xref: /openbmc/linux/mm/migrate.c (revision 36bccb11)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Put previously isolated pages back onto the appropriate lists
76  * from where they were once taken off for compaction/migration.
77  *
78  * This function shall be used whenever the isolated pageset has been
79  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80  * and isolate_huge_page().
81  */
82 void putback_movable_pages(struct list_head *l)
83 {
84 	struct page *page;
85 	struct page *page2;
86 
87 	list_for_each_entry_safe(page, page2, l, lru) {
88 		if (unlikely(PageHuge(page))) {
89 			putback_active_hugepage(page);
90 			continue;
91 		}
92 		list_del(&page->lru);
93 		dec_zone_page_state(page, NR_ISOLATED_ANON +
94 				page_is_file_cache(page));
95 		if (unlikely(isolated_balloon_page(page)))
96 			balloon_page_putback(page);
97 		else
98 			putback_lru_page(page);
99 	}
100 }
101 
102 /*
103  * Restore a potential migration pte to a working pte entry
104  */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 				 unsigned long addr, void *old)
107 {
108 	struct mm_struct *mm = vma->vm_mm;
109 	swp_entry_t entry;
110  	pmd_t *pmd;
111 	pte_t *ptep, pte;
112  	spinlock_t *ptl;
113 
114 	if (unlikely(PageHuge(new))) {
115 		ptep = huge_pte_offset(mm, addr);
116 		if (!ptep)
117 			goto out;
118 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 	} else {
120 		pmd = mm_find_pmd(mm, addr);
121 		if (!pmd)
122 			goto out;
123 		if (pmd_trans_huge(*pmd))
124 			goto out;
125 
126 		ptep = pte_offset_map(pmd, addr);
127 
128 		/*
129 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
130 		 * can race mremap's move_ptes(), which skips anon_vma lock.
131 		 */
132 
133 		ptl = pte_lockptr(mm, pmd);
134 	}
135 
136  	spin_lock(ptl);
137 	pte = *ptep;
138 	if (!is_swap_pte(pte))
139 		goto unlock;
140 
141 	entry = pte_to_swp_entry(pte);
142 
143 	if (!is_migration_entry(entry) ||
144 	    migration_entry_to_page(entry) != old)
145 		goto unlock;
146 
147 	get_page(new);
148 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 	if (pte_swp_soft_dirty(*ptep))
150 		pte = pte_mksoft_dirty(pte);
151 	if (is_write_migration_entry(entry))
152 		pte = pte_mkwrite(pte);
153 #ifdef CONFIG_HUGETLB_PAGE
154 	if (PageHuge(new)) {
155 		pte = pte_mkhuge(pte);
156 		pte = arch_make_huge_pte(pte, vma, new, 0);
157 	}
158 #endif
159 	flush_dcache_page(new);
160 	set_pte_at(mm, addr, ptep, pte);
161 
162 	if (PageHuge(new)) {
163 		if (PageAnon(new))
164 			hugepage_add_anon_rmap(new, vma, addr);
165 		else
166 			page_dup_rmap(new);
167 	} else if (PageAnon(new))
168 		page_add_anon_rmap(new, vma, addr);
169 	else
170 		page_add_file_rmap(new);
171 
172 	/* No need to invalidate - it was non-present before */
173 	update_mmu_cache(vma, addr, ptep);
174 unlock:
175 	pte_unmap_unlock(ptep, ptl);
176 out:
177 	return SWAP_AGAIN;
178 }
179 
180 /*
181  * Congratulations to trinity for discovering this bug.
182  * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
183  * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
184  * replace the specified range by file ptes throughout (maybe populated after).
185  * If page migration finds a page within that range, while it's still located
186  * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
187  * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
188  * But if the migrating page is in a part of the vma outside the range to be
189  * remapped, then it will not be cleared, and remove_migration_ptes() needs to
190  * deal with it.  Fortunately, this part of the vma is of course still linear,
191  * so we just need to use linear location on the nonlinear list.
192  */
193 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
194 		struct address_space *mapping, void *arg)
195 {
196 	struct vm_area_struct *vma;
197 	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
198 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
199 	unsigned long addr;
200 
201 	list_for_each_entry(vma,
202 		&mapping->i_mmap_nonlinear, shared.nonlinear) {
203 
204 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
205 		if (addr >= vma->vm_start && addr < vma->vm_end)
206 			remove_migration_pte(page, vma, addr, arg);
207 	}
208 	return SWAP_AGAIN;
209 }
210 
211 /*
212  * Get rid of all migration entries and replace them by
213  * references to the indicated page.
214  */
215 static void remove_migration_ptes(struct page *old, struct page *new)
216 {
217 	struct rmap_walk_control rwc = {
218 		.rmap_one = remove_migration_pte,
219 		.arg = old,
220 		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
221 	};
222 
223 	rmap_walk(new, &rwc);
224 }
225 
226 /*
227  * Something used the pte of a page under migration. We need to
228  * get to the page and wait until migration is finished.
229  * When we return from this function the fault will be retried.
230  */
231 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
232 				spinlock_t *ptl)
233 {
234 	pte_t pte;
235 	swp_entry_t entry;
236 	struct page *page;
237 
238 	spin_lock(ptl);
239 	pte = *ptep;
240 	if (!is_swap_pte(pte))
241 		goto out;
242 
243 	entry = pte_to_swp_entry(pte);
244 	if (!is_migration_entry(entry))
245 		goto out;
246 
247 	page = migration_entry_to_page(entry);
248 
249 	/*
250 	 * Once radix-tree replacement of page migration started, page_count
251 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
252 	 * against a page without get_page().
253 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
254 	 * will occur again.
255 	 */
256 	if (!get_page_unless_zero(page))
257 		goto out;
258 	pte_unmap_unlock(ptep, ptl);
259 	wait_on_page_locked(page);
260 	put_page(page);
261 	return;
262 out:
263 	pte_unmap_unlock(ptep, ptl);
264 }
265 
266 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
267 				unsigned long address)
268 {
269 	spinlock_t *ptl = pte_lockptr(mm, pmd);
270 	pte_t *ptep = pte_offset_map(pmd, address);
271 	__migration_entry_wait(mm, ptep, ptl);
272 }
273 
274 void migration_entry_wait_huge(struct vm_area_struct *vma,
275 		struct mm_struct *mm, pte_t *pte)
276 {
277 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
278 	__migration_entry_wait(mm, pte, ptl);
279 }
280 
281 #ifdef CONFIG_BLOCK
282 /* Returns true if all buffers are successfully locked */
283 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
284 							enum migrate_mode mode)
285 {
286 	struct buffer_head *bh = head;
287 
288 	/* Simple case, sync compaction */
289 	if (mode != MIGRATE_ASYNC) {
290 		do {
291 			get_bh(bh);
292 			lock_buffer(bh);
293 			bh = bh->b_this_page;
294 
295 		} while (bh != head);
296 
297 		return true;
298 	}
299 
300 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
301 	do {
302 		get_bh(bh);
303 		if (!trylock_buffer(bh)) {
304 			/*
305 			 * We failed to lock the buffer and cannot stall in
306 			 * async migration. Release the taken locks
307 			 */
308 			struct buffer_head *failed_bh = bh;
309 			put_bh(failed_bh);
310 			bh = head;
311 			while (bh != failed_bh) {
312 				unlock_buffer(bh);
313 				put_bh(bh);
314 				bh = bh->b_this_page;
315 			}
316 			return false;
317 		}
318 
319 		bh = bh->b_this_page;
320 	} while (bh != head);
321 	return true;
322 }
323 #else
324 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
325 							enum migrate_mode mode)
326 {
327 	return true;
328 }
329 #endif /* CONFIG_BLOCK */
330 
331 /*
332  * Replace the page in the mapping.
