1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/memcontrol.h> 33 #include <linux/syscalls.h> 34 35 #include "internal.h" 36 37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 38 39 /* 40 * migrate_prep() needs to be called before we start compiling a list of pages 41 * to be migrated using isolate_lru_page(). 42 */ 43 int migrate_prep(void) 44 { 45 /* 46 * Clear the LRU lists so pages can be isolated. 47 * Note that pages may be moved off the LRU after we have 48 * drained them. Those pages will fail to migrate like other 49 * pages that may be busy. 50 */ 51 lru_add_drain_all(); 52 53 return 0; 54 } 55 56 /* 57 * Add isolated pages on the list back to the LRU under page lock 58 * to avoid leaking evictable pages back onto unevictable list. 59 * 60 * returns the number of pages put back. 61 */ 62 int putback_lru_pages(struct list_head *l) 63 { 64 struct page *page; 65 struct page *page2; 66 int count = 0; 67 68 list_for_each_entry_safe(page, page2, l, lru) { 69 list_del(&page->lru); 70 putback_lru_page(page); 71 count++; 72 } 73 return count; 74 } 75 76 /* 77 * Restore a potential migration pte to a working pte entry 78 */ 79 static void remove_migration_pte(struct vm_area_struct *vma, 80 struct page *old, struct page *new) 81 { 82 struct mm_struct *mm = vma->vm_mm; 83 swp_entry_t entry; 84 pgd_t *pgd; 85 pud_t *pud; 86 pmd_t *pmd; 87 pte_t *ptep, pte; 88 spinlock_t *ptl; 89 unsigned long addr = page_address_in_vma(new, vma); 90 91 if (addr == -EFAULT) 92 return; 93 94 pgd = pgd_offset(mm, addr); 95 if (!pgd_present(*pgd)) 96 return; 97 98 pud = pud_offset(pgd, addr); 99 if (!pud_present(*pud)) 100 return; 101 102 pmd = pmd_offset(pud, addr); 103 if (!pmd_present(*pmd)) 104 return; 105 106 ptep = pte_offset_map(pmd, addr); 107 108 if (!is_swap_pte(*ptep)) { 109 pte_unmap(ptep); 110 return; 111 } 112 113 ptl = pte_lockptr(mm, pmd); 114 spin_lock(ptl); 115 pte = *ptep; 116 if (!is_swap_pte(pte)) 117 goto out; 118 119 entry = pte_to_swp_entry(pte); 120 121 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 122 goto out; 123 124 /* 125 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge. 126 * Failure is not an option here: we're now expected to remove every 127 * migration pte, and will cause crashes otherwise. Normally this 128 * is not an issue: mem_cgroup_prepare_migration bumped up the old 129 * page_cgroup count for safety, that's now attached to the new page, 130 * so this charge should just be another incrementation of the count, 131 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if 132 * there's been a force_empty, those reference counts may no longer 133 * be reliable, and this charge can actually fail: oh well, we don't 134 * make the situation any worse by proceeding as if it had succeeded. 135 */ 136 mem_cgroup_charge(new, mm, GFP_ATOMIC); 137 138 get_page(new); 139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 140 if (is_write_migration_entry(entry)) 141 pte = pte_mkwrite(pte); 142 flush_cache_page(vma, addr, pte_pfn(pte)); 143 set_pte_at(mm, addr, ptep, pte); 144 145 if (PageAnon(new)) 146 page_add_anon_rmap(new, vma, addr); 147 else 148 page_add_file_rmap(new); 149 150 /* No need to invalidate - it was non-present before */ 151 update_mmu_cache(vma, addr, pte); 152 153 out: 154 pte_unmap_unlock(ptep, ptl); 155 } 156 157 /* 158 * Note that remove_file_migration_ptes will only work on regular mappings, 159 * Nonlinear mappings do not use migration entries. 