1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 #include <linux/memory.h> 53 #include <linux/random.h> 54 55 #include <asm/tlbflush.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/migrate.h> 59 60 #include "internal.h" 61 62 int isolate_movable_page(struct page *page, isolate_mode_t mode) 63 { 64 struct address_space *mapping; 65 66 /* 67 * Avoid burning cycles with pages that are yet under __free_pages(), 68 * or just got freed under us. 69 * 70 * In case we 'win' a race for a movable page being freed under us and 71 * raise its refcount preventing __free_pages() from doing its job 72 * the put_page() at the end of this block will take care of 73 * release this page, thus avoiding a nasty leakage. 74 */ 75 if (unlikely(!get_page_unless_zero(page))) 76 goto out; 77 78 /* 79 * Check PageMovable before holding a PG_lock because page's owner 80 * assumes anybody doesn't touch PG_lock of newly allocated page 81 * so unconditionally grabbing the lock ruins page's owner side. 82 */ 83 if (unlikely(!__PageMovable(page))) 84 goto out_putpage; 85 /* 86 * As movable pages are not isolated from LRU lists, concurrent 87 * compaction threads can race against page migration functions 88 * as well as race against the releasing a page. 89 * 90 * In order to avoid having an already isolated movable page 91 * being (wrongly) re-isolated while it is under migration, 92 * or to avoid attempting to isolate pages being released, 93 * lets be sure we have the page lock 94 * before proceeding with the movable page isolation steps. 95 */ 96 if (unlikely(!trylock_page(page))) 97 goto out_putpage; 98 99 if (!PageMovable(page) || PageIsolated(page)) 100 goto out_no_isolated; 101 102 mapping = page_mapping(page); 103 VM_BUG_ON_PAGE(!mapping, page); 104 105 if (!mapping->a_ops->isolate_page(page, mode)) 106 goto out_no_isolated; 107 108 /* Driver shouldn't use PG_isolated bit of page->flags */ 109 WARN_ON_ONCE(PageIsolated(page)); 110 __SetPageIsolated(page); 111 unlock_page(page); 112 113 return 0; 114 115 out_no_isolated: 116 unlock_page(page); 117 out_putpage: 118 put_page(page); 119 out: 120 return -EBUSY; 121 } 122 123 static void putback_movable_page(struct page *page) 124 { 125 struct address_space *mapping; 126 127 mapping = page_mapping(page); 128 mapping->a_ops->putback_page(page); 129 __ClearPageIsolated(page); 130 } 131 132 /* 133 * Put previously isolated pages back onto the appropriate lists 134 * from where they were once taken off for compaction/migration. 135 * 136 * This function shall be used whenever the isolated pageset has been 137 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 138 * and isolate_huge_page(). 139 */ 140 void putback_movable_pages(struct list_head *l) 141 { 142 struct page *page; 143 struct page *page2; 144 145 list_for_each_entry_safe(page, page2, l, lru) { 146 if (unlikely(PageHuge(page))) { 147 putback_active_hugepage(page); 148 continue; 149 } 150 list_del(&page->lru); 151 /* 152 * We isolated non-lru movable page so here we can use 153 * __PageMovable because LRU page's mapping cannot have 154 * PAGE_MAPPING_MOVABLE. 155 */ 156 if (unlikely(__PageMovable(page))) { 157 VM_BUG_ON_PAGE(!PageIsolated(page), page); 158 lock_page(page); 159 if (PageMovable(page)) 160 putback_movable_page(page); 161 else 162 __ClearPageIsolated(page); 163 unlock_page(page); 164 put_page(page); 165 } else { 166 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 167 page_is_file_lru(page), -thp_nr_pages(page)); 168 putback_lru_page(page); 169 } 170 } 171 } 172 173 /* 174 * Restore a potential migration pte to a working pte entry 175 */ 176 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 177 unsigned long addr, void *old) 178 { 179 struct page_vma_mapped_walk pvmw = { 180 .page = old, 181 .vma = vma, 182 .address = addr, 183 .flags = PVMW_SYNC | PVMW_MIGRATION, 184 }; 185 struct page *new; 186 pte_t pte; 187 swp_entry_t entry; 188 189 VM_BUG_ON_PAGE(PageTail(page), page); 190 while (page_vma_mapped_walk(&pvmw)) { 191 if (PageKsm(page)) 192 new = page; 193 else 194 new = page - pvmw.page->index + 195 linear_page_index(vma, pvmw.address); 196 197 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 198 /* PMD-mapped THP migration entry */ 199 if (!pvmw.pte) { 200 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 201 remove_migration_pmd(&pvmw, new); 202 continue; 203 } 204 #endif 205 206 get_page(new); 207 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 208 if (pte_swp_soft_dirty(*pvmw.pte)) 209 pte = pte_mksoft_dirty(pte); 210 211 /* 212 * Recheck VMA as permissions can change since migration started 213 */ 214 entry = pte_to_swp_entry(*pvmw.pte); 215 if (is_writable_migration_entry(entry)) 216 pte = maybe_mkwrite(pte, vma); 217 else if (pte_swp_uffd_wp(*pvmw.pte)) 218 pte = pte_mkuffd_wp(pte); 219 220 if (unlikely(is_device_private_page(new))) { 221 if (pte_write(pte)) 222 entry = make_writable_device_private_entry( 223 page_to_pfn(new)); 224 else 225 entry = make_readable_device_private_entry( 226 page_to_pfn(new)); 227 pte = swp_entry_to_pte(entry); 228 if (pte_swp_soft_dirty(*pvmw.pte)) 229 pte = pte_swp_mksoft_dirty(pte); 230 if (pte_swp_uffd_wp(*pvmw.pte)) 231 pte = pte_swp_mkuffd_wp(pte); 232 } 233 234 #ifdef CONFIG_HUGETLB_PAGE 235 if (PageHuge(new)) { 236 unsigned int shift = huge_page_shift(hstate_vma(vma)); 237 238 pte = pte_mkhuge(pte); 239 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 240 if (PageAnon(new)) 241 hugepage_add_anon_rmap(new, vma, pvmw.address); 242 else 243 page_dup_rmap(new, true); 244 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 245 } else 246 #endif 247 { 248 if (PageAnon(new)) 249 page_add_anon_rmap(new, vma, pvmw.address, false); 250 else 251 page_add_file_rmap(new, false); 252 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 253 } 254 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 255 mlock_vma_page(new); 256 257 if (PageTransHuge(page) && PageMlocked(page)) 258 clear_page_mlock(page); 259 260 /* No need to invalidate - it was non-present before */ 261 update_mmu_cache(vma, pvmw.address, pvmw.pte); 262 } 263 264 return true; 265 } 266 267 /* 268 * Get rid of all migration entries and replace them by 269 * references to the indicated page. 270 */ 271 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 272 { 273 struct rmap_walk_control rwc = { 274 .rmap_one = remove_migration_pte, 275 .arg = old, 276 }; 277 278 if (locked) 279 rmap_walk_locked(new, &rwc); 280 else 281 rmap_walk(new, &rwc); 282 } 283 284 /* 285 * Something used the pte of a page under migration. We need to 286 * get to the page and wait until migration is finished. 287 * When we return from this function the fault will be retried. 288 */ 289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 290 spinlock_t *ptl) 291 { 292 pte_t pte; 293 swp_entry_t entry; 294 struct folio *folio; 295 296 spin_lock(ptl); 297 pte = *ptep; 298 if (!is_swap_pte(pte)) 299 goto out; 300 301 entry = pte_to_swp_entry(pte); 302 if (!is_migration_entry(entry)) 303 goto out; 304 305 folio = page_folio(pfn_swap_entry_to_page(entry)); 306 307 /* 308 * Once page cache replacement of page migration started, page_count 309 * is zero; but we must not call folio_put_wait_locked() without 310 * a ref. Use folio_try_get(), and just fault again if it fails. 311 */ 312 if (!folio_try_get(folio)) 313 goto out; 314 pte_unmap_unlock(ptep, ptl); 315 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 316 return; 317 out: 318 pte_unmap_unlock(ptep, ptl); 319 } 320 321 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 322 unsigned long address) 323 { 324 spinlock_t *ptl = pte_lockptr(mm, pmd); 325 pte_t *ptep = pte_offset_map(pmd, address); 326 __migration_entry_wait(mm, ptep, ptl); 327 } 328 329 void migration_entry_wait_huge(struct vm_area_struct *vma, 330 struct mm_struct *mm, pte_t *pte) 331 { 332 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 333 __migration_entry_wait(mm, pte, ptl); 334 } 335 336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 337 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 338 { 339 spinlock_t *ptl; 340 struct folio *folio; 341 342 ptl = pmd_lock(mm, pmd); 343 if (!is_pmd_migration_entry(*pmd)) 344 goto unlock; 345 folio = page_folio(pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd))); 346 if (!folio_try_get(folio)) 347 goto unlock; 348 spin_unlock(ptl); 349 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 350 return; 351 unlock: 352 spin_unlock(ptl); 353 } 354 #endif 355 356 static int expected_page_refs(struct address_space *mapping, struct page *page) 357 { 358 int expected_count = 1; 359 360 /* 361 * Device private pages have an extra refcount as they are 362 * ZONE_DEVICE pages. 363 */ 364 expected_count += is_device_private_page(page); 365 if (mapping) 366 expected_count += compound_nr(page) + page_has_private(page); 367 368 return expected_count; 369 } 370 371 /* 372 * Replace the page in the mapping. 373 * 374 * The number of remaining references must be: 375 * 1 for anonymous pages without a mapping 376 * 2 for pages with a mapping 377 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 378 */ 379 int folio_migrate_mapping(struct address_space *mapping, 380 struct folio *newfolio, struct folio *folio, int extra_count) 381 { 382 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 383 struct zone *oldzone, *newzone; 384 int dirty; 385 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; 386 long nr = folio_nr_pages(folio); 387 388 if (!mapping) { 389 /* Anonymous page without mapping */ 390 if (folio_ref_count(folio) != expected_count) 391 return -EAGAIN; 392 393 /* No turning back from here */ 394 newfolio->index = folio->index; 395 newfolio->mapping = folio->mapping; 396 if (folio_test_swapbacked(folio)) 397 __folio_set_swapbacked(newfolio); 398 399 return MIGRATEPAGE_SUCCESS; 400 } 401 402 oldzone = folio_zone(folio); 403 newzone = folio_zone(newfolio); 404 405 xas_lock_irq(&xas); 406 if (!folio_ref_freeze(folio, expected_count)) { 407 xas_unlock_irq(&xas); 408 return -EAGAIN; 409 } 410 411 /* 412 * Now we know that no one else is looking at the folio: 413 * no turning back from here. 414 */ 415 newfolio->index = folio->index; 416 newfolio->mapping = folio->mapping; 417 folio_ref_add(newfolio, nr); /* add cache reference */ 418 if (folio_test_swapbacked(folio)) { 419 __folio_set_swapbacked(newfolio); 420 if (folio_test_swapcache(folio)) { 421 folio_set_swapcache(newfolio); 422 newfolio->private = folio_get_private(folio); 423 } 424 } else { 425 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 426 } 427 428 /* Move dirty while page refs frozen and newpage not yet exposed */ 429 dirty = folio_test_dirty(folio); 430 if (dirty) { 431 folio_clear_dirty(folio); 432 folio_set_dirty(newfolio); 433 } 434 435 xas_store(&xas, newfolio); 436 437 /* 438 * Drop cache reference from old page by unfreezing 439 * to one less reference. 440 * We know this isn't the last reference. 441 */ 442 folio_ref_unfreeze(folio, expected_count - nr); 443 444 xas_unlock(&xas); 445 /* Leave irq disabled to prevent preemption while updating stats */ 446 447 /* 448 * If moved to a different zone then also account 449 * the page for that zone. Other VM counters will be 450 * taken care of when we establish references to the 451 * new page and drop references to the old page. 452 * 453 * Note that anonymous pages are accounted for 454 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 455 * are mapped to swap space. 456 */ 457 if (newzone != oldzone) { 458 struct lruvec *old_lruvec, *new_lruvec; 459 struct mem_cgroup *memcg; 460 461 memcg = folio_memcg(folio); 462 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 463 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 464 465 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 466 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 467 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 468 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 469 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 470 } 471 #ifdef CONFIG_SWAP 472 if (folio_test_swapcache(folio)) { 473 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 474 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 475 } 476 #endif 477 if (dirty && mapping_can_writeback(mapping)) { 478 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 479 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 480 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 481 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 482 } 483 } 484 local_irq_enable(); 485 486 return MIGRATEPAGE_SUCCESS; 487 } 488 EXPORT_SYMBOL(folio_migrate_mapping); 489 490 /* 491 * The expected number of remaining references is the same as that 492 * of folio_migrate_mapping(). 