333  *
334  * The number of remaining references must be:
335  * 1 for anonymous pages without a mapping
336  * 2 for pages with a mapping
337  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
338  */
339 int migrate_page_move_mapping(struct address_space *mapping,
340 		struct page *newpage, struct page *page,
341 		struct buffer_head *head, enum migrate_mode mode,
342 		int extra_count)
343 {
344 	int expected_count = 1 + extra_count;
345 	void **pslot;
346 
347 	if (!mapping) {
348 		/* Anonymous page without mapping */
349 		if (page_count(page) != expected_count)
350 			return -EAGAIN;
351 		return MIGRATEPAGE_SUCCESS;
352 	}
353 
354 	spin_lock_irq(&mapping->tree_lock);
355 
356 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
357  					page_index(page));
358 
359 	expected_count += 1 + page_has_private(page);
360 	if (page_count(page) != expected_count ||
361 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
362 		spin_unlock_irq(&mapping->tree_lock);
363 		return -EAGAIN;
364 	}
365 
366 	if (!page_freeze_refs(page, expected_count)) {
367 		spin_unlock_irq(&mapping->tree_lock);
368 		return -EAGAIN;
369 	}
370 
371 	/*
372 	 * In the async migration case of moving a page with buffers, lock the
373 	 * buffers using trylock before the mapping is moved. If the mapping
374 	 * was moved, we later failed to lock the buffers and could not move
375 	 * the mapping back due to an elevated page count, we would have to
376 	 * block waiting on other references to be dropped.
377 	 */
378 	if (mode == MIGRATE_ASYNC && head &&
379 			!buffer_migrate_lock_buffers(head, mode)) {
380 		page_unfreeze_refs(page, expected_count);
381 		spin_unlock_irq(&mapping->tree_lock);
382 		return -EAGAIN;
383 	}
384 
385 	/*
386 	 * Now we know that no one else is looking at the page.
387 	 */
388 	get_page(newpage);	/* add cache reference */
389 	if (PageSwapCache(page)) {
390 		SetPageSwapCache(newpage);
391 		set_page_private(newpage, page_private(page));
392 	}
393 
394 	radix_tree_replace_slot(pslot, newpage);
395 
396 	/*
397 	 * Drop cache reference from old page by unfreezing
398 	 * to one less reference.
399 	 * We know this isn't the last reference.
400 	 */
401 	page_unfreeze_refs(page, expected_count - 1);
402 
403 	/*
404 	 * If moved to a different zone then also account
405 	 * the page for that zone. Other VM counters will be
406 	 * taken care of when we establish references to the
407 	 * new page and drop references to the old page.
408 	 *
409 	 * Note that anonymous pages are accounted for
410 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
411 	 * are mapped to swap space.
412 	 */
413 	__dec_zone_page_state(page, NR_FILE_PAGES);
414 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
415 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
416 		__dec_zone_page_state(page, NR_SHMEM);
417 		__inc_zone_page_state(newpage, NR_SHMEM);
418 	}
419 	spin_unlock_irq(&mapping->tree_lock);
420 
421 	return MIGRATEPAGE_SUCCESS;
422 }
423 
424 /*
425  * The expected number of remaining references is the same as that
426  * of migrate_page_move_mapping().
427  */
428 int migrate_huge_page_move_mapping(struct address_space *mapping,
429 				   struct page *newpage, struct page *page)
430 {
431 	int expected_count;
432 	void **pslot;
433 
434 	if (!mapping) {
435 		if (page_count(page) != 1)
436 			return -EAGAIN;
437 		return MIGRATEPAGE_SUCCESS;
438 	}
439 
440 	spin_lock_irq(&mapping->tree_lock);
441 
442 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
443 					page_index(page));
444 
445 	expected_count = 2 + page_has_private(page);
446 	if (page_count(page) != expected_count ||
447 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
448 		spin_unlock_irq(&mapping->tree_lock);
449 		return -EAGAIN;
450 	}
451 
452 	if (!page_freeze_refs(page, expected_count)) {
453 		spin_unlock_irq(&mapping->tree_lock);
454 		return -EAGAIN;
455 	}
456 
457 	get_page(newpage);
458 
459 	radix_tree_replace_slot(pslot, newpage);
460 
461 	page_unfreeze_refs(page, expected_count - 1);
462 
463 	spin_unlock_irq(&mapping->tree_lock);
464 	return MIGRATEPAGE_SUCCESS;
465 }
466 
467 /*
468  * Gigantic pages are so large that we do not guarantee that page++ pointer
469  * arithmetic will work across the entire page.  We need something more
470  * specialized.
471  */
472 static void __copy_gigantic_page(struct page *dst, struct page *src,
473 				int nr_pages)
474 {
475 	int i;
476 	struct page *dst_base = dst;
477 	struct page *src_base = src;
478 
479 	for (i = 0; i < nr_pages; ) {
480 		cond_resched();
481 		copy_highpage(dst, src);
482 
483 		i++;
484 		dst = mem_map_next(dst, dst_base, i);
485 		src = mem_map_next(src, src_base, i);
486 	}
487 }
488 
489 static void copy_huge_page(struct page *dst, struct page *src)
490 {
491 	int i;
492 	int nr_pages;
493 
494 	if (PageHuge(src)) {
495 		/* hugetlbfs page */
496 		struct hstate *h = page_hstate(src);
497 		nr_pages = pages_per_huge_page(h);
498 
499 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
500 			__copy_gigantic_page(dst, src, nr_pages);
501 			return;
502 		}
503 	} else {
504 		/* thp page */
505 		BUG_ON(!PageTransHuge(src));
506 		nr_pages = hpage_nr_pages(src);
507 	}
508 
509 	for (i = 0; i < nr_pages; i++) {
510 		cond_resched();
511 		copy_highpage(dst + i, src + i);
512 	}
513 }
514 
515 /*
516  * Copy the page to its new location
517  */
518 void migrate_page_copy(struct page *newpage, struct page *page)
519 {
520 	int cpupid;
521 
522 	if (PageHuge(page) || PageTransHuge(page))
523 		copy_huge_page(newpage, page);
524 	else
525 		copy_highpage(newpage, page);
526 
527 	if (PageError(page))
528 		SetPageError(newpage);
529 	if (PageReferenced(page))
530 		SetPageReferenced(newpage);
531 	if (PageUptodate(page))
532 		SetPageUptodate(newpage);
533 	if (TestClearPageActive(page)) {
534 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
535 		SetPageActive(newpage);
536 	} else if (TestClearPageUnevictable(page))
537 		SetPageUnevictable(newpage);
538 	if (PageChecked(page))
539 		SetPageChecked(newpage);
540 	if (PageMappedToDisk(page))
541 		SetPageMappedToDisk(newpage);
542 
543 	if (PageDirty(page)) {
544 		clear_page_dirty_for_io(page);
545 		/*
546 		 * Want to mark the page and the radix tree as dirty, and
547 		 * redo the accounting that clear_page_dirty_for_io undid,
548 		 * but we can't use set_page_dirty because that function
549 		 * is actually a signal that all of the page has become dirty.
