xref: /openbmc/linux/mm/migrate.c (revision 367b8112)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
34 
35 #include "internal.h"
36 
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 
39 /*
40  * migrate_prep() needs to be called before we start compiling a list of pages
41  * to be migrated using isolate_lru_page().
42  */
43 int migrate_prep(void)
44 {
45 	/*
46 	 * Clear the LRU lists so pages can be isolated.
47 	 * Note that pages may be moved off the LRU after we have
48 	 * drained them. Those pages will fail to migrate like other
49 	 * pages that may be busy.
50 	 */
51 	lru_add_drain_all();
52 
53 	return 0;
54 }
55 
56 /*
57  * Add isolated pages on the list back to the LRU under page lock
58  * to avoid leaking evictable pages back onto unevictable list.
59  *
60  * returns the number of pages put back.
61  */
62 int putback_lru_pages(struct list_head *l)
63 {
64 	struct page *page;
65 	struct page *page2;
66 	int count = 0;
67 
68 	list_for_each_entry_safe(page, page2, l, lru) {
69 		list_del(&page->lru);
70 		putback_lru_page(page);
71 		count++;
72 	}
73 	return count;
74 }
75 
76 /*
77  * Restore a potential migration pte to a working pte entry
78  */
79 static void remove_migration_pte(struct vm_area_struct *vma,
80 		struct page *old, struct page *new)
81 {
82 	struct mm_struct *mm = vma->vm_mm;
83 	swp_entry_t entry;
84  	pgd_t *pgd;
85  	pud_t *pud;
86  	pmd_t *pmd;
87 	pte_t *ptep, pte;
88  	spinlock_t *ptl;
89 	unsigned long addr = page_address_in_vma(new, vma);
90 
91 	if (addr == -EFAULT)
92 		return;
93 
94  	pgd = pgd_offset(mm, addr);
95 	if (!pgd_present(*pgd))
96                 return;
97 
98 	pud = pud_offset(pgd, addr);
99 	if (!pud_present(*pud))
100                 return;
101 
102 	pmd = pmd_offset(pud, addr);
103 	if (!pmd_present(*pmd))
104 		return;
105 
106 	ptep = pte_offset_map(pmd, addr);
107 
108 	if (!is_swap_pte(*ptep)) {
109 		pte_unmap(ptep);
110  		return;
111  	}
112 
113  	ptl = pte_lockptr(mm, pmd);
114  	spin_lock(ptl);
115 	pte = *ptep;
116 	if (!is_swap_pte(pte))
117 		goto out;
118 
119 	entry = pte_to_swp_entry(pte);
120 
121 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122 		goto out;
123 
124 	/*
125 	 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
126 	 * Failure is not an option here: we're now expected to remove every
127 	 * migration pte, and will cause crashes otherwise.  Normally this
128 	 * is not an issue: mem_cgroup_prepare_migration bumped up the old
129 	 * page_cgroup count for safety, that's now attached to the new page,
130 	 * so this charge should just be another incrementation of the count,
131 	 * to keep in balance with rmap.c's mem_cgroup_uncharging.  But if
132 	 * there's been a force_empty, those reference counts may no longer
133 	 * be reliable, and this charge can actually fail: oh well, we don't
134 	 * make the situation any worse by proceeding as if it had succeeded.
135 	 */
136 	mem_cgroup_charge(new, mm, GFP_ATOMIC);
137 
138 	get_page(new);
139 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 	if (is_write_migration_entry(entry))
141 		pte = pte_mkwrite(pte);
142 	flush_cache_page(vma, addr, pte_pfn(pte));
143 	set_pte_at(mm, addr, ptep, pte);
144 
145 	if (PageAnon(new))
146 		page_add_anon_rmap(new, vma, addr);
147 	else
148 		page_add_file_rmap(new);
149 
150 	/* No need to invalidate - it was non-present before */
151 	update_mmu_cache(vma, addr, pte);
152 
153 out:
154 	pte_unmap_unlock(ptep, ptl);
155 }
156 
157 /*
158  * Note that remove_file_migration_ptes will only work on regular mappings,
159  * Nonlinear mappings do not use migration entries.