493 */ 494 int migrate_huge_page_move_mapping(struct address_space *mapping, 495 struct page *newpage, struct page *page) 496 { 497 XA_STATE(xas, &mapping->i_pages, page_index(page)); 498 int expected_count; 499 500 xas_lock_irq(&xas); 501 expected_count = 2 + page_has_private(page); 502 if (page_count(page) != expected_count || xas_load(&xas) != page) { 503 xas_unlock_irq(&xas); 504 return -EAGAIN; 505 } 506 507 if (!page_ref_freeze(page, expected_count)) { 508 xas_unlock_irq(&xas); 509 return -EAGAIN; 510 } 511 512 newpage->index = page->index; 513 newpage->mapping = page->mapping; 514 515 get_page(newpage); 516 517 xas_store(&xas, newpage); 518 519 page_ref_unfreeze(page, expected_count - 1); 520 521 xas_unlock_irq(&xas); 522 523 return MIGRATEPAGE_SUCCESS; 524 } 525 526 /* 527 * Copy the flags and some other ancillary information 528 */ 529 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 530 { 531 int cpupid; 532 533 if (folio_test_error(folio)) 534 folio_set_error(newfolio); 535 if (folio_test_referenced(folio)) 536 folio_set_referenced(newfolio); 537 if (folio_test_uptodate(folio)) 538 folio_mark_uptodate(newfolio); 539 if (folio_test_clear_active(folio)) { 540 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 541 folio_set_active(newfolio); 542 } else if (folio_test_clear_unevictable(folio)) 543 folio_set_unevictable(newfolio); 544 if (folio_test_workingset(folio)) 545 folio_set_workingset(newfolio); 546 if (folio_test_checked(folio)) 547 folio_set_checked(newfolio); 548 if (folio_test_mappedtodisk(folio)) 549 folio_set_mappedtodisk(newfolio); 550 551 /* Move dirty on pages not done by folio_migrate_mapping() */ 552 if (folio_test_dirty(folio)) 553 folio_set_dirty(newfolio); 554 555 if (folio_test_young(folio)) 556 folio_set_young(newfolio); 557 if (folio_test_idle(folio)) 558 folio_set_idle(newfolio); 559 560 /* 561 * Copy NUMA information to the new page, to prevent over-eager 562 * future migrations of this same page. 563 */ 564 cpupid = page_cpupid_xchg_last(&folio->page, -1); 565 page_cpupid_xchg_last(&newfolio->page, cpupid); 566 567 folio_migrate_ksm(newfolio, folio); 568 /* 569 * Please do not reorder this without considering how mm/ksm.c's 570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 571 */ 572 if (folio_test_swapcache(folio)) 573 folio_clear_swapcache(folio); 574 folio_clear_private(folio); 575 576 /* page->private contains hugetlb specific flags */ 577 if (!folio_test_hugetlb(folio)) 578 folio->private = NULL; 579 580 /* 581 * If any waiters have accumulated on the new page then 582 * wake them up. 583 */ 584 if (folio_test_writeback(newfolio)) 585 folio_end_writeback(newfolio); 586 587 /* 588 * PG_readahead shares the same bit with PG_reclaim. The above 589 * end_page_writeback() may clear PG_readahead mistakenly, so set the 590 * bit after that. 591 */ 592 if (folio_test_readahead(folio)) 593 folio_set_readahead(newfolio); 594 595 folio_copy_owner(newfolio, folio); 596 597 if (!folio_test_hugetlb(folio)) 598 mem_cgroup_migrate(folio, newfolio); 599 } 600 EXPORT_SYMBOL(folio_migrate_flags); 601 602 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 603 { 604 folio_copy(newfolio, folio); 605 folio_migrate_flags(newfolio, folio); 606 } 607 EXPORT_SYMBOL(folio_migrate_copy); 608 609 /************************************************************ 610 * Migration functions 611 ***********************************************************/ 612 613 /* 614 * Common logic to directly migrate a single LRU page suitable for 615 * pages that do not use PagePrivate/PagePrivate2. 616 * 617 * Pages are locked upon entry and exit. 618 */ 619 int migrate_page(struct address_space *mapping, 620 struct page *newpage, struct page *page, 621 enum migrate_mode mode) 622 { 623 struct folio *newfolio = page_folio(newpage); 624 struct folio *folio = page_folio(page); 625 int rc; 626 627 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */ 628 629 rc = folio_migrate_mapping(mapping, newfolio, folio, 0); 630 631 if (rc != MIGRATEPAGE_SUCCESS) 632 return rc; 633 634 if (mode != MIGRATE_SYNC_NO_COPY) 635 folio_migrate_copy(newfolio, folio); 636 else 637 folio_migrate_flags(newfolio, folio); 638 return MIGRATEPAGE_SUCCESS; 639 } 640 EXPORT_SYMBOL(migrate_page); 641 642 #ifdef CONFIG_BLOCK 643 /* Returns true if all buffers are successfully locked */ 644 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 645 enum migrate_mode mode) 646 { 647 struct buffer_head *bh = head; 648 649 /* Simple case, sync compaction */ 650 if (mode != MIGRATE_ASYNC) { 651 do { 652 lock_buffer(bh); 653 bh = bh->b_this_page; 654 655 } while (bh != head); 656 657 return true; 658 } 659 660 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 661 do { 662 if (!trylock_buffer(bh)) { 663 /* 664 * We failed to lock the buffer and cannot stall in 665 * async migration. Release the taken locks 666 */ 667 struct buffer_head *failed_bh = bh; 668 bh = head; 669 while (bh != failed_bh) { 670 unlock_buffer(bh); 671 bh = bh->b_this_page; 672 } 673 return false; 674 } 675 676 bh = bh->b_this_page; 677 } while (bh != head); 678 return true; 679 } 680 681 static int __buffer_migrate_page(struct address_space *mapping, 682 struct page *newpage, struct page *page, enum migrate_mode mode, 683 bool check_refs) 684 { 685 struct buffer_head *bh, *head; 686 int rc; 687 int expected_count; 688 689 if (!page_has_buffers(page)) 690 return migrate_page(mapping, newpage, page, mode); 691 692 /* Check whether page does not have extra refs before we do more work */ 693 expected_count = expected_page_refs(mapping, page); 694 if (page_count(page) != expected_count) 695 return -EAGAIN; 696 697 head = page_buffers(page); 698 if (!buffer_migrate_lock_buffers(head, mode)) 699 return -EAGAIN; 700 701 if (check_refs) { 702 bool busy; 703 bool invalidated = false; 704 705 recheck_buffers: 706 busy = false; 707 spin_lock(&mapping->private_lock); 708 bh = head; 709 do { 710 if (atomic_read(&bh->b_count)) { 711 busy = true; 712 break; 713 } 714 bh = bh->b_this_page; 715 } while (bh != head); 716 if (busy) { 717 if (invalidated) { 718 rc = -EAGAIN; 719 goto unlock_buffers; 720 } 721 spin_unlock(&mapping->private_lock); 722 invalidate_bh_lrus(); 723 invalidated = true; 724 goto recheck_buffers; 725 } 726 } 727 728 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 729 if (rc != MIGRATEPAGE_SUCCESS) 730 goto unlock_buffers; 731 732 attach_page_private(newpage, detach_page_private(page)); 733 734 bh = head; 735 do { 736 set_bh_page(bh, newpage, bh_offset(bh)); 737 bh = bh->b_this_page; 738 739 } while (bh != head); 740 741 if (mode != MIGRATE_SYNC_NO_COPY) 742 migrate_page_copy(newpage, page); 743 else 744 migrate_page_states(newpage, page); 745 746 rc = MIGRATEPAGE_SUCCESS; 747 unlock_buffers: 748 if (check_refs) 749 spin_unlock(&mapping->private_lock); 750 bh = head; 751 do { 752 unlock_buffer(bh); 753 bh = bh->b_this_page; 754 755 } while (bh != head); 756 757 return rc; 758 } 759 760 /* 761 * Migration function for pages with buffers. This function can only be used 762 * if the underlying filesystem guarantees that no other references to "page" 763 * exist. For example attached buffer heads are accessed only under page lock. 764 */ 765 int buffer_migrate_page(struct address_space *mapping, 766 struct page *newpage, struct page *page, enum migrate_mode mode) 767 { 768 return __buffer_migrate_page(mapping, newpage, page, mode, false); 769 } 770 EXPORT_SYMBOL(buffer_migrate_page); 771 772 /* 773 * Same as above except that this variant is more careful and checks that there 774 * are also no buffer head references. This function is the right one for 775 * mappings where buffer heads are directly looked up and referenced (such as 776 * block device mappings). 777 */ 778 int buffer_migrate_page_norefs(struct address_space *mapping, 779 struct page *newpage, struct page *page, enum migrate_mode mode) 780 { 781 return __buffer_migrate_page(mapping, newpage, page, mode, true); 782 } 783 #endif 784 785 /* 786 * Writeback a page to clean the dirty state 787 */ 788 static int writeout(struct address_space *mapping, struct page *page) 789 { 790 struct writeback_control wbc = { 791 .sync_mode = WB_SYNC_NONE, 792 .nr_to_write = 1, 793 .range_start = 0, 794 .range_end = LLONG_MAX, 795 .for_reclaim = 1 796 }; 797 int rc; 798 799 if (!mapping->a_ops->writepage) 800 /* No write method for the address space */ 801 return -EINVAL; 802 803 if (!clear_page_dirty_for_io(page)) 804 /* Someone else already triggered a write */ 805 return -EAGAIN; 806 807 /* 808 * A dirty page may imply that the underlying filesystem has 809 * the page on some queue. So the page must be clean for 810 * migration. Writeout may mean we loose the lock and the 811 * page state is no longer what we checked for earlier. 812 * At this point we know that the migration attempt cannot 813 * be successful. 814 */ 815 remove_migration_ptes(page, page, false); 816 817 rc = mapping->a_ops->writepage(page, &wbc); 818 819 if (rc != AOP_WRITEPAGE_ACTIVATE) 820 /* unlocked. Relock */ 821 lock_page(page); 822 823 return (rc < 0) ? -EIO : -EAGAIN; 824 } 825 826 /* 827 * Default handling if a filesystem does not provide a migration function. 828 */ 829 static int fallback_migrate_page(struct address_space *mapping, 830 struct page *newpage, struct page *page, enum migrate_mode mode) 831 { 832 if (PageDirty(page)) { 833 /* Only writeback pages in full synchronous migration */ 834 switch (mode) { 835 case MIGRATE_SYNC: 836 case MIGRATE_SYNC_NO_COPY: 837 break; 838 default: 839 return -EBUSY; 840 } 841 return writeout(mapping, page); 842 } 843 844 /* 845 * Buffers may be managed in a filesystem specific way. 846 * We must have no buffers or drop them. 847 */ 848 if (page_has_private(page) && 849 !try_to_release_page(page, GFP_KERNEL)) 850 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 851 852 return migrate_page(mapping, newpage, page, mode); 853 } 854 855 /* 856 * Move a page to a newly allocated page 857 * The page is locked and all ptes have been successfully removed. 858 * 859 * The new page will have replaced the old page if this function 860 * is successful. 861 * 862 * Return value: 863 * < 0 - error code 864 * MIGRATEPAGE_SUCCESS - success 865 */ 866 static int move_to_new_page(struct page *newpage, struct page *page, 867 enum migrate_mode mode) 868 { 869 struct address_space *mapping; 870 int rc = -EAGAIN; 871 bool is_lru = !__PageMovable(page); 872 873 VM_BUG_ON_PAGE(!PageLocked(page), page); 874 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 875 876 mapping = page_mapping(page); 877 878 if (likely(is_lru)) { 879 if (!mapping) 880 rc = migrate_page(mapping, newpage, page, mode); 881 else if (mapping->a_ops->migratepage) 882 /* 883 * Most pages have a mapping and most filesystems 884 * provide a migratepage callback. Anonymous pages 885 * are part of swap space which also has its own 886 * migratepage callback. This is the most common path 887 * for page migration. 888 */ 889 rc = mapping->a_ops->migratepage(mapping, newpage, 890 page, mode); 891 else 892 rc = fallback_migrate_page(mapping, newpage, 893 page, mode); 894 } else { 895 /* 896 * In case of non-lru page, it could be released after 897 * isolation step. In that case, we shouldn't try migration. 898 */ 899 VM_BUG_ON_PAGE(!PageIsolated(page), page); 900 if (!PageMovable(page)) { 901 rc = MIGRATEPAGE_SUCCESS; 902 __ClearPageIsolated(page); 903 goto out; 904 } 905 906 rc = mapping->a_ops->migratepage(mapping, newpage, 907 page, mode); 908 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 909 !PageIsolated(page)); 910 } 911 912 /* 913 * When successful, old pagecache page->mapping must be cleared before 914 * page is freed; but stats require that PageAnon be left as PageAnon. 