate_mode mode)
723 {
724 	struct buffer_head *bh = head;
725 
726 	/* Simple case, sync compaction */
727 	if (mode != MIGRATE_ASYNC) {
728 		do {
729 			lock_buffer(bh);
730 			bh = bh->b_this_page;
731 
732 		} while (bh != head);
733 
734 		return true;
735 	}
736 
737 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
738 	do {
739 		if (!trylock_buffer(bh)) {
740 			/*
741 			 * We failed to lock the buffer and cannot stall in
742 			 * async migration. Release the taken locks
743 			 */
744 			struct buffer_head *failed_bh = bh;
745 			bh = head;
746 			while (bh != failed_bh) {
747 				unlock_buffer(bh);
748 				bh = bh->b_this_page;
749 			}
750 			return false;
751 		}
752 
753 		bh = bh->b_this_page;
754 	} while (bh != head);
755 	return true;
756 }
757 
758 static int __buffer_migrate_page(struct address_space *mapping,
759 		struct page *newpage, struct page *page, enum migrate_mode mode,
760 		bool check_refs)
761 {
762 	struct buffer_head *bh, *head;
763 	int rc;
764 	int expected_count;
765 
766 	if (!page_has_buffers(page))
767 		return migrate_page(mapping, newpage, page, mode);
768 
769 	/* Check whether page does not have extra refs before we do more work */
770 	expected_count = expected_page_refs(mapping, page);
771 	if (page_count(page) != expected_count)
772 		return -EAGAIN;
773 
774 	head = page_buffers(page);
775 	if (!buffer_migrate_lock_buffers(head, mode))
776 		return -EAGAIN;
777 
778 	if (check_refs) {
779 		bool busy;
780 		bool invalidated = false;
781 
782 recheck_buffers:
783 		busy = false;
784 		spin_lock(&mapping->private_lock);
785 		bh = head;
786 		do {
787 			if (atomic_read(&bh->b_count)) {
788 				busy = true;
789 				break;
790 			}
791 			bh = bh->b_this_page;
792 		} while (bh != head);
793 		if (busy) {
794 			if (invalidated) {
795 				rc = -EAGAIN;
796 				goto unlock_buffers;
797 			}
798 			spin_unlock(&mapping->private_lock);
799 			invalidate_bh_lrus();
800 			invalidated = true;
801 			goto recheck_buffers;
802 		}
803 	}
804 
805 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
806 	if (rc != MIGRATEPAGE_SUCCESS)
807 		goto unlock_buffers;
808 
809 	attach_page_private(newpage, detach_page_private(page));
810 
811 	bh = head;
812 	do {
813 		set_bh_page(bh, newpage, bh_offset(bh));
814 		bh = bh->b_this_page;
815 
816 	} while (bh != head);
817 
818 	if (mode != MIGRATE_SYNC_NO_COPY)
819 		migrate_page_copy(newpage, page);
820 	else
821 		migrate_page_states(newpage, page);
822 
823 	rc = MIGRATEPAGE_SUCCESS;
824 unlock_buffers:
825 	if (check_refs)
826 		spin_unlock(&mapping->private_lock);
827 	bh = head;
828 	do {
829 		unlock_buffer(bh);
830 		bh = bh->b_this_page;
831 
832 	} while (bh != head);
833 
834 	return rc;
835 }
836 
837 /*
838  * Migration function for pages with buffers. This function can only be used
839  * if the underlying filesystem guarantees that no other references to "page"
840  * exist. For example attached buffer heads are accessed only under page lock.
841  */
842 int buffer_migrate_page(struct address_space *mapping,
843 		struct page *newpage, struct page *page, enum migrate_mode mode)
844 {
845 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
846 }
847 EXPORT_SYMBOL(buffer_migrate_page);
848 
849 /*
850  * Same as above except that this variant is more careful and checks that there
851  * are also no buffer head references. This function is the right one for
852  * mappings where buffer heads are directly looked up and referenced (such as
853  * block device mappings).
854  */
855 int buffer_migrate_page_norefs(struct address_space *mapping,
856 		struct page *newpage, struct page *page, enum migrate_mode mode)
857 {
858 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
859 }
860 #endif
861 
862 /*
863  * Writeback a page to clean the dirty state
864  */
865 static int writeout(struct address_space *mapping, struct page *page)
866 {
867 	struct writeback_control wbc = {
868 		.sync_mode = WB_SYNC_NONE,
869 		.nr_to_write = 1,
870 		.range_start = 0,
871 		.range_end = LLONG_MAX,
872 		.for_reclaim = 1
873 	};
874 	int rc;
875 
876 	if (!mapping->a_ops->writepage)
877 		/* No write method for the address space */
878 		return -EINVAL;
879 
880 	if (!clear_page_dirty_for_io(page))
881 		/* Someone else already triggered a write */
882 		return -EAGAIN;
883 
884 	/*
885 	 * A dirty page may imply that the underlying filesystem has
886 	 * the page on some queue. So the page must be clean for
887 	 * migration. Writeout may mean we loose the lock and the
888 	 * page state is no longer what we checked for earlier.
889 	 * At this point we know that the migration attempt cannot
890 	 * be successful.
891 	 */
892 	remove_migration_ptes(page, page, false);
893 
894 	rc = mapping->a_ops->writepage(page, &wbc);
895 
896 	if (rc != AOP_WRITEPAGE_ACTIVATE)
897 		/* unlocked. Relock */
898 		lock_page(page);
899 
900 	return (rc < 0) ? -EIO : -EAGAIN;
901 }
902 
903 /*
904  * Default handling if a filesystem does not provide a migration function.
905  */
906 static int fallback_migrate_page(struct address_space *mapping,
907 	struct page *newpage, struct page *page, enum migrate_mode mode)
908 {
909 	if (PageDirty(page)) {
910 		/* Only writeback pages in full synchronous migration */
911 		switch (mode) {
912 		case MIGRATE_SYNC:
913 		case MIGRATE_SYNC_NO_COPY:
914 			break;
915 		default:
916 			return -EBUSY;
917 		}
918 		return writeout(mapping, page);
919 	}
920 
921 	/*
922 	 * Buffers may be managed in a filesystem specific way.
923 	 * We must have no buffers or drop them.
924 	 */
925 	if (page_has_private(page) &&
926 	    !try_to_release_page(page, GFP_KERNEL))
927 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
928 
929 	return migrate_page(mapping, newpage, page, mode);
930 }
931 
932 /*
933  * Move a page to a newly allocated page
934  * The page is locked and all ptes have been successfully removed.
935  *
936  * The new page will have replaced the old page if this function
937  * is successful.
938  *
939  * Return value:
940  *   < 0 - error code
941  *  MIGRATEPAGE_SUCCESS - success
942  */
943 static int move_to_new_page(struct page *newpage, struct page *page,
944 				enum migrate_mode mode)
945 {
946 	struct address_space *mapping;
947 	int rc = -EAGAIN;
948 	bool is_lru = !__PageMovable(page);
949 
950 	VM_BUG_ON_PAGE(!PageLocked(page), page);
951 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
952 
953 	mapping = page_mapping(page);
954 
955 	if (likely(is_lru)) {
956 		if (!mapping)
957 			rc = migrate_page(mapping, newpage, page, mode);
958 		else if (mapping->a_ops->migratepage)
959 			/*
960 			 * Most pages have a mapping and most filesystems
961 			 * provide a migratepage callback. Anonymous pages
962 			 * are part of swap space which also has its own
963 			 * migratepage callback. This is the most common path
964 			 * for page migration.
965 			 */
966 			rc = mapping->a_ops->migratepage(mapping, newpage,
967 							page, mode);
968 		else
969 			rc = fallback_migrate_page(mapping, newpage,
970 							page, mode);
971 	} else {
972 		/*
973 		 * In case of non-lru page, it could be released after
974 		 * isolation step. In that case, we shouldn't try migration.
975 		 */
976 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
977 		if (!PageMovable(page)) {
978 			rc = MIGRATEPAGE_SUCCESS;
979 			__ClearPageIsolated(page);
980 			goto out;
981 		}
982 
983 		rc = mapping->a_ops->migratepage(mapping, newpage,
984 						page, mode);
985 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
986 			!PageIsolated(page));
987 	}
988 
989 	/*
990 	 * When successful, old pagecache page->mapping must be cleared before
991 	 * page is freed; but stats require that PageAnon be left as PageAnon.
992 	 */
993 	if (rc == MIGRATEPAGE_SUCCESS) {
994 		if (__PageMovable(page)) {
995 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
996 
997 			/*
998 			 * We clear PG_movable under page_lock so any compactor
999 			 * cannot try to migrate this page.
1000 			 */
1001 			__ClearPageIsolated(page);
1002 		}
1003 
1004 		/*
1005 		 * Anonymous and movable page->mapping will be cleared by
1006 		 * free_pages_prepare so don't reset it here for keeping
1007 		 * the type to work PageAnon, for example.
1008 		 */
1009 		if (!PageMappingFlags(page))
1010 			page->mapping = NULL;
1011 
1012 		if (likely(!is_zone_device_page(newpage)))
1013 			flush_dcache_page(newpage);
1014 
1015 	}
1016 out:
1017 	return rc;
1018 }
1019 
1020 static int __unmap_and_move(struct page *page, struct page *newpage,
1021 				int force, enum migrate_mode mode)
1022 {
1023 	int rc = -EAGAIN;
1024 	int page_was_mapped = 0;
1025 	struct anon_vma *anon_vma = NULL;
1026 	bool is_lru = !__PageMovable(page);
1027 
1028 	if (!trylock_page(page)) {
1029 		if (!force || mode == MIGRATE_ASYNC)
1030 			goto out;
1031 
1032 		/*
1033 		 * It's not safe for direct compaction to call lock_page.