550 		 * Whereas only part of our page may be dirty.
551 		 */
552 		if (PageSwapBacked(page))
553 			SetPageDirty(newpage);
554 		else
555 			__set_page_dirty_nobuffers(newpage);
556  	}
557 
558 	/*
559 	 * Copy NUMA information to the new page, to prevent over-eager
560 	 * future migrations of this same page.
561 	 */
562 	cpupid = page_cpupid_xchg_last(page, -1);
563 	page_cpupid_xchg_last(newpage, cpupid);
564 
565 	mlock_migrate_page(newpage, page);
566 	ksm_migrate_page(newpage, page);
567 	/*
568 	 * Please do not reorder this without considering how mm/ksm.c's
569 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
570 	 */
571 	ClearPageSwapCache(page);
572 	ClearPagePrivate(page);
573 	set_page_private(page, 0);
574 
575 	/*
576 	 * If any waiters have accumulated on the new page then
577 	 * wake them up.
578 	 */
579 	if (PageWriteback(newpage))
580 		end_page_writeback(newpage);
581 }
582 
583 /************************************************************
584  *                    Migration functions
585  ***********************************************************/
586 
587 /*
588  * Common logic to directly migrate a single page suitable for
589  * pages that do not use PagePrivate/PagePrivate2.
590  *
591  * Pages are locked upon entry and exit.
592  */
593 int migrate_page(struct address_space *mapping,
594 		struct page *newpage, struct page *page,
595 		enum migrate_mode mode)
596 {
597 	int rc;
598 
599 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
600 
601 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
602 
603 	if (rc != MIGRATEPAGE_SUCCESS)
604 		return rc;
605 
606 	migrate_page_copy(newpage, page);
607 	return MIGRATEPAGE_SUCCESS;
608 }
609 EXPORT_SYMBOL(migrate_page);
610 
611 #ifdef CONFIG_BLOCK
612 /*
613  * Migration function for pages with buffers. This function can only be used
614  * if the underlying filesystem guarantees that no other references to "page"
615  * exist.
616  */
617 int buffer_migrate_page(struct address_space *mapping,
618 		struct page *newpage, struct page *page, enum migrate_mode mode)
619 {
620 	struct buffer_head *bh, *head;
621 	int rc;
622 
623 	if (!page_has_buffers(page))
624 		return migrate_page(mapping, newpage, page, mode);
625 
626 	head = page_buffers(page);
627 
628 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
629 
630 	if (rc != MIGRATEPAGE_SUCCESS)
631 		return rc;
632 
633 	/*
634 	 * In the async case, migrate_page_move_mapping locked the buffers
635 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
636 	 * need to be locked now
637 	 */
638 	if (mode != MIGRATE_ASYNC)
639 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
640 
641 	ClearPagePrivate(page);
642 	set_page_private(newpage, page_private(page));
643 	set_page_private(page, 0);
644 	put_page(page);
645 	get_page(newpage);
646 
647 	bh = head;
648 	do {
649 		set_bh_page(bh, newpage, bh_offset(bh));
650 		bh = bh->b_this_page;
651 
652 	} while (bh != head);
653 
654 	SetPagePrivate(newpage);
655 
656 	migrate_page_copy(newpage, page);
657 
658 	bh = head;
659 	do {
660 		unlock_buffer(bh);
661  		put_bh(bh);
662 		bh = bh->b_this_page;
663 
664 	} while (bh != head);
665 
666 	return MIGRATEPAGE_SUCCESS;
667 }
668 EXPORT_SYMBOL(buffer_migrate_page);
669 #endif
670 
671 /*
672  * Writeback a page to clean the dirty state
673  */
674 static int writeout(struct address_space *mapping, struct page *page)
675 {
676 	struct writeback_control wbc = {
677 		.sync_mode = WB_SYNC_NONE,
678 		.nr_to_write = 1,
679 		.range_start = 0,
680 		.range_end = LLONG_MAX,
681 		.for_reclaim = 1
682 	};
683 	int rc;
684 
685 	if (!mapping->a_ops->writepage)
686 		/* No write method for the address space */
687 		return -EINVAL;
688 
689 	if (!clear_page_dirty_for_io(page))
690 		/* Someone else already triggered a write */
691 		return -EAGAIN;
692 
693 	/*
694 	 * A dirty page may imply that the underlying filesystem has
695 	 * the page on some queue. So the page must be clean for
696 	 * migration. Writeout may mean we loose the lock and the
697 	 * page state is no longer what we checked for earlier.
698 	 * At this point we know that the migration attempt cannot
699 	 * be successful.
700 	 */
701 	remove_migration_ptes(page, page);
702 
703 	rc = mapping->a_ops->writepage(page, &wbc);
704 
705 	if (rc != AOP_WRITEPAGE_ACTIVATE)
706 		/* unlocked. Relock */
707 		lock_page(page);
708 
709 	return (rc < 0) ? -EIO : -EAGAIN;
710 }
711 
712 /*
713  * Default handling if a filesystem does not provide a migration function.
714  */
715 static int fallback_migrate_page(struct address_space *mapping,
716 	struct page *newpage, struct page *page, enum migrate_mode mode)
717 {
718 	if (PageDirty(page)) {
719 		/* Only writeback pages in full synchronous migration */
720 		if (mode != MIGRATE_SYNC)
721 			return -EBUSY;
722 		return writeout(mapping, page);
723 	}
724 
725 	/*
726 	 * Buffers may be managed in a filesystem specific way.
727 	 * We must have no buffers or drop them.
728 	 */
729 	if (page_has_private(page) &&
730 	    !try_to_release_page(page, GFP_KERNEL))
731 		return -EAGAIN;
732 
733 	return migrate_page(mapping, newpage, page, mode);
734 }
735 
736 /*
737  * Move a page to a newly allocated page
738  * The page is locked and all ptes have been successfully removed.
739  *
740  * The new page will have replaced the old page if this function
741  * is successful.
742  *
743  * Return value:
744  *   < 0 - error code
745  *  MIGRATEPAGE_SUCCESS - success
746  */
747 static int move_to_new_page(struct page *newpage, struct page *page,
748 				int remap_swapcache, enum migrate_mode mode)
749 {
750 	struct address_space *mapping;
751 	int rc;
752 
753 	/*
754 	 * Block others from accessing the page when we get around to
755 	 * establishing additional references. We are the only one
756 	 * holding a reference to the new page at this point.
757 	 */
758 	if (!trylock_page(newpage))
759 		BUG();
760 
761 	/* Prepare mapping for the new page.*/
762 	newpage->index = page->index;
763 	newpage->mapping = page->mapping;
764 	if (PageSwapBacked(page))
765 		SetPageSwapBacked(newpage);
766 
767 	mapping = page_mapping(page);
768 	if (!mapping)
769 		rc = migrate_page(mapping, newpage, page, mode);
770 	else if (mapping->a_ops->migratepage)
771 		/*
772 		 * Most pages have a mapping and most filesystems provide a
773 		 * migratepage callback. Anonymous pages are part of swap
774 		 * space which also has its own migratepage callback. This
775 		 * is the most common path for page migration.