160 */ 161 static void remove_file_migration_ptes(struct page *old, struct page *new) 162 { 163 struct vm_area_struct *vma; 164 struct address_space *mapping = page_mapping(new); 165 struct prio_tree_iter iter; 166 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 167 168 if (!mapping) 169 return; 170 171 spin_lock(&mapping->i_mmap_lock); 172 173 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 174 remove_migration_pte(vma, old, new); 175 176 spin_unlock(&mapping->i_mmap_lock); 177 } 178 179 /* 180 * Must hold mmap_sem lock on at least one of the vmas containing 181 * the page so that the anon_vma cannot vanish. 182 */ 183 static void remove_anon_migration_ptes(struct page *old, struct page *new) 184 { 185 struct anon_vma *anon_vma; 186 struct vm_area_struct *vma; 187 unsigned long mapping; 188 189 mapping = (unsigned long)new->mapping; 190 191 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 192 return; 193 194 /* 195 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 196 */ 197 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 198 spin_lock(&anon_vma->lock); 199 200 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 201 remove_migration_pte(vma, old, new); 202 203 spin_unlock(&anon_vma->lock); 204 } 205 206 /* 207 * Get rid of all migration entries and replace them by 208 * references to the indicated page. 209 */ 210 static void remove_migration_ptes(struct page *old, struct page *new) 211 { 212 if (PageAnon(new)) 213 remove_anon_migration_ptes(old, new); 214 else 215 remove_file_migration_ptes(old, new); 216 } 217 218 /* 219 * Something used the pte of a page under migration. We need to 220 * get to the page and wait until migration is finished. 221 * When we return from this function the fault will be retried. 222 * 223 * This function is called from do_swap_page(). 224 */ 225 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 226 unsigned long address) 227 { 228 pte_t *ptep, pte; 229 spinlock_t *ptl; 230 swp_entry_t entry; 231 struct page *page; 232 233 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 234 pte = *ptep; 235 if (!is_swap_pte(pte)) 236 goto out; 237 238 entry = pte_to_swp_entry(pte); 239 if (!is_migration_entry(entry)) 240 goto out; 241 242 page = migration_entry_to_page(entry); 243 244 /* 245 * Once radix-tree replacement of page migration started, page_count 246 * *must* be zero. And, we don't want to call wait_on_page_locked() 247 * against a page without get_page(). 248 * So, we use get_page_unless_zero(), here. Even failed, page fault 249 * will occur again. 250 */ 251 if (!get_page_unless_zero(page)) 252 goto out; 253 pte_unmap_unlock(ptep, ptl); 254 wait_on_page_locked(page); 255 put_page(page); 256 return; 257 out: 258 pte_unmap_unlock(ptep, ptl); 259 } 260 261 /* 262 * Replace the page in the mapping. 263 * 264 * The number of remaining references must be: 265 * 1 for anonymous pages without a mapping 266 * 2 for pages with a mapping 267 * 3 for pages with a mapping and PagePrivate set. 268 */ 269 static int migrate_page_move_mapping(struct address_space *mapping, 270 struct page *newpage, struct page *page) 271 { 272 int expected_count; 273 void **pslot; 274 275 if (!mapping) { 276 /* Anonymous page without mapping */ 277 if (page_count(page) != 1) 278 return -EAGAIN; 279 return 0; 280 } 281 282 spin_lock_irq(&mapping->tree_lock); 283 284 pslot = radix_tree_lookup_slot(&mapping->page_tree, 285 page_index(page)); 286 287 expected_count = 2 + !!PagePrivate(page); 288 if (page_count(page) != expected_count || 289 (struct page *)radix_tree_deref_slot(pslot) != page) { 290 spin_unlock_irq(&mapping->tree_lock); 291 return -EAGAIN; 292 } 293 294 if (!page_freeze_refs(page, expected_count)) { 295 spin_unlock_irq(&mapping->tree_lock); 296 return -EAGAIN; 297 } 298 299 /* 300 * Now we know that no one else is looking at the page. 301 */ 302 get_page(newpage); /* add cache reference */ 303 #ifdef CONFIG_SWAP 304 if (PageSwapCache(page)) { 305 SetPageSwapCache(newpage); 306 set_page_private(newpage, page_private(page)); 307 } 308 #endif 309 310 radix_tree_replace_slot(pslot, newpage); 311 312 page_unfreeze_refs(page, expected_count); 313 /* 314 * Drop cache reference from old page. 315 * We know this isn't the last reference. 316 */ 317 __put_page(page); 318 319 /* 320 * If moved to a different zone then also account 321 * the page for that zone. Other VM counters will be 322 * taken care of when we establish references to the 323 * new page and drop references to the old page. 324 * 325 * Note that anonymous pages are accounted for 326 * via NR_FILE_PAGES and NR_ANON_PAGES if they 327 * are mapped to swap space. 328 */ 329 __dec_zone_page_state(page, NR_FILE_PAGES); 330 __inc_zone_page_state(newpage, NR_FILE_PAGES); 331 332 spin_unlock_irq(&mapping->tree_lock); 333 334 return 0; 335 } 336 337 /* 338 * Copy the page to its new location 339 */ 340 static void migrate_page_copy(struct page *newpage, struct page *page) 341 { 342 int anon; 343 344 copy_highpage(newpage, page); 345 346 if (PageError(page)) 347 SetPageError(newpage); 348 if (PageReferenced(page)) 349 SetPageReferenced(newpage); 350 if (PageUptodate(page)) 351 SetPageUptodate(newpage); 352 if (TestClearPageActive(page)) { 353 VM_BUG_ON(PageUnevictable(page)); 354 SetPageActive(newpage); 355 } else 356 unevictable_migrate_page(newpage, page); 357 if (PageChecked(page)) 358 SetPageChecked(newpage); 359 if (PageMappedToDisk(page)) 360 SetPageMappedToDisk(newpage); 361 362 if (PageDirty(page)) { 363 clear_page_dirty_for_io(page); 364 /* 365 * Want to mark the page and the radix tree as dirty, and 366 * redo the accounting that clear_page_dirty_for_io undid, 367 * but we can't use set_page_dirty because that function 368 * is actually a signal that all of the page has become dirty. 369 * Wheras only part of our page may be dirty. 370 */ 371 __set_page_dirty_nobuffers(newpage); 372 } 373 374 mlock_migrate_page(newpage, page); 375 376 #ifdef CONFIG_SWAP 377 ClearPageSwapCache(page); 378 #endif 379 ClearPagePrivate(page); 380 set_page_private(page, 0); 381 /* page->mapping contains a flag for PageAnon() */ 382 anon = PageAnon(page); 383 page->mapping = NULL; 384 385 if (!anon) /* This page was removed from radix-tree. */ 386 mem_cgroup_uncharge_cache_page(page); 387 388 /* 389 * If any waiters have accumulated on the new page then 390 * wake them up. 391 */ 392 if (PageWriteback(newpage)) 393 end_page_writeback(newpage); 394 } 395 396 /************************************************************ 397 * Migration functions 398 ***********************************************************/ 399 400 /* Always fail migration. Used for mappings that are not movable */ 401 int fail_migrate_page(struct address_space *mapping, 402 struct page *newpage, struct page *page) 403 { 404 return -EIO; 405 } 406 EXPORT_SYMBOL(fail_migrate_page); 407 408 /* 409 * Common logic to directly migrate a single page suitable for 410 * pages that do not use PagePrivate. 