160  */
161 static void remove_file_migration_ptes(struct page *old, struct page *new)
162 {
163 	struct vm_area_struct *vma;
164 	struct address_space *mapping = page_mapping(new);
165 	struct prio_tree_iter iter;
166 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
167 
168 	if (!mapping)
169 		return;
170 
171 	spin_lock(&mapping->i_mmap_lock);
172 
173 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
174 		remove_migration_pte(vma, old, new);
175 
176 	spin_unlock(&mapping->i_mmap_lock);
177 }
178 
179 /*
180  * Must hold mmap_sem lock on at least one of the vmas containing
181  * the page so that the anon_vma cannot vanish.
182  */
183 static void remove_anon_migration_ptes(struct page *old, struct page *new)
184 {
185 	struct anon_vma *anon_vma;
186 	struct vm_area_struct *vma;
187 	unsigned long mapping;
188 
189 	mapping = (unsigned long)new->mapping;
190 
191 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
192 		return;
193 
194 	/*
195 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
196 	 */
197 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
198 	spin_lock(&anon_vma->lock);
199 
200 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
201 		remove_migration_pte(vma, old, new);
202 
203 	spin_unlock(&anon_vma->lock);
204 }
205 
206 /*
207  * Get rid of all migration entries and replace them by
208  * references to the indicated page.
209  */
210 static void remove_migration_ptes(struct page *old, struct page *new)
211 {
212 	if (PageAnon(new))
213 		remove_anon_migration_ptes(old, new);
214 	else
215 		remove_file_migration_ptes(old, new);
216 }
217 
218 /*
219  * Something used the pte of a page under migration. We need to
220  * get to the page and wait until migration is finished.
221  * When we return from this function the fault will be retried.
222  *
223  * This function is called from do_swap_page().
224  */
225 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
226 				unsigned long address)
227 {
228 	pte_t *ptep, pte;
229 	spinlock_t *ptl;
230 	swp_entry_t entry;
231 	struct page *page;
232 
233 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
234 	pte = *ptep;
235 	if (!is_swap_pte(pte))
236 		goto out;
237 
238 	entry = pte_to_swp_entry(pte);
239 	if (!is_migration_entry(entry))
240 		goto out;
241 
242 	page = migration_entry_to_page(entry);
243 
244 	/*
245 	 * Once radix-tree replacement of page migration started, page_count
246 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
247 	 * against a page without get_page().
248 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
249 	 * will occur again.
250 	 */
251 	if (!get_page_unless_zero(page))
252 		goto out;
253 	pte_unmap_unlock(ptep, ptl);
254 	wait_on_page_locked(page);
255 	put_page(page);
256 	return;
257 out:
258 	pte_unmap_unlock(ptep, ptl);
259 }
260 
261 /*
262  * Replace the page in the mapping.
263  *
264  * The number of remaining references must be:
265  * 1 for anonymous pages without a mapping
266  * 2 for pages with a mapping
267  * 3 for pages with a mapping and PagePrivate set.
268  */
269 static int migrate_page_move_mapping(struct address_space *mapping,
270 		struct page *newpage, struct page *page)
271 {
272 	int expected_count;
273 	void **pslot;
274 
275 	if (!mapping) {
276 		/* Anonymous page without mapping */
277 		if (page_count(page) != 1)
278 			return -EAGAIN;
279 		return 0;
280 	}
281 
282 	spin_lock_irq(&mapping->tree_lock);
283 
284 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
285  					page_index(page));
286 
287 	expected_count = 2 + !!PagePrivate(page);
288 	if (page_count(page) != expected_count ||
289 			(struct page *)radix_tree_deref_slot(pslot) != page) {
290 		spin_unlock_irq(&mapping->tree_lock);
291 		return -EAGAIN;
292 	}
293 
294 	if (!page_freeze_refs(page, expected_count)) {
295 		spin_unlock_irq(&mapping->tree_lock);
296 		return -EAGAIN;
297 	}
298 
299 	/*
300 	 * Now we know that no one else is looking at the page.