776 		 */
777 		rc = mapping->a_ops->migratepage(mapping,
778 						newpage, page, mode);
779 	else
780 		rc = fallback_migrate_page(mapping, newpage, page, mode);
781 
782 	if (rc != MIGRATEPAGE_SUCCESS) {
783 		newpage->mapping = NULL;
784 	} else {
785 		if (remap_swapcache)
786 			remove_migration_ptes(page, newpage);
787 		page->mapping = NULL;
788 	}
789 
790 	unlock_page(newpage);
791 
792 	return rc;
793 }
794 
795 static int __unmap_and_move(struct page *page, struct page *newpage,
796 				int force, enum migrate_mode mode)
797 {
798 	int rc = -EAGAIN;
799 	int remap_swapcache = 1;
800 	struct mem_cgroup *mem;
801 	struct anon_vma *anon_vma = NULL;
802 
803 	if (!trylock_page(page)) {
804 		if (!force || mode == MIGRATE_ASYNC)
805 			goto out;
806 
807 		/*
808 		 * It's not safe for direct compaction to call lock_page.
809 		 * For example, during page readahead pages are added locked
810 		 * to the LRU. Later, when the IO completes the pages are
811 		 * marked uptodate and unlocked. However, the queueing
812 		 * could be merging multiple pages for one bio (e.g.
813 		 * mpage_readpages). If an allocation happens for the
814 		 * second or third page, the process can end up locking
815 		 * the same page twice and deadlocking. Rather than
816 		 * trying to be clever about what pages can be locked,
817 		 * avoid the use of lock_page for direct compaction
818 		 * altogether.
819 		 */
820 		if (current->flags & PF_MEMALLOC)
821 			goto out;
822 
823 		lock_page(page);
824 	}
825 
826 	/* charge against new page */
827 	mem_cgroup_prepare_migration(page, newpage, &mem);
828 
829 	if (PageWriteback(page)) {
830 		/*
831 		 * Only in the case of a full synchronous migration is it
832 		 * necessary to wait for PageWriteback. In the async case,
833 		 * the retry loop is too short and in the sync-light case,
834 		 * the overhead of stalling is too much
835 		 */
836 		if (mode != MIGRATE_SYNC) {
837 			rc = -EBUSY;
838 			goto uncharge;
839 		}
840 		if (!force)
841 			goto uncharge;
842 		wait_on_page_writeback(page);
843 	}
844 	/*
845 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
846 	 * we cannot notice that anon_vma is freed while we migrates a page.
847 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
848 	 * of migration. File cache pages are no problem because of page_lock()
849 	 * File Caches may use write_page() or lock_page() in migration, then,
850 	 * just care Anon page here.
851 	 */
852 	if (PageAnon(page) && !PageKsm(page)) {
853 		/*
854 		 * Only page_lock_anon_vma_read() understands the subtleties of
855 		 * getting a hold on an anon_vma from outside one of its mms.
856 		 */
857 		anon_vma = page_get_anon_vma(page);
858 		if (anon_vma) {
859 			/*
860 			 * Anon page
861 			 */
862 		} else if (PageSwapCache(page)) {
863 			/*
864 			 * We cannot be sure that the anon_vma of an unmapped
865 			 * swapcache page is safe to use because we don't
866 			 * know in advance if the VMA that this page belonged
867 			 * to still exists. If the VMA and others sharing the
868 			 * data have been freed, then the anon_vma could
869 			 * already be invalid.
870 			 *
871 			 * To avoid this possibility, swapcache pages get
872 			 * migrated but are not remapped when migration
873 			 * completes
874 			 */
875 			remap_swapcache = 0;
876 		} else {
877 			goto uncharge;
878 		}
879 	}
880 
881 	if (unlikely(balloon_page_movable(page))) {
882 		/*
883 		 * A ballooned page does not need any special attention from
884 		 * physical to virtual reverse mapping procedures.
885 		 * Skip any attempt to unmap PTEs or to remap swap cache,
886 		 * in order to avoid burning cycles at rmap level, and perform
887 		 * the page migration right away (proteced by page lock).
888 		 */
889 		rc = balloon_page_migrate(newpage, page, mode);
890 		goto uncharge;
891 	}
892 
893 	/*
894 	 * Corner case handling:
895 	 * 1. When a new swap-cache page is read into, it is added to the LRU
896 	 * and treated as swapcache but it has no rmap yet.
897 	 * Calling try_to_unmap() against a page->mapping==NULL page will
898 	 * trigger a BUG.  So handle it here.
899 	 * 2. An orphaned page (see truncate_complete_page) might have
900 	 * fs-private metadata. The page can be picked up due to memory
901 	 * offlining.  Everywhere else except page reclaim, the page is
902 	 * invisible to the vm, so the page can not be migrated.  So try to
903 	 * free the metadata, so the page can be freed.
904 	 */
905 	if (!page->mapping) {
906 		VM_BUG_ON_PAGE(PageAnon(page), page);
907 		if (page_has_private(page)) {
908 			try_to_free_buffers(page);
909 			goto uncharge;
910 		}
911 		goto skip_unmap;
912 	}
913 
914 	/* Establish migration ptes or remove ptes */
915 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
916 
917 skip_unmap:
918 	if (!page_mapped(page))
919 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
920 
921 	if (rc && remap_swapcache)
922 		remove_migration_ptes(page, page);
923 
924 	/* Drop an anon_vma reference if we took one */
925 	if (anon_vma)
926 		put_anon_vma(anon_vma);
927 
928 uncharge:
929 	mem_cgroup_end_migration(mem, page, newpage,
930 				 (rc == MIGRATEPAGE_SUCCESS ||
931 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
932 	unlock_page(page);
933 out:
934 	return rc;
935 }
936 
937 /*
938  * Obtain the lock on page, remove all ptes and migrate the page
939  * to the newly allocated page in newpage.
940  */
941 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
942 			struct page *page, int force, enum migrate_mode mode)
943 {
944 	int rc = 0;
945 	int *result = NULL;
946 	struct page *newpage = get_new_page(page, private, &result);
947 
948 	if (!newpage)
949 		return -ENOMEM;
950 
951 	if (page_count(page) == 1) {
952 		/* page was freed from under us. So we are done. */
953 		goto out;
954 	}
955 
956 	if (unlikely(PageTransHuge(page)))
957 		if (unlikely(split_huge_page(page)))
958 			goto out;
959 
960 	rc = __unmap_and_move(page, newpage, force, mode);
961 
962 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
963 		/*
964 		 * A ballooned page has been migrated already.
965 		 * Now, it's the time to wrap-up counters,
966 		 * handle the page back to Buddy and return.
967 		 */
968 		dec_zone_page_state(page, NR_ISOLATED_ANON +
969 				    page_is_file_cache(page));
970 		balloon_page_free(page);
971 		return MIGRATEPAGE_SUCCESS;
972 	}
973 out:
974 	if (rc != -EAGAIN) {
975 		/*
976 		 * A page that has been migrated has all references
977 		 * removed and will be freed. A page that has not been
978 		 * migrated will have kepts its references and be
979 		 * restored.