411 * 412 * Pages are locked upon entry and exit. 413 */ 414 int migrate_page(struct address_space *mapping, 415 struct page *newpage, struct page *page) 416 { 417 int rc; 418 419 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 420 421 rc = migrate_page_move_mapping(mapping, newpage, page); 422 423 if (rc) 424 return rc; 425 426 migrate_page_copy(newpage, page); 427 return 0; 428 } 429 EXPORT_SYMBOL(migrate_page); 430 431 #ifdef CONFIG_BLOCK 432 /* 433 * Migration function for pages with buffers. This function can only be used 434 * if the underlying filesystem guarantees that no other references to "page" 435 * exist. 436 */ 437 int buffer_migrate_page(struct address_space *mapping, 438 struct page *newpage, struct page *page) 439 { 440 struct buffer_head *bh, *head; 441 int rc; 442 443 if (!page_has_buffers(page)) 444 return migrate_page(mapping, newpage, page); 445 446 head = page_buffers(page); 447 448 rc = migrate_page_move_mapping(mapping, newpage, page); 449 450 if (rc) 451 return rc; 452 453 bh = head; 454 do { 455 get_bh(bh); 456 lock_buffer(bh); 457 bh = bh->b_this_page; 458 459 } while (bh != head); 460 461 ClearPagePrivate(page); 462 set_page_private(newpage, page_private(page)); 463 set_page_private(page, 0); 464 put_page(page); 465 get_page(newpage); 466 467 bh = head; 468 do { 469 set_bh_page(bh, newpage, bh_offset(bh)); 470 bh = bh->b_this_page; 471 472 } while (bh != head); 473 474 SetPagePrivate(newpage); 475 476 migrate_page_copy(newpage, page); 477 478 bh = head; 479 do { 480 unlock_buffer(bh); 481 put_bh(bh); 482 bh = bh->b_this_page; 483 484 } while (bh != head); 485 486 return 0; 487 } 488 EXPORT_SYMBOL(buffer_migrate_page); 489 #endif 490 491 /* 492 * Writeback a page to clean the dirty state 493 */ 494 static int writeout(struct address_space *mapping, struct page *page) 495 { 496 struct writeback_control wbc = { 497 .sync_mode = WB_SYNC_NONE, 498 .nr_to_write = 1, 499 .range_start = 0, 500 .range_end = LLONG_MAX, 501 .nonblocking = 1, 502 .for_reclaim = 1 503 }; 504 int rc; 505 506 if (!mapping->a_ops->writepage) 507 /* No write method for the address space */ 508 return -EINVAL; 509 510 if (!clear_page_dirty_for_io(page)) 511 /* Someone else already triggered a write */ 512 return -EAGAIN; 513 514 /* 515 * A dirty page may imply that the underlying filesystem has 516 * the page on some queue. So the page must be clean for 517 * migration. Writeout may mean we loose the lock and the 518 * page state is no longer what we checked for earlier. 519 * At this point we know that the migration attempt cannot 520 * be successful. 521 */ 522 remove_migration_ptes(page, page); 523 524 rc = mapping->a_ops->writepage(page, &wbc); 525 if (rc < 0) 526 /* I/O Error writing */ 527 return -EIO; 528 529 if (rc != AOP_WRITEPAGE_ACTIVATE) 530 /* unlocked. Relock */ 531 lock_page(page); 532 533 return -EAGAIN; 534 } 535 536 /* 537 * Default handling if a filesystem does not provide a migration function. 538 */ 539 static int fallback_migrate_page(struct address_space *mapping, 540 struct page *newpage, struct page *page) 541 { 542 if (PageDirty(page)) 543 return writeout(mapping, page); 544 545 /* 546 * Buffers may be managed in a filesystem specific way. 547 * We must have no buffers or drop them. 548 */ 549 if (PagePrivate(page) && 550 !try_to_release_page(page, GFP_KERNEL)) 551 return -EAGAIN; 552 553 return migrate_page(mapping, newpage, page); 554 } 555 556 /* 557 * Move a page to a newly allocated page 558 * The page is locked and all ptes have been successfully removed. 