301 	 */
302 	get_page(newpage);	/* add cache reference */
303 #ifdef CONFIG_SWAP
304 	if (PageSwapCache(page)) {
305 		SetPageSwapCache(newpage);
306 		set_page_private(newpage, page_private(page));
307 	}
308 #endif
309 
310 	radix_tree_replace_slot(pslot, newpage);
311 
312 	page_unfreeze_refs(page, expected_count);
313 	/*
314 	 * Drop cache reference from old page.
315 	 * We know this isn't the last reference.
316 	 */
317 	__put_page(page);
318 
319 	/*
320 	 * If moved to a different zone then also account
321 	 * the page for that zone. Other VM counters will be
322 	 * taken care of when we establish references to the
323 	 * new page and drop references to the old page.
324 	 *
325 	 * Note that anonymous pages are accounted for
326 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
327 	 * are mapped to swap space.
328 	 */
329 	__dec_zone_page_state(page, NR_FILE_PAGES);
330 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
331 
332 	spin_unlock_irq(&mapping->tree_lock);
333 
334 	return 0;
335 }
336 
337 /*
338  * Copy the page to its new location
339  */
340 static void migrate_page_copy(struct page *newpage, struct page *page)
341 {
342 	int anon;
343 
344 	copy_highpage(newpage, page);
345 
346 	if (PageError(page))
347 		SetPageError(newpage);
348 	if (PageReferenced(page))
349 		SetPageReferenced(newpage);
350 	if (PageUptodate(page))
351 		SetPageUptodate(newpage);
352 	if (TestClearPageActive(page)) {
353 		VM_BUG_ON(PageUnevictable(page));
354 		SetPageActive(newpage);
355 	} else
356 		unevictable_migrate_page(newpage, page);
357 	if (PageChecked(page))
358 		SetPageChecked(newpage);
359 	if (PageMappedToDisk(page))
360 		SetPageMappedToDisk(newpage);
361 
362 	if (PageDirty(page)) {
363 		clear_page_dirty_for_io(page);
364 		/*
365 		 * Want to mark the page and the radix tree as dirty, and
366 		 * redo the accounting that clear_page_dirty_for_io undid,
367 		 * but we can't use set_page_dirty because that function
368 		 * is actually a signal that all of the page has become dirty.
369 		 * Wheras only part of our page may be dirty.
370 		 */
371 		__set_page_dirty_nobuffers(newpage);
372  	}
373 
374 	mlock_migrate_page(newpage, page);
375 
376 #ifdef CONFIG_SWAP
377 	ClearPageSwapCache(page);
378 #endif
379 	ClearPagePrivate(page);
380 	set_page_private(page, 0);
381 	/* page->mapping contains a flag for PageAnon() */
382 	anon = PageAnon(page);
383 	page->mapping = NULL;
384 
385 	if (!anon) /* This page was removed from radix-tree. */
386 		mem_cgroup_uncharge_cache_page(page);
387 
388 	/*
389 	 * If any waiters have accumulated on the new page then
390 	 * wake them up.
391 	 */
392 	if (PageWriteback(newpage))
393 		end_page_writeback(newpage);
394 }
395 
396 /************************************************************
397  *                    Migration functions
398  ***********************************************************/
399 
400 /* Always fail migration. Used for mappings that are not movable */
401 int fail_migrate_page(struct address_space *mapping,
402 			struct page *newpage, struct page *page)
403 {
404 	return -EIO;
405 }
406 EXPORT_SYMBOL(fail_migrate_page);
407 
408 /*
409  * Common logic to directly migrate a single page suitable for
410  * pages that do not use PagePrivate.
411  *
412  * Pages are locked upon entry and exit.
413  */
414 int migrate_page(struct address_space *mapping,
415 		struct page *newpage, struct page *page)
416 {
417 	int rc;
418 
419 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
420 
421 	rc = migrate_page_move_mapping(mapping, newpage, page);
422 
423 	if (rc)
424 		return rc;
425 
426 	migrate_page_copy(newpage, page);
427 	return 0;
428 }
429 EXPORT_SYMBOL(migrate_page);
430 
431 #ifdef CONFIG_BLOCK
432 /*
433  * Migration function for pages with buffers. This function can only be used
434  * if the underlying filesystem guarantees that no other references to "page"
435  * exist.