1034 		 * For example, during page readahead pages are added locked
1035 		 * to the LRU. Later, when the IO completes the pages are
1036 		 * marked uptodate and unlocked. However, the queueing
1037 		 * could be merging multiple pages for one bio (e.g.
1038 		 * mpage_readahead). If an allocation happens for the
1039 		 * second or third page, the process can end up locking
1040 		 * the same page twice and deadlocking. Rather than
1041 		 * trying to be clever about what pages can be locked,
1042 		 * avoid the use of lock_page for direct compaction
1043 		 * altogether.
1044 		 */
1045 		if (current->flags & PF_MEMALLOC)
1046 			goto out;
1047 
1048 		lock_page(page);
1049 	}
1050 
1051 	if (PageWriteback(page)) {
1052 		/*
1053 		 * Only in the case of a full synchronous migration is it
1054 		 * necessary to wait for PageWriteback. In the async case,
1055 		 * the retry loop is too short and in the sync-light case,
1056 		 * the overhead of stalling is too much
1057 		 */
1058 		switch (mode) {
1059 		case MIGRATE_SYNC:
1060 		case MIGRATE_SYNC_NO_COPY:
1061 			break;
1062 		default:
1063 			rc = -EBUSY;
1064 			goto out_unlock;
1065 		}
1066 		if (!force)
1067 			goto out_unlock;
1068 		wait_on_page_writeback(page);
1069 	}
1070 
1071 	/*
1072 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1073 	 * we cannot notice that anon_vma is freed while we migrates a page.
1074 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1075 	 * of migration. File cache pages are no problem because of page_lock()
1076 	 * File Caches may use write_page() or lock_page() in migration, then,
1077 	 * just care Anon page here.
1078 	 *
1079 	 * Only page_get_anon_vma() understands the subtleties of
1080 	 * getting a hold on an anon_vma from outside one of its mms.
1081 	 * But if we cannot get anon_vma, then we won't need it anyway,
1082 	 * because that implies that the anon page is no longer mapped
1083 	 * (and cannot be remapped so long as we hold the page lock).
1084 	 */
1085 	if (PageAnon(page) && !PageKsm(page))
1086 		anon_vma = page_get_anon_vma(page);
1087 
1088 	/*
1089 	 * Block others from accessing the new page when we get around to
1090 	 * establishing additional references. We are usually the only one
1091 	 * holding a reference to newpage at this point. We used to have a BUG
1092 	 * here if trylock_page(newpage) fails, but would like to allow for
1093 	 * cases where there might be a race with the previous use of newpage.
1094 	 * This is much like races on refcount of oldpage: just don't BUG().
1095 	 */
1096 	if (unlikely(!trylock_page(newpage)))
1097 		goto out_unlock;
1098 
1099 	if (unlikely(!is_lru)) {
1100 		rc = move_to_new_page(newpage, page, mode);
1101 		goto out_unlock_both;
1102 	}
1103 
1104 	/*
1105 	 * Corner case handling:
1106 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1107 	 * and treated as swapcache but it has no rmap yet.
1108 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1109 	 * trigger a BUG.  So handle it here.
1110 	 * 2. An orphaned page (see truncate_complete_page) might have
1111 	 * fs-private metadata. The page can be picked up due to memory
1112 	 * offlining.  Everywhere else except page reclaim, the page is
1113 	 * invisible to the vm, so the page can not be migrated.  So try to
1114 	 * free the metadata, so the page can be freed.
1115 	 */
1116 	if (!page->mapping) {
1117 		VM_BUG_ON_PAGE(PageAnon(page), page);
1118 		if (page_has_private(page)) {
1119 			try_to_free_buffers(page);
1120 			goto out_unlock_both;
1121 		}
1122 	} else if (page_mapped(page)) {
1123 		/* Establish migration ptes */
1124 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1125 				page);
1126 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1127 		page_was_mapped = 1;
1128 	}
1129 
1130 	if (!page_mapped(page))
1131 		rc = move_to_new_page(newpage, page, mode);
1132 
1133 	if (page_was_mapped)
1134 		remove_migration_ptes(page,
1135 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136 
1137 out_unlock_both:
1138 	unlock_page(newpage);
1139 out_unlock:
1140 	/* Drop an anon_vma reference if we took one */
1141 	if (anon_vma)
1142 		put_anon_vma(anon_vma);
1143 	unlock_page(page);
1144 out:
1145 	/*
1146 	 * If migration is successful, decrease refcount of the newpage
1147 	 * which will not free the page because new page owner increased
1148 	 * refcounter. As well, if it is LRU page, add the page to LRU
1149 	 * list in here. Use the old state of the isolated source page to
1150 	 * determine if we migrated a LRU page. newpage was already unlocked
1151 	 * and possibly modified by its owner - don't rely on the page
1152 	 * state.
1153 	 */
1154 	if (rc == MIGRATEPAGE_SUCCESS) {
1155 		if (unlikely(!is_lru))
1156 			put_page(newpage);
1157 		else
1158 			putback_lru_page(newpage);
1159 	}
1160 
1161 	return rc;
1162 }
1163 
1164 /*
1165  * Obtain the lock on page, remove all ptes and migrate the page
1166  * to the newly allocated page in newpage.
1167  */
1168 static int unmap_and_move(new_page_t get_new_page,
1169 				   free_page_t put_new_page,
1170 				   unsigned long private, struct page *page,
1171 				   int force, enum migrate_mode mode,
1172 				   enum migrate_reason reason)
1173 {
1174 	int rc = MIGRATEPAGE_SUCCESS;
1175 	struct page *newpage = NULL;
1176 
1177 	if (!thp_migration_supported() && PageTransHuge(page))
1178 		return -ENOMEM;
1179 
1180 	if (page_count(page) == 1) {
1181 		/* page was freed from under us. So we are done. */
1182 		ClearPageActive(page);
1183 		ClearPageUnevictable(page);
1184 		if (unlikely(__PageMovable(page))) {
1185 			lock_page(page);
1186 			if (!PageMovable(page))
1187 				__ClearPageIsolated(page);
1188 			unlock_page(page);
1189 		}
1190 		goto out;
1191 	}
1192 
1193 	newpage = get_new_page(page, private);
1194 	if (!newpage)
1195 		return -ENOMEM;
1196 
1197 	rc = __unmap_and_move(page, newpage, force, mode);
1198 	if (rc == MIGRATEPAGE_SUCCESS)
1199 		set_page_owner_migrate_reason(newpage, reason);
1200 
1201 out:
1202 	if (rc != -EAGAIN) {
1203 		/*
1204 		 * A page that has been migrated has all references
1205 		 * removed and will be freed. A page that has not been
1206 		 * migrated will have kept its references and be restored.
1207 		 */
1208 		list_del(&page->lru);
1209 
1210 		/*
1211 		 * Compaction can migrate also non-LRU pages which are
1212 		 * not accounted to NR_ISOLATED_*. They can be recognized
1213 		 * as __PageMovable
1214 		 */
1215 		if (likely(!__PageMovable(page)))
1216 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217 					page_is_file_lru(page), -thp_nr_pages(page));
1218 	}
1219 
1220 	/*
1221 	 * If migration is successful, releases reference grabbed during
1222 	 * isolation. Otherwise, restore the page to right list unless
1223 	 * we want to retry.
1224 	 */
1225 	if (rc == MIGRATEPAGE_SUCCESS) {
1226 		if (reason != MR_MEMORY_FAILURE)
1227 			/*
1228 			 * We release the page in page_handle_poison.
1229 			 */
1230 			put_page(page);
1231 	} else {
1232 		if (rc != -EAGAIN) {
1233 			if (likely(!__PageMovable(page))) {
1234 				putback_lru_page(page);
1235 				goto put_new;
1236 			}
1237 
1238 			lock_page(page);
1239 			if (PageMovable(page))
1240 				putback_movable_page(page);
1241 			else
1242 				__ClearPageIsolated(page);
1243 			unlock_page(page);
1244 			put_page(page);
1245 		}
1246 put_new:
1247 		if (put_new_page)
1248 			put_new_page(newpage, private);
1249 		else
1250 			put_page(newpage);
1251 	}
1252 
1253 	return rc;
1254 }
1255 
1256 /*
1257  * Counterpart of unmap_and_move_page() for hugepage migration.
1258  *
1259  * This function doesn't wait the completion of hugepage I/O
1260  * because there is no race between I/O and migration for hugepage.
1261  * Note that currently hugepage I/O occurs only in direct I/O
1262  * where no lock is held and PG_writeback is irrelevant,
1263  * and writeback status of all subpages are counted in the reference
1264  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1265  * under direct I/O, the reference of the head page is 512 and a bit more.)
1266  * This means that when we try to migrate hugepage whose subpages are
1267  * doing direct I/O, some references remain after try_to_unmap() and
1268  * hugepage migration fails without data corruption.
1269  *
1270  * There is also no race when direct I/O is issued on the page under migration,
1271  * because then pte is replaced with migration swap entry and direct I/O code
1272  * will wait in the page fault for migration to complete.
1273  */
1274 static int unmap_and_move_huge_page(new_page_t get_new_page,
1275 				free_page_t put_new_page, unsigned long private,
1276 				struct page *hpage, int force,
1277 				enum migrate_mode mode, int reason)
1278 {
1279 	int rc = -EAGAIN;
1280 	int page_was_mapped = 0;
1281 	struct page *new_hpage;
1282 	struct anon_vma *anon_vma = NULL;
1283 	struct address_space *mapping = NULL;
1284 
1285 	/*
1286 	 * Migratability of hugepages depends on architectures and their size.
