xref: /openbmc/linux/mm/migrate.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 void migrate_prep(void)
66 {
67 	/*
68 	 * Clear the LRU lists so pages can be isolated.
69 	 * Note that pages may be moved off the LRU after we have
70 	 * drained them. Those pages will fail to migrate like other
71 	 * pages that may be busy.
72 	 */
73 	lru_add_drain_all();
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 }
81 
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84 	struct address_space *mapping;
85 
86 	/*
87 	 * Avoid burning cycles with pages that are yet under __free_pages(),
88 	 * or just got freed under us.
89 	 *
90 	 * In case we 'win' a race for a movable page being freed under us and
91 	 * raise its refcount preventing __free_pages() from doing its job
92 	 * the put_page() at the end of this block will take care of
93 	 * release this page, thus avoiding a nasty leakage.
94 	 */
95 	if (unlikely(!get_page_unless_zero(page)))
96 		goto out;
97 
98 	/*
99 	 * Check PageMovable before holding a PG_lock because page's owner
100 	 * assumes anybody doesn't touch PG_lock of newly allocated page
101 	 * so unconditionally grabbing the lock ruins page's owner side.
102 	 */
103 	if (unlikely(!__PageMovable(page)))
104 		goto out_putpage;
105 	/*
106 	 * As movable pages are not isolated from LRU lists, concurrent
107 	 * compaction threads can race against page migration functions
108 	 * as well as race against the releasing a page.
109 	 *
110 	 * In order to avoid having an already isolated movable page
111 	 * being (wrongly) re-isolated while it is under migration,
112 	 * or to avoid attempting to isolate pages being released,
113 	 * lets be sure we have the page lock
114 	 * before proceeding with the movable page isolation steps.
115 	 */
116 	if (unlikely(!trylock_page(page)))
117 		goto out_putpage;
118 
119 	if (!PageMovable(page) || PageIsolated(page))
120 		goto out_no_isolated;
121 
122 	mapping = page_mapping(page);
123 	VM_BUG_ON_PAGE(!mapping, page);
124 
125 	if (!mapping->a_ops->isolate_page(page, mode))
126 		goto out_no_isolated;
127 
128 	/* Driver shouldn't use PG_isolated bit of page->flags */
129 	WARN_ON_ONCE(PageIsolated(page));
130 	__SetPageIsolated(page);
131 	unlock_page(page);
132 
133 	return 0;
134 
135 out_no_isolated:
136 	unlock_page(page);
137 out_putpage:
138 	put_page(page);
139 out:
140 	return -EBUSY;
141 }
142 
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146 	struct address_space *mapping;
147 
148 	VM_BUG_ON_PAGE(!PageLocked(page), page);
149 	VM_BUG_ON_PAGE(!PageMovable(page), page);
150 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
151 
152 	mapping = page_mapping(page);
153 	mapping->a_ops->putback_page(page);
154 	__ClearPageIsolated(page);
155 }
156 
157 /*
158  * Put previously isolated pages back onto the appropriate lists
159  * from where they were once taken off for compaction/migration.
160  *
161  * This function shall be used whenever the isolated pageset has been
162  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163  * and isolate_huge_page().
164  */
165 void putback_movable_pages(struct list_head *l)
166 {
167 	struct page *page;
168 	struct page *page2;
169 
170 	list_for_each_entry_safe(page, page2, l, lru) {
171 		if (unlikely(PageHuge(page))) {
172 			putback_active_hugepage(page);
173 			continue;
174 		}
175 		list_del(&page->lru);
176 		/*
177 		 * We isolated non-lru movable page so here we can use
178 		 * __PageMovable because LRU page's mapping cannot have
179 		 * PAGE_MAPPING_MOVABLE.