436  */
437 int buffer_migrate_page(struct address_space *mapping,
438 		struct page *newpage, struct page *page)
439 {
440 	struct buffer_head *bh, *head;
441 	int rc;
442 
443 	if (!page_has_buffers(page))
444 		return migrate_page(mapping, newpage, page);
445 
446 	head = page_buffers(page);
447 
448 	rc = migrate_page_move_mapping(mapping, newpage, page);
449 
450 	if (rc)
451 		return rc;
452 
453 	bh = head;
454 	do {
455 		get_bh(bh);
456 		lock_buffer(bh);
457 		bh = bh->b_this_page;
458 
459 	} while (bh != head);
460 
461 	ClearPagePrivate(page);
462 	set_page_private(newpage, page_private(page));
463 	set_page_private(page, 0);
464 	put_page(page);
465 	get_page(newpage);
466 
467 	bh = head;
468 	do {
469 		set_bh_page(bh, newpage, bh_offset(bh));
470 		bh = bh->b_this_page;
471 
472 	} while (bh != head);
473 
474 	SetPagePrivate(newpage);
475 
476 	migrate_page_copy(newpage, page);
477 
478 	bh = head;
479 	do {
480 		unlock_buffer(bh);
481  		put_bh(bh);
482 		bh = bh->b_this_page;
483 
484 	} while (bh != head);
485 
486 	return 0;
487 }
488 EXPORT_SYMBOL(buffer_migrate_page);
489 #endif
490 
491 /*
492  * Writeback a page to clean the dirty state
493  */
494 static int writeout(struct address_space *mapping, struct page *page)
495 {
496 	struct writeback_control wbc = {
497 		.sync_mode = WB_SYNC_NONE,
498 		.nr_to_write = 1,
499 		.range_start = 0,
500 		.range_end = LLONG_MAX,
501 		.nonblocking = 1,
502 		.for_reclaim = 1
503 	};
504 	int rc;
505 
506 	if (!mapping->a_ops->writepage)
507 		/* No write method for the address space */
508 		return -EINVAL;
509 
510 	if (!clear_page_dirty_for_io(page))
511 		/* Someone else already triggered a write */
512 		return -EAGAIN;
513 
514 	/*
515 	 * A dirty page may imply that the underlying filesystem has
516 	 * the page on some queue. So the page must be clean for
517 	 * migration. Writeout may mean we loose the lock and the
518 	 * page state is no longer what we checked for earlier.
519 	 * At this point we know that the migration attempt cannot
520 	 * be successful.
521 	 */
522 	remove_migration_ptes(page, page);
523 
524 	rc = mapping->a_ops->writepage(page, &wbc);
525 	if (rc < 0)
526 		/* I/O Error writing */
527 		return -EIO;
528 
529 	if (rc != AOP_WRITEPAGE_ACTIVATE)
530 		/* unlocked. Relock */
531 		lock_page(page);
532 
533 	return -EAGAIN;
534 }
535 
536 /*
537  * Default handling if a filesystem does not provide a migration function.
538  */
539 static int fallback_migrate_page(struct address_space *mapping,
540 	struct page *newpage, struct page *page)
541 {
542 	if (PageDirty(page))
543 		return writeout(mapping, page);
544 
545 	/*
546 	 * Buffers may be managed in a filesystem specific way.
547 	 * We must have no buffers or drop them.
548 	 */
549 	if (PagePrivate(page) &&
550 	    !try_to_release_page(page, GFP_KERNEL))
551 		return -EAGAIN;
552 
553 	return migrate_page(mapping, newpage, page);
554 }
555 
556 /*
557  * Move a page to a newly allocated page
558  * The page is locked and all ptes have been successfully removed.
559  *
560  * The new page will have replaced the old page if this function
561  * is successful.