915 */ 916 if (rc == MIGRATEPAGE_SUCCESS) { 917 if (__PageMovable(page)) { 918 VM_BUG_ON_PAGE(!PageIsolated(page), page); 919 920 /* 921 * We clear PG_movable under page_lock so any compactor 922 * cannot try to migrate this page. 923 */ 924 __ClearPageIsolated(page); 925 } 926 927 /* 928 * Anonymous and movable page->mapping will be cleared by 929 * free_pages_prepare so don't reset it here for keeping 930 * the type to work PageAnon, for example. 931 */ 932 if (!PageMappingFlags(page)) 933 page->mapping = NULL; 934 935 if (likely(!is_zone_device_page(newpage))) 936 flush_dcache_page(newpage); 937 938 } 939 out: 940 return rc; 941 } 942 943 static int __unmap_and_move(struct page *page, struct page *newpage, 944 int force, enum migrate_mode mode) 945 { 946 int rc = -EAGAIN; 947 bool page_was_mapped = false; 948 struct anon_vma *anon_vma = NULL; 949 bool is_lru = !__PageMovable(page); 950 951 if (!trylock_page(page)) { 952 if (!force || mode == MIGRATE_ASYNC) 953 goto out; 954 955 /* 956 * It's not safe for direct compaction to call lock_page. 957 * For example, during page readahead pages are added locked 958 * to the LRU. Later, when the IO completes the pages are 959 * marked uptodate and unlocked. However, the queueing 960 * could be merging multiple pages for one bio (e.g. 961 * mpage_readahead). If an allocation happens for the 962 * second or third page, the process can end up locking 963 * the same page twice and deadlocking. Rather than 964 * trying to be clever about what pages can be locked, 965 * avoid the use of lock_page for direct compaction 966 * altogether. 967 */ 968 if (current->flags & PF_MEMALLOC) 969 goto out; 970 971 lock_page(page); 972 } 973 974 if (PageWriteback(page)) { 975 /* 976 * Only in the case of a full synchronous migration is it 977 * necessary to wait for PageWriteback. In the async case, 978 * the retry loop is too short and in the sync-light case, 979 * the overhead of stalling is too much 980 */ 981 switch (mode) { 982 case MIGRATE_SYNC: 983 case MIGRATE_SYNC_NO_COPY: 984 break; 985 default: 986 rc = -EBUSY; 987 goto out_unlock; 988 } 989 if (!force) 990 goto out_unlock; 991 wait_on_page_writeback(page); 992 } 993 994 /* 995 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 996 * we cannot notice that anon_vma is freed while we migrates a page. 997 * This get_anon_vma() delays freeing anon_vma pointer until the end 998 * of migration. File cache pages are no problem because of page_lock() 999 * File Caches may use write_page() or lock_page() in migration, then, 1000 * just care Anon page here. 1001 * 1002 * Only page_get_anon_vma() understands the subtleties of 1003 * getting a hold on an anon_vma from outside one of its mms. 1004 * But if we cannot get anon_vma, then we won't need it anyway, 1005 * because that implies that the anon page is no longer mapped 1006 * (and cannot be remapped so long as we hold the page lock). 1007 */ 1008 if (PageAnon(page) && !PageKsm(page)) 1009 anon_vma = page_get_anon_vma(page); 1010 1011 /* 1012 * Block others from accessing the new page when we get around to 1013 * establishing additional references. We are usually the only one 1014 * holding a reference to newpage at this point. We used to have a BUG 1015 * here if trylock_page(newpage) fails, but would like to allow for 1016 * cases where there might be a race with the previous use of newpage. 1017 * This is much like races on refcount of oldpage: just don't BUG(). 1018 */ 1019 if (unlikely(!trylock_page(newpage))) 1020 goto out_unlock; 1021 1022 if (unlikely(!is_lru)) { 1023 rc = move_to_new_page(newpage, page, mode); 1024 goto out_unlock_both; 1025 } 1026 1027 /* 1028 * Corner case handling: 1029 * 1. When a new swap-cache page is read into, it is added to the LRU 1030 * and treated as swapcache but it has no rmap yet. 1031 * Calling try_to_unmap() against a page->mapping==NULL page will 1032 * trigger a BUG. So handle it here. 1033 * 2. An orphaned page (see truncate_cleanup_page) might have 1034 * fs-private metadata. The page can be picked up due to memory 1035 * offlining. Everywhere else except page reclaim, the page is 1036 * invisible to the vm, so the page can not be migrated. So try to 1037 * free the metadata, so the page can be freed. 1038 */ 1039 if (!page->mapping) { 1040 VM_BUG_ON_PAGE(PageAnon(page), page); 1041 if (page_has_private(page)) { 1042 try_to_free_buffers(page); 1043 goto out_unlock_both; 1044 } 1045 } else if (page_mapped(page)) { 1046 /* Establish migration ptes */ 1047 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1048 page); 1049 try_to_migrate(page, 0); 1050 page_was_mapped = true; 1051 } 1052 1053 if (!page_mapped(page)) 1054 rc = move_to_new_page(newpage, page, mode); 1055 1056 if (page_was_mapped) 1057 remove_migration_ptes(page, 1058 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1059 1060 out_unlock_both: 1061 unlock_page(newpage); 1062 out_unlock: 1063 /* Drop an anon_vma reference if we took one */ 1064 if (anon_vma) 1065 put_anon_vma(anon_vma); 1066 unlock_page(page); 1067 out: 1068 /* 1069 * If migration is successful, decrease refcount of the newpage 1070 * which will not free the page because new page owner increased 1071 * refcounter. As well, if it is LRU page, add the page to LRU 1072 * list in here. Use the old state of the isolated source page to 1073 * determine if we migrated a LRU page. newpage was already unlocked 1074 * and possibly modified by its owner - don't rely on the page 1075 * state. 1076 */ 1077 if (rc == MIGRATEPAGE_SUCCESS) { 1078 if (unlikely(!is_lru)) 1079 put_page(newpage); 1080 else 1081 putback_lru_page(newpage); 1082 } 1083 1084 return rc; 1085 } 1086 1087 /* 1088 * Obtain the lock on page, remove all ptes and migrate the page 1089 * to the newly allocated page in newpage. 1090 */ 1091 static int unmap_and_move(new_page_t get_new_page, 1092 free_page_t put_new_page, 1093 unsigned long private, struct page *page, 1094 int force, enum migrate_mode mode, 1095 enum migrate_reason reason, 1096 struct list_head *ret) 1097 { 1098 int rc = MIGRATEPAGE_SUCCESS; 1099 struct page *newpage = NULL; 1100 1101 if (!thp_migration_supported() && PageTransHuge(page)) 1102 return -ENOSYS; 1103 1104 if (page_count(page) == 1) { 1105 /* page was freed from under us. So we are done. */ 1106 ClearPageActive(page); 1107 ClearPageUnevictable(page); 1108 if (unlikely(__PageMovable(page))) { 1109 lock_page(page); 1110 if (!PageMovable(page)) 1111 __ClearPageIsolated(page); 1112 unlock_page(page); 1113 } 1114 goto out; 1115 } 1116 1117 newpage = get_new_page(page, private); 1118 if (!newpage) 1119 return -ENOMEM; 1120 1121 rc = __unmap_and_move(page, newpage, force, mode); 1122 if (rc == MIGRATEPAGE_SUCCESS) 1123 set_page_owner_migrate_reason(newpage, reason); 1124 1125 out: 1126 if (rc != -EAGAIN) { 1127 /* 1128 * A page that has been migrated has all references 1129 * removed and will be freed. A page that has not been 1130 * migrated will have kept its references and be restored. 1131 */ 1132 list_del(&page->lru); 1133 } 1134 1135 /* 1136 * If migration is successful, releases reference grabbed during 1137 * isolation. Otherwise, restore the page to right list unless 1138 * we want to retry. 1139 */ 1140 if (rc == MIGRATEPAGE_SUCCESS) { 1141 /* 1142 * Compaction can migrate also non-LRU pages which are 1143 * not accounted to NR_ISOLATED_*. They can be recognized 1144 * as __PageMovable 1145 */ 1146 if (likely(!__PageMovable(page))) 1147 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1148 page_is_file_lru(page), -thp_nr_pages(page)); 1149 1150 if (reason != MR_MEMORY_FAILURE) 1151 /* 1152 * We release the page in page_handle_poison. 1153 */ 1154 put_page(page); 1155 } else { 1156 if (rc != -EAGAIN) 1157 list_add_tail(&page->lru, ret); 1158 1159 if (put_new_page) 1160 put_new_page(newpage, private); 1161 else 1162 put_page(newpage); 1163 } 1164 1165 return rc; 1166 } 1167 1168 /* 1169 * Counterpart of unmap_and_move_page() for hugepage migration. 1170 * 1171 * This function doesn't wait the completion of hugepage I/O 1172 * because there is no race between I/O and migration for hugepage. 1173 * Note that currently hugepage I/O occurs only in direct I/O 1174 * where no lock is held and PG_writeback is irrelevant, 1175 * and writeback status of all subpages are counted in the reference 1176 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1177 * under direct I/O, the reference of the head page is 512 and a bit more.) 1178 * This means that when we try to migrate hugepage whose subpages are 1179 * doing direct I/O, some references remain after try_to_unmap() and 1180 * hugepage migration fails without data corruption. 1181 * 1182 * There is also no race when direct I/O is issued on the page under migration, 1183 * because then pte is replaced with migration swap entry and direct I/O code 1184 * will wait in the page fault for migration to complete. 1185 */ 1186 static int unmap_and_move_huge_page(new_page_t get_new_page, 1187 free_page_t put_new_page, unsigned long private, 1188 struct page *hpage, int force, 1189 enum migrate_mode mode, int reason, 1190 struct list_head *ret) 1191 { 1192 int rc = -EAGAIN; 1193 int page_was_mapped = 0; 1194 struct page *new_hpage; 1195 struct anon_vma *anon_vma = NULL; 1196 struct address_space *mapping = NULL; 1197 1198 /* 1199 * Migratability of hugepages depends on architectures and their size. 1200 * This check is necessary because some callers of hugepage migration 1201 * like soft offline and memory hotremove don't walk through page 1202 * tables or check whether the hugepage is pmd-based or not before 1203 * kicking migration. 1204 */ 1205 if (!hugepage_migration_supported(page_hstate(hpage))) { 1206 list_move_tail(&hpage->lru, ret); 1207 return -ENOSYS; 1208 } 1209 1210 if (page_count(hpage) == 1) { 1211 /* page was freed from under us. So we are done. */ 1212 putback_active_hugepage(hpage); 1213 return MIGRATEPAGE_SUCCESS; 1214 } 1215 1216 new_hpage = get_new_page(hpage, private); 1217 if (!new_hpage) 1218 return -ENOMEM; 1219 1220 if (!trylock_page(hpage)) { 1221 if (!force) 1222 goto out; 1223 switch (mode) { 1224 case MIGRATE_SYNC: 1225 case MIGRATE_SYNC_NO_COPY: 1226 break; 1227 default: 1228 goto out; 1229 } 1230 lock_page(hpage); 1231 } 1232 1233 /* 1234 * Check for pages which are in the process of being freed. Without 1235 * page_mapping() set, hugetlbfs specific move page routine will not 1236 * be called and we could leak usage counts for subpools. 1237 */ 1238 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1239 rc = -EBUSY; 1240 goto out_unlock; 1241 } 1242 1243 if (PageAnon(hpage)) 1244 anon_vma = page_get_anon_vma(hpage); 1245 1246 if (unlikely(!trylock_page(new_hpage))) 1247 goto put_anon; 1248 1249 if (page_mapped(hpage)) { 1250 bool mapping_locked = false; 1251 enum ttu_flags ttu = 0; 1252 1253 if (!PageAnon(hpage)) { 1254 /* 1255 * In shared mappings, try_to_unmap could potentially 1256 * call huge_pmd_unshare. Because of this, take 1257 * semaphore in write mode here and set TTU_RMAP_LOCKED 1258 * to let lower levels know we have taken the lock. 1259 */ 1260 mapping = hugetlb_page_mapping_lock_write(hpage); 1261 if (unlikely(!mapping)) 1262 goto unlock_put_anon; 1263 1264 mapping_locked = true; 1265 ttu |= TTU_RMAP_LOCKED; 1266 } 1267 1268 try_to_migrate(hpage, ttu); 1269 page_was_mapped = 1; 1270 1271 if (mapping_locked) 1272 i_mmap_unlock_write(mapping); 1273 } 1274 1275 if (!page_mapped(hpage)) 1276 rc = move_to_new_page(new_hpage, hpage, mode); 1277 1278 if (page_was_mapped) 1279 remove_migration_ptes(hpage, 1280 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1281 1282 unlock_put_anon: 1283 unlock_page(new_hpage); 1284 1285 put_anon: 1286 if (anon_vma) 1287 put_anon_vma(anon_vma); 1288 1289 if (rc == MIGRATEPAGE_SUCCESS) { 1290 move_hugetlb_state(hpage, new_hpage, reason); 1291 put_new_page = NULL; 1292 } 1293 1294 out_unlock: 1295 unlock_page(hpage); 1296 out: 1297 if (rc == MIGRATEPAGE_SUCCESS) 1298 putback_active_hugepage(hpage); 1299 else if (rc != -EAGAIN) 1300 list_move_tail(&hpage->lru, ret); 1301 1302 /* 1303 * If migration was not successful and there's a freeing callback, use 1304 * it. Otherwise, put_page() will drop the reference grabbed during 1305 * isolation. 