1287 	 * This check is necessary because some callers of hugepage migration
1288 	 * like soft offline and memory hotremove don't walk through page
1289 	 * tables or check whether the hugepage is pmd-based or not before
1290 	 * kicking migration.
1291 	 */
1292 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1293 		putback_active_hugepage(hpage);
1294 		return -ENOSYS;
1295 	}
1296 
1297 	new_hpage = get_new_page(hpage, private);
1298 	if (!new_hpage)
1299 		return -ENOMEM;
1300 
1301 	if (!trylock_page(hpage)) {
1302 		if (!force)
1303 			goto out;
1304 		switch (mode) {
1305 		case MIGRATE_SYNC:
1306 		case MIGRATE_SYNC_NO_COPY:
1307 			break;
1308 		default:
1309 			goto out;
1310 		}
1311 		lock_page(hpage);
1312 	}
1313 
1314 	/*
1315 	 * Check for pages which are in the process of being freed.  Without
1316 	 * page_mapping() set, hugetlbfs specific move page routine will not
1317 	 * be called and we could leak usage counts for subpools.
1318 	 */
1319 	if (page_private(hpage) && !page_mapping(hpage)) {
1320 		rc = -EBUSY;
1321 		goto out_unlock;
1322 	}
1323 
1324 	if (PageAnon(hpage))
1325 		anon_vma = page_get_anon_vma(hpage);
1326 
1327 	if (unlikely(!trylock_page(new_hpage)))
1328 		goto put_anon;
1329 
1330 	if (page_mapped(hpage)) {
1331 		bool mapping_locked = false;
1332 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1333 
1334 		if (!PageAnon(hpage)) {
1335 			/*
1336 			 * In shared mappings, try_to_unmap could potentially
1337 			 * call huge_pmd_unshare.  Because of this, take
1338 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1339 			 * to let lower levels know we have taken the lock.
1340 			 */
1341 			mapping = hugetlb_page_mapping_lock_write(hpage);
1342 			if (unlikely(!mapping))
1343 				goto unlock_put_anon;
1344 
1345 			mapping_locked = true;
1346 			ttu |= TTU_RMAP_LOCKED;
1347 		}
1348 
1349 		try_to_unmap(hpage, ttu);
1350 		page_was_mapped = 1;
1351 
1352 		if (mapping_locked)
1353 			i_mmap_unlock_write(mapping);
1354 	}
1355 
1356 	if (!page_mapped(hpage))
1357 		rc = move_to_new_page(new_hpage, hpage, mode);
1358 
1359 	if (page_was_mapped)
1360 		remove_migration_ptes(hpage,
1361 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1362 
1363 unlock_put_anon:
1364 	unlock_page(new_hpage);
1365 
1366 put_anon:
1367 	if (anon_vma)
1368 		put_anon_vma(anon_vma);
1369 
1370 	if (rc == MIGRATEPAGE_SUCCESS) {
1371 		move_hugetlb_state(hpage, new_hpage, reason);
1372 		put_new_page = NULL;
1373 	}
1374 
1375 out_unlock:
1376 	unlock_page(hpage);
1377 out:
1378 	if (rc != -EAGAIN)
1379 		putback_active_hugepage(hpage);
1380 
1381 	/*
1382 	 * If migration was not successful and there's a freeing callback, use
1383 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1384 	 * isolation.
1385 	 */
1386 	if (put_new_page)
1387 		put_new_page(new_hpage, private);
1388 	else
1389 		putback_active_hugepage(new_hpage);
1390 
1391 	return rc;
1392 }
1393 
1394 /*
1395  * migrate_pages - migrate the pages specified in a list, to the free pages
1396  *		   supplied as the target for the page migration
1397  *
1398  * @from:		The list of pages to be migrated.
1399  * @get_new_page:	The function used to allocate free pages to be used
1400  *			as the target of the page migration.
1401  * @put_new_page:	The function used to free target pages if migration
1402  *			fails, or NULL if no special handling is necessary.
1403  * @private:		Private data to be passed on to get_new_page()
1404  * @mode:		The migration mode that specifies the constraints for
1405  *			page migration, if any.
1406  * @reason:		The reason for page migration.
1407  *
1408  * The function returns after 10 attempts or if no pages are movable any more
1409  * because the list has become empty or no retryable pages exist any more.
1410  * The caller should call putback_movable_pages() to return pages to the LRU
1411  * or free list only if ret != 0.
1412  *
1413  * Returns the number of pages that were not migrated, or an error code.
1414  */
1415 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1416 		free_page_t put_new_page, unsigned long private,
1417 		enum migrate_mode mode, int reason)
1418 {
1419 	int retry = 1;
1420 	int thp_retry = 1;
1421 	int nr_failed = 0;
1422 	int nr_succeeded = 0;
1423 	int nr_thp_succeeded = 0;
1424 	int nr_thp_failed = 0;
1425 	int nr_thp_split = 0;
1426 	int pass = 0;
1427 	bool is_thp = false;
1428 	struct page *page;
1429 	struct page *page2;
1430 	int swapwrite = current->flags & PF_SWAPWRITE;
1431 	int rc, nr_subpages;
1432 
1433 	if (!swapwrite)
1434 		current->flags |= PF_SWAPWRITE;
1435 
1436 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1437 		retry = 0;
1438 		thp_retry = 0;
1439 
1440 		list_for_each_entry_safe(page, page2, from, lru) {
1441 retry:
1442 			/*
1443 			 * THP statistics is based on the source huge page.
1444 			 * Capture required information that might get lost
1445 			 * during migration.
1446 			 */
1447 			is_thp = PageTransHuge(page) && !PageHuge(page);
1448 			nr_subpages = thp_nr_pages(page);
1449 			cond_resched();
1450 
1451 			if (PageHuge(page))
1452 				rc = unmap_and_move_huge_page(get_new_page,
1453 						put_new_page, private, page,
1454 						pass > 2, mode, reason);
1455 			else
1456 				rc = unmap_and_move(get_new_page, put_new_page,
1457 						private, page, pass > 2, mode,
1458 						reason);
1459 
1460 			switch(rc) {
1461 			case -ENOMEM:
1462 				/*
1463 				 * THP migration might be unsupported or the
1464 				 * allocation could've failed so we should
1465 				 * retry on the same page with the THP split
1466 				 * to base pages.
1467 				 *
1468 				 * Head page is retried immediately and tail
1469 				 * pages are added to the tail of the list so
1470 				 * we encounter them after the rest of the list
1471 				 * is processed.
1472 				 */
1473 				if (is_thp) {
1474 					lock_page(page);
1475 					rc = split_huge_page_to_list(page, from);
1476 					unlock_page(page);
1477 					if (!rc) {
1478 						list_safe_reset_next(page, page2, lru);
1479 						nr_thp_split++;
1480 						goto retry;
1481 					}
1482 
1483 					nr_thp_failed++;
1484 					nr_failed += nr_subpages;
1485 					goto out;
1486 				}
1487 				nr_failed++;
1488 				goto out;
1489 			case -EAGAIN:
1490 				if (is_thp) {
1491 					thp_retry++;
1492 					break;
1493 				}
1494 				retry++;
1495 				break;
1496 			case MIGRATEPAGE_SUCCESS:
1497 				if (is_thp) {
1498 					nr_thp_succeeded++;
1499 					nr_succeeded += nr_subpages;
1500 					break;
1501 				}
1502 				nr_succeeded++;
1503 				break;
1504 			default:
1505 				/*
1506 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1507 				 * unlike -EAGAIN case, the failed page is
1508 				 * removed from migration page list and not
1509 				 * retried in the next outer loop.
1510 				 */
1511 				if (is_thp) {
1512 					nr_thp_failed++;
1513 					nr_failed += nr_subpages;
1514 					break;
1515 				}
1516 				nr_failed++;
1517 				break;
1518 			}
1519 		}
1520 	}
1521 	nr_failed += retry + thp_retry;
1522 	nr_thp_failed += thp_retry;
1523 	rc = nr_failed;
1524 out:
1525 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1526 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1527 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1528 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1529 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1530 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1531 			       nr_thp_failed, nr_thp_split, mode, reason);
1532 
1533 	if (!swapwrite)
1534 		current->flags &= ~PF_SWAPWRITE;
1535 
1536 	return rc;
1537 }
1538 
1539 struct page *alloc_migration_target(struct page *page, unsigned long private)
1540 {
1541 	struct migration_target_control *mtc;
1542 	gfp_t gfp_mask;
1543 	unsigned int order = 0;
1544 	struct page *new_page = NULL;
1545 	int nid;
1546 	int zidx;
1547 
1548 	mtc = (struct migration_target_control *)private;
1549 	gfp_mask = mtc->gfp_mask;
1550 	nid = mtc->nid;
1551 	if (nid == NUMA_NO_NODE)
1552 		nid = page_to_nid(page);
1553 
1554 	if (PageHuge(page)) {
1555 		struct hstate *h = page_hstate(compound_head(page));
1556 
1557 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1558 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1559 	}
1560 
1561 	if (PageTransHuge(page)) {
1562 		/*
1563 		 * clear __GFP_RECLAIM to make the migration callback
1564 		 * consistent with regular THP allocations.