562  *
563  * Return value:
564  *   < 0 - error code
565  *  == 0 - success
566  */
567 static int move_to_new_page(struct page *newpage, struct page *page)
568 {
569 	struct address_space *mapping;
570 	int rc;
571 
572 	/*
573 	 * Block others from accessing the page when we get around to
574 	 * establishing additional references. We are the only one
575 	 * holding a reference to the new page at this point.
576 	 */
577 	if (!trylock_page(newpage))
578 		BUG();
579 
580 	/* Prepare mapping for the new page.*/
581 	newpage->index = page->index;
582 	newpage->mapping = page->mapping;
583 	if (PageSwapBacked(page))
584 		SetPageSwapBacked(newpage);
585 
586 	mapping = page_mapping(page);
587 	if (!mapping)
588 		rc = migrate_page(mapping, newpage, page);
589 	else if (mapping->a_ops->migratepage)
590 		/*
591 		 * Most pages have a mapping and most filesystems
592 		 * should provide a migration function. Anonymous
593 		 * pages are part of swap space which also has its
594 		 * own migration function. This is the most common
595 		 * path for page migration.
596 		 */
597 		rc = mapping->a_ops->migratepage(mapping,
598 						newpage, page);
599 	else
600 		rc = fallback_migrate_page(mapping, newpage, page);
601 
602 	if (!rc) {
603 		remove_migration_ptes(page, newpage);
604 	} else
605 		newpage->mapping = NULL;
606 
607 	unlock_page(newpage);
608 
609 	return rc;
610 }
611 
612 /*
613  * Obtain the lock on page, remove all ptes and migrate the page
614  * to the newly allocated page in newpage.
615  */
616 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
617 			struct page *page, int force)
618 {
619 	int rc = 0;
620 	int *result = NULL;
621 	struct page *newpage = get_new_page(page, private, &result);
622 	int rcu_locked = 0;
623 	int charge = 0;
624 
625 	if (!newpage)
626 		return -ENOMEM;
627 
628 	if (page_count(page) == 1) {
629 		/* page was freed from under us. So we are done. */
630 		goto move_newpage;
631 	}
632 
633 	charge = mem_cgroup_prepare_migration(page, newpage);
634 	if (charge == -ENOMEM) {
635 		rc = -ENOMEM;
636 		goto move_newpage;
637 	}
638 	/* prepare cgroup just returns 0 or -ENOMEM */
639 	BUG_ON(charge);
640 
641 	rc = -EAGAIN;
642 	if (!trylock_page(page)) {
643 		if (!force)
644 			goto move_newpage;
645 		lock_page(page);
646 	}
647 
648 	if (PageWriteback(page)) {
649 		if (!force)
650 			goto unlock;
651 		wait_on_page_writeback(page);
652 	}
653 	/*
654 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
655 	 * we cannot notice that anon_vma is freed while we migrates a page.
656 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
657 	 * of migration. File cache pages are no problem because of page_lock()
658 	 * File Caches may use write_page() or lock_page() in migration, then,
659 	 * just care Anon page here.
660 	 */
661 	if (PageAnon(page)) {
662 		rcu_read_lock();
663 		rcu_locked = 1;
664 	}
665 
666 	/*
667 	 * Corner case handling:
668 	 * 1. When a new swap-cache page is read into, it is added to the LRU
669 	 * and treated as swapcache but it has no rmap yet.
670 	 * Calling try_to_unmap() against a page->mapping==NULL page will
671 	 * trigger a BUG.  So handle it here.
672 	 * 2. An orphaned page (see truncate_complete_page) might have
673 	 * fs-private metadata. The page can be picked up due to memory
674 	 * offlining.  Everywhere else except page reclaim, the page is
675 	 * invisible to the vm, so the page can not be migrated.  So try to
676 	 * free the metadata, so the page can be freed.
677 	 */
678 	if (!page->mapping) {
679 		if (!PageAnon(page) && PagePrivate(page)) {
680 			/*
681 			 * Go direct to try_to_free_buffers() here because
682 			 * a) that's what try_to_release_page() would do anyway
683 			 * b) we may be under rcu_read_lock() here, so we can't
684 			 *    use GFP_KERNEL which is what try_to_release_page()
685 			 *    needs to be effective.