1306 */ 1307 if (put_new_page) 1308 put_new_page(new_hpage, private); 1309 else 1310 putback_active_hugepage(new_hpage); 1311 1312 return rc; 1313 } 1314 1315 static inline int try_split_thp(struct page *page, struct page **page2, 1316 struct list_head *from) 1317 { 1318 int rc = 0; 1319 1320 lock_page(page); 1321 rc = split_huge_page_to_list(page, from); 1322 unlock_page(page); 1323 if (!rc) 1324 list_safe_reset_next(page, *page2, lru); 1325 1326 return rc; 1327 } 1328 1329 /* 1330 * migrate_pages - migrate the pages specified in a list, to the free pages 1331 * supplied as the target for the page migration 1332 * 1333 * @from: The list of pages to be migrated. 1334 * @get_new_page: The function used to allocate free pages to be used 1335 * as the target of the page migration. 1336 * @put_new_page: The function used to free target pages if migration 1337 * fails, or NULL if no special handling is necessary. 1338 * @private: Private data to be passed on to get_new_page() 1339 * @mode: The migration mode that specifies the constraints for 1340 * page migration, if any. 1341 * @reason: The reason for page migration. 1342 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1343 * the caller passes a non-NULL pointer. 1344 * 1345 * The function returns after 10 attempts or if no pages are movable any more 1346 * because the list has become empty or no retryable pages exist any more. 1347 * It is caller's responsibility to call putback_movable_pages() to return pages 1348 * to the LRU or free list only if ret != 0. 1349 * 1350 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1351 * an error code. The number of THP splits will be considered as the number of 1352 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1353 */ 1354 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1355 free_page_t put_new_page, unsigned long private, 1356 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1357 { 1358 int retry = 1; 1359 int thp_retry = 1; 1360 int nr_failed = 0; 1361 int nr_failed_pages = 0; 1362 int nr_succeeded = 0; 1363 int nr_thp_succeeded = 0; 1364 int nr_thp_failed = 0; 1365 int nr_thp_split = 0; 1366 int pass = 0; 1367 bool is_thp = false; 1368 struct page *page; 1369 struct page *page2; 1370 int swapwrite = current->flags & PF_SWAPWRITE; 1371 int rc, nr_subpages; 1372 LIST_HEAD(ret_pages); 1373 LIST_HEAD(thp_split_pages); 1374 bool nosplit = (reason == MR_NUMA_MISPLACED); 1375 bool no_subpage_counting = false; 1376 1377 trace_mm_migrate_pages_start(mode, reason); 1378 1379 if (!swapwrite) 1380 current->flags |= PF_SWAPWRITE; 1381 1382 thp_subpage_migration: 1383 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1384 retry = 0; 1385 thp_retry = 0; 1386 1387 list_for_each_entry_safe(page, page2, from, lru) { 1388 retry: 1389 /* 1390 * THP statistics is based on the source huge page. 1391 * Capture required information that might get lost 1392 * during migration. 1393 */ 1394 is_thp = PageTransHuge(page) && !PageHuge(page); 1395 nr_subpages = compound_nr(page); 1396 cond_resched(); 1397 1398 if (PageHuge(page)) 1399 rc = unmap_and_move_huge_page(get_new_page, 1400 put_new_page, private, page, 1401 pass > 2, mode, reason, 1402 &ret_pages); 1403 else 1404 rc = unmap_and_move(get_new_page, put_new_page, 1405 private, page, pass > 2, mode, 1406 reason, &ret_pages); 1407 /* 1408 * The rules are: 1409 * Success: non hugetlb page will be freed, hugetlb 1410 * page will be put back 1411 * -EAGAIN: stay on the from list 1412 * -ENOMEM: stay on the from list 1413 * Other errno: put on ret_pages list then splice to 1414 * from list 1415 */ 1416 switch(rc) { 1417 /* 1418 * THP migration might be unsupported or the 1419 * allocation could've failed so we should 1420 * retry on the same page with the THP split 1421 * to base pages. 1422 * 1423 * Head page is retried immediately and tail 1424 * pages are added to the tail of the list so 1425 * we encounter them after the rest of the list 1426 * is processed. 1427 */ 1428 case -ENOSYS: 1429 /* THP migration is unsupported */ 1430 if (is_thp) { 1431 nr_thp_failed++; 1432 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1433 nr_thp_split++; 1434 goto retry; 1435 } 1436 1437 nr_failed_pages += nr_subpages; 1438 break; 1439 } 1440 1441 /* Hugetlb migration is unsupported */ 1442 if (!no_subpage_counting) 1443 nr_failed++; 1444 nr_failed_pages += nr_subpages; 1445 break; 1446 case -ENOMEM: 1447 /* 1448 * When memory is low, don't bother to try to migrate 1449 * other pages, just exit. 1450 * THP NUMA faulting doesn't split THP to retry. 1451 */ 1452 if (is_thp && !nosplit) { 1453 nr_thp_failed++; 1454 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1455 nr_thp_split++; 1456 goto retry; 1457 } 1458 1459 nr_failed_pages += nr_subpages; 1460 goto out; 1461 } 1462 1463 if (!no_subpage_counting) 1464 nr_failed++; 1465 nr_failed_pages += nr_subpages; 1466 goto out; 1467 case -EAGAIN: 1468 if (is_thp) { 1469 thp_retry++; 1470 break; 1471 } 1472 retry++; 1473 break; 1474 case MIGRATEPAGE_SUCCESS: 1475 nr_succeeded += nr_subpages; 1476 if (is_thp) { 1477 nr_thp_succeeded++; 1478 break; 1479 } 1480 break; 1481 default: 1482 /* 1483 * Permanent failure (-EBUSY, etc.): 1484 * unlike -EAGAIN case, the failed page is 1485 * removed from migration page list and not 1486 * retried in the next outer loop. 1487 */ 1488 if (is_thp) { 1489 nr_thp_failed++; 1490 nr_failed_pages += nr_subpages; 1491 break; 1492 } 1493 1494 if (!no_subpage_counting) 1495 nr_failed++; 1496 nr_failed_pages += nr_subpages; 1497 break; 1498 } 1499 } 1500 } 1501 nr_failed += retry; 1502 nr_thp_failed += thp_retry; 1503 /* 1504 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1505 * counting in this round, since all subpages of a THP is counted 1506 * as 1 failure in the first round. 1507 */ 1508 if (!list_empty(&thp_split_pages)) { 1509 /* 1510 * Move non-migrated pages (after 10 retries) to ret_pages 1511 * to avoid migrating them again. 1512 */ 1513 list_splice_init(from, &ret_pages); 1514 list_splice_init(&thp_split_pages, from); 1515 no_subpage_counting = true; 1516 retry = 1; 1517 goto thp_subpage_migration; 1518 } 1519 1520 rc = nr_failed + nr_thp_failed; 1521 out: 1522 /* 1523 * Put the permanent failure page back to migration list, they 1524 * will be put back to the right list by the caller. 1525 */ 1526 list_splice(&ret_pages, from); 1527 1528 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1529 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1530 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1531 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1532 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1533 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1534 nr_thp_failed, nr_thp_split, mode, reason); 1535 1536 if (!swapwrite) 1537 current->flags &= ~PF_SWAPWRITE; 1538 1539 if (ret_succeeded) 1540 *ret_succeeded = nr_succeeded; 1541 1542 return rc; 1543 } 1544 1545 struct page *alloc_migration_target(struct page *page, unsigned long private) 1546 { 1547 struct migration_target_control *mtc; 1548 gfp_t gfp_mask; 1549 unsigned int order = 0; 1550 struct page *new_page = NULL; 1551 int nid; 1552 int zidx; 1553 1554 mtc = (struct migration_target_control *)private; 1555 gfp_mask = mtc->gfp_mask; 1556 nid = mtc->nid; 1557 if (nid == NUMA_NO_NODE) 1558 nid = page_to_nid(page); 1559 1560 if (PageHuge(page)) { 1561 struct hstate *h = page_hstate(compound_head(page)); 1562 1563 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1564 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1565 } 1566 1567 if (PageTransHuge(page)) { 1568 /* 1569 * clear __GFP_RECLAIM to make the migration callback 1570 * consistent with regular THP allocations. 1571 */ 1572 gfp_mask &= ~__GFP_RECLAIM; 1573 gfp_mask |= GFP_TRANSHUGE; 1574 order = HPAGE_PMD_ORDER; 1575 } 1576 zidx = zone_idx(page_zone(page)); 1577 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1578 gfp_mask |= __GFP_HIGHMEM; 1579 1580 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1581 1582 if (new_page && PageTransHuge(new_page)) 1583 prep_transhuge_page(new_page); 1584 1585 return new_page; 1586 } 1587 1588 #ifdef CONFIG_NUMA 1589 1590 static int store_status(int __user *status, int start, int value, int nr) 1591 { 1592 while (nr-- > 0) { 1593 if (put_user(value, status + start)) 1594 return -EFAULT; 1595 start++; 1596 } 1597 1598 return 0; 1599 } 1600 1601 static int do_move_pages_to_node(struct mm_struct *mm, 1602 struct list_head *pagelist, int node) 1603 { 1604 int err; 1605 struct migration_target_control mtc = { 1606 .nid = node, 1607 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1608 }; 1609 1610 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1611 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1612 if (err) 1613 putback_movable_pages(pagelist); 1614 return err; 1615 } 1616 1617 /* 1618 * Resolves the given address to a struct page, isolates it from the LRU and 1619 * puts it to the given pagelist. 1620 * Returns: 1621 * errno - if the page cannot be found/isolated 1622 * 0 - when it doesn't have to be migrated because it is already on the 1623 * target node 1624 * 1 - when it has been queued 1625 */ 1626 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1627 int node, struct list_head *pagelist, bool migrate_all) 1628 { 1629 struct vm_area_struct *vma; 1630 struct page *page; 1631 unsigned int follflags; 1632 int err; 1633 1634 mmap_read_lock(mm); 1635 err = -EFAULT; 1636 vma = find_vma(mm, addr); 1637 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1638 goto out; 1639 1640 /* FOLL_DUMP to ignore special (like zero) pages */ 1641 follflags = FOLL_GET | FOLL_DUMP; 1642 page = follow_page(vma, addr, follflags); 1643 1644 err = PTR_ERR(page); 1645 if (IS_ERR(page)) 1646 goto out; 1647 1648 err = -ENOENT; 1649 if (!page) 1650 goto out; 1651 1652 err = 0; 1653 if (page_to_nid(page) == node) 1654 goto out_putpage; 1655 1656 err = -EACCES; 1657 if (page_mapcount(page) > 1 && !migrate_all) 1658 goto out_putpage; 1659 1660 if (PageHuge(page)) { 1661 if (PageHead(page)) { 1662 isolate_huge_page(page, pagelist); 1663 err = 1; 1664 } 1665 } else { 1666 struct page *head; 1667 1668 head = compound_head(page); 1669 err = isolate_lru_page(head); 1670 if (err) 1671 goto out_putpage; 1672 1673 err = 1; 1674 list_add_tail(&head->lru, pagelist); 1675 mod_node_page_state(page_pgdat(head), 1676 NR_ISOLATED_ANON + page_is_file_lru(head), 1677 thp_nr_pages(head)); 1678 } 1679 out_putpage: 1680 /* 1681 * Either remove the duplicate refcount from 1682 * isolate_lru_page() or drop the page ref if it was 1683 * not isolated. 1684 */ 1685 put_page(page); 1686 out: 1687 mmap_read_unlock(mm); 1688 return err; 1689 } 1690 1691 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1692 struct list_head *pagelist, int __user *status, 1693 int start, int i, unsigned long nr_pages) 1694 { 1695 int err; 1696 1697 if (list_empty(pagelist)) 1698 return 0; 1699 1700 err = do_move_pages_to_node(mm, pagelist, node); 1701 if (err) { 1702 /* 1703 * Positive err means the number of failed 1704 * pages to migrate. Since we are going to 1705 * abort and return the number of non-migrated 1706 * pages, so need to include the rest of the 1707 * nr_pages that have not been attempted as 1708 * well. 1709 */ 1710 if (err > 0) 1711 err += nr_pages - i - 1; 1712 return err; 1713 } 1714 return store_status(status, start, node, i - start); 1715 } 1716 1717 /* 1718 * Migrate an array of page address onto an array of nodes and fill 1719 * the corresponding array of status. 