180 		 */
181 		if (unlikely(__PageMovable(page))) {
182 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 			lock_page(page);
184 			if (PageMovable(page))
185 				putback_movable_page(page);
186 			else
187 				__ClearPageIsolated(page);
188 			unlock_page(page);
189 			put_page(page);
190 		} else {
191 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 					page_is_file_lru(page), -thp_nr_pages(page));
193 			putback_lru_page(page);
194 		}
195 	}
196 }
197 
198 /*
199  * Restore a potential migration pte to a working pte entry
200  */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 				 unsigned long addr, void *old)
203 {
204 	struct page_vma_mapped_walk pvmw = {
205 		.page = old,
206 		.vma = vma,
207 		.address = addr,
208 		.flags = PVMW_SYNC | PVMW_MIGRATION,
209 	};
210 	struct page *new;
211 	pte_t pte;
212 	swp_entry_t entry;
213 
214 	VM_BUG_ON_PAGE(PageTail(page), page);
215 	while (page_vma_mapped_walk(&pvmw)) {
216 		if (PageKsm(page))
217 			new = page;
218 		else
219 			new = page - pvmw.page->index +
220 				linear_page_index(vma, pvmw.address);
221 
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 		/* PMD-mapped THP migration entry */
224 		if (!pvmw.pte) {
225 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 			remove_migration_pmd(&pvmw, new);
227 			continue;
228 		}
229 #endif
230 
231 		get_page(new);
232 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 		if (pte_swp_soft_dirty(*pvmw.pte))
234 			pte = pte_mksoft_dirty(pte);
235 
236 		/*
237 		 * Recheck VMA as permissions can change since migration started
238 		 */
239 		entry = pte_to_swp_entry(*pvmw.pte);
240 		if (is_write_migration_entry(entry))
241 			pte = maybe_mkwrite(pte, vma);
242 		else if (pte_swp_uffd_wp(*pvmw.pte))
243 			pte = pte_mkuffd_wp(pte);
244 
245 		if (unlikely(is_device_private_page(new))) {
246 			entry = make_device_private_entry(new, pte_write(pte));
247 			pte = swp_entry_to_pte(entry);
248 			if (pte_swp_soft_dirty(*pvmw.pte))
249 				pte = pte_swp_mksoft_dirty(pte);
250 			if (pte_swp_uffd_wp(*pvmw.pte))
251 				pte = pte_swp_mkuffd_wp(pte);
252 		}
253 
254 #ifdef CONFIG_HUGETLB_PAGE
255 		if (PageHuge(new)) {
256 			pte = pte_mkhuge(pte);
257 			pte = arch_make_huge_pte(pte, vma, new, 0);
258 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 			if (PageAnon(new))
260 				hugepage_add_anon_rmap(new, vma, pvmw.address);
261 			else
262 				page_dup_rmap(new, true);
263 		} else
264 #endif
265 		{
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 
268 			if (PageAnon(new))
269 				page_add_anon_rmap(new, vma, pvmw.address, false);
270 			else
271 				page_add_file_rmap(new, false);
272 		}
273 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 			mlock_vma_page(new);
275 
276 		if (PageTransHuge(page) && PageMlocked(page))
277 			clear_page_mlock(page);
278 
279 		/* No need to invalidate - it was non-present before */
280 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 	}
282 
283 	return true;
284 }
285 
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 	struct rmap_walk_control rwc = {
293 		.rmap_one = remove_migration_pte,
294 		.arg = old,
295 	};
296 
297 	if (locked)
298 		rmap_walk_locked(new, &rwc);
299 	else
300 		rmap_walk(new, &rwc);
301 }
302 
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 				spinlock_t *ptl)
310 {
311 	pte_t pte;
312 	swp_entry_t entry;
313 	struct page *page;
314 
315 	spin_lock(ptl);
316 	pte = *ptep;
317 	if (!is_swap_pte(pte))
318 		goto out;
319 
320 	entry = pte_to_swp_entry(pte);
321 	if (!is_migration_entry(entry))
322 		goto out;
323 
324 	page = migration_entry_to_page(entry);
325 
326 	/*
327 	 * Once page cache replacement of page migration started, page_count
328 	 * is zero; but we must not call put_and_wait_on_page_locked() without