686 			 */
687 			try_to_free_buffers(page);
688 		}
689 		goto rcu_unlock;
690 	}
691 
692 	/* Establish migration ptes or remove ptes */
693 	try_to_unmap(page, 1);
694 
695 	if (!page_mapped(page))
696 		rc = move_to_new_page(newpage, page);
697 
698 	if (rc)
699 		remove_migration_ptes(page, page);
700 rcu_unlock:
701 	if (rcu_locked)
702 		rcu_read_unlock();
703 
704 unlock:
705 	unlock_page(page);
706 
707 	if (rc != -EAGAIN) {
708  		/*
709  		 * A page that has been migrated has all references
710  		 * removed and will be freed. A page that has not been
711  		 * migrated will have kepts its references and be
712  		 * restored.
713  		 */
714  		list_del(&page->lru);
715 		putback_lru_page(page);
716 	}
717 
718 move_newpage:
719 	if (!charge)
720 		mem_cgroup_end_migration(newpage);
721 
722 	/*
723 	 * Move the new page to the LRU. If migration was not successful
724 	 * then this will free the page.
725 	 */
726 	putback_lru_page(newpage);
727 
728 	if (result) {
729 		if (rc)
730 			*result = rc;
731 		else
732 			*result = page_to_nid(newpage);
733 	}
734 	return rc;
735 }
736 
737 /*
738  * migrate_pages
739  *
740  * The function takes one list of pages to migrate and a function
741  * that determines from the page to be migrated and the private data
742  * the target of the move and allocates the page.
743  *
744  * The function returns after 10 attempts or if no pages
745  * are movable anymore because to has become empty
746  * or no retryable pages exist anymore. All pages will be
747  * returned to the LRU or freed.
748  *
749  * Return: Number of pages not migrated or error code.
750  */
751 int migrate_pages(struct list_head *from,
752 		new_page_t get_new_page, unsigned long private)
753 {
754 	int retry = 1;
755 	int nr_failed = 0;
756 	int pass = 0;
757 	struct page *page;
758 	struct page *page2;
759 	int swapwrite = current->flags & PF_SWAPWRITE;
760 	int rc;
761 
762 	if (!swapwrite)
763 		current->flags |= PF_SWAPWRITE;
764 
765 	for(pass = 0; pass < 10 && retry; pass++) {
766 		retry = 0;
767 
768 		list_for_each_entry_safe(page, page2, from, lru) {
769 			cond_resched();
770 
771 			rc = unmap_and_move(get_new_page, private,
772 						page, pass > 2);
773 
774 			switch(rc) {
775 			case -ENOMEM:
776 				goto out;
777 			case -EAGAIN:
778 				retry++;
779 				break;
780 			case 0:
781 				break;
782 			default:
783 				/* Permanent failure */
784 				nr_failed++;
785 				break;
786 			}
787 		}
788 	}
789 	rc = 0;
790 out:
791 	if (!swapwrite)
792 		current->flags &= ~PF_SWAPWRITE;
793 
794 	putback_lru_pages(from);
795 
796 	if (rc)
797 		return rc;
798 
799 	return nr_failed + retry;
800 }
801 
802 #ifdef CONFIG_NUMA
803 /*
804  * Move a list of individual pages
805  */
806 struct page_to_node {
807 	unsigned long addr;
808 	struct page *page;
809 	int node;
810 	int status;
811 };
812 
813 static struct page *new_page_node(struct page *p, unsigned long private,
814 		int **result)
815 {
816 	struct page_to_node *pm = (struct page_to_node *)private;
817 
818 	while (pm->node != MAX_NUMNODES && pm->page != p)
819 		pm++;
820 
821 	if (pm->node == MAX_NUMNODES)
822 		return NULL;
823 
824 	*result = &pm->status;
825 
826 	return alloc_pages_node(pm->node,
827 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
828 }
829 
830 /*
831  * Move a set of pages as indicated in the pm array. The addr
832  * field must be set to the virtual address of the page to be moved
833  * and the node number must contain a valid target node.
834  * The pm array ends with node = MAX_NUMNODES.