1565 		 */
1566 		gfp_mask &= ~__GFP_RECLAIM;
1567 		gfp_mask |= GFP_TRANSHUGE;
1568 		order = HPAGE_PMD_ORDER;
1569 	}
1570 	zidx = zone_idx(page_zone(page));
1571 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1572 		gfp_mask |= __GFP_HIGHMEM;
1573 
1574 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1575 
1576 	if (new_page && PageTransHuge(new_page))
1577 		prep_transhuge_page(new_page);
1578 
1579 	return new_page;
1580 }
1581 
1582 #ifdef CONFIG_NUMA
1583 
1584 static int store_status(int __user *status, int start, int value, int nr)
1585 {
1586 	while (nr-- > 0) {
1587 		if (put_user(value, status + start))
1588 			return -EFAULT;
1589 		start++;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static int do_move_pages_to_node(struct mm_struct *mm,
1596 		struct list_head *pagelist, int node)
1597 {
1598 	int err;
1599 	struct migration_target_control mtc = {
1600 		.nid = node,
1601 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1602 	};
1603 
1604 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1605 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1606 	if (err)
1607 		putback_movable_pages(pagelist);
1608 	return err;
1609 }
1610 
1611 /*
1612  * Resolves the given address to a struct page, isolates it from the LRU and
1613  * puts it to the given pagelist.
1614  * Returns:
1615  *     errno - if the page cannot be found/isolated
1616  *     0 - when it doesn't have to be migrated because it is already on the
1617  *         target node
1618  *     1 - when it has been queued
1619  */
1620 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1621 		int node, struct list_head *pagelist, bool migrate_all)
1622 {
1623 	struct vm_area_struct *vma;
1624 	struct page *page;
1625 	unsigned int follflags;
1626 	int err;
1627 
1628 	mmap_read_lock(mm);
1629 	err = -EFAULT;
1630 	vma = find_vma(mm, addr);
1631 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1632 		goto out;
1633 
1634 	/* FOLL_DUMP to ignore special (like zero) pages */
1635 	follflags = FOLL_GET | FOLL_DUMP;
1636 	page = follow_page(vma, addr, follflags);
1637 
1638 	err = PTR_ERR(page);
1639 	if (IS_ERR(page))
1640 		goto out;
1641 
1642 	err = -ENOENT;
1643 	if (!page)
1644 		goto out;
1645 
1646 	err = 0;
1647 	if (page_to_nid(page) == node)
1648 		goto out_putpage;
1649 
1650 	err = -EACCES;
1651 	if (page_mapcount(page) > 1 && !migrate_all)
1652 		goto out_putpage;
1653 
1654 	if (PageHuge(page)) {
1655 		if (PageHead(page)) {
1656 			isolate_huge_page(page, pagelist);
1657 			err = 1;
1658 		}
1659 	} else {
1660 		struct page *head;
1661 
1662 		head = compound_head(page);
1663 		err = isolate_lru_page(head);
1664 		if (err)
1665 			goto out_putpage;
1666 
1667 		err = 1;
1668 		list_add_tail(&head->lru, pagelist);
1669 		mod_node_page_state(page_pgdat(head),
1670 			NR_ISOLATED_ANON + page_is_file_lru(head),
1671 			thp_nr_pages(head));
1672 	}
1673 out_putpage:
1674 	/*
1675 	 * Either remove the duplicate refcount from
1676 	 * isolate_lru_page() or drop the page ref if it was
1677 	 * not isolated.
1678 	 */
1679 	put_page(page);
1680 out:
1681 	mmap_read_unlock(mm);
1682 	return err;
1683 }
1684 
1685 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1686 		struct list_head *pagelist, int __user *status,
1687 		int start, int i, unsigned long nr_pages)
1688 {
1689 	int err;
1690 
1691 	if (list_empty(pagelist))
1692 		return 0;
1693 
1694 	err = do_move_pages_to_node(mm, pagelist, node);
1695 	if (err) {
1696 		/*
1697 		 * Positive err means the number of failed
1698 		 * pages to migrate.  Since we are going to
1699 		 * abort and return the number of non-migrated
1700 		 * pages, so need to incude the rest of the
1701 		 * nr_pages that have not been attempted as
1702 		 * well.
1703 		 */
1704 		if (err > 0)
1705 			err += nr_pages - i - 1;
1706 		return err;
1707 	}
1708 	return store_status(status, start, node, i - start);
1709 }
1710 
1711 /*
1712  * Migrate an array of page address onto an array of nodes and fill
1713  * the corresponding array of status.
1714  */
1715 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1716 			 unsigned long nr_pages,
1717 			 const void __user * __user *pages,
1718 			 const int __user *nodes,
1719 			 int __user *status, int flags)
1720 {
1721 	int current_node = NUMA_NO_NODE;
1722 	LIST_HEAD(pagelist);
1723 	int start, i;
1724 	int err = 0, err1;
1725 
1726 	migrate_prep();
1727 
1728 	for (i = start = 0; i < nr_pages; i++) {
1729 		const void __user *p;
1730 		unsigned long addr;
1731 		int node;
1732 
1733 		err = -EFAULT;
1734 		if (get_user(p, pages + i))
1735 			goto out_flush;
1736 		if (get_user(node, nodes + i))
1737 			goto out_flush;
1738 		addr = (unsigned long)untagged_addr(p);
1739 
1740 		err = -ENODEV;
1741 		if (node < 0 || node >= MAX_NUMNODES)
1742 			goto out_flush;
1743 		if (!node_state(node, N_MEMORY))
1744 			goto out_flush;
1745 
1746 		err = -EACCES;
1747 		if (!node_isset(node, task_nodes))
1748 			goto out_flush;
1749 
1750 		if (current_node == NUMA_NO_NODE) {
1751 			current_node = node;
1752 			start = i;
1753 		} else if (node != current_node) {
1754 			err = move_pages_and_store_status(mm, current_node,
1755 					&pagelist, status, start, i, nr_pages);
1756 			if (err)
1757 				goto out;
1758 			start = i;
1759 			current_node = node;
1760 		}
1761 
1762 		/*
1763 		 * Errors in the page lookup or isolation are not fatal and we simply
1764 		 * report them via status
1765 		 */
1766 		err = add_page_for_migration(mm, addr, current_node,
1767 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1768 
1769 		if (err > 0) {
1770 			/* The page is successfully queued for migration */
1771 			continue;
1772 		}
1773 
1774 		/*
1775 		 * If the page is already on the target node (!err), store the
1776 		 * node, otherwise, store the err.
1777 		 */
1778 		err = store_status(status, i, err ? : current_node, 1);
1779 		if (err)
1780 			goto out_flush;
1781 
1782 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1783 				status, start, i, nr_pages);
1784 		if (err)
1785 			goto out;
1786 		current_node = NUMA_NO_NODE;
1787 	}
1788 out_flush:
1789 	/* Make sure we do not overwrite the existing error */
1790 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1791 				status, start, i, nr_pages);
1792 	if (err >= 0)
1793 		err = err1;
1794 out:
1795 	return err;
1796 }
1797 
1798 /*
1799  * Determine the nodes of an array of pages and store it in an array of status.
1800  */
1801 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1802 				const void __user **pages, int *status)
1803 {
1804 	unsigned long i;
1805 
1806 	mmap_read_lock(mm);
1807 
1808 	for (i = 0; i < nr_pages; i++) {
1809 		unsigned long addr = (unsigned long)(*pages);
1810 		struct vm_area_struct *vma;
1811 		struct page *page;
1812 		int err = -EFAULT;
1813 
1814 		vma = find_vma(mm, addr);
1815 		if (!vma || addr < vma->vm_start)
1816 			goto set_status;
1817 
1818 		/* FOLL_DUMP to ignore special (like zero) pages */
1819 		page = follow_page(vma, addr, FOLL_DUMP);
1820 
1821 		err = PTR_ERR(page);
1822 		if (IS_ERR(page))
1823 			goto set_status;
1824 
1825 		err = page ? page_to_nid(page) : -ENOENT;
1826 set_status:
1827 		*status = err;
1828 
1829 		pages++;
1830 		status++;
1831 	}
1832 
1833 	mmap_read_unlock(mm);
1834 }
1835 
1836 /*
1837  * Determine the nodes of a user array of pages and store it in
1838  * a user array of status.
1839  */
1840 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1841 			 const void __user * __user *pages,
1842 			 int __user *status)
1843 {
1844 #define DO_PAGES_STAT_CHUNK_NR 16
1845 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1846 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1847 
1848 	while (nr_pages) {
1849 		unsigned long chunk_nr;
1850 
1851 		chunk_nr = nr_pages;
1852 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1853 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1854 
1855 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1856 			break;
1857 
1858 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1859 
1860 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1861 			break;
1862 
1863 		pages += chunk_nr;
1864 		status += chunk_nr;
1865 		nr_pages -= chunk_nr;
1866 	}
1867 	return nr_pages ? -EFAULT : 0;
1868 }
1869 
1870 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1871 {
1872 	struct task_struct *task;
1873 	struct mm_struct *mm;
1874 
1875 	/*
1876 	 * There is no need to check if current process has the right to modify
1877 	 * the specified process when they are same.
1878 	 */
1879 	if (!pid) {
1880 		mmget(current->mm);
1881 		*mem_nodes = cpuset_mems_allowed(current);
1882 		return current->mm;
1883 	}
1884 
1885 	/* Find the mm_struct */
1886 	rcu_read_lock();
1887 	task = find_task_by_vpid(pid);
1888 	if (!task) {
1889 		rcu_read_unlock();
1890 		return ERR_PTR(-ESRCH);
1891 	}
1892 	get_task_struct(task);
1893 
1894 	/*
1895 	 * Check if this process has the right to modify the specified
1896 	 * process. Use the regular "ptrace_may_access()" checks.