980 		 */
981 		list_del(&page->lru);
982 		dec_zone_page_state(page, NR_ISOLATED_ANON +
983 				page_is_file_cache(page));
984 		putback_lru_page(page);
985 	}
986 	/*
987 	 * Move the new page to the LRU. If migration was not successful
988 	 * then this will free the page.
989 	 */
990 	putback_lru_page(newpage);
991 	if (result) {
992 		if (rc)
993 			*result = rc;
994 		else
995 			*result = page_to_nid(newpage);
996 	}
997 	return rc;
998 }
999 
1000 /*
1001  * Counterpart of unmap_and_move_page() for hugepage migration.
1002  *
1003  * This function doesn't wait the completion of hugepage I/O
1004  * because there is no race between I/O and migration for hugepage.
1005  * Note that currently hugepage I/O occurs only in direct I/O
1006  * where no lock is held and PG_writeback is irrelevant,
1007  * and writeback status of all subpages are counted in the reference
1008  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009  * under direct I/O, the reference of the head page is 512 and a bit more.)
1010  * This means that when we try to migrate hugepage whose subpages are
1011  * doing direct I/O, some references remain after try_to_unmap() and
1012  * hugepage migration fails without data corruption.
1013  *
1014  * There is also no race when direct I/O is issued on the page under migration,
1015  * because then pte is replaced with migration swap entry and direct I/O code
1016  * will wait in the page fault for migration to complete.
1017  */
1018 static int unmap_and_move_huge_page(new_page_t get_new_page,
1019 				unsigned long private, struct page *hpage,
1020 				int force, enum migrate_mode mode)
1021 {
1022 	int rc = 0;
1023 	int *result = NULL;
1024 	struct page *new_hpage;
1025 	struct anon_vma *anon_vma = NULL;
1026 
1027 	/*
1028 	 * Movability of hugepages depends on architectures and hugepage size.
1029 	 * This check is necessary because some callers of hugepage migration
1030 	 * like soft offline and memory hotremove don't walk through page
1031 	 * tables or check whether the hugepage is pmd-based or not before
1032 	 * kicking migration.
1033 	 */
1034 	if (!hugepage_migration_support(page_hstate(hpage))) {
1035 		putback_active_hugepage(hpage);
1036 		return -ENOSYS;
1037 	}
1038 
1039 	new_hpage = get_new_page(hpage, private, &result);
1040 	if (!new_hpage)
1041 		return -ENOMEM;
1042 
1043 	rc = -EAGAIN;
1044 
1045 	if (!trylock_page(hpage)) {
1046 		if (!force || mode != MIGRATE_SYNC)
1047 			goto out;
1048 		lock_page(hpage);
1049 	}
1050 
1051 	if (PageAnon(hpage))
1052 		anon_vma = page_get_anon_vma(hpage);
1053 
1054 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1055 
1056 	if (!page_mapped(hpage))
1057 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1058 
1059 	if (rc)
1060 		remove_migration_ptes(hpage, hpage);
1061 
1062 	if (anon_vma)
1063 		put_anon_vma(anon_vma);
1064 
1065 	if (!rc)
1066 		hugetlb_cgroup_migrate(hpage, new_hpage);
1067 
1068 	unlock_page(hpage);
1069 out:
1070 	if (rc != -EAGAIN)
1071 		putback_active_hugepage(hpage);
1072 	put_page(new_hpage);
1073 	if (result) {
1074 		if (rc)
1075 			*result = rc;
1076 		else
1077 			*result = page_to_nid(new_hpage);
1078 	}
1079 	return rc;
1080 }
1081 
1082 /*
1083  * migrate_pages - migrate the pages specified in a list, to the free pages
1084  *		   supplied as the target for the page migration
1085  *
1086  * @from:		The list of pages to be migrated.
1087  * @get_new_page:	The function used to allocate free pages to be used
1088  *			as the target of the page migration.
1089  * @private:		Private data to be passed on to get_new_page()
1090  * @mode:		The migration mode that specifies the constraints for
1091  *			page migration, if any.
1092  * @reason:		The reason for page migration.
1093  *
1094  * The function returns after 10 attempts or if no pages are movable any more
1095  * because the list has become empty or no retryable pages exist any more.
1096  * The caller should call putback_lru_pages() to return pages to the LRU
1097  * or free list only if ret != 0.
1098  *
1099  * Returns the number of pages that were not migrated, or an error code.
1100  */
1101 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1102 		unsigned long private, enum migrate_mode mode, int reason)
1103 {
1104 	int retry = 1;
1105 	int nr_failed = 0;
1106 	int nr_succeeded = 0;
1107 	int pass = 0;
1108 	struct page *page;
1109 	struct page *page2;
1110 	int swapwrite = current->flags & PF_SWAPWRITE;
1111 	int rc;
1112 
1113 	if (!swapwrite)
1114 		current->flags |= PF_SWAPWRITE;
1115 
1116 	for(pass = 0; pass < 10 && retry; pass++) {
1117 		retry = 0;
1118 
1119 		list_for_each_entry_safe(page, page2, from, lru) {
1120 			cond_resched();
1121 
1122 			if (PageHuge(page))
1123 				rc = unmap_and_move_huge_page(get_new_page,
1124 						private, page, pass > 2, mode);
1125 			else
1126 				rc = unmap_and_move(get_new_page, private,
1127 						page, pass > 2, mode);
1128 
1129 			switch(rc) {
1130 			case -ENOMEM:
1131 				goto out;
1132 			case -EAGAIN:
1133 				retry++;
1134 				break;
1135 			case MIGRATEPAGE_SUCCESS:
1136 				nr_succeeded++;
1137 				break;
1138 			default:
1139 				/*
1140 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1141 				 * unlike -EAGAIN case, the failed page is
1142 				 * removed from migration page list and not
1143 				 * retried in the next outer loop.
1144 				 */
1145 				nr_failed++;
1146 				break;
1147 			}
1148 		}
1149 	}
1150 	rc = nr_failed + retry;
1151 out:
1152 	if (nr_succeeded)
1153 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1154 	if (nr_failed)
1155 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1156 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1157 
1158 	if (!swapwrite)
1159 		current->flags &= ~PF_SWAPWRITE;
1160 
1161 	return rc;
1162 }
1163 
1164 #ifdef CONFIG_NUMA
1165 /*
1166  * Move a list of individual pages
1167  */
1168 struct page_to_node {
1169 	unsigned long addr;
1170 	struct page *page;
1171 	int node;
1172 	int status;
1173 };
1174 
1175 static struct page *new_page_node(struct page *p, unsigned long private,
1176 		int **result)
1177 {
1178 	struct page_to_node *pm = (struct page_to_node *)private;
1179 
1180 	while (pm->node != MAX_NUMNODES && pm->page != p)
1181 		pm++;
1182 
1183 	if (pm->node == MAX_NUMNODES)
1184 		return NULL;
1185 
1186 	*result = &pm->status;
1187 
1188 	if (PageHuge(p))
1189 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1190 					pm->node);
1191 	else
1192 		return alloc_pages_exact_node(pm->node,
1193 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1194 }
1195 
1196 /*
1197  * Move a set of pages as indicated in the pm array. The addr
1198  * field must be set to the virtual address of the page to be moved
1199  * and the node number must contain a valid target node.
1200  * The pm array ends with node = MAX_NUMNODES.