329 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 	 */
331 	if (!get_page_unless_zero(page))
332 		goto out;
333 	pte_unmap_unlock(ptep, ptl);
334 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
335 	return;
336 out:
337 	pte_unmap_unlock(ptep, ptl);
338 }
339 
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 				unsigned long address)
342 {
343 	spinlock_t *ptl = pte_lockptr(mm, pmd);
344 	pte_t *ptep = pte_offset_map(pmd, address);
345 	__migration_entry_wait(mm, ptep, ptl);
346 }
347 
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 		struct mm_struct *mm, pte_t *pte)
350 {
351 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 	__migration_entry_wait(mm, pte, ptl);
353 }
354 
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 	spinlock_t *ptl;
359 	struct page *page;
360 
361 	ptl = pmd_lock(mm, pmd);
362 	if (!is_pmd_migration_entry(*pmd))
363 		goto unlock;
364 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 	if (!get_page_unless_zero(page))
366 		goto unlock;
367 	spin_unlock(ptl);
368 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
369 	return;
370 unlock:
371 	spin_unlock(ptl);
372 }
373 #endif
374 
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 	int expected_count = 1;
378 
379 	/*
380 	 * Device private pages have an extra refcount as they are
381 	 * ZONE_DEVICE pages.
382 	 */
383 	expected_count += is_device_private_page(page);
384 	if (mapping)
385 		expected_count += thp_nr_pages(page) + page_has_private(page);
386 
387 	return expected_count;
388 }
389 
390 /*
391  * Replace the page in the mapping.
392  *
393  * The number of remaining references must be:
394  * 1 for anonymous pages without a mapping
395  * 2 for pages with a mapping
396  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397  */
398 int migrate_page_move_mapping(struct address_space *mapping,
399 		struct page *newpage, struct page *page, int extra_count)
400 {
401 	XA_STATE(xas, &mapping->i_pages, page_index(page));
402 	struct zone *oldzone, *newzone;
403 	int dirty;
404 	int expected_count = expected_page_refs(mapping, page) + extra_count;
405 	int nr = thp_nr_pages(page);
406 
407 	if (!mapping) {
408 		/* Anonymous page without mapping */
409 		if (page_count(page) != expected_count)
410 			return -EAGAIN;
411 
412 		/* No turning back from here */
413 		newpage->index = page->index;
414 		newpage->mapping = page->mapping;
415 		if (PageSwapBacked(page))
416 			__SetPageSwapBacked(newpage);
417 
418 		return MIGRATEPAGE_SUCCESS;
419 	}
420 
421 	oldzone = page_zone(page);
422 	newzone = page_zone(newpage);
423 
424 	xas_lock_irq(&xas);
425 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
426 		xas_unlock_irq(&xas);
427 		return -EAGAIN;
428 	}
429 
430 	if (!page_ref_freeze(page, expected_count)) {
431 		xas_unlock_irq(&xas);
432 		return -EAGAIN;
433 	}
434 
435 	/*
436 	 * Now we know that no one else is looking at the page:
437 	 * no turning back from here.
438 	 */
439 	newpage->index = page->index;
440 	newpage->mapping = page->mapping;
441 	page_ref_add(newpage, nr); /* add cache reference */
442 	if (PageSwapBacked(page)) {
443 		__SetPageSwapBacked(newpage);
444 		if (PageSwapCache(page)) {
445 			SetPageSwapCache(newpage);
446 			set_page_private(newpage, page_private(page));
447 		}
448 	} else {
449 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
450 	}
451 
452 	/* Move dirty while page refs frozen and newpage not yet exposed */
453 	dirty = PageDirty(page);
454 	if (dirty) {
455 		ClearPageDirty(page);
456 		SetPageDirty(newpage);
457 	}
458 
459 	xas_store(&xas, newpage);
460 	if (PageTransHuge(page)) {
461 		int i;
462 
463 		for (i = 1; i < nr; i++) {
464 			xas_next(&xas);
465 			xas_store(&xas, newpage);
466 		}
467 	}
468 
469 	/*
470 	 * Drop cache reference from old page by unfreezing
471 	 * to one less reference.