1897 	 */
1898 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1899 		rcu_read_unlock();
1900 		mm = ERR_PTR(-EPERM);
1901 		goto out;
1902 	}
1903 	rcu_read_unlock();
1904 
1905 	mm = ERR_PTR(security_task_movememory(task));
1906 	if (IS_ERR(mm))
1907 		goto out;
1908 	*mem_nodes = cpuset_mems_allowed(task);
1909 	mm = get_task_mm(task);
1910 out:
1911 	put_task_struct(task);
1912 	if (!mm)
1913 		mm = ERR_PTR(-EINVAL);
1914 	return mm;
1915 }
1916 
1917 /*
1918  * Move a list of pages in the address space of the currently executing
1919  * process.
1920  */
1921 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1922 			     const void __user * __user *pages,
1923 			     const int __user *nodes,
1924 			     int __user *status, int flags)
1925 {
1926 	struct mm_struct *mm;
1927 	int err;
1928 	nodemask_t task_nodes;
1929 
1930 	/* Check flags */
1931 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1932 		return -EINVAL;
1933 
1934 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1935 		return -EPERM;
1936 
1937 	mm = find_mm_struct(pid, &task_nodes);
1938 	if (IS_ERR(mm))
1939 		return PTR_ERR(mm);
1940 
1941 	if (nodes)
1942 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1943 				    nodes, status, flags);
1944 	else
1945 		err = do_pages_stat(mm, nr_pages, pages, status);
1946 
1947 	mmput(mm);
1948 	return err;
1949 }
1950 
1951 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1952 		const void __user * __user *, pages,
1953 		const int __user *, nodes,
1954 		int __user *, status, int, flags)
1955 {
1956 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1957 }
1958 
1959 #ifdef CONFIG_COMPAT
1960 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1961 		       compat_uptr_t __user *, pages32,
1962 		       const int __user *, nodes,
1963 		       int __user *, status,
1964 		       int, flags)
1965 {
1966 	const void __user * __user *pages;
1967 	int i;
1968 
1969 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1970 	for (i = 0; i < nr_pages; i++) {
1971 		compat_uptr_t p;
1972 
1973 		if (get_user(p, pages32 + i) ||
1974 			put_user(compat_ptr(p), pages + i))
1975 			return -EFAULT;
1976 	}
1977 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1978 }
1979 #endif /* CONFIG_COMPAT */
1980 
1981 #ifdef CONFIG_NUMA_BALANCING
1982 /*
1983  * Returns true if this is a safe migration target node for misplaced NUMA
1984  * pages. Currently it only checks the watermarks which crude
1985  */
1986 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1987 				   unsigned long nr_migrate_pages)
1988 {
1989 	int z;
1990 
1991 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1992 		struct zone *zone = pgdat->node_zones + z;
1993 
1994 		if (!populated_zone(zone))
1995 			continue;
1996 
1997 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1998 		if (!zone_watermark_ok(zone, 0,
1999 				       high_wmark_pages(zone) +
2000 				       nr_migrate_pages,
2001 				       ZONE_MOVABLE, 0))
2002 			continue;
2003 		return true;
2004 	}
2005 	return false;
2006 }
2007 
2008 static struct page *alloc_misplaced_dst_page(struct page *page,
2009 					   unsigned long data)
2010 {
2011 	int nid = (int) data;
2012 	struct page *newpage;
2013 
2014 	newpage = __alloc_pages_node(nid,
2015 					 (GFP_HIGHUSER_MOVABLE |
2016 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2017 					  __GFP_NORETRY | __GFP_NOWARN) &
2018 					 ~__GFP_RECLAIM, 0);
2019 
2020 	return newpage;
2021 }
2022 
2023 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2024 {
2025 	int page_lru;
2026 
2027 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2028 
2029 	/* Avoid migrating to a node that is nearly full */
2030 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2031 		return 0;
2032 
2033 	if (isolate_lru_page(page))
2034 		return 0;
2035 
2036 	/*
2037 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2038 	 * check on page_count(), so we must do it here, now that the page
2039 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2040 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2041 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2042 	 */
2043 	if (PageTransHuge(page) && page_count(page) != 3) {
2044 		putback_lru_page(page);
2045 		return 0;
2046 	}
2047 
2048 	page_lru = page_is_file_lru(page);
2049 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2050 				thp_nr_pages(page));
2051 
2052 	/*
2053 	 * Isolating the page has taken another reference, so the
2054 	 * caller's reference can be safely dropped without the page
2055 	 * disappearing underneath us during migration.
2056 	 */
2057 	put_page(page);
2058 	return 1;
2059 }
2060 
2061 bool pmd_trans_migrating(pmd_t pmd)
2062 {
2063 	struct page *page = pmd_page(pmd);
2064 	return PageLocked(page);
2065 }
2066 
2067 /*
2068  * Attempt to migrate a misplaced page to the specified destination
2069  * node. Caller is expected to have an elevated reference count on
2070  * the page that will be dropped by this function before returning.
2071  */
2072 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2073 			   int node)
2074 {
2075 	pg_data_t *pgdat = NODE_DATA(node);
2076 	int isolated;
2077 	int nr_remaining;
2078 	LIST_HEAD(migratepages);
2079 
2080 	/*
2081 	 * Don't migrate file pages that are mapped in multiple processes
2082 	 * with execute permissions as they are probably shared libraries.
2083 	 */
2084 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2085 	    (vma->vm_flags & VM_EXEC))
2086 		goto out;
2087 
2088 	/*
2089 	 * Also do not migrate dirty pages as not all filesystems can move
2090 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2091 	 */
2092 	if (page_is_file_lru(page) && PageDirty(page))
2093 		goto out;
2094 
2095 	isolated = numamigrate_isolate_page(pgdat, page);
2096 	if (!isolated)
2097 		goto out;
2098 
2099 	list_add(&page->lru, &migratepages);
2100 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2101 				     NULL, node, MIGRATE_ASYNC,
2102 				     MR_NUMA_MISPLACED);
2103 	if (nr_remaining) {
2104 		if (!list_empty(&migratepages)) {
2105 			list_del(&page->lru);
2106 			dec_node_page_state(page, NR_ISOLATED_ANON +
2107 					page_is_file_lru(page));
2108 			putback_lru_page(page);
2109 		}
2110 		isolated = 0;
2111 	} else
2112 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2113 	BUG_ON(!list_empty(&migratepages));
2114 	return isolated;
2115 
2116 out:
2117 	put_page(page);
2118 	return 0;
2119 }
2120 #endif /* CONFIG_NUMA_BALANCING */
2121 
2122 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2123 /*
2124  * Migrates a THP to a given target node. page must be locked and is unlocked
2125  * before returning.
2126  */
2127 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2128 				struct vm_area_struct *vma,
2129 				pmd_t *pmd, pmd_t entry,
2130 				unsigned long address,
2131 				struct page *page, int node)
2132 {
2133 	spinlock_t *ptl;
2134 	pg_data_t *pgdat = NODE_DATA(node);
2135 	int isolated = 0;
2136 	struct page *new_page = NULL;
2137 	int page_lru = page_is_file_lru(page);
2138 	unsigned long start = address & HPAGE_PMD_MASK;
2139 
2140 	new_page = alloc_pages_node(node,
2141 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2142 		HPAGE_PMD_ORDER);
2143 	if (!new_page)
2144 		goto out_fail;
2145 	prep_transhuge_page(new_page);
2146 
2147 	isolated = numamigrate_isolate_page(pgdat, page);
2148 	if (!isolated) {
2149 		put_page(new_page);
2150 		goto out_fail;
2151 	}
2152 
2153 	/* Prepare a page as a migration target */
2154 	__SetPageLocked(new_page);
2155 	if (PageSwapBacked(page))
2156 		__SetPageSwapBacked(new_page);
2157 
2158 	/* anon mapping, we can simply copy page->mapping to the new page: */
2159 	new_page->mapping = page->mapping;
2160 	new_page->index = page->index;
2161 	/* flush the cache before copying using the kernel virtual address */
2162 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2163 	migrate_page_copy(new_page, page);
2164 	WARN_ON(PageLRU(new_page));
2165 
2166 	/* Recheck the target PMD */
2167 	ptl = pmd_lock(mm, pmd);
2168 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2169 		spin_unlock(ptl);
2170 
2171 		/* Reverse changes made by migrate_page_copy() */
2172 		if (TestClearPageActive(new_page))
2173 			SetPageActive(page);
2174 		if (TestClearPageUnevictable(new_page))
2175 			SetPageUnevictable(page);
2176 
2177 		unlock_page(new_page);
2178 		put_page(new_page);		/* Free it */
2179 
2180 		/* Retake the callers reference and putback on LRU */
2181 		get_page(page);
2182 		putback_lru_page(page);
2183 		mod_node_page_state(page_pgdat(page),
2184 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2185 
2186 		goto out_unlock;
2187 	}
2188 
2189 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2190 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2191 
2192 	/*
2193 	 * Overwrite the old entry under pagetable lock and establish
2194 	 * the new PTE. Any parallel GUP will either observe the old
2195 	 * page blocking on the page lock, block on the page table
2196 	 * lock or observe the new page. The SetPageUptodate on the
2197 	 * new page and page_add_new_anon_rmap guarantee the copy is
2198 	 * visible before the pagetable update.
2199 	 */
2200 	page_add_anon_rmap(new_page, vma, start, true);
2201 	/*
2202 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2203 	 * has already been flushed globally.  So no TLB can be currently
2204 	 * caching this non present pmd mapping.  There's no need to clear the
2205 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2206 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2207 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2208 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2209 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2210 	 * pmd.