1201  */
1202 static int do_move_page_to_node_array(struct mm_struct *mm,
1203 				      struct page_to_node *pm,
1204 				      int migrate_all)
1205 {
1206 	int err;
1207 	struct page_to_node *pp;
1208 	LIST_HEAD(pagelist);
1209 
1210 	down_read(&mm->mmap_sem);
1211 
1212 	/*
1213 	 * Build a list of pages to migrate
1214 	 */
1215 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1216 		struct vm_area_struct *vma;
1217 		struct page *page;
1218 
1219 		err = -EFAULT;
1220 		vma = find_vma(mm, pp->addr);
1221 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1222 			goto set_status;
1223 
1224 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1225 
1226 		err = PTR_ERR(page);
1227 		if (IS_ERR(page))
1228 			goto set_status;
1229 
1230 		err = -ENOENT;
1231 		if (!page)
1232 			goto set_status;
1233 
1234 		/* Use PageReserved to check for zero page */
1235 		if (PageReserved(page))
1236 			goto put_and_set;
1237 
1238 		pp->page = page;
1239 		err = page_to_nid(page);
1240 
1241 		if (err == pp->node)
1242 			/*
1243 			 * Node already in the right place
1244 			 */
1245 			goto put_and_set;
1246 
1247 		err = -EACCES;
1248 		if (page_mapcount(page) > 1 &&
1249 				!migrate_all)
1250 			goto put_and_set;
1251 
1252 		if (PageHuge(page)) {
1253 			isolate_huge_page(page, &pagelist);
1254 			goto put_and_set;
1255 		}
1256 
1257 		err = isolate_lru_page(page);
1258 		if (!err) {
1259 			list_add_tail(&page->lru, &pagelist);
1260 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1261 					    page_is_file_cache(page));
1262 		}
1263 put_and_set:
1264 		/*
1265 		 * Either remove the duplicate refcount from
1266 		 * isolate_lru_page() or drop the page ref if it was
1267 		 * not isolated.
1268 		 */
1269 		put_page(page);
1270 set_status:
1271 		pp->status = err;
1272 	}
1273 
1274 	err = 0;
1275 	if (!list_empty(&pagelist)) {
1276 		err = migrate_pages(&pagelist, new_page_node,
1277 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1278 		if (err)
1279 			putback_movable_pages(&pagelist);
1280 	}
1281 
1282 	up_read(&mm->mmap_sem);
1283 	return err;
1284 }
1285 
1286 /*
1287  * Migrate an array of page address onto an array of nodes and fill
1288  * the corresponding array of status.
1289  */
1290 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1291 			 unsigned long nr_pages,
1292 			 const void __user * __user *pages,
1293 			 const int __user *nodes,
1294 			 int __user *status, int flags)
1295 {
1296 	struct page_to_node *pm;
1297 	unsigned long chunk_nr_pages;
1298 	unsigned long chunk_start;
1299 	int err;
1300 
1301 	err = -ENOMEM;
1302 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1303 	if (!pm)
1304 		goto out;
1305 
1306 	migrate_prep();
1307 
1308 	/*
1309 	 * Store a chunk of page_to_node array in a page,
1310 	 * but keep the last one as a marker
1311 	 */
1312 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1313 
1314 	for (chunk_start = 0;
1315 	     chunk_start < nr_pages;
1316 	     chunk_start += chunk_nr_pages) {
1317 		int j;
1318 
1319 		if (chunk_start + chunk_nr_pages > nr_pages)
1320 			chunk_nr_pages = nr_pages - chunk_start;
1321 
1322 		/* fill the chunk pm with addrs and nodes from user-space */
1323 		for (j = 0; j < chunk_nr_pages; j++) {
1324 			const void __user *p;
1325 			int node;
1326 
1327 			err = -EFAULT;
1328 			if (get_user(p, pages + j + chunk_start))
1329 				goto out_pm;
1330 			pm[j].addr = (unsigned long) p;
1331 
1332 			if (get_user(node, nodes + j + chunk_start))
1333 				goto out_pm;
1334 
1335 			err = -ENODEV;
1336 			if (node < 0 || node >= MAX_NUMNODES)
1337 				goto out_pm;
1338 
1339 			if (!node_state(node, N_MEMORY))
1340 				goto out_pm;
1341 
1342 			err = -EACCES;
1343 			if (!node_isset(node, task_nodes))
1344 				goto out_pm;
1345 
1346 			pm[j].node = node;
1347 		}
1348 
1349 		/* End marker for this chunk */
1350 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1351 
1352 		/* Migrate this chunk */
1353 		err = do_move_page_to_node_array(mm, pm,
1354 						 flags & MPOL_MF_MOVE_ALL);
1355 		if (err < 0)
1356 			goto out_pm;
1357 
1358 		/* Return status information */
1359 		for (j = 0; j < chunk_nr_pages; j++)
1360 			if (put_user(pm[j].status, status + j + chunk_start)) {
1361 				err = -EFAULT;
1362 				goto out_pm;
1363 			}
1364 	}
1365 	err = 0;
1366 
1367 out_pm:
1368 	free_page((unsigned long)pm);
1369 out:
1370 	return err;
1371 }
1372 
1373 /*
1374  * Determine the nodes of an array of pages and store it in an array of status.
1375  */
1376 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1377 				const void __user **pages, int *status)
1378 {
1379 	unsigned long i;
1380 
1381 	down_read(&mm->mmap_sem);
1382 
1383 	for (i = 0; i < nr_pages; i++) {
1384 		unsigned long addr = (unsigned long)(*pages);
1385 		struct vm_area_struct *vma;
1386 		struct page *page;
1387 		int err = -EFAULT;
1388 
1389 		vma = find_vma(mm, addr);
1390 		if (!vma || addr < vma->vm_start)
1391 			goto set_status;
1392 
1393 		page = follow_page(vma, addr, 0);
1394 
1395 		err = PTR_ERR(page);
1396 		if (IS_ERR(page))
1397 			goto set_status;
1398 
1399 		err = -ENOENT;
1400 		/* Use PageReserved to check for zero page */
1401 		if (!page || PageReserved(page))
1402 			goto set_status;
1403 
1404 		err = page_to_nid(page);
1405 set_status:
1406 		*status = err;
1407 
1408 		pages++;
1409 		status++;
1410 	}
1411 
1412 	up_read(&mm->mmap_sem);
1413 }
1414 
1415 /*
1416  * Determine the nodes of a user array of pages and store it in
1417  * a user array of status.
1418  */
1419 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1420 			 const void __user * __user *pages,
1421 			 int __user *status)
1422 {
1423 #define DO_PAGES_STAT_CHUNK_NR 16
1424 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1425 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1426 
1427 	while (nr_pages) {
1428 		unsigned long chunk_nr;
1429 
1430 		chunk_nr = nr_pages;
1431 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1432 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1433 
1434 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1435 			break;
1436 
1437 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1438 
1439 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1440 			break;
1441 
1442 		pages += chunk_nr;
1443 		status += chunk_nr;
1444 		nr_pages -= chunk_nr;
1445 	}
1446 	return nr_pages ? -EFAULT : 0;
1447 }
1448 
1449 /*
1450  * Move a list of pages in the address space of the currently executing
1451  * process.