559 * 560 * The new page will have replaced the old page if this function 561 * is successful. 562 * 563 * Return value: 564 * < 0 - error code 565 * == 0 - success 566 */ 567 static int move_to_new_page(struct page *newpage, struct page *page) 568 { 569 struct address_space *mapping; 570 int rc; 571 572 /* 573 * Block others from accessing the page when we get around to 574 * establishing additional references. We are the only one 575 * holding a reference to the new page at this point. 576 */ 577 if (!trylock_page(newpage)) 578 BUG(); 579 580 /* Prepare mapping for the new page.*/ 581 newpage->index = page->index; 582 newpage->mapping = page->mapping; 583 if (PageSwapBacked(page)) 584 SetPageSwapBacked(newpage); 585 586 mapping = page_mapping(page); 587 if (!mapping) 588 rc = migrate_page(mapping, newpage, page); 589 else if (mapping->a_ops->migratepage) 590 /* 591 * Most pages have a mapping and most filesystems 592 * should provide a migration function. Anonymous 593 * pages are part of swap space which also has its 594 * own migration function. This is the most common 595 * path for page migration. 596 */ 597 rc = mapping->a_ops->migratepage(mapping, 598 newpage, page); 599 else 600 rc = fallback_migrate_page(mapping, newpage, page); 601 602 if (!rc) { 603 remove_migration_ptes(page, newpage); 604 } else 605 newpage->mapping = NULL; 606 607 unlock_page(newpage); 608 609 return rc; 610 } 611 612 /* 613 * Obtain the lock on page, remove all ptes and migrate the page 614 * to the newly allocated page in newpage. 615 */ 616 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 617 struct page *page, int force) 618 { 619 int rc = 0; 620 int *result = NULL; 621 struct page *newpage = get_new_page(page, private, &result); 622 int rcu_locked = 0; 623 int charge = 0; 624 625 if (!newpage) 626 return -ENOMEM; 627 628 if (page_count(page) == 1) { 629 /* page was freed from under us. So we are done. */ 630 goto move_newpage; 631 } 632 633 charge = mem_cgroup_prepare_migration(page, newpage); 634 if (charge == -ENOMEM) { 635 rc = -ENOMEM; 636 goto move_newpage; 637 } 638 /* prepare cgroup just returns 0 or -ENOMEM */ 639 BUG_ON(charge); 640 641 rc = -EAGAIN; 642 if (!trylock_page(page)) { 643 if (!force) 644 goto move_newpage; 645 lock_page(page); 646 } 647 648 if (PageWriteback(page)) { 649 if (!force) 650 goto unlock; 651 wait_on_page_writeback(page); 652 } 653 /* 654 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 655 * we cannot notice that anon_vma is freed while we migrates a page. 656 * This rcu_read_lock() delays freeing anon_vma pointer until the end 657 * of migration. File cache pages are no problem because of page_lock() 658 * File Caches may use write_page() or lock_page() in migration, then, 659 * just care Anon page here. 660 */ 661 if (PageAnon(page)) { 662 rcu_read_lock(); 663 rcu_locked = 1; 664 } 665 666 /* 667 * Corner case handling: 668 * 1. When a new swap-cache page is read into, it is added to the LRU 669 * and treated as swapcache but it has no rmap yet. 670 * Calling try_to_unmap() against a page->mapping==NULL page will 671 * trigger a BUG. So handle it here. 672 * 2. An orphaned page (see truncate_complete_page) might have 673 * fs-private metadata. The page can be picked up due to memory 674 * offlining. Everywhere else except page reclaim, the page is 675 * invisible to the vm, so the page can not be migrated. So try to 676 * free the metadata, so the page can be freed. 