472 	 * We know this isn't the last reference.
473 	 */
474 	page_ref_unfreeze(page, expected_count - nr);
475 
476 	xas_unlock(&xas);
477 	/* Leave irq disabled to prevent preemption while updating stats */
478 
479 	/*
480 	 * If moved to a different zone then also account
481 	 * the page for that zone. Other VM counters will be
482 	 * taken care of when we establish references to the
483 	 * new page and drop references to the old page.
484 	 *
485 	 * Note that anonymous pages are accounted for
486 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 	 * are mapped to swap space.
488 	 */
489 	if (newzone != oldzone) {
490 		struct lruvec *old_lruvec, *new_lruvec;
491 		struct mem_cgroup *memcg;
492 
493 		memcg = page_memcg(page);
494 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
496 
497 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
499 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
500 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
502 		}
503 #ifdef CONFIG_SWAP
504 		if (PageSwapCache(page)) {
505 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
506 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
507 		}
508 #endif
509 		if (dirty && mapping_can_writeback(mapping)) {
510 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
511 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
512 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
513 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
514 		}
515 	}
516 	local_irq_enable();
517 
518 	return MIGRATEPAGE_SUCCESS;
519 }
520 EXPORT_SYMBOL(migrate_page_move_mapping);
521 
522 /*
523  * The expected number of remaining references is the same as that
524  * of migrate_page_move_mapping().
525  */
526 int migrate_huge_page_move_mapping(struct address_space *mapping,
527 				   struct page *newpage, struct page *page)
528 {
529 	XA_STATE(xas, &mapping->i_pages, page_index(page));
530 	int expected_count;
531 
532 	xas_lock_irq(&xas);
533 	expected_count = 2 + page_has_private(page);
534 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
535 		xas_unlock_irq(&xas);
536 		return -EAGAIN;
537 	}
538 
539 	if (!page_ref_freeze(page, expected_count)) {
540 		xas_unlock_irq(&xas);
541 		return -EAGAIN;
542 	}
543 
544 	newpage->index = page->index;
545 	newpage->mapping = page->mapping;
546 
547 	get_page(newpage);
548 
549 	xas_store(&xas, newpage);
550 
551 	page_ref_unfreeze(page, expected_count - 1);
552 
553 	xas_unlock_irq(&xas);
554 
555 	return MIGRATEPAGE_SUCCESS;
556 }
557 
558 /*
559  * Gigantic pages are so large that we do not guarantee that page++ pointer
560  * arithmetic will work across the entire page.  We need something more
561  * specialized.