2211 	 */
2212 	set_pmd_at(mm, start, pmd, entry);
2213 	update_mmu_cache_pmd(vma, address, &entry);
2214 
2215 	page_ref_unfreeze(page, 2);
2216 	mlock_migrate_page(new_page, page);
2217 	page_remove_rmap(page, true);
2218 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2219 
2220 	spin_unlock(ptl);
2221 
2222 	/* Take an "isolate" reference and put new page on the LRU. */
2223 	get_page(new_page);
2224 	putback_lru_page(new_page);
2225 
2226 	unlock_page(new_page);
2227 	unlock_page(page);
2228 	put_page(page);			/* Drop the rmap reference */
2229 	put_page(page);			/* Drop the LRU isolation reference */
2230 
2231 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2232 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2233 
2234 	mod_node_page_state(page_pgdat(page),
2235 			NR_ISOLATED_ANON + page_lru,
2236 			-HPAGE_PMD_NR);
2237 	return isolated;
2238 
2239 out_fail:
2240 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2241 	ptl = pmd_lock(mm, pmd);
2242 	if (pmd_same(*pmd, entry)) {
2243 		entry = pmd_modify(entry, vma->vm_page_prot);
2244 		set_pmd_at(mm, start, pmd, entry);
2245 		update_mmu_cache_pmd(vma, address, &entry);
2246 	}
2247 	spin_unlock(ptl);
2248 
2249 out_unlock:
2250 	unlock_page(page);
2251 	put_page(page);
2252 	return 0;
2253 }
2254 #endif /* CONFIG_NUMA_BALANCING */
2255 
2256 #endif /* CONFIG_NUMA */
2257 
2258 #ifdef CONFIG_DEVICE_PRIVATE
2259 static int migrate_vma_collect_hole(unsigned long start,
2260 				    unsigned long end,
2261 				    __always_unused int depth,
2262 				    struct mm_walk *walk)
2263 {
2264 	struct migrate_vma *migrate = walk->private;
2265 	unsigned long addr;
2266 
2267 	/* Only allow populating anonymous memory. */
2268 	if (!vma_is_anonymous(walk->vma)) {
2269 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2270 			migrate->src[migrate->npages] = 0;
2271 			migrate->dst[migrate->npages] = 0;
2272 			migrate->npages++;
2273 		}
2274 		return 0;
2275 	}
2276 
2277 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2278 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2279 		migrate->dst[migrate->npages] = 0;
2280 		migrate->npages++;
2281 		migrate->cpages++;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 static int migrate_vma_collect_skip(unsigned long start,
2288 				    unsigned long end,
2289 				    struct mm_walk *walk)
2290 {
2291 	struct migrate_vma *migrate = walk->private;
2292 	unsigned long addr;
2293 
2294 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2295 		migrate->dst[migrate->npages] = 0;
2296 		migrate->src[migrate->npages++] = 0;
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2303 				   unsigned long start,
2304 				   unsigned long end,
2305 				   struct mm_walk *walk)
2306 {
2307 	struct migrate_vma *migrate = walk->private;
2308 	struct vm_area_struct *vma = walk->vma;
2309 	struct mm_struct *mm = vma->vm_mm;
2310 	unsigned long addr = start, unmapped = 0;
2311 	spinlock_t *ptl;
2312 	pte_t *ptep;
2313 
2314 again:
2315 	if (pmd_none(*pmdp))
2316 		return migrate_vma_collect_hole(start, end, -1, walk);
2317 
2318 	if (pmd_trans_huge(*pmdp)) {
2319 		struct page *page;
2320 
2321 		ptl = pmd_lock(mm, pmdp);
2322 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2323 			spin_unlock(ptl);
2324 			goto again;
2325 		}
2326 
2327 		page = pmd_page(*pmdp);
2328 		if (is_huge_zero_page(page)) {
2329 			spin_unlock(ptl);
2330 			split_huge_pmd(vma, pmdp, addr);
2331 			if (pmd_trans_unstable(pmdp))
2332 				return migrate_vma_collect_skip(start, end,
2333 								walk);
2334 		} else {
2335 			int ret;
2336 
2337 			get_page(page);
2338 			spin_unlock(ptl);
2339 			if (unlikely(!trylock_page(page)))
2340 				return migrate_vma_collect_skip(start, end,
2341 								walk);
2342 			ret = split_huge_page(page);
2343 			unlock_page(page);
2344 			put_page(page);
2345 			if (ret)
2346 				return migrate_vma_collect_skip(start, end,
2347 								walk);
2348 			if (pmd_none(*pmdp))
2349 				return migrate_vma_collect_hole(start, end, -1,
2350 								walk);
2351 		}
2352 	}
2353 
2354 	if (unlikely(pmd_bad(*pmdp)))
2355 		return migrate_vma_collect_skip(start, end, walk);
2356 
2357 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2358 	arch_enter_lazy_mmu_mode();
2359 
2360 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2361 		unsigned long mpfn = 0, pfn;
2362 		struct page *page;
2363 		swp_entry_t entry;
2364 		pte_t pte;
2365 
2366 		pte = *ptep;
2367 
2368 		if (pte_none(pte)) {
2369 			if (vma_is_anonymous(vma)) {
2370 				mpfn = MIGRATE_PFN_MIGRATE;
2371 				migrate->cpages++;
2372 			}
2373 			goto next;
2374 		}
2375 
2376 		if (!pte_present(pte)) {
2377 			/*
2378 			 * Only care about unaddressable device page special
2379 			 * page table entry. Other special swap entries are not
2380 			 * migratable, and we ignore regular swapped page.
2381 			 */
2382 			entry = pte_to_swp_entry(pte);
2383 			if (!is_device_private_entry(entry))
2384 				goto next;
2385 
2386 			page = device_private_entry_to_page(entry);
2387 			if (!(migrate->flags &
2388 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2389 			    page->pgmap->owner != migrate->pgmap_owner)
2390 				goto next;
2391 
2392 			mpfn = migrate_pfn(page_to_pfn(page)) |
2393 					MIGRATE_PFN_MIGRATE;
2394 			if (is_write_device_private_entry(entry))
2395 				mpfn |= MIGRATE_PFN_WRITE;
2396 		} else {
2397 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2398 				goto next;
2399 			pfn = pte_pfn(pte);
2400 			if (is_zero_pfn(pfn)) {
2401 				mpfn = MIGRATE_PFN_MIGRATE;
2402 				migrate->cpages++;
2403 				goto next;
2404 			}
2405 			page = vm_normal_page(migrate->vma, addr, pte);
2406 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2407 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2408 		}
2409 
2410 		/* FIXME support THP */
2411 		if (!page || !page->mapping || PageTransCompound(page)) {
2412 			mpfn = 0;
2413 			goto next;
2414 		}
2415 
2416 		/*
2417 		 * By getting a reference on the page we pin it and that blocks
2418 		 * any kind of migration. Side effect is that it "freezes" the
2419 		 * pte.
2420 		 *
2421 		 * We drop this reference after isolating the page from the lru
2422 		 * for non device page (device page are not on the lru and thus
2423 		 * can't be dropped from it).
2424 		 */
2425 		get_page(page);
2426 		migrate->cpages++;
2427 
2428 		/*
2429 		 * Optimize for the common case where page is only mapped once
2430 		 * in one process. If we can lock the page, then we can safely
2431 		 * set up a special migration page table entry now.
2432 		 */
2433 		if (trylock_page(page)) {
2434 			pte_t swp_pte;
2435 
2436 			mpfn |= MIGRATE_PFN_LOCKED;
2437 			ptep_get_and_clear(mm, addr, ptep);
2438 
2439 			/* Setup special migration page table entry */
2440 			entry = make_migration_entry(page, mpfn &
2441 						     MIGRATE_PFN_WRITE);
2442 			swp_pte = swp_entry_to_pte(entry);
2443 			if (pte_present(pte)) {
2444 				if (pte_soft_dirty(pte))
2445 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2446 				if (pte_uffd_wp(pte))
2447 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2448 			} else {
2449 				if (pte_swp_soft_dirty(pte))
2450 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2451 				if (pte_swp_uffd_wp(pte))
2452 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2453 			}
2454 			set_pte_at(mm, addr, ptep, swp_pte);
2455 
2456 			/*
2457 			 * This is like regular unmap: we remove the rmap and
2458 			 * drop page refcount. Page won't be freed, as we took
2459 			 * a reference just above.
2460 			 */
2461 			page_remove_rmap(page, false);
2462 			put_page(page);
2463 
2464 			if (pte_present(pte))
2465 				unmapped++;
2466 		}
2467 
2468 next:
2469 		migrate->dst[migrate->npages] = 0;
2470 		migrate->src[migrate->npages++] = mpfn;
2471 	}
2472 	arch_leave_lazy_mmu_mode();
2473 	pte_unmap_unlock(ptep - 1, ptl);
2474 
2475 	/* Only flush the TLB if we actually modified any entries */
2476 	if (unmapped)
2477 		flush_tlb_range(walk->vma, start, end);
2478 
2479 	return 0;
2480 }
2481 
2482 static const struct mm_walk_ops migrate_vma_walk_ops = {
2483 	.pmd_entry		= migrate_vma_collect_pmd,
2484 	.pte_hole		= migrate_vma_collect_hole,
2485 };
2486 
2487 /*
2488  * migrate_vma_collect() - collect pages over a range of virtual addresses
2489  * @migrate: migrate struct containing all migration information
2490  *
2491  * This will walk the CPU page table. For each virtual address backed by a
2492  * valid page, it updates the src array and takes a reference on the page, in
2493  * order to pin the page until we lock it and unmap it.
2494  */
2495 static void migrate_vma_collect(struct migrate_vma *migrate)
2496 {
2497 	struct mmu_notifier_range range;
2498 
2499 	/*
2500 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2501 	 * that the registered device driver can skip invalidating device
2502 	 * private page mappings that won't be migrated.