677 */ 678 if (!page->mapping) { 679 if (!PageAnon(page) && PagePrivate(page)) { 680 /* 681 * Go direct to try_to_free_buffers() here because 682 * a) that's what try_to_release_page() would do anyway 683 * b) we may be under rcu_read_lock() here, so we can't 684 * use GFP_KERNEL which is what try_to_release_page() 685 * needs to be effective. 686 */ 687 try_to_free_buffers(page); 688 } 689 goto rcu_unlock; 690 } 691 692 /* Establish migration ptes or remove ptes */ 693 try_to_unmap(page, 1); 694 695 if (!page_mapped(page)) 696 rc = move_to_new_page(newpage, page); 697 698 if (rc) 699 remove_migration_ptes(page, page); 700 rcu_unlock: 701 if (rcu_locked) 702 rcu_read_unlock(); 703 704 unlock: 705 unlock_page(page); 706 707 if (rc != -EAGAIN) { 708 /* 709 * A page that has been migrated has all references 710 * removed and will be freed. A page that has not been 711 * migrated will have kepts its references and be 712 * restored. 713 */ 714 list_del(&page->lru); 715 putback_lru_page(page); 716 } 717 718 move_newpage: 719 if (!charge) 720 mem_cgroup_end_migration(newpage); 721 722 /* 723 * Move the new page to the LRU. If migration was not successful 724 * then this will free the page. 725 */ 726 putback_lru_page(newpage); 727 728 if (result) { 729 if (rc) 730 *result = rc; 731 else 732 *result = page_to_nid(newpage); 733 } 734 return rc; 735 } 736 737 /* 738 * migrate_pages 739 * 740 * The function takes one list of pages to migrate and a function 741 * that determines from the page to be migrated and the private data 742 * the target of the move and allocates the page. 743 * 744 * The function returns after 10 attempts or if no pages 745 * are movable anymore because to has become empty 746 * or no retryable pages exist anymore. All pages will be 747 * returned to the LRU or freed. 748 * 749 * Return: Number of pages not migrated or error code. 750 */ 751 int migrate_pages(struct list_head *from, 752 new_page_t get_new_page, unsigned long private) 753 { 754 int retry = 1; 755 int nr_failed = 0; 756 int pass = 0; 757 struct page *page; 758 struct page *page2; 759 int swapwrite = current->flags & PF_SWAPWRITE; 760 int rc; 761 762 if (!swapwrite) 763 current->flags |= PF_SWAPWRITE; 764 765 for(pass = 0; pass < 10 && retry; pass++) { 766 retry = 0; 767 768 list_for_each_entry_safe(page, page2, from, lru) { 769 cond_resched(); 770 771 rc = unmap_and_move(get_new_page, private, 772 page, pass > 2); 773 774 switch(rc) { 775 case -ENOMEM: 776 goto out; 777 case -EAGAIN: 778 retry++; 779 break; 780 case 0: 781 break; 782 default: 783 /* Permanent failure */ 784 nr_failed++; 785 break; 786 } 787 } 788 } 789 rc = 0; 790 out: 791 if (!swapwrite) 792 current->flags &= ~PF_SWAPWRITE; 793 794 putback_lru_pages(from); 795 796 if (rc) 797 return rc; 798 799 return nr_failed + retry; 800 } 801 802 #ifdef CONFIG_NUMA 803 /* 804 * Move a list of individual pages 805 */ 806 struct page_to_node { 807 unsigned long addr; 808 struct page *page; 809 int node; 810 int status; 811 }; 812 813 static struct page *new_page_node(struct page *p, unsigned long private, 814 int **result) 815 { 816 struct page_to_node *pm = (struct page_to_node *)private; 817 818 while (pm->node != MAX_NUMNODES && pm->page != p) 819 pm++; 820 821 if (pm->node == MAX_NUMNODES) 822 return NULL; 823 824 *result = &pm->status; 825 826 return alloc_pages_node(pm->node, 827 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 828 } 829 830 /* 831 * Move a set of pages as indicated in the pm array. The addr 832 * field must be set to the virtual address of the page to be moved 833 * and the node number must contain a valid target node. 834 * The pm array ends with node = MAX_NUMNODES. 