835  */
836 static int do_move_page_to_node_array(struct mm_struct *mm,
837 				      struct page_to_node *pm,
838 				      int migrate_all)
839 {
840 	int err;
841 	struct page_to_node *pp;
842 	LIST_HEAD(pagelist);
843 
844 	down_read(&mm->mmap_sem);
845 
846 	/*
847 	 * Build a list of pages to migrate
848 	 */
849 	migrate_prep();
850 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
851 		struct vm_area_struct *vma;
852 		struct page *page;
853 
854 		/*
855 		 * A valid page pointer that will not match any of the
856 		 * pages that will be moved.
857 		 */
858 		pp->page = ZERO_PAGE(0);
859 
860 		err = -EFAULT;
861 		vma = find_vma(mm, pp->addr);
862 		if (!vma || !vma_migratable(vma))
863 			goto set_status;
864 
865 		page = follow_page(vma, pp->addr, FOLL_GET);
866 
867 		err = PTR_ERR(page);
868 		if (IS_ERR(page))
869 			goto set_status;
870 
871 		err = -ENOENT;
872 		if (!page)
873 			goto set_status;
874 
875 		if (PageReserved(page))		/* Check for zero page */
876 			goto put_and_set;
877 
878 		pp->page = page;
879 		err = page_to_nid(page);
880 
881 		if (err == pp->node)
882 			/*
883 			 * Node already in the right place
884 			 */
885 			goto put_and_set;
886 
887 		err = -EACCES;
888 		if (page_mapcount(page) > 1 &&
889 				!migrate_all)
890 			goto put_and_set;
891 
892 		err = isolate_lru_page(page);
893 		if (!err)
894 			list_add_tail(&page->lru, &pagelist);
895 put_and_set:
896 		/*
897 		 * Either remove the duplicate refcount from
898 		 * isolate_lru_page() or drop the page ref if it was
899 		 * not isolated.
900 		 */
901 		put_page(page);
902 set_status:
903 		pp->status = err;
904 	}
905 
906 	err = 0;
907 	if (!list_empty(&pagelist))
908 		err = migrate_pages(&pagelist, new_page_node,
909 				(unsigned long)pm);
910 
911 	up_read(&mm->mmap_sem);
912 	return err;
913 }
914 
915 /*
916  * Migrate an array of page address onto an array of nodes and fill
917  * the corresponding array of status.
918  */
919 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
920 			 unsigned long nr_pages,
921 			 const void __user * __user *pages,
922 			 const int __user *nodes,
923 			 int __user *status, int flags)
924 {
925 	struct page_to_node *pm = NULL;
926 	nodemask_t task_nodes;
927 	int err = 0;
928 	int i;
929 
930 	task_nodes = cpuset_mems_allowed(task);
931 
932 	/* Limit nr_pages so that the multiplication may not overflow */
933 	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
934 		err = -E2BIG;
935 		goto out;
936 	}
937 
938 	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
939 	if (!pm) {
940 		err = -ENOMEM;
941 		goto out;
942 	}
943 
944 	/*
945 	 * Get parameters from user space and initialize the pm
946 	 * array. Return various errors if the user did something wrong.
947 	 */
948 	for (i = 0; i < nr_pages; i++) {
949 		const void __user *p;
950 
951 		err = -EFAULT;
952 		if (get_user(p, pages + i))
953 			goto out_pm;
954 
955 		pm[i].addr = (unsigned long)p;
956 		if (nodes) {
957 			int node;
958 
959 			if (get_user(node, nodes + i))
960 				goto out_pm;
961 
962 			err = -ENODEV;
963 			if (!node_state(node, N_HIGH_MEMORY))
964 				goto out_pm;
965 
966 			err = -EACCES;
967 			if (!node_isset(node, task_nodes))
968 				goto out_pm;
969 
970 			pm[i].node = node;
971 		} else
972 			pm[i].node = 0;	/* anything to not match MAX_NUMNODES */
973 	}
974 	/* End marker */
975 	pm[nr_pages].node = MAX_NUMNODES;
976 
977 	err = do_move_page_to_node_array(mm, pm, flags & MPOL_MF_MOVE_ALL);
978 	if (err >= 0)
979 		/* Return status information */
980 		for (i = 0; i < nr_pages; i++)
981 			if (put_user(pm[i].status, status + i))
982 				err = -EFAULT;
983 
984 out_pm:
985 	vfree(pm);
986 out:
987 	return err;
988 }
989 
990 /*
991  * Determine the nodes of an array of pages and store it in an array of status.