1720 */ 1721 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1722 unsigned long nr_pages, 1723 const void __user * __user *pages, 1724 const int __user *nodes, 1725 int __user *status, int flags) 1726 { 1727 int current_node = NUMA_NO_NODE; 1728 LIST_HEAD(pagelist); 1729 int start, i; 1730 int err = 0, err1; 1731 1732 lru_cache_disable(); 1733 1734 for (i = start = 0; i < nr_pages; i++) { 1735 const void __user *p; 1736 unsigned long addr; 1737 int node; 1738 1739 err = -EFAULT; 1740 if (get_user(p, pages + i)) 1741 goto out_flush; 1742 if (get_user(node, nodes + i)) 1743 goto out_flush; 1744 addr = (unsigned long)untagged_addr(p); 1745 1746 err = -ENODEV; 1747 if (node < 0 || node >= MAX_NUMNODES) 1748 goto out_flush; 1749 if (!node_state(node, N_MEMORY)) 1750 goto out_flush; 1751 1752 err = -EACCES; 1753 if (!node_isset(node, task_nodes)) 1754 goto out_flush; 1755 1756 if (current_node == NUMA_NO_NODE) { 1757 current_node = node; 1758 start = i; 1759 } else if (node != current_node) { 1760 err = move_pages_and_store_status(mm, current_node, 1761 &pagelist, status, start, i, nr_pages); 1762 if (err) 1763 goto out; 1764 start = i; 1765 current_node = node; 1766 } 1767 1768 /* 1769 * Errors in the page lookup or isolation are not fatal and we simply 1770 * report them via status 1771 */ 1772 err = add_page_for_migration(mm, addr, current_node, 1773 &pagelist, flags & MPOL_MF_MOVE_ALL); 1774 1775 if (err > 0) { 1776 /* The page is successfully queued for migration */ 1777 continue; 1778 } 1779 1780 /* 1781 * If the page is already on the target node (!err), store the 1782 * node, otherwise, store the err. 1783 */ 1784 err = store_status(status, i, err ? : current_node, 1); 1785 if (err) 1786 goto out_flush; 1787 1788 err = move_pages_and_store_status(mm, current_node, &pagelist, 1789 status, start, i, nr_pages); 1790 if (err) 1791 goto out; 1792 current_node = NUMA_NO_NODE; 1793 } 1794 out_flush: 1795 /* Make sure we do not overwrite the existing error */ 1796 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1797 status, start, i, nr_pages); 1798 if (err >= 0) 1799 err = err1; 1800 out: 1801 lru_cache_enable(); 1802 return err; 1803 } 1804 1805 /* 1806 * Determine the nodes of an array of pages and store it in an array of status. 1807 */ 1808 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1809 const void __user **pages, int *status) 1810 { 1811 unsigned long i; 1812 1813 mmap_read_lock(mm); 1814 1815 for (i = 0; i < nr_pages; i++) { 1816 unsigned long addr = (unsigned long)(*pages); 1817 struct vm_area_struct *vma; 1818 struct page *page; 1819 int err = -EFAULT; 1820 1821 vma = vma_lookup(mm, addr); 1822 if (!vma) 1823 goto set_status; 1824 1825 /* FOLL_DUMP to ignore special (like zero) pages */ 1826 page = follow_page(vma, addr, FOLL_DUMP); 1827 1828 err = PTR_ERR(page); 1829 if (IS_ERR(page)) 1830 goto set_status; 1831 1832 err = page ? page_to_nid(page) : -ENOENT; 1833 set_status: 1834 *status = err; 1835 1836 pages++; 1837 status++; 1838 } 1839 1840 mmap_read_unlock(mm); 1841 } 1842 1843 static int get_compat_pages_array(const void __user *chunk_pages[], 1844 const void __user * __user *pages, 1845 unsigned long chunk_nr) 1846 { 1847 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1848 compat_uptr_t p; 1849 int i; 1850 1851 for (i = 0; i < chunk_nr; i++) { 1852 if (get_user(p, pages32 + i)) 1853 return -EFAULT; 1854 chunk_pages[i] = compat_ptr(p); 1855 } 1856 1857 return 0; 1858 } 1859 1860 /* 1861 * Determine the nodes of a user array of pages and store it in 1862 * a user array of status. 1863 */ 1864 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1865 const void __user * __user *pages, 1866 int __user *status) 1867 { 1868 #define DO_PAGES_STAT_CHUNK_NR 16 1869 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1870 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1871 1872 while (nr_pages) { 1873 unsigned long chunk_nr; 1874 1875 chunk_nr = nr_pages; 1876 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1877 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1878 1879 if (in_compat_syscall()) { 1880 if (get_compat_pages_array(chunk_pages, pages, 1881 chunk_nr)) 1882 break; 1883 } else { 1884 if (copy_from_user(chunk_pages, pages, 1885 chunk_nr * sizeof(*chunk_pages))) 1886 break; 1887 } 1888 1889 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1890 1891 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1892 break; 1893 1894 pages += chunk_nr; 1895 status += chunk_nr; 1896 nr_pages -= chunk_nr; 1897 } 1898 return nr_pages ? -EFAULT : 0; 1899 } 1900 1901 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1902 { 1903 struct task_struct *task; 1904 struct mm_struct *mm; 1905 1906 /* 1907 * There is no need to check if current process has the right to modify 1908 * the specified process when they are same. 1909 */ 1910 if (!pid) { 1911 mmget(current->mm); 1912 *mem_nodes = cpuset_mems_allowed(current); 1913 return current->mm; 1914 } 1915 1916 /* Find the mm_struct */ 1917 rcu_read_lock(); 1918 task = find_task_by_vpid(pid); 1919 if (!task) { 1920 rcu_read_unlock(); 1921 return ERR_PTR(-ESRCH); 1922 } 1923 get_task_struct(task); 1924 1925 /* 1926 * Check if this process has the right to modify the specified 1927 * process. Use the regular "ptrace_may_access()" checks. 1928 */ 1929 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1930 rcu_read_unlock(); 1931 mm = ERR_PTR(-EPERM); 1932 goto out; 1933 } 1934 rcu_read_unlock(); 1935 1936 mm = ERR_PTR(security_task_movememory(task)); 1937 if (IS_ERR(mm)) 1938 goto out; 1939 *mem_nodes = cpuset_mems_allowed(task); 1940 mm = get_task_mm(task); 1941 out: 1942 put_task_struct(task); 1943 if (!mm) 1944 mm = ERR_PTR(-EINVAL); 1945 return mm; 1946 } 1947 1948 /* 1949 * Move a list of pages in the address space of the currently executing 1950 * process. 1951 */ 1952 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1953 const void __user * __user *pages, 1954 const int __user *nodes, 1955 int __user *status, int flags) 1956 { 1957 struct mm_struct *mm; 1958 int err; 1959 nodemask_t task_nodes; 1960 1961 /* Check flags */ 1962 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1963 return -EINVAL; 1964 1965 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1966 return -EPERM; 1967 1968 mm = find_mm_struct(pid, &task_nodes); 1969 if (IS_ERR(mm)) 1970 return PTR_ERR(mm); 1971 1972 if (nodes) 1973 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1974 nodes, status, flags); 1975 else 1976 err = do_pages_stat(mm, nr_pages, pages, status); 1977 1978 mmput(mm); 1979 return err; 1980 } 1981 1982 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1983 const void __user * __user *, pages, 1984 const int __user *, nodes, 1985 int __user *, status, int, flags) 1986 { 1987 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1988 } 1989 1990 #ifdef CONFIG_NUMA_BALANCING 1991 /* 1992 * Returns true if this is a safe migration target node for misplaced NUMA 1993 * pages. Currently it only checks the watermarks which crude 1994 */ 1995 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1996 unsigned long nr_migrate_pages) 1997 { 1998 int z; 1999 2000 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2001 struct zone *zone = pgdat->node_zones + z; 2002 2003 if (!populated_zone(zone)) 2004 continue; 2005 2006 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2007 if (!zone_watermark_ok(zone, 0, 2008 high_wmark_pages(zone) + 2009 nr_migrate_pages, 2010 ZONE_MOVABLE, 0)) 2011 continue; 2012 return true; 2013 } 2014 return false; 2015 } 2016 2017 static struct page *alloc_misplaced_dst_page(struct page *page, 2018 unsigned long data) 2019 { 2020 int nid = (int) data; 2021 struct page *newpage; 2022 2023 newpage = __alloc_pages_node(nid, 2024 (GFP_HIGHUSER_MOVABLE | 2025 __GFP_THISNODE | __GFP_NOMEMALLOC | 2026 __GFP_NORETRY | __GFP_NOWARN) & 2027 ~__GFP_RECLAIM, 0); 2028 2029 return newpage; 2030 } 2031 2032 static struct page *alloc_misplaced_dst_page_thp(struct page *page, 2033 unsigned long data) 2034 { 2035 int nid = (int) data; 2036 struct page *newpage; 2037 2038 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2039 HPAGE_PMD_ORDER); 2040 if (!newpage) 2041 goto out; 2042 2043 prep_transhuge_page(newpage); 2044 2045 out: 2046 return newpage; 2047 } 2048 2049 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2050 { 2051 int page_lru; 2052 int nr_pages = thp_nr_pages(page); 2053 2054 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2055 2056 /* Do not migrate THP mapped by multiple processes */ 2057 if (PageTransHuge(page) && total_mapcount(page) > 1) 2058 return 0; 2059 2060 /* Avoid migrating to a node that is nearly full */ 2061 if (!migrate_balanced_pgdat(pgdat, nr_pages)) 2062 return 0; 2063 2064 if (isolate_lru_page(page)) 2065 return 0; 2066 2067 page_lru = page_is_file_lru(page); 2068 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2069 nr_pages); 2070 2071 /* 2072 * Isolating the page has taken another reference, so the 2073 * caller's reference can be safely dropped without the page 2074 * disappearing underneath us during migration. 2075 */ 2076 put_page(page); 2077 return 1; 2078 } 2079 2080 /* 2081 * Attempt to migrate a misplaced page to the specified destination 2082 * node. Caller is expected to have an elevated reference count on 2083 * the page that will be dropped by this function before returning. 2084 */ 2085 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2086 int node) 2087 { 2088 pg_data_t *pgdat = NODE_DATA(node); 2089 int isolated; 2090 int nr_remaining; 2091 LIST_HEAD(migratepages); 2092 new_page_t *new; 2093 bool compound; 2094 int nr_pages = thp_nr_pages(page); 2095 2096 /* 2097 * PTE mapped THP or HugeTLB page can't reach here so the page could 2098 * be either base page or THP. And it must be head page if it is 2099 * THP. 2100 */ 2101 compound = PageTransHuge(page); 2102 2103 if (compound) 2104 new = alloc_misplaced_dst_page_thp; 2105 else 2106 new = alloc_misplaced_dst_page; 2107 2108 /* 2109 * Don't migrate file pages that are mapped in multiple processes 2110 * with execute permissions as they are probably shared libraries. 2111 */ 2112 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2113 (vma->vm_flags & VM_EXEC)) 2114 goto out; 2115 2116 /* 2117 * Also do not migrate dirty pages as not all filesystems can move 2118 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2119 */ 2120 if (page_is_file_lru(page) && PageDirty(page)) 2121 goto out; 2122 2123 isolated = numamigrate_isolate_page(pgdat, page); 2124 if (!isolated) 2125 goto out; 2126 2127 list_add(&page->lru, &migratepages); 2128 nr_remaining = migrate_pages(&migratepages, *new, NULL, node, 2129 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL); 2130 if (nr_remaining) { 2131 if (!list_empty(&migratepages)) { 2132 list_del(&page->lru); 2133 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2134 page_is_file_lru(page), -nr_pages); 2135 putback_lru_page(page); 2136 } 2137 isolated = 0; 2138 } else 2139 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages); 2140 BUG_ON(!list_empty(&migratepages)); 2141 return isolated; 2142 2143 out: 2144 put_page(page); 2145 return 0; 2146 } 2147 #endif /* CONFIG_NUMA_BALANCING */ 2148 #endif /* CONFIG_NUMA */ 2149 2150 #ifdef CONFIG_DEVICE_PRIVATE 2151 static int migrate_vma_collect_skip(unsigned long start, 2152 unsigned long end, 2153 struct mm_walk *walk) 2154 { 2155 struct migrate_vma *migrate = walk->private; 2156 unsigned long addr; 2157 2158 for (addr = start; addr < end; addr += PAGE_SIZE) { 2159 migrate->dst[migrate->npages] = 0; 2160 migrate->src[migrate->npages++] = 0; 2161 } 2162 2163 return 0; 2164 } 2165 2166 static int migrate_vma_collect_hole(unsigned long start, 2167 unsigned long end, 2168 __always_unused int depth, 2169 struct mm_walk *walk) 2170 { 2171 struct migrate_vma *migrate = walk->private; 2172 unsigned long addr; 2173 2174 /* Only allow populating anonymous memory. */ 2175 if (!vma_is_anonymous(walk->vma)) 2176 return migrate_vma_collect_skip(start, end, walk); 2177 2178 for (addr = start; addr < end; addr += PAGE_SIZE) { 2179 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2180 migrate->dst[migrate->npages] = 0; 2181 migrate->npages++; 2182 migrate->cpages++; 2183 } 2184 2185 return 0; 2186 } 2187 2188 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2189 unsigned long start, 2190 unsigned long end, 2191 struct mm_walk *walk) 2192 { 2193 struct migrate_vma *migrate = walk->private; 2194 struct vm_area_struct *vma = walk->vma; 2195 struct mm_struct *mm = vma->vm_mm; 2196 unsigned long addr = start, unmapped = 0; 2197 spinlock_t *ptl; 2198 pte_t *ptep; 2199 2200 again: 2201 if (pmd_none(*pmdp)) 2202 return migrate_vma_collect_hole(start, end, -1, walk); 2203 2204 if (pmd_trans_huge(*pmdp)) { 2205 struct page *page; 2206 2207 ptl = pmd_lock(mm, pmdp); 2208 if (unlikely(!pmd_trans_huge(*pmdp))) { 2209 spin_unlock(ptl); 2210 goto again; 2211 } 2212 2213 page = pmd_page(*pmdp); 2214 if (is_huge_zero_page(page)) { 2215 spin_unlock(ptl); 2216 split_huge_pmd(vma, pmdp, addr); 2217 if (pmd_trans_unstable(pmdp)) 2218 return migrate_vma_collect_skip(start, end, 2219 walk); 2220 } else { 2221 int ret; 2222 2223 get_page(page); 2224 spin_unlock(ptl); 2225 if (unlikely(!trylock_page(page))) 2226 return migrate_vma_collect_skip(start, end, 2227 walk); 2228 ret = split_huge_page(page); 2229 unlock_page(page); 2230 put_page(page); 2231 if (ret) 2232 return migrate_vma_collect_skip(start, end, 2233 walk); 2234 if (pmd_none(*pmdp)) 2235 return migrate_vma_collect_hole(start, end, -1, 2236 walk); 2237 } 2238 } 2239 2240 if (unlikely(pmd_bad(*pmdp))) 2241 return migrate_vma_collect_skip(start, end, walk); 2242 2243 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2244 arch_enter_lazy_mmu_mode(); 2245 2246 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2247 unsigned long mpfn = 0, pfn; 2248 struct page *page; 2249 swp_entry_t entry; 2250 pte_t pte; 2251 2252 pte = *ptep; 2253 2254 if (pte_none(pte)) { 2255 if (vma_is_anonymous(vma)) { 2256 mpfn = MIGRATE_PFN_MIGRATE; 2257 migrate->cpages++; 2258 } 2259 goto next; 2260 } 2261 2262 if (!pte_present(pte)) { 2263 /* 2264 * Only care about unaddressable device page special 2265 * page table entry. Other special swap entries are not 2266 * migratable, and we ignore regular swapped page. 2267 */ 2268 entry = pte_to_swp_entry(pte); 2269 if (!is_device_private_entry(entry)) 2270 goto next; 2271 2272 page = pfn_swap_entry_to_page(entry); 2273 if (!