2503 	 */
2504 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2505 		migrate->vma->vm_mm, migrate->start, migrate->end,
2506 		migrate->pgmap_owner);
2507 	mmu_notifier_invalidate_range_start(&range);
2508 
2509 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2510 			&migrate_vma_walk_ops, migrate);
2511 
2512 	mmu_notifier_invalidate_range_end(&range);
2513 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2514 }
2515 
2516 /*
2517  * migrate_vma_check_page() - check if page is pinned or not
2518  * @page: struct page to check
2519  *
2520  * Pinned pages cannot be migrated. This is the same test as in
2521  * migrate_page_move_mapping(), except that here we allow migration of a
2522  * ZONE_DEVICE page.
2523  */
2524 static bool migrate_vma_check_page(struct page *page)
2525 {
2526 	/*
2527 	 * One extra ref because caller holds an extra reference, either from
2528 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2529 	 * a device page.
2530 	 */
2531 	int extra = 1;
2532 
2533 	/*
2534 	 * FIXME support THP (transparent huge page), it is bit more complex to
2535 	 * check them than regular pages, because they can be mapped with a pmd
2536 	 * or with a pte (split pte mapping).
2537 	 */
2538 	if (PageCompound(page))
2539 		return false;
2540 
2541 	/* Page from ZONE_DEVICE have one extra reference */
2542 	if (is_zone_device_page(page)) {
2543 		/*
2544 		 * Private page can never be pin as they have no valid pte and
2545 		 * GUP will fail for those. Yet if there is a pending migration
2546 		 * a thread might try to wait on the pte migration entry and
2547 		 * will bump the page reference count. Sadly there is no way to
2548 		 * differentiate a regular pin from migration wait. Hence to
2549 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2550 		 * infinite loop (one stoping migration because the other is
2551 		 * waiting on pte migration entry). We always return true here.
2552 		 *
2553 		 * FIXME proper solution is to rework migration_entry_wait() so
2554 		 * it does not need to take a reference on page.
2555 		 */
2556 		return is_device_private_page(page);
2557 	}
2558 
2559 	/* For file back page */
2560 	if (page_mapping(page))
2561 		extra += 1 + page_has_private(page);
2562 
2563 	if ((page_count(page) - extra) > page_mapcount(page))
2564 		return false;
2565 
2566 	return true;
2567 }
2568 
2569 /*
2570  * migrate_vma_prepare() - lock pages and isolate them from the lru
2571  * @migrate: migrate struct containing all migration information
2572  *
2573  * This locks pages that have been collected by migrate_vma_collect(). Once each
2574  * page is locked it is isolated from the lru (for non-device pages). Finally,
2575  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2576  * migrated by concurrent kernel threads.
2577  */
2578 static void migrate_vma_prepare(struct migrate_vma *migrate)
2579 {
2580 	const unsigned long npages = migrate->npages;
2581 	const unsigned long start = migrate->start;
2582 	unsigned long addr, i, restore = 0;
2583 	bool allow_drain = true;
2584 
2585 	lru_add_drain();
2586 
2587 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2588 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2589 		bool remap = true;
2590 
2591 		if (!page)
2592 			continue;
2593 
2594 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2595 			/*
2596 			 * Because we are migrating several pages there can be
2597 			 * a deadlock between 2 concurrent migration where each
2598 			 * are waiting on each other page lock.
2599 			 *
2600 			 * Make migrate_vma() a best effort thing and backoff
2601 			 * for any page we can not lock right away.
2602 			 */
2603 			if (!trylock_page(page)) {
2604 				migrate->src[i] = 0;
2605 				migrate->cpages--;
2606 				put_page(page);
2607 				continue;
2608 			}
2609 			remap = false;
2610 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2611 		}
2612 
2613 		/* ZONE_DEVICE pages are not on LRU */
2614 		if (!is_zone_device_page(page)) {
2615 			if (!PageLRU(page) && allow_drain) {
2616 				/* Drain CPU's pagevec */
2617 				lru_add_drain_all();
2618 				allow_drain = false;
2619 			}
2620 
2621 			if (isolate_lru_page(page)) {
2622 				if (remap) {
2623 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2624 					migrate->cpages--;
2625 					restore++;
2626 				} else {
2627 					migrate->src[i] = 0;
2628 					unlock_page(page);
2629 					migrate->cpages--;
2630 					put_page(page);
2631 				}
2632 				continue;
2633 			}
2634 
2635 			/* Drop the reference we took in collect */
2636 			put_page(page);
2637 		}
2638 
2639 		if (!migrate_vma_check_page(page)) {
2640 			if (remap) {
2641 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2642 				migrate->cpages--;
2643 				restore++;
2644 
2645 				if (!is_zone_device_page(page)) {
2646 					get_page(page);
2647 					putback_lru_page(page);
2648 				}
2649 			} else {
2650 				migrate->src[i] = 0;
2651 				unlock_page(page);
2652 				migrate->cpages--;
2653 
2654 				if (!is_zone_device_page(page))
2655 					putback_lru_page(page);
2656 				else
2657 					put_page(page);
2658 			}
2659 		}
2660 	}
2661 
2662 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2663 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2664 
2665 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2666 			continue;
2667 
2668 		remove_migration_pte(page, migrate->vma, addr, page);
2669 
2670 		migrate->src[i] = 0;
2671 		unlock_page(page);
2672 		put_page(page);
2673 		restore--;
2674 	}
2675 }
2676 
2677 /*
2678  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2679  * @migrate: migrate struct containing all migration information
2680  *
2681  * Replace page mapping (CPU page table pte) with a special migration pte entry
2682  * and check again if it has been pinned. Pinned pages are restored because we
2683  * cannot migrate them.
2684  *
2685  * This is the last step before we call the device driver callback to allocate
2686  * destination memory and copy contents of original page over to new page.
2687  */
2688 static void migrate_vma_unmap(struct migrate_vma *migrate)
2689 {
2690 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2691 	const unsigned long npages = migrate->npages;
2692 	const unsigned long start = migrate->start;
2693 	unsigned long addr, i, restore = 0;
2694 
2695 	for (i = 0; i < npages; i++) {
2696 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2697 
2698 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2699 			continue;
2700 
2701 		if (page_mapped(page)) {
2702 			try_to_unmap(page, flags);
2703 			if (page_mapped(page))
2704 				goto restore;
2705 		}
2706 
2707 		if (migrate_vma_check_page(page))
2708 			continue;
2709 
2710 restore:
2711 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2712 		migrate->cpages--;
2713 		restore++;
2714 	}
2715 
2716 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2717 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718 
2719 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2720 			continue;
2721 
2722 		remove_migration_ptes(page, page, false);
2723 
2724 		migrate->src[i] = 0;
2725 		unlock_page(page);
2726 		restore--;
2727 
2728 		if (is_zone_device_page(page))
2729 			put_page(page);
2730 		else
2731 			putback_lru_page(page);
2732 	}
2733 }
2734 
2735 /**
2736  * migrate_vma_setup() - prepare to migrate a range of memory
2737  * @args: contains the vma, start, and pfns arrays for the migration
2738  *
2739  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2740  * without an error.
2741  *
2742  * Prepare to migrate a range of memory virtual address range by collecting all
2743  * the pages backing each virtual address in the range, saving them inside the
2744  * src array.  Then lock those pages and unmap them. Once the pages are locked
2745  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2746  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2747  * corresponding src array entry.  Then restores any pages that are pinned, by
2748  * remapping and unlocking those pages.
2749  *
2750  * The caller should then allocate destination memory and copy source memory to
2751  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2752  * flag set).  Once these are allocated and copied, the caller must update each
2753  * corresponding entry in the dst array with the pfn value of the destination
2754  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2755  * (destination pages must have their struct pages locked, via lock_page()).
2756  *
2757  * Note that the caller does not have to migrate all the pages that are marked
2758  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2759  * device memory to system memory.  If the caller cannot migrate a device page
2760  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2761  * consequences for the userspace process, so it must be avoided if at all
2762  * possible.
2763  *
2764  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2765  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2766  * allowing the caller to allocate device memory for those unback virtual
2767  * address.  For this the caller simply has to allocate device memory and
2768  * properly set the destination entry like for regular migration.  Note that
2769  * this can still fails and thus inside the device driver must check if the
2770  * migration was successful for those entries after calling migrate_vma_pages()
2771  * just like for regular migration.
2772  *
2773  * After that, the callers must call migrate_vma_pages() to go over each entry
2774  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2775  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2776  * then migrate_vma_pages() to migrate struct page information from the source
2777  * struct page to the destination struct page.  If it fails to migrate the
2778  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2779  * src array.
2780  *
2781  * At this point all successfully migrated pages have an entry in the src
2782  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2783  * array entry with MIGRATE_PFN_VALID flag set.
2784  *
2785  * Once migrate_vma_pages() returns the caller may inspect which pages were
2786  * successfully migrated, and which were not.  Successfully migrated pages will
2787  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2788  *
2789  * It is safe to update device page table after migrate_vma_pages() because
2790  * both destination and source page are still locked, and the mmap_lock is held
2791  * in read mode (hence no one can unmap the range being migrated).
2792  *
2793  * Once the caller is done cleaning up things and updating its page table (if it
2794  * chose to do so, this is not an obligation) it finally calls
2795  * migrate_vma_finalize() to update the CPU page table to point to new pages
2796  * for successfully migrated pages or otherwise restore the CPU page table to
2797  * point to the original source pages.