992  */
993 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
994 			 const void __user * __user *pages,
995 			 int __user *status)
996 {
997 	unsigned long i;
998 	int err;
999 
1000 	down_read(&mm->mmap_sem);
1001 
1002 	for (i = 0; i < nr_pages; i++) {
1003 		const void __user *p;
1004 		unsigned long addr;
1005 		struct vm_area_struct *vma;
1006 		struct page *page;
1007 
1008 		err = -EFAULT;
1009 		if (get_user(p, pages+i))
1010 			goto out;
1011 		addr = (unsigned long) p;
1012 
1013 		vma = find_vma(mm, addr);
1014 		if (!vma)
1015 			goto set_status;
1016 
1017 		page = follow_page(vma, addr, 0);
1018 
1019 		err = PTR_ERR(page);
1020 		if (IS_ERR(page))
1021 			goto set_status;
1022 
1023 		err = -ENOENT;
1024 		/* Use PageReserved to check for zero page */
1025 		if (!page || PageReserved(page))
1026 			goto set_status;
1027 
1028 		err = page_to_nid(page);
1029 set_status:
1030 		put_user(err, status+i);
1031 	}
1032 	err = 0;
1033 
1034 out:
1035 	up_read(&mm->mmap_sem);
1036 	return err;
1037 }
1038 
1039 /*
1040  * Move a list of pages in the address space of the currently executing
1041  * process.
1042  */
1043 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
1044 			const void __user * __user *pages,
1045 			const int __user *nodes,
1046 			int __user *status, int flags)
1047 {
1048 	struct task_struct *task;
1049 	struct mm_struct *mm;
1050 	int err;
1051 
1052 	/* Check flags */
1053 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1054 		return -EINVAL;
1055 
1056 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1057 		return -EPERM;
1058 
1059 	/* Find the mm_struct */
1060 	read_lock(&tasklist_lock);
1061 	task = pid ? find_task_by_vpid(pid) : current;
1062 	if (!task) {
1063 		read_unlock(&tasklist_lock);
1064 		return -ESRCH;
1065 	}
1066 	mm = get_task_mm(task);
1067 	read_unlock(&tasklist_lock);
1068 
1069 	if (!mm)
1070 		return -EINVAL;
1071 
1072 	/*
1073 	 * Check if this process has the right to modify the specified
1074 	 * process. The right exists if the process has administrative
1075 	 * capabilities, superuser privileges or the same
1076 	 * userid as the target process.
1077 	 */
1078 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
1079 	    (current->uid != task->suid) && (current->uid != task->uid) &&
1080 	    !capable(CAP_SYS_NICE)) {
1081 		err = -EPERM;
1082 		goto out;
1083 	}
1084 
1085  	err = security_task_movememory(task);
1086  	if (err)
1087 		goto out;
1088 
1089 	if (nodes) {
1090 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1091 				    flags);
1092 	} else {
1093 		err = do_pages_stat(mm, nr_pages, pages, status);
1094 	}
1095 
1096 out:
1097 	mmput(mm);
1098 	return err;
1099 }
1100 
1101 /*
1102  * Call migration functions in the vma_ops that may prepare
1103  * memory in a vm for migration. migration functions may perform
1104  * the migration for vmas that do not have an underlying page struct.
1105  */
1106 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1107 	const nodemask_t *from, unsigned long flags)
1108 {
1109  	struct vm_area_struct *vma;
1110  	int err = 0;
1111 
1112  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1113  		if (vma->vm_ops && vma->vm_ops->migrate) {
1114  			err = vma->vm_ops->migrate(vma, to, from, flags);
1115  			if (err)
1116  				break;
1117  		}
1118  	}
1119  	return err;
1120 }
1121 #endif
1122