(migrate->flags & 2274 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2275 page->pgmap->owner != migrate->pgmap_owner) 2276 goto next; 2277 2278 mpfn = migrate_pfn(page_to_pfn(page)) | 2279 MIGRATE_PFN_MIGRATE; 2280 if (is_writable_device_private_entry(entry)) 2281 mpfn |= MIGRATE_PFN_WRITE; 2282 } else { 2283 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2284 goto next; 2285 pfn = pte_pfn(pte); 2286 if (is_zero_pfn(pfn)) { 2287 mpfn = MIGRATE_PFN_MIGRATE; 2288 migrate->cpages++; 2289 goto next; 2290 } 2291 page = vm_normal_page(migrate->vma, addr, pte); 2292 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2293 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2294 } 2295 2296 /* FIXME support THP */ 2297 if (!page || !page->mapping || PageTransCompound(page)) { 2298 mpfn = 0; 2299 goto next; 2300 } 2301 2302 /* 2303 * By getting a reference on the page we pin it and that blocks 2304 * any kind of migration. Side effect is that it "freezes" the 2305 * pte. 2306 * 2307 * We drop this reference after isolating the page from the lru 2308 * for non device page (device page are not on the lru and thus 2309 * can't be dropped from it). 2310 */ 2311 get_page(page); 2312 2313 /* 2314 * Optimize for the common case where page is only mapped once 2315 * in one process. If we can lock the page, then we can safely 2316 * set up a special migration page table entry now. 2317 */ 2318 if (trylock_page(page)) { 2319 pte_t swp_pte; 2320 2321 migrate->cpages++; 2322 ptep_get_and_clear(mm, addr, ptep); 2323 2324 /* Setup special migration page table entry */ 2325 if (mpfn & MIGRATE_PFN_WRITE) 2326 entry = make_writable_migration_entry( 2327 page_to_pfn(page)); 2328 else 2329 entry = make_readable_migration_entry( 2330 page_to_pfn(page)); 2331 swp_pte = swp_entry_to_pte(entry); 2332 if (pte_present(pte)) { 2333 if (pte_soft_dirty(pte)) 2334 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2335 if (pte_uffd_wp(pte)) 2336 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2337 } else { 2338 if (pte_swp_soft_dirty(pte)) 2339 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2340 if (pte_swp_uffd_wp(pte)) 2341 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2342 } 2343 set_pte_at(mm, addr, ptep, swp_pte); 2344 2345 /* 2346 * This is like regular unmap: we remove the rmap and 2347 * drop page refcount. Page won't be freed, as we took 2348 * a reference just above. 2349 */ 2350 page_remove_rmap(page, false); 2351 put_page(page); 2352 2353 if (pte_present(pte)) 2354 unmapped++; 2355 } else { 2356 put_page(page); 2357 mpfn = 0; 2358 } 2359 2360 next: 2361 migrate->dst[migrate->npages] = 0; 2362 migrate->src[migrate->npages++] = mpfn; 2363 } 2364 arch_leave_lazy_mmu_mode(); 2365 pte_unmap_unlock(ptep - 1, ptl); 2366 2367 /* Only flush the TLB if we actually modified any entries */ 2368 if (unmapped) 2369 flush_tlb_range(walk->vma, start, end); 2370 2371 return 0; 2372 } 2373 2374 static const struct mm_walk_ops migrate_vma_walk_ops = { 2375 .pmd_entry = migrate_vma_collect_pmd, 2376 .pte_hole = migrate_vma_collect_hole, 2377 }; 2378 2379 /* 2380 * migrate_vma_collect() - collect pages over a range of virtual addresses 2381 * @migrate: migrate struct containing all migration information 2382 * 2383 * This will walk the CPU page table. For each virtual address backed by a 2384 * valid page, it updates the src array and takes a reference on the page, in 2385 * order to pin the page until we lock it and unmap it. 2386 */ 2387 static void migrate_vma_collect(struct migrate_vma *migrate) 2388 { 2389 struct mmu_notifier_range range; 2390 2391 /* 2392 * Note that the pgmap_owner is passed to the mmu notifier callback so 2393 * that the registered device driver can skip invalidating device 2394 * private page mappings that won't be migrated. 2395 */ 2396 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 2397 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 2398 migrate->pgmap_owner); 2399 mmu_notifier_invalidate_range_start(&range); 2400 2401 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2402 &migrate_vma_walk_ops, migrate); 2403 2404 mmu_notifier_invalidate_range_end(&range); 2405 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2406 } 2407 2408 /* 2409 * migrate_vma_check_page() - check if page is pinned or not 2410 * @page: struct page to check 2411 * 2412 * Pinned pages cannot be migrated. This is the same test as in 2413 * folio_migrate_mapping(), except that here we allow migration of a 2414 * ZONE_DEVICE page. 2415 */ 2416 static bool migrate_vma_check_page(struct page *page) 2417 { 2418 /* 2419 * One extra ref because caller holds an extra reference, either from 2420 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2421 * a device page. 2422 */ 2423 int extra = 1; 2424 2425 /* 2426 * FIXME support THP (transparent huge page), it is bit more complex to 2427 * check them than regular pages, because they can be mapped with a pmd 2428 * or with a pte (split pte mapping). 2429 */ 2430 if (PageCompound(page)) 2431 return false; 2432 2433 /* Page from ZONE_DEVICE have one extra reference */ 2434 if (is_zone_device_page(page)) { 2435 /* 2436 * Private page can never be pin as they have no valid pte and 2437 * GUP will fail for those. Yet if there is a pending migration 2438 * a thread might try to wait on the pte migration entry and 2439 * will bump the page reference count. Sadly there is no way to 2440 * differentiate a regular pin from migration wait. Hence to 2441 * avoid 2 racing thread trying to migrate back to CPU to enter 2442 * infinite loop (one stopping migration because the other is 2443 * waiting on pte migration entry). We always return true here. 2444 * 2445 * FIXME proper solution is to rework migration_entry_wait() so 2446 * it does not need to take a reference on page. 2447 */ 2448 return is_device_private_page(page); 2449 } 2450 2451 /* For file back page */ 2452 if (page_mapping(page)) 2453 extra += 1 + page_has_private(page); 2454 2455 if ((page_count(page) - extra) > page_mapcount(page)) 2456 return false; 2457 2458 return true; 2459 } 2460 2461 /* 2462 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2463 * @migrate: migrate struct containing all migration information 2464 * 2465 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 2466 * special migration pte entry and check if it has been pinned. Pinned pages are 2467 * restored because we cannot migrate them. 2468 * 2469 * This is the last step before we call the device driver callback to allocate 2470 * destination memory and copy contents of original page over to new page. 2471 */ 2472 static void migrate_vma_unmap(struct migrate_vma *migrate) 2473 { 2474 const unsigned long npages = migrate->npages; 2475 unsigned long i, restore = 0; 2476 bool allow_drain = true; 2477 2478 lru_add_drain(); 2479 2480 for (i = 0; i < npages; i++) { 2481 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2482 2483 if (!page) 2484 continue; 2485 2486 /* ZONE_DEVICE pages are not on LRU */ 2487 if (!is_zone_device_page(page)) { 2488 if (!PageLRU(page) && allow_drain) { 2489 /* Drain CPU's pagevec */ 2490 lru_add_drain_all(); 2491 allow_drain = false; 2492 } 2493 2494 if (isolate_lru_page(page)) { 2495 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2496 migrate->cpages--; 2497 restore++; 2498 continue; 2499 } 2500 2501 /* Drop the reference we took in collect */ 2502 put_page(page); 2503 } 2504 2505 if (page_mapped(page)) 2506 try_to_migrate(page, 0); 2507 2508 if (page_mapped(page) || !migrate_vma_check_page(page)) { 2509 if (!is_zone_device_page(page)) { 2510 get_page(page); 2511 putback_lru_page(page); 2512 } 2513 2514 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2515 migrate->cpages--; 2516 restore++; 2517 continue; 2518 } 2519 } 2520 2521 for (i = 0; i < npages && restore; i++) { 2522 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2523 2524 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2525 continue; 2526 2527 remove_migration_ptes(page, page, false); 2528 2529 migrate->src[i] = 0; 2530 unlock_page(page); 2531 put_page(page); 2532 restore--; 2533 } 2534 } 2535 2536 /** 2537 * migrate_vma_setup() - prepare to migrate a range of memory 2538 * @args: contains the vma, start, and pfns arrays for the migration 2539 * 2540 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2541 * without an error. 2542 * 2543 * Prepare to migrate a range of memory virtual address range by collecting all 2544 * the pages backing each virtual address in the range, saving them inside the 2545 * src array. Then lock those pages and unmap them. Once the pages are locked 2546 * and unmapped, check whether each page is pinned or not. Pages that aren't 2547 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2548 * corresponding src array entry. Then restores any pages that are pinned, by 2549 * remapping and unlocking those pages. 2550 * 2551 * The caller should then allocate destination memory and copy source memory to 2552 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2553 * flag set). Once these are allocated and copied, the caller must update each 2554 * corresponding entry in the dst array with the pfn value of the destination 2555 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 2556 * lock_page(). 2557 * 2558 * Note that the caller does not have to migrate all the pages that are marked 2559 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2560 * device memory to system memory. If the caller cannot migrate a device page 2561 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2562 * consequences for the userspace process, so it must be avoided if at all 2563 * possible. 2564 * 2565 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2566 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2567 * allowing the caller to allocate device memory for those unbacked virtual 2568 * addresses. For this the caller simply has to allocate device memory and 2569 * properly set the destination entry like for regular migration. Note that 2570 * this can still fail, and thus inside the device driver you must check if the 2571 * migration was successful for those entries after calling migrate_vma_pages(), 2572 * just like for regular migration. 2573 * 2574 * After that, the callers must call migrate_vma_pages() to go over each entry 2575 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2576 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2577 * then migrate_vma_pages() to migrate struct page information from the source 2578 * struct page to the destination struct page. If it fails to migrate the 2579 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2580 * src array. 