1452  */
1453 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1454 		const void __user * __user *, pages,
1455 		const int __user *, nodes,
1456 		int __user *, status, int, flags)
1457 {
1458 	const struct cred *cred = current_cred(), *tcred;
1459 	struct task_struct *task;
1460 	struct mm_struct *mm;
1461 	int err;
1462 	nodemask_t task_nodes;
1463 
1464 	/* Check flags */
1465 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1466 		return -EINVAL;
1467 
1468 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1469 		return -EPERM;
1470 
1471 	/* Find the mm_struct */
1472 	rcu_read_lock();
1473 	task = pid ? find_task_by_vpid(pid) : current;
1474 	if (!task) {
1475 		rcu_read_unlock();
1476 		return -ESRCH;
1477 	}
1478 	get_task_struct(task);
1479 
1480 	/*
1481 	 * Check if this process has the right to modify the specified
1482 	 * process. The right exists if the process has administrative
1483 	 * capabilities, superuser privileges or the same
1484 	 * userid as the target process.
1485 	 */
1486 	tcred = __task_cred(task);
1487 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1488 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1489 	    !capable(CAP_SYS_NICE)) {
1490 		rcu_read_unlock();
1491 		err = -EPERM;
1492 		goto out;
1493 	}
1494 	rcu_read_unlock();
1495 
1496  	err = security_task_movememory(task);
1497  	if (err)
1498 		goto out;
1499 
1500 	task_nodes = cpuset_mems_allowed(task);
1501 	mm = get_task_mm(task);
1502 	put_task_struct(task);
1503 
1504 	if (!mm)
1505 		return -EINVAL;
1506 
1507 	if (nodes)
1508 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1509 				    nodes, status, flags);
1510 	else
1511 		err = do_pages_stat(mm, nr_pages, pages, status);
1512 
1513 	mmput(mm);
1514 	return err;
1515 
1516 out:
1517 	put_task_struct(task);
1518 	return err;
1519 }
1520 
1521 /*
1522  * Call migration functions in the vma_ops that may prepare
1523  * memory in a vm for migration. migration functions may perform
1524  * the migration for vmas that do not have an underlying page struct.
1525  */
1526 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1527 	const nodemask_t *from, unsigned long flags)
1528 {
1529  	struct vm_area_struct *vma;
1530  	int err = 0;
1531 
1532 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1533  		if (vma->vm_ops && vma->vm_ops->migrate) {
1534  			err = vma->vm_ops->migrate(vma, to, from, flags);
1535  			if (err)
1536  				break;
1537  		}
1538  	}
1539  	return err;
1540 }
1541 
1542 #ifdef CONFIG_NUMA_BALANCING
1543 /*
1544  * Returns true if this is a safe migration target node for misplaced NUMA
1545  * pages. Currently it only checks the watermarks which crude
1546  */
1547 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1548 				   unsigned long nr_migrate_pages)
1549 {
1550 	int z;
1551 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1552 		struct zone *zone = pgdat->node_zones + z;
1553 
1554 		if (!populated_zone(zone))
1555 			continue;
1556 
1557 		if (!zone_reclaimable(zone))
1558 			continue;
1559 
1560 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1561 		if (!zone_watermark_ok(zone, 0,
1562 				       high_wmark_pages(zone) +
1563 				       nr_migrate_pages,
1564 				       0, 0))
1565 			continue;
1566 		return true;
1567 	}
1568 	return false;
1569 }
1570 
1571 static struct page *alloc_misplaced_dst_page(struct page *page,
1572 					   unsigned long data,
1573 					   int **result)
1574 {
1575 	int nid = (int) data;
1576 	struct page *newpage;
1577 
1578 	newpage = alloc_pages_exact_node(nid,
1579 					 (GFP_HIGHUSER_MOVABLE |
1580 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1581 					  __GFP_NORETRY | __GFP_NOWARN) &
1582 					 ~GFP_IOFS, 0);
1583 
1584 	return newpage;
1585 }
1586 
1587 /*
1588  * page migration rate limiting control.
1589  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1590  * window of time. Default here says do not migrate more than 1280M per second.
1591  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1592  * as it is faults that reset the window, pte updates will happen unconditionally
1593  * if there has not been a fault since @pteupdate_interval_millisecs after the
1594  * throttle window closed.
1595  */
1596 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1597 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1598 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1599 
1600 /* Returns true if NUMA migration is currently rate limited */
1601 bool migrate_ratelimited(int node)
1602 {
1603 	pg_data_t *pgdat = NODE_DATA(node);
1604 
1605 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1606 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1607 		return false;
1608 
1609 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1610 		return false;
1611 
1612 	return true;
1613 }
1614 
1615 /* Returns true if the node is migrate rate-limited after the update */
1616 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1617 					unsigned long nr_pages)
1618 {
1619 	/*
1620 	 * Rate-limit the amount of data that is being migrated to a node.
1621 	 * Optimal placement is no good if the memory bus is saturated and
1622 	 * all the time is being spent migrating!
1623 	 */
1624 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1625 		spin_lock(&pgdat->numabalancing_migrate_lock);
1626 		pgdat->numabalancing_migrate_nr_pages = 0;
1627 		pgdat->numabalancing_migrate_next_window = jiffies +
1628 			msecs_to_jiffies(migrate_interval_millisecs);
1629 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1630 	}
1631 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1632 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1633 								nr_pages);
1634 		return true;
1635 	}
1636 
1637 	/*
1638 	 * This is an unlocked non-atomic update so errors are possible.
1639 	 * The consequences are failing to migrate when we potentiall should
1640 	 * have which is not severe enough to warrant locking. If it is ever
1641 	 * a problem, it can be converted to a per-cpu counter.
1642 	 */
1643 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1644 	return false;
1645 }
1646 
1647 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1648 {
1649 	int page_lru;
1650 
1651 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1652 
1653 	/* Avoid migrating to a node that is nearly full */
1654 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1655 		return 0;
1656 
1657 	if (isolate_lru_page(page))
1658 		return 0;
1659 
1660 	/*
1661 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1662 	 * check on page_count(), so we must do it here, now that the page
1663 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1664 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1665 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1666 	 */
1667 	if (PageTransHuge(page) && page_count(page) != 3) {
1668 		putback_lru_page(page);
1669 		return 0;
1670 	}
1671 
1672 	page_lru = page_is_file_cache(page);
1673 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1674 				hpage_nr_pages(page));
1675 
1676 	/*
1677 	 * Isolating the page has taken another reference, so the
1678 	 * caller's reference can be safely dropped without the page
1679 	 * disappearing underneath us during migration.
1680 	 */
1681 	put_page(page);
1682 	return 1;
1683 }
1684 
1685 bool pmd_trans_migrating(pmd_t pmd)
1686 {
1687 	struct page *page = pmd_page(pmd);
1688 	return PageLocked(page);
1689 }
1690 
1691 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1692 {
1693 	struct page *page = pmd_page(*pmd);
1694 	wait_on_page_locked(page);
1695 }
1696 
1697 /*
1698  * Attempt to migrate a misplaced page to the specified destination
1699  * node. Caller is expected to have an elevated reference count on
1700  * the page that will be dropped by this function before returning.