562  */
563 static void __copy_gigantic_page(struct page *dst, struct page *src,
564 				int nr_pages)
565 {
566 	int i;
567 	struct page *dst_base = dst;
568 	struct page *src_base = src;
569 
570 	for (i = 0; i < nr_pages; ) {
571 		cond_resched();
572 		copy_highpage(dst, src);
573 
574 		i++;
575 		dst = mem_map_next(dst, dst_base, i);
576 		src = mem_map_next(src, src_base, i);
577 	}
578 }
579 
580 static void copy_huge_page(struct page *dst, struct page *src)
581 {
582 	int i;
583 	int nr_pages;
584 
585 	if (PageHuge(src)) {
586 		/* hugetlbfs page */
587 		struct hstate *h = page_hstate(src);
588 		nr_pages = pages_per_huge_page(h);
589 
590 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
591 			__copy_gigantic_page(dst, src, nr_pages);
592 			return;
593 		}
594 	} else {
595 		/* thp page */
596 		BUG_ON(!PageTransHuge(src));
597 		nr_pages = thp_nr_pages(src);
598 	}
599 
600 	for (i = 0; i < nr_pages; i++) {
601 		cond_resched();
602 		copy_highpage(dst + i, src + i);
603 	}
604 }
605 
606 /*
607  * Copy the page to its new location
608  */
609 void migrate_page_states(struct page *newpage, struct page *page)
610 {
611 	int cpupid;
612 
613 	if (PageError(page))
614 		SetPageError(newpage);
615 	if (PageReferenced(page))
616 		SetPageReferenced(newpage);
617 	if (PageUptodate(page))
618 		SetPageUptodate(newpage);
619 	if (TestClearPageActive(page)) {
620 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
621 		SetPageActive(newpage);
622 	} else if (TestClearPageUnevictable(page))
623 		SetPageUnevictable(newpage);
624 	if (PageWorkingset(page))
625 		SetPageWorkingset(newpage);
626 	if (PageChecked(page))
627 		SetPageChecked(newpage);
628 	if (PageMappedToDisk(page))
629 		SetPageMappedToDisk(newpage);
630 
631 	/* Move dirty on pages not done by migrate_page_move_mapping() */
632 	if (PageDirty(page))
633 		SetPageDirty(newpage);
634 
635 	if (page_is_young(page))
636 		set_page_young(newpage);
637 	if (page_is_idle(page))
638 		set_page_idle(newpage);
639 
640 	/*
641 	 * Copy NUMA information to the new page, to prevent over-eager
642 	 * future migrations of this same page.
643 	 */
644 	cpupid = page_cpupid_xchg_last(page, -1);
645 	page_cpupid_xchg_last(newpage, cpupid);
646 
647 	ksm_migrate_page(newpage, page);
648 	/*
649 	 * Please do not reorder this without considering how mm/ksm.c's
650 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
651 	 */
652 	if (PageSwapCache(page))
653 		ClearPageSwapCache(page);
654 	ClearPagePrivate(page);
655 	set_page_private(page, 0);
656 
657 	/*
658 	 * If any waiters have accumulated on the new page then
659 	 * wake them up.
660 	 */
661 	if (PageWriteback(newpage))
662 		end_page_writeback(newpage);
663 
664 	/*
665 	 * PG_readahead shares the same bit with PG_reclaim.  The above
666 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
667 	 * bit after that.
668 	 */
669 	if (PageReadahead(page))
670 		SetPageReadahead(newpage);
671 
672 	copy_page_owner(page, newpage);
673 
674 	if (!PageHuge(page))
675 		mem_cgroup_migrate(page, newpage);
676 }
677 EXPORT_SYMBOL(migrate_page_states);
678 
679 void migrate_page_copy(struct page *newpage, struct page *page)
680 {
681 	if (PageHuge(page) || PageTransHuge(page))
682 		copy_huge_page(newpage, page);
683 	else
684 		copy_highpage(newpage, page);
685 
686 	migrate_page_states(newpage, page);
687 }
688 EXPORT_SYMBOL(migrate_page_copy);
689 
690 /************************************************************
691  *                    Migration functions
692  ***********************************************************/
693 
694 /*
695  * Common logic to directly migrate a single LRU page suitable for
696  * pages that do not use PagePrivate/PagePrivate2.
697  *
698  * Pages are locked upon entry and exit.