2581 * 2582 * At this point all successfully migrated pages have an entry in the src 2583 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2584 * array entry with MIGRATE_PFN_VALID flag set. 2585 * 2586 * Once migrate_vma_pages() returns the caller may inspect which pages were 2587 * successfully migrated, and which were not. Successfully migrated pages will 2588 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2589 * 2590 * It is safe to update device page table after migrate_vma_pages() because 2591 * both destination and source page are still locked, and the mmap_lock is held 2592 * in read mode (hence no one can unmap the range being migrated). 2593 * 2594 * Once the caller is done cleaning up things and updating its page table (if it 2595 * chose to do so, this is not an obligation) it finally calls 2596 * migrate_vma_finalize() to update the CPU page table to point to new pages 2597 * for successfully migrated pages or otherwise restore the CPU page table to 2598 * point to the original source pages. 2599 */ 2600 int migrate_vma_setup(struct migrate_vma *args) 2601 { 2602 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2603 2604 args->start &= PAGE_MASK; 2605 args->end &= PAGE_MASK; 2606 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2607 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2608 return -EINVAL; 2609 if (nr_pages <= 0) 2610 return -EINVAL; 2611 if (args->start < args->vma->vm_start || 2612 args->start >= args->vma->vm_end) 2613 return -EINVAL; 2614 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2615 return -EINVAL; 2616 if (!args->src || !args->dst) 2617 return -EINVAL; 2618 2619 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2620 args->cpages = 0; 2621 args->npages = 0; 2622 2623 migrate_vma_collect(args); 2624 2625 if (args->cpages) 2626 migrate_vma_unmap(args); 2627 2628 /* 2629 * At this point pages are locked and unmapped, and thus they have 2630 * stable content and can safely be copied to destination memory that 2631 * is allocated by the drivers. 2632 */ 2633 return 0; 2634 2635 } 2636 EXPORT_SYMBOL(migrate_vma_setup); 2637 2638 /* 2639 * This code closely matches the code in: 2640 * __handle_mm_fault() 2641 * handle_pte_fault() 2642 * do_anonymous_page() 2643 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2644 * private page. 2645 */ 2646 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2647 unsigned long addr, 2648 struct page *page, 2649 unsigned long *src) 2650 { 2651 struct vm_area_struct *vma = migrate->vma; 2652 struct mm_struct *mm = vma->vm_mm; 2653 bool flush = false; 2654 spinlock_t *ptl; 2655 pte_t entry; 2656 pgd_t *pgdp; 2657 p4d_t *p4dp; 2658 pud_t *pudp; 2659 pmd_t *pmdp; 2660 pte_t *ptep; 2661 2662 /* Only allow populating anonymous memory */ 2663 if (!vma_is_anonymous(vma)) 2664 goto abort; 2665 2666 pgdp = pgd_offset(mm, addr); 2667 p4dp = p4d_alloc(mm, pgdp, addr); 2668 if (!p4dp) 2669 goto abort; 2670 pudp = pud_alloc(mm, p4dp, addr); 2671 if (!pudp) 2672 goto abort; 2673 pmdp = pmd_alloc(mm, pudp, addr); 2674 if (!pmdp) 2675 goto abort; 2676 2677 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2678 goto abort; 2679 2680 /* 2681 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2682 * pte_offset_map() on pmds where a huge pmd might be created 2683 * from a different thread. 2684 * 2685 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2686 * parallel threads are excluded by other means. 2687 * 2688 * Here we only have mmap_read_lock(mm). 2689 */ 2690 if (pte_alloc(mm, pmdp)) 2691 goto abort; 2692 2693 /* See the comment in pte_alloc_one_map() */ 2694 if (unlikely(pmd_trans_unstable(pmdp))) 2695 goto abort; 2696 2697 if (unlikely(anon_vma_prepare(vma))) 2698 goto abort; 2699 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 2700 goto abort; 2701 2702 /* 2703 * The memory barrier inside __SetPageUptodate makes sure that 2704 * preceding stores to the page contents become visible before 2705 * the set_pte_at() write. 2706 */ 2707 __SetPageUptodate(page); 2708 2709 if (is_zone_device_page(page)) { 2710 if (is_device_private_page(page)) { 2711 swp_entry_t swp_entry; 2712 2713 if (vma->vm_flags & VM_WRITE) 2714 swp_entry = make_writable_device_private_entry( 2715 page_to_pfn(page)); 2716 else 2717 swp_entry = make_readable_device_private_entry( 2718 page_to_pfn(page)); 2719 entry = swp_entry_to_pte(swp_entry); 2720 } else { 2721 /* 2722 * For now we only support migrating to un-addressable 2723 * device memory. 2724 */ 2725 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 2726 goto abort; 2727 } 2728 } else { 2729 entry = mk_pte(page, vma->vm_page_prot); 2730 if (vma->vm_flags & VM_WRITE) 2731 entry = pte_mkwrite(pte_mkdirty(entry)); 2732 } 2733 2734 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2735 2736 if (check_stable_address_space(mm)) 2737 goto unlock_abort; 2738 2739 if (pte_present(*ptep)) { 2740 unsigned long pfn = pte_pfn(*ptep); 2741 2742 if (!is_zero_pfn(pfn)) 2743 goto unlock_abort; 2744 flush = true; 2745 } else if (!pte_none(*ptep)) 2746 goto unlock_abort; 2747 2748 /* 2749 * Check for userfaultfd but do not deliver the fault. Instead, 2750 * just back off. 2751 */ 2752 if (userfaultfd_missing(vma)) 2753 goto unlock_abort; 2754 2755 inc_mm_counter(mm, MM_ANONPAGES); 2756 page_add_new_anon_rmap(page, vma, addr, false); 2757 if (!is_zone_device_page(page)) 2758 lru_cache_add_inactive_or_unevictable(page, vma); 2759 get_page(page); 2760 2761 if (flush) { 2762 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2763 ptep_clear_flush_notify(vma, addr, ptep); 2764 set_pte_at_notify(mm, addr, ptep, entry); 2765 update_mmu_cache(vma, addr, ptep); 2766 } else { 2767 /* No need to invalidate - it was non-present before */ 2768 set_pte_at(mm, addr, ptep, entry); 2769 update_mmu_cache(vma, addr, ptep); 2770 } 2771 2772 pte_unmap_unlock(ptep, ptl); 2773 *src = MIGRATE_PFN_MIGRATE; 2774 return; 2775 2776 unlock_abort: 2777 pte_unmap_unlock(ptep, ptl); 2778 abort: 2779 *src &= ~MIGRATE_PFN_MIGRATE; 2780 } 2781 2782 /** 2783 * migrate_vma_pages() - migrate meta-data from src page to dst page 2784 * @migrate: migrate struct containing all migration information 2785 * 2786 * This migrates struct page meta-data from source struct page to destination 2787 * struct page. This effectively finishes the migration from source page to the 2788 * destination page. 2789 */ 2790 void migrate_vma_pages(struct migrate_vma *migrate) 2791 { 2792 const unsigned long npages = migrate->npages; 2793 const unsigned long start = migrate->start; 2794 struct mmu_notifier_range range; 2795 unsigned long addr, i; 2796 bool notified = false; 2797 2798 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2799 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2800 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2801 struct address_space *mapping; 2802 int r; 2803 2804 if (!newpage) { 2805 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2806 continue; 2807 } 2808 2809 if (!page) { 2810 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2811 continue; 2812 if (!notified) { 2813 notified = true; 2814 2815 mmu_notifier_range_init_owner(&range, 2816 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 2817 migrate->vma->vm_mm, addr, migrate->end, 2818 migrate->pgmap_owner); 2819 mmu_notifier_invalidate_range_start(&range); 2820 } 2821 migrate_vma_insert_page(migrate, addr, newpage, 2822 &migrate->src[i]); 2823 continue; 2824 } 2825 2826 mapping = page_mapping(page); 2827 2828 if (is_zone_device_page(newpage)) { 2829 if (is_device_private_page(newpage)) { 2830 /* 2831 * For now only support private anonymous when 2832 * migrating to un-addressable device memory. 2833 */ 2834 if (mapping) { 2835 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2836 continue; 2837 } 2838 } else { 2839 /* 2840 * Other types of ZONE_DEVICE page are not 2841 * supported. 2842 */ 2843 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2844 continue; 2845 } 2846 } 2847 2848 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2849 if (r != MIGRATEPAGE_SUCCESS) 2850 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2851 } 2852 2853 /* 2854 * No need to double call mmu_notifier->invalidate_range() callback as 2855 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2856 * did already call it. 2857 */ 2858 if (notified) 2859 mmu_notifier_invalidate_range_only_end(&range); 2860 } 2861 EXPORT_SYMBOL(migrate_vma_pages); 2862 2863 /** 2864 * migrate_vma_finalize() - restore CPU page table entry 2865 * @migrate: migrate struct containing all migration information 2866 * 2867 * This replaces the special migration pte entry with either a mapping to the 2868 * new page if migration was successful for that page, or to the original page 2869 * otherwise. 2870 * 2871 * This also unlocks the pages and puts them back on the lru, or drops the extra 2872 * refcount, for device pages. 2873 */ 2874 void migrate_vma_finalize(struct migrate_vma *migrate) 2875 { 2876 const unsigned long npages = migrate->npages; 2877 unsigned long i; 2878 2879 for (i = 0; i < npages; i++) { 2880 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2881 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2882 2883 if (!page) { 2884 if (newpage) { 2885 unlock_page(newpage); 2886 put_page(newpage); 2887 } 2888 continue; 2889 } 2890 2891 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2892 if (newpage) { 2893 unlock_page(newpage); 2894 put_page(newpage); 2895 } 2896 newpage = page; 2897 } 2898 2899 remove_migration_ptes(page, newpage, false); 2900 unlock_page(page); 2901 2902 if (is_zone_device_page(page)) 2903 put_page(page); 2904 else 2905 putback_lru_page(page); 2906 2907 if (newpage != page) { 2908 unlock_page(newpage); 2909 if (is_zone_device_page(newpage)) 2910 put_page(newpage); 2911 else 2912 putback_lru_page(newpage); 2913 } 2914 } 2915 } 2916 EXPORT_SYMBOL(migrate_vma_finalize); 2917 #endif /* CONFIG_DEVICE_PRIVATE */ 2918 2919 /* 2920 * node_demotion[] example: 2921 * 2922 * Consider a system with two sockets. Each socket has 2923 * three classes of memory attached: fast, medium and slow. 2924 * Each memory class is placed in its own NUMA node. The 2925 * CPUs are placed in the node with the "fast" memory. The 2926 * 6 NUMA nodes (0-5) might be split among the sockets like 2927 * this: 2928 * 2929 * Socket A: 0, 1, 2 2930 * Socket B: 3, 4, 5 2931 * 2932 * When Node 0 fills up, its memory should be migrated to 2933 * Node 1. When Node 1 fills up, it should be migrated to 2934 * Node 2. The migration path start on the nodes with the 2935 * processors (since allocations default to this node) and 2936 * fast memory, progress through medium and end with the 2937 * slow memory: 2938 * 2939 * 0 -> 1 -> 2 -> stop 2940 * 3 -> 4 -> 5 -> stop 2941 * 2942 * This is represented in the node_demotion[] like this: 2943 * 2944 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1 2945 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2 2946 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate 2947 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4 2948 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5 2949 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate 2950 * 2951 * Moreover some systems may have multiple slow memory nodes. 2952 * Suppose a system has one socket with 3 memory nodes, node 0 2953 * is fast memory type, and node 1/2 both are slow memory 2954 * type, and the distance between fast memory node and slow 2955 * memory node is same. So the migration path should be: 2956 * 2957 * 0 -> 1/2 -> stop 2958 * 2959 * This is represented in the node_demotion[] like this: 2960 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 2961 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate 2962 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate 2963 */ 2964 2965 /* 2966 * Writes to this array occur without locking. Cycles are 2967 * not allowed: Node X demotes to Y which demotes to X... 2968 * 2969 * If multiple reads are performed, a single rcu_read_lock() 2970 * must be held over all reads to ensure that no cycles are 2971 * observed. 