835 */ 836 static int do_move_page_to_node_array(struct mm_struct *mm, 837 struct page_to_node *pm, 838 int migrate_all) 839 { 840 int err; 841 struct page_to_node *pp; 842 LIST_HEAD(pagelist); 843 844 down_read(&mm->mmap_sem); 845 846 /* 847 * Build a list of pages to migrate 848 */ 849 migrate_prep(); 850 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 851 struct vm_area_struct *vma; 852 struct page *page; 853 854 /* 855 * A valid page pointer that will not match any of the 856 * pages that will be moved. 857 */ 858 pp->page = ZERO_PAGE(0); 859 860 err = -EFAULT; 861 vma = find_vma(mm, pp->addr); 862 if (!vma || !vma_migratable(vma)) 863 goto set_status; 864 865 page = follow_page(vma, pp->addr, FOLL_GET); 866 867 err = PTR_ERR(page); 868 if (IS_ERR(page)) 869 goto set_status; 870 871 err = -ENOENT; 872 if (!page) 873 goto set_status; 874 875 if (PageReserved(page)) /* Check for zero page */ 876 goto put_and_set; 877 878 pp->page = page; 879 err = page_to_nid(page); 880 881 if (err == pp->node) 882 /* 883 * Node already in the right place 884 */ 885 goto put_and_set; 886 887 err = -EACCES; 888 if (page_mapcount(page) > 1 && 889 !migrate_all) 890 goto put_and_set; 891 892 err = isolate_lru_page(page); 893 if (!err) 894 list_add_tail(&page->lru, &pagelist); 895 put_and_set: 896 /* 897 * Either remove the duplicate refcount from 898 * isolate_lru_page() or drop the page ref if it was 899 * not isolated. 900 */ 901 put_page(page); 902 set_status: 903 pp->status = err; 904 } 905 906 err = 0; 907 if (!list_empty(&pagelist)) 908 err = migrate_pages(&pagelist, new_page_node, 909 (unsigned long)pm); 910 911 up_read(&mm->mmap_sem); 912 return err; 913 } 914 915 /* 916 * Migrate an array of page address onto an array of nodes and fill 917 * the corresponding array of status. 918 */ 919 static int do_pages_move(struct mm_struct *mm, struct task_struct *task, 920 unsigned long nr_pages, 921 const void __user * __user *pages, 922 const int __user *nodes, 923 int __user *status, int flags) 924 { 925 struct page_to_node *pm = NULL; 926 nodemask_t task_nodes; 927 int err = 0; 928 int i; 929 930 task_nodes = cpuset_mems_allowed(task); 931 932 /* Limit nr_pages so that the multiplication may not overflow */ 933 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { 934 err = -E2BIG; 935 goto out; 936 } 937 938 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); 939 if (!pm) { 940 err = -ENOMEM; 941 goto out; 942 } 943 944 /* 945 * Get parameters from user space and initialize the pm 946 * array. Return various errors if the user did something wrong. 947 */ 948 for (i = 0; i < nr_pages; i++) { 949 const void __user *p; 950 951 err = -EFAULT; 952 if (get_user(p, pages + i)) 953 goto out_pm; 954 955 pm[i].addr = (unsigned long)p; 956 if (nodes) { 957 int node; 958 959 if (get_user(node, nodes + i)) 960 goto out_pm; 961 962 err = -ENODEV; 963 if (!node_state(node, N_HIGH_MEMORY)) 964 goto out_pm; 965 966 err = -EACCES; 967 if (!node_isset(node, task_nodes)) 968 goto out_pm; 969 970 pm[i].node = node; 971 } else 972 pm[i].node = 0; /* anything to not match MAX_NUMNODES */ 973 } 974 /* End marker */ 975 pm[nr_pages].node = MAX_NUMNODES; 976 977 err = do_move_page_to_node_array(mm, pm, flags & MPOL_MF_MOVE_ALL); 978 if (err >= 0) 979 /* Return status information */ 980 for (i = 0; i < nr_pages; i++) 981 if (put_user(pm[i].status, status + i)) 982 err = -EFAULT; 983 984 out_pm: 985 vfree(pm); 986 out: 987 return err; 988 } 989 990 /* 991 * Determine the nodes of an array of pages and store it in an array of status. 