2798  */
2799 int migrate_vma_setup(struct migrate_vma *args)
2800 {
2801 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2802 
2803 	args->start &= PAGE_MASK;
2804 	args->end &= PAGE_MASK;
2805 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2806 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2807 		return -EINVAL;
2808 	if (nr_pages <= 0)
2809 		return -EINVAL;
2810 	if (args->start < args->vma->vm_start ||
2811 	    args->start >= args->vma->vm_end)
2812 		return -EINVAL;
2813 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2814 		return -EINVAL;
2815 	if (!args->src || !args->dst)
2816 		return -EINVAL;
2817 
2818 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2819 	args->cpages = 0;
2820 	args->npages = 0;
2821 
2822 	migrate_vma_collect(args);
2823 
2824 	if (args->cpages)
2825 		migrate_vma_prepare(args);
2826 	if (args->cpages)
2827 		migrate_vma_unmap(args);
2828 
2829 	/*
2830 	 * At this point pages are locked and unmapped, and thus they have
2831 	 * stable content and can safely be copied to destination memory that
2832 	 * is allocated by the drivers.
2833 	 */
2834 	return 0;
2835 
2836 }
2837 EXPORT_SYMBOL(migrate_vma_setup);
2838 
2839 /*
2840  * This code closely matches the code in:
2841  *   __handle_mm_fault()
2842  *     handle_pte_fault()
2843  *       do_anonymous_page()
2844  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2845  * private page.
2846  */
2847 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2848 				    unsigned long addr,
2849 				    struct page *page,
2850 				    unsigned long *src,
2851 				    unsigned long *dst)
2852 {
2853 	struct vm_area_struct *vma = migrate->vma;
2854 	struct mm_struct *mm = vma->vm_mm;
2855 	bool flush = false;
2856 	spinlock_t *ptl;
2857 	pte_t entry;
2858 	pgd_t *pgdp;
2859 	p4d_t *p4dp;
2860 	pud_t *pudp;
2861 	pmd_t *pmdp;
2862 	pte_t *ptep;
2863 
2864 	/* Only allow populating anonymous memory */
2865 	if (!vma_is_anonymous(vma))
2866 		goto abort;
2867 
2868 	pgdp = pgd_offset(mm, addr);
2869 	p4dp = p4d_alloc(mm, pgdp, addr);
2870 	if (!p4dp)
2871 		goto abort;
2872 	pudp = pud_alloc(mm, p4dp, addr);
2873 	if (!pudp)
2874 		goto abort;
2875 	pmdp = pmd_alloc(mm, pudp, addr);
2876 	if (!pmdp)
2877 		goto abort;
2878 
2879 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2880 		goto abort;
2881 
2882 	/*
2883 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2884 	 * pte_offset_map() on pmds where a huge pmd might be created
2885 	 * from a different thread.
2886 	 *
2887 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2888 	 * parallel threads are excluded by other means.
2889 	 *
2890 	 * Here we only have mmap_read_lock(mm).
2891 	 */
2892 	if (pte_alloc(mm, pmdp))
2893 		goto abort;
2894 
2895 	/* See the comment in pte_alloc_one_map() */
2896 	if (unlikely(pmd_trans_unstable(pmdp)))
2897 		goto abort;
2898 
2899 	if (unlikely(anon_vma_prepare(vma)))
2900 		goto abort;
2901 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2902 		goto abort;
2903 
2904 	/*
2905 	 * The memory barrier inside __SetPageUptodate makes sure that
2906 	 * preceding stores to the page contents become visible before
2907 	 * the set_pte_at() write.
2908 	 */
2909 	__SetPageUptodate(page);
2910 
2911 	if (is_zone_device_page(page)) {
2912 		if (is_device_private_page(page)) {
2913 			swp_entry_t swp_entry;
2914 
2915 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2916 			entry = swp_entry_to_pte(swp_entry);
2917 		}
2918 	} else {
2919 		entry = mk_pte(page, vma->vm_page_prot);
2920 		if (vma->vm_flags & VM_WRITE)
2921 			entry = pte_mkwrite(pte_mkdirty(entry));
2922 	}
2923 
2924 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2925 
2926 	if (check_stable_address_space(mm))
2927 		goto unlock_abort;
2928 
2929 	if (pte_present(*ptep)) {
2930 		unsigned long pfn = pte_pfn(*ptep);
2931 
2932 		if (!is_zero_pfn(pfn))
2933 			goto unlock_abort;
2934 		flush = true;
2935 	} else if (!pte_none(*ptep))
2936 		goto unlock_abort;
2937 
2938 	/*
2939 	 * Check for userfaultfd but do not deliver the fault. Instead,
2940 	 * just back off.
2941 	 */
2942 	if (userfaultfd_missing(vma))
2943 		goto unlock_abort;
2944 
2945 	inc_mm_counter(mm, MM_ANONPAGES);
2946 	page_add_new_anon_rmap(page, vma, addr, false);
2947 	if (!is_zone_device_page(page))
2948 		lru_cache_add_inactive_or_unevictable(page, vma);
2949 	get_page(page);
2950 
2951 	if (flush) {
2952 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2953 		ptep_clear_flush_notify(vma, addr, ptep);
2954 		set_pte_at_notify(mm, addr, ptep, entry);
2955 		update_mmu_cache(vma, addr, ptep);
2956 	} else {
2957 		/* No need to invalidate - it was non-present before */
2958 		set_pte_at(mm, addr, ptep, entry);
2959 		update_mmu_cache(vma, addr, ptep);
2960 	}
2961 
2962 	pte_unmap_unlock(ptep, ptl);
2963 	*src = MIGRATE_PFN_MIGRATE;
2964 	return;
2965 
2966 unlock_abort:
2967 	pte_unmap_unlock(ptep, ptl);
2968 abort:
2969 	*src &= ~MIGRATE_PFN_MIGRATE;
2970 }
2971 
2972 /**
2973  * migrate_vma_pages() - migrate meta-data from src page to dst page
2974  * @migrate: migrate struct containing all migration information
2975  *
2976  * This migrates struct page meta-data from source struct page to destination
2977  * struct page. This effectively finishes the migration from source page to the
2978  * destination page.
2979  */
2980 void migrate_vma_pages(struct migrate_vma *migrate)
2981 {
2982 	const unsigned long npages = migrate->npages;
2983 	const unsigned long start = migrate->start;
2984 	struct mmu_notifier_range range;
2985 	unsigned long addr, i;
2986 	bool notified = false;
2987 
2988 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2989 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2990 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2991 		struct address_space *mapping;
2992 		int r;
2993 
2994 		if (!newpage) {
2995 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2996 			continue;
2997 		}
2998 
2999 		if (!page) {
3000 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3001 				continue;
3002 			if (!notified) {
3003 				notified = true;
3004 
3005 				mmu_notifier_range_init(&range,
3006 							MMU_NOTIFY_CLEAR, 0,
3007 							NULL,
3008 							migrate->vma->vm_mm,
3009 							addr, migrate->end);
3010 				mmu_notifier_invalidate_range_start(&range);
3011 			}
3012 			migrate_vma_insert_page(migrate, addr, newpage,
3013 						&migrate->src[i],
3014 						&migrate->dst[i]);
3015 			continue;
3016 		}
3017 
3018 		mapping = page_mapping(page);
3019 
3020 		if (is_zone_device_page(newpage)) {
3021 			if (is_device_private_page(newpage)) {
3022 				/*
3023 				 * For now only support private anonymous when
3024 				 * migrating to un-addressable device memory.
3025 				 */
3026 				if (mapping) {
3027 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3028 					continue;
3029 				}
3030 			} else {
3031 				/*
3032 				 * Other types of ZONE_DEVICE page are not
3033 				 * supported.
3034 				 */
3035 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3036 				continue;
3037 			}
3038 		}
3039 
3040 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3041 		if (r != MIGRATEPAGE_SUCCESS)
3042 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3043 	}
3044 
3045 	/*
3046 	 * No need to double call mmu_notifier->invalidate_range() callback as
3047 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3048 	 * did already call it.
3049 	 */
3050 	if (notified)
3051 		mmu_notifier_invalidate_range_only_end(&range);
3052 }
3053 EXPORT_SYMBOL(migrate_vma_pages);
3054 
3055 /**
3056  * migrate_vma_finalize() - restore CPU page table entry
3057  * @migrate: migrate struct containing all migration information
3058  *
3059  * This replaces the special migration pte entry with either a mapping to the
3060  * new page if migration was successful for that page, or to the original page
3061  * otherwise.
3062  *
3063  * This also unlocks the pages and puts them back on the lru, or drops the extra
3064  * refcount, for device pages.
3065  */
3066 void migrate_vma_finalize(struct migrate_vma *migrate)
3067 {
3068 	const unsigned long npages = migrate->npages;
3069 	unsigned long i;
3070 
3071 	for (i = 0; i < npages; i++) {
3072 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3073 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3074 
3075 		if (!page) {
3076 			if (newpage) {
3077 				unlock_page(newpage);
3078 				put_page(newpage);
3079 			}
3080 			continue;
3081 		}
3082 
3083 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3084 			if (newpage) {
3085 				unlock_page(newpage);
3086 				put_page(newpage);
3087 			}
3088 			newpage = page;
3089 		}
3090 
3091 		remove_migration_ptes(page, newpage, false);
3092 		unlock_page(page);
3093 
3094 		if (is_zone_device_page(page))
3095 			put_page(page);
3096 		else
3097 			putback_lru_page(page);
3098 
3099 		if (newpage != page) {
3100 			unlock_page(newpage);
3101 			if (is_zone_device_page(newpage))
3102 				put_page(newpage);
3103 			else
3104 				putback_lru_page(newpage);
3105 		}
3106 	}
3107 }
3108 EXPORT_SYMBOL(migrate_vma_finalize);
3109 #endif /* CONFIG_DEVICE_PRIVATE */
3110