1701  */
1702 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1703 			   int node)
1704 {
1705 	pg_data_t *pgdat = NODE_DATA(node);
1706 	int isolated;
1707 	int nr_remaining;
1708 	LIST_HEAD(migratepages);
1709 
1710 	/*
1711 	 * Don't migrate file pages that are mapped in multiple processes
1712 	 * with execute permissions as they are probably shared libraries.
1713 	 */
1714 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1715 	    (vma->vm_flags & VM_EXEC))
1716 		goto out;
1717 
1718 	/*
1719 	 * Rate-limit the amount of data that is being migrated to a node.
1720 	 * Optimal placement is no good if the memory bus is saturated and
1721 	 * all the time is being spent migrating!
1722 	 */
1723 	if (numamigrate_update_ratelimit(pgdat, 1))
1724 		goto out;
1725 
1726 	isolated = numamigrate_isolate_page(pgdat, page);
1727 	if (!isolated)
1728 		goto out;
1729 
1730 	list_add(&page->lru, &migratepages);
1731 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1732 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1733 	if (nr_remaining) {
1734 		if (!list_empty(&migratepages)) {
1735 			list_del(&page->lru);
1736 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1737 					page_is_file_cache(page));
1738 			putback_lru_page(page);
1739 		}
1740 		isolated = 0;
1741 	} else
1742 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1743 	BUG_ON(!list_empty(&migratepages));
1744 	return isolated;
1745 
1746 out:
1747 	put_page(page);
1748 	return 0;
1749 }
1750 #endif /* CONFIG_NUMA_BALANCING */
1751 
1752 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1753 /*
1754  * Migrates a THP to a given target node. page must be locked and is unlocked
1755  * before returning.
1756  */
1757 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1758 				struct vm_area_struct *vma,
1759 				pmd_t *pmd, pmd_t entry,
1760 				unsigned long address,
1761 				struct page *page, int node)
1762 {
1763 	spinlock_t *ptl;
1764 	pg_data_t *pgdat = NODE_DATA(node);
1765 	int isolated = 0;
1766 	struct page *new_page = NULL;
1767 	struct mem_cgroup *memcg = NULL;
1768 	int page_lru = page_is_file_cache(page);
1769 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1770 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1771 	pmd_t orig_entry;
1772 
1773 	/*
1774 	 * Rate-limit the amount of data that is being migrated to a node.
1775 	 * Optimal placement is no good if the memory bus is saturated and
1776 	 * all the time is being spent migrating!
1777 	 */
1778 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1779 		goto out_dropref;
1780 
1781 	new_page = alloc_pages_node(node,
1782 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1783 		HPAGE_PMD_ORDER);
1784 	if (!new_page)
1785 		goto out_fail;
1786 
1787 	isolated = numamigrate_isolate_page(pgdat, page);
1788 	if (!isolated) {
1789 		put_page(new_page);
1790 		goto out_fail;
1791 	}
1792 
1793 	if (mm_tlb_flush_pending(mm))
1794 		flush_tlb_range(vma, mmun_start, mmun_end);
1795 
1796 	/* Prepare a page as a migration target */
1797 	__set_page_locked(new_page);
1798 	SetPageSwapBacked(new_page);
1799 
1800 	/* anon mapping, we can simply copy page->mapping to the new page: */
1801 	new_page->mapping = page->mapping;
1802 	new_page->index = page->index;
1803 	migrate_page_copy(new_page, page);
1804 	WARN_ON(PageLRU(new_page));
1805 
1806 	/* Recheck the target PMD */
1807 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1808 	ptl = pmd_lock(mm, pmd);
1809 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1810 fail_putback:
1811 		spin_unlock(ptl);
1812 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1813 
1814 		/* Reverse changes made by migrate_page_copy() */
1815 		if (TestClearPageActive(new_page))
1816 			SetPageActive(page);
1817 		if (TestClearPageUnevictable(new_page))
1818 			SetPageUnevictable(page);
1819 		mlock_migrate_page(page, new_page);
1820 
1821 		unlock_page(new_page);
1822 		put_page(new_page);		/* Free it */
1823 
1824 		/* Retake the callers reference and putback on LRU */
1825 		get_page(page);
1826 		putback_lru_page(page);
1827 		mod_zone_page_state(page_zone(page),
1828 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1829 
1830 		goto out_unlock;
1831 	}
1832 
1833 	/*
1834 	 * Traditional migration needs to prepare the memcg charge
1835 	 * transaction early to prevent the old page from being
1836 	 * uncharged when installing migration entries.  Here we can
1837 	 * save the potential rollback and start the charge transfer
1838 	 * only when migration is already known to end successfully.
1839 	 */
1840 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1841 
1842 	orig_entry = *pmd;
1843 	entry = mk_pmd(new_page, vma->vm_page_prot);
1844 	entry = pmd_mkhuge(entry);
1845 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1846 
1847 	/*
1848 	 * Clear the old entry under pagetable lock and establish the new PTE.
1849 	 * Any parallel GUP will either observe the old page blocking on the
1850 	 * page lock, block on the page table lock or observe the new page.
1851 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1852 	 * guarantee the copy is visible before the pagetable update.
1853 	 */
1854 	flush_cache_range(vma, mmun_start, mmun_end);
1855 	page_add_new_anon_rmap(new_page, vma, mmun_start);
1856 	pmdp_clear_flush(vma, mmun_start, pmd);
1857 	set_pmd_at(mm, mmun_start, pmd, entry);
1858 	flush_tlb_range(vma, mmun_start, mmun_end);
1859 	update_mmu_cache_pmd(vma, address, &entry);
1860 
1861 	if (page_count(page) != 2) {
1862 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1863 		flush_tlb_range(vma, mmun_start, mmun_end);
1864 		update_mmu_cache_pmd(vma, address, &entry);
1865 		page_remove_rmap(new_page);
1866 		goto fail_putback;
1867 	}
1868 
1869 	page_remove_rmap(page);
1870 
1871 	/*
1872 	 * Finish the charge transaction under the page table lock to
1873 	 * prevent split_huge_page() from dividing up the charge
1874 	 * before it's fully transferred to the new page.
1875 	 */
1876 	mem_cgroup_end_migration(memcg, page, new_page, true);
1877 	spin_unlock(ptl);
1878 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1879 
1880 	unlock_page(new_page);
1881 	unlock_page(page);
1882 	put_page(page);			/* Drop the rmap reference */
1883 	put_page(page);			/* Drop the LRU isolation reference */
1884 
1885 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1886 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1887 
1888 	mod_zone_page_state(page_zone(page),
1889 			NR_ISOLATED_ANON + page_lru,
1890 			-HPAGE_PMD_NR);
1891 	return isolated;
1892 
1893 out_fail:
1894 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1895 out_dropref:
1896 	ptl = pmd_lock(mm, pmd);
1897 	if (pmd_same(*pmd, entry)) {
1898 		entry = pmd_mknonnuma(entry);
1899 		set_pmd_at(mm, mmun_start, pmd, entry);
1900 		update_mmu_cache_pmd(vma, address, &entry);
1901 	}
1902 	spin_unlock(ptl);
1903 
1904 out_unlock:
1905 	unlock_page(page);
1906 	put_page(page);
1907 	return 0;
1908 }
1909 #endif /* CONFIG_NUMA_BALANCING */
1910 
1911 #endif /* CONFIG_NUMA */
1912