992 */ 993 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 994 const void __user * __user *pages, 995 int __user *status) 996 { 997 unsigned long i; 998 int err; 999 1000 down_read(&mm->mmap_sem); 1001 1002 for (i = 0; i < nr_pages; i++) { 1003 const void __user *p; 1004 unsigned long addr; 1005 struct vm_area_struct *vma; 1006 struct page *page; 1007 1008 err = -EFAULT; 1009 if (get_user(p, pages+i)) 1010 goto out; 1011 addr = (unsigned long) p; 1012 1013 vma = find_vma(mm, addr); 1014 if (!vma) 1015 goto set_status; 1016 1017 page = follow_page(vma, addr, 0); 1018 1019 err = PTR_ERR(page); 1020 if (IS_ERR(page)) 1021 goto set_status; 1022 1023 err = -ENOENT; 1024 /* Use PageReserved to check for zero page */ 1025 if (!page || PageReserved(page)) 1026 goto set_status; 1027 1028 err = page_to_nid(page); 1029 set_status: 1030 put_user(err, status+i); 1031 } 1032 err = 0; 1033 1034 out: 1035 up_read(&mm->mmap_sem); 1036 return err; 1037 } 1038 1039 /* 1040 * Move a list of pages in the address space of the currently executing 1041 * process. 1042 */ 1043 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, 1044 const void __user * __user *pages, 1045 const int __user *nodes, 1046 int __user *status, int flags) 1047 { 1048 struct task_struct *task; 1049 struct mm_struct *mm; 1050 int err; 1051 1052 /* Check flags */ 1053 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1054 return -EINVAL; 1055 1056 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1057 return -EPERM; 1058 1059 /* Find the mm_struct */ 1060 read_lock(&tasklist_lock); 1061 task = pid ? find_task_by_vpid(pid) : current; 1062 if (!task) { 1063 read_unlock(&tasklist_lock); 1064 return -ESRCH; 1065 } 1066 mm = get_task_mm(task); 1067 read_unlock(&tasklist_lock); 1068 1069 if (!mm) 1070 return -EINVAL; 1071 1072 /* 1073 * Check if this process has the right to modify the specified 1074 * process. The right exists if the process has administrative 1075 * capabilities, superuser privileges or the same 1076 * userid as the target process. 1077 */ 1078 if ((current->euid != task->suid) && (current->euid != task->uid) && 1079 (current->uid != task->suid) && (current->uid != task->uid) && 1080 !capable(CAP_SYS_NICE)) { 1081 err = -EPERM; 1082 goto out; 1083 } 1084 1085 err = security_task_movememory(task); 1086 if (err) 1087 goto out; 1088 1089 if (nodes) { 1090 err = do_pages_move(mm, task, nr_pages, pages, nodes, status, 1091 flags); 1092 } else { 1093 err = do_pages_stat(mm, nr_pages, pages, status); 1094 } 1095 1096 out: 1097 mmput(mm); 1098 return err; 1099 } 1100 1101 /* 1102 * Call migration functions in the vma_ops that may prepare 1103 * memory in a vm for migration. migration functions may perform 1104 * the migration for vmas that do not have an underlying page struct. 1105 */ 1106 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1107 const nodemask_t *from, unsigned long flags) 1108 { 1109 struct vm_area_struct *vma; 1110 int err = 0; 1111 1112 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { 1113 if (vma->vm_ops && vma->vm_ops->migrate) { 1114 err = vma->vm_ops->migrate(vma, to, from, flags); 1115 if (err) 1116 break; 1117 } 1118 } 1119 return err; 1120 } 1121 #endif 1122