2972 */ 2973 #define DEFAULT_DEMOTION_TARGET_NODES 15 2974 2975 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES 2976 #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1) 2977 #else 2978 #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES 2979 #endif 2980 2981 struct demotion_nodes { 2982 unsigned short nr; 2983 short nodes[DEMOTION_TARGET_NODES]; 2984 }; 2985 2986 static struct demotion_nodes *node_demotion __read_mostly; 2987 2988 /** 2989 * next_demotion_node() - Get the next node in the demotion path 2990 * @node: The starting node to lookup the next node 2991 * 2992 * Return: node id for next memory node in the demotion path hierarchy 2993 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 2994 * @node online or guarantee that it *continues* to be the next demotion 2995 * target. 2996 */ 2997 int next_demotion_node(int node) 2998 { 2999 struct demotion_nodes *nd; 3000 unsigned short target_nr, index; 3001 int target; 3002 3003 if (!node_demotion) 3004 return NUMA_NO_NODE; 3005 3006 nd = &node_demotion[node]; 3007 3008 /* 3009 * node_demotion[] is updated without excluding this 3010 * function from running. RCU doesn't provide any 3011 * compiler barriers, so the READ_ONCE() is required 3012 * to avoid compiler reordering or read merging. 3013 * 3014 * Make sure to use RCU over entire code blocks if 3015 * node_demotion[] reads need to be consistent. 3016 */ 3017 rcu_read_lock(); 3018 target_nr = READ_ONCE(nd->nr); 3019 3020 switch (target_nr) { 3021 case 0: 3022 target = NUMA_NO_NODE; 3023 goto out; 3024 case 1: 3025 index = 0; 3026 break; 3027 default: 3028 /* 3029 * If there are multiple target nodes, just select one 3030 * target node randomly. 3031 * 3032 * In addition, we can also use round-robin to select 3033 * target node, but we should introduce another variable 3034 * for node_demotion[] to record last selected target node, 3035 * that may cause cache ping-pong due to the changing of 3036 * last target node. Or introducing per-cpu data to avoid 3037 * caching issue, which seems more complicated. So selecting 3038 * target node randomly seems better until now. 3039 */ 3040 index = get_random_int() % target_nr; 3041 break; 3042 } 3043 3044 target = READ_ONCE(nd->nodes[index]); 3045 3046 out: 3047 rcu_read_unlock(); 3048 return target; 3049 } 3050 3051 #if defined(CONFIG_HOTPLUG_CPU) 3052 /* Disable reclaim-based migration. */ 3053 static void __disable_all_migrate_targets(void) 3054 { 3055 int node, i; 3056 3057 if (!node_demotion) 3058 return; 3059 3060 for_each_online_node(node) { 3061 node_demotion[node].nr = 0; 3062 for (i = 0; i < DEMOTION_TARGET_NODES; i++) 3063 node_demotion[node].nodes[i] = NUMA_NO_NODE; 3064 } 3065 } 3066 3067 static void disable_all_migrate_targets(void) 3068 { 3069 __disable_all_migrate_targets(); 3070 3071 /* 3072 * Ensure that the "disable" is visible across the system. 3073 * Readers will see either a combination of before+disable 3074 * state or disable+after. They will never see before and 3075 * after state together. 3076 * 3077 * The before+after state together might have cycles and 3078 * could cause readers to do things like loop until this 3079 * function finishes. This ensures they can only see a 3080 * single "bad" read and would, for instance, only loop 3081 * once. 3082 */ 3083 synchronize_rcu(); 3084 } 3085 3086 /* 3087 * Find an automatic demotion target for 'node'. 3088 * Failing here is OK. It might just indicate 3089 * being at the end of a chain. 3090 */ 3091 static int establish_migrate_target(int node, nodemask_t *used, 3092 int best_distance) 3093 { 3094 int migration_target, index, val; 3095 struct demotion_nodes *nd; 3096 3097 if (!node_demotion) 3098 return NUMA_NO_NODE; 3099 3100 nd = &node_demotion[node]; 3101 3102 migration_target = find_next_best_node(node, used); 3103 if (migration_target == NUMA_NO_NODE) 3104 return NUMA_NO_NODE; 3105 3106 /* 3107 * If the node has been set a migration target node before, 3108 * which means it's the best distance between them. Still 3109 * check if this node can be demoted to other target nodes 3110 * if they have a same best distance. 3111 */ 3112 if (best_distance != -1) { 3113 val = node_distance(node, migration_target); 3114 if (val > best_distance) 3115 return NUMA_NO_NODE; 3116 } 3117 3118 index = nd->nr; 3119 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, 3120 "Exceeds maximum demotion target nodes\n")) 3121 return NUMA_NO_NODE; 3122 3123 nd->nodes[index] = migration_target; 3124 nd->nr++; 3125 3126 return migration_target; 3127 } 3128 3129 /* 3130 * When memory fills up on a node, memory contents can be 3131 * automatically migrated to another node instead of 3132 * discarded at reclaim. 3133 * 3134 * Establish a "migration path" which will start at nodes 3135 * with CPUs and will follow the priorities used to build the 3136 * page allocator zonelists. 3137 * 3138 * The difference here is that cycles must be avoided. If 3139 * node0 migrates to node1, then neither node1, nor anything 3140 * node1 migrates to can migrate to node0. Also one node can 3141 * be migrated to multiple nodes if the target nodes all have 3142 * a same best-distance against the source node. 3143 * 3144 * This function can run simultaneously with readers of 3145 * node_demotion[]. However, it can not run simultaneously 3146 * with itself. Exclusion is provided by memory hotplug events 3147 * being single-threaded. 3148 */ 3149 static void __set_migration_target_nodes(void) 3150 { 3151 nodemask_t next_pass = NODE_MASK_NONE; 3152 nodemask_t this_pass = NODE_MASK_NONE; 3153 nodemask_t used_targets = NODE_MASK_NONE; 3154 int node, best_distance; 3155 3156 /* 3157 * Avoid any oddities like cycles that could occur 3158 * from changes in the topology. This will leave 3159 * a momentary gap when migration is disabled. 3160 */ 3161 disable_all_migrate_targets(); 3162 3163 /* 3164 * Allocations go close to CPUs, first. Assume that 3165 * the migration path starts at the nodes with CPUs. 3166 */ 3167 next_pass = node_states[N_CPU]; 3168 again: 3169 this_pass = next_pass; 3170 next_pass = NODE_MASK_NONE; 3171 /* 3172 * To avoid cycles in the migration "graph", ensure 3173 * that migration sources are not future targets by 3174 * setting them in 'used_targets'. Do this only 3175 * once per pass so that multiple source nodes can 3176 * share a target node. 3177 * 3178 * 'used_targets' will become unavailable in future 3179 * passes. This limits some opportunities for 3180 * multiple source nodes to share a destination. 3181 */ 3182 nodes_or(used_targets, used_targets, this_pass); 3183 3184 for_each_node_mask(node, this_pass) { 3185 best_distance = -1; 3186 3187 /* 3188 * Try to set up the migration path for the node, and the target 3189 * migration nodes can be multiple, so doing a loop to find all 3190 * the target nodes if they all have a best node distance. 3191 */ 3192 do { 3193 int target_node = 3194 establish_migrate_target(node, &used_targets, 3195 best_distance); 3196 3197 if (target_node == NUMA_NO_NODE) 3198 break; 3199 3200 if (best_distance == -1) 3201 best_distance = node_distance(node, target_node); 3202 3203 /* 3204 * Visit targets from this pass in the next pass. 3205 * Eventually, every node will have been part of 3206 * a pass, and will become set in 'used_targets'. 3207 */ 3208 node_set(target_node, next_pass); 3209 } while (1); 3210 } 3211 /* 3212 * 'next_pass' contains nodes which became migration 3213 * targets in this pass. Make additional passes until 3214 * no more migrations targets are available. 3215 */ 3216 if (!nodes_empty(next_pass)) 3217 goto again; 3218 } 3219 3220 /* 3221 * For callers that do not hold get_online_mems() already. 3222 */ 3223 static void set_migration_target_nodes(void) 3224 { 3225 get_online_mems(); 3226 __set_migration_target_nodes(); 3227 put_online_mems(); 3228 } 3229 3230 /* 3231 * This leaves migrate-on-reclaim transiently disabled between 3232 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 3233 * whether reclaim-based migration is enabled or not, which 3234 * ensures that the user can turn reclaim-based migration at 3235 * any time without needing to recalculate migration targets. 3236 * 3237 * These callbacks already hold get_online_mems(). That is why 3238 * __set_migration_target_nodes() can be used as opposed to 3239 * set_migration_target_nodes(). 3240 */ 3241 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 3242 unsigned long action, void *_arg) 3243 { 3244 struct memory_notify *arg = _arg; 3245 3246 /* 3247 * Only update the node migration order when a node is 3248 * changing status, like online->offline. This avoids 3249 * the overhead of synchronize_rcu() in most cases. 3250 */ 3251 if (arg->status_change_nid < 0) 3252 return notifier_from_errno(0); 3253 3254 switch (action) { 3255 case MEM_GOING_OFFLINE: 3256 /* 3257 * Make sure there are not transient states where 3258 * an offline node is a migration target. This 3259 * will leave migration disabled until the offline 3260 * completes and the MEM_OFFLINE case below runs. 3261 */ 3262 disable_all_migrate_targets(); 3263 break; 3264 case MEM_OFFLINE: 3265 case MEM_ONLINE: 3266 /* 3267 * Recalculate the target nodes once the node 3268 * reaches its final state (online or offline). 3269 */ 3270 __set_migration_target_nodes(); 3271 break; 3272 case MEM_CANCEL_OFFLINE: 3273 /* 3274 * MEM_GOING_OFFLINE disabled all the migration 3275 * targets. Reenable them. 3276 */ 3277 __set_migration_target_nodes(); 3278 break; 3279 case MEM_GOING_ONLINE: 3280 case MEM_CANCEL_ONLINE: 3281 break; 3282 } 3283 3284 return notifier_from_errno(0); 3285 } 3286 3287 /* 3288 * React to hotplug events that might affect the migration targets 3289 * like events that online or offline NUMA nodes. 3290 * 3291 * The ordering is also currently dependent on which nodes have 3292 * CPUs. That means we need CPU on/offline notification too. 3293 */ 3294 static int migration_online_cpu(unsigned int cpu) 3295 { 3296 set_migration_target_nodes(); 3297 return 0; 3298 } 3299 3300 static int migration_offline_cpu(unsigned int cpu) 3301 { 3302 set_migration_target_nodes(); 3303 return 0; 3304 } 3305 3306 static int __init migrate_on_reclaim_init(void) 3307 { 3308 int ret; 3309 3310 node_demotion = kmalloc_array(nr_node_ids, 3311 sizeof(struct demotion_nodes), 3312 GFP_KERNEL); 3313 WARN_ON(!node_demotion); 3314 3315 ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline", 3316 NULL, migration_offline_cpu); 3317 /* 3318 * In the unlikely case that this fails, the automatic 3319 * migration targets may become suboptimal for nodes 3320 * where N_CPU changes. With such a small impact in a 3321 * rare case, do not bother trying to do anything special. 3322 */ 3323 WARN_ON(ret < 0); 3324 ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online", 3325 migration_online_cpu, NULL); 3326 WARN_ON(ret < 0); 3327 3328 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 3329 return 0; 3330 } 3331 late_initcall(migrate_on_reclaim_init); 3332 #endif /* CONFIG_HOTPLUG_CPU */ 3333 3334 bool numa_demotion_enabled = false; 3335 3336 #ifdef CONFIG_SYSFS 3337 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 3338 struct kobj_attribute *attr, char *buf) 3339 { 3340 return sysfs_emit(buf, "%s\n", 3341 numa_demotion_enabled ? "true" : "false"); 3342 } 3343 3344 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 3345 struct kobj_attribute *attr, 3346 const char *buf, size_t count) 3347 { 3348 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 3349 numa_demotion_enabled = true; 3350 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 3351 numa_demotion_enabled = false; 3352 else 3353 return -EINVAL; 3354 3355 return count; 3356 } 3357 3358 static struct kobj_attribute numa_demotion_enabled_attr = 3359 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 3360 numa_demotion_enabled_store); 3361 3362 static struct attribute *numa_attrs[] = { 3363 &numa_demotion_enabled_attr.attr, 3364 NULL, 3365 }; 3366 3367 static const struct attribute_group numa_attr_group = { 3368 .attrs = numa_attrs, 3369 }; 3370 3371 static int __init numa_init_sysfs(void) 3372 { 3373 int err; 3374 struct kobject *numa_kobj; 3375 3376 numa_kobj = kobject_create_and_add("numa", mm_kobj); 3377 if (!numa_kobj) { 3378 pr_err("failed to create numa kobject\n"); 3379 return -ENOMEM; 3380 } 3381 err = sysfs_create_group(numa_kobj, &numa_attr_group); 3382 if (err) { 3383 pr_err("failed to register numa group\n"); 3384 goto delete_obj; 3385 } 3386 return 0; 3387 3388 delete_obj: 3389 kobject_put(numa_kobj); 3390 return err; 3391 } 3392 subsys_initcall(numa_init_sysfs); 3393 #endif 3394