699  */
700 int migrate_page(struct address_space *mapping,
701 		struct page *newpage, struct page *page,
702 		enum migrate_mode mode)
703 {
704 	int rc;
705 
706 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
707 
708 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
709 
710 	if (rc != MIGRATEPAGE_SUCCESS)
711 		return rc;
712 
713 	if (mode != MIGRATE_SYNC_NO_COPY)
714 		migrate_page_copy(newpage, page);
715 	else
716 		migrate_page_states(newpage, page);
717 	return MIGRATEPAGE_SUCCESS;
718 }
719 EXPORT_SYMBOL(migrate_page);
720 
721 #ifdef CONFIG_BLOCK
722 /* Returns true if all buffers are successfully locked */
723 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
724 							enum migrate_mode mode)
725 {
726 	struct buffer_head *bh = head;
727 
728 	/* Simple case, sync compaction */
729 	if (mode != MIGRATE_ASYNC) {
730 		do {
731 			lock_buffer(bh);
732 			bh = bh->b_this_page;
733 
734 		} while (bh != head);
735 
736 		return true;
737 	}
738 
739 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
740 	do {
741 		if (!trylock_buffer(bh)) {
742 			/*
743 			 * We failed to lock the buffer and cannot stall in
744 			 * async migration. Release the taken locks
745 			 */
746 			struct buffer_head *failed_bh = bh;
747 			bh = head;
748 			while (bh != failed_bh) {
749 				unlock_buffer(bh);
750 				bh = bh->b_this_page;
751 			}
752 			return false;
753 		}
754 
755 		bh = bh->b_this_page;
756 	} while (bh != head);
757 	return true;
758 }
759 
760 static int __buffer_migrate_page(struct address_space *mapping,
761 		struct page *newpage, struct page *page, enum migrate_mode mode,
762 		bool check_refs)
763 {
764 	struct buffer_head *bh, *head;
765 	int rc;
766 	int expected_count;
767 
768 	if (!page_has_buffers(page))
769 		return migrate_page(mapping, newpage, page, mode);
770 
771 	/* Check whether page does not have extra refs before we do more work */
772 	expected_count = expected_page_refs(mapping, page);
773 	if (page_count(page) != expected_count)
774 		return -EAGAIN;
775 
776 	head = page_buffers(page);
777 	if (!buffer_migrate_lock_buffers(head, mode))
778 		return -EAGAIN;
779 
780 	if (check_refs) {
781 		bool busy;
782 		bool invalidated = false;
783 
784 recheck_buffers:
785 		busy = false;
786 		spin_lock(&mapping->private_lock);
787 		bh = head;
788 		do {
789 			if (atomic_read(&bh->b_count)) {
790 				busy = true;
791 				break;
792 			}
793 			bh = bh->b_this_page;
794 		} while (bh != head);
795 		if (busy) {
796 			if (invalidated) {
797 				rc = -EAGAIN;
798 				goto unlock_buffers;
799 			}
800 			spin_unlock(&mapping->private_lock);
801 			invalidate_bh_lrus();
802 			invalidated = true;
803 			goto recheck_buffers;
804 		}
805 	}
806 
807 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
808 	if (rc != MIGRATEPAGE_SUCCESS)
809 		goto unlock_buffers;
810 
811 	attach_page_private(newpage, detach_page_private(page));
812 
813 	bh = head;
814 	do {
815 		set_bh_page(bh, newpage, bh_offset(bh));
816 		bh = bh->b_this_page;
817 
818 	} while (bh != head);
819 
820 	if (mode != MIGRATE_SYNC_NO_COPY)
821 		migrate_page_copy(newpage, page);
822 	else
823 		migrate_page_states(newpage, page);
824 
825 	rc = MIGRATEPAGE_SUCCESS;
826 unlock_buffers:
827 	if (check_refs)
828 		spin_unlock(&mapping->private_lock);
829 	bh = head;
830 	do {
831 		unlock_buffer(bh);
832 		bh = bh->b_this_page;
833 
834 	} while (bh != head);
835 
836 	return rc;
837 }
838 
839 /*
840  * Migration function for pages with buffers. This function can only be used
841  * if the underlying filesystem guarantees that no other references to "page"
842  * exist. For example attached buffer heads are accessed only under page lock.
843  */
844 int buffer_migrate_page(struct address_space *mapping,
845 		struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
848 }
849 EXPORT_SYMBOL(buffer_migrate_page);
850 
851 /*
852  * Same as above except that this variant is more careful and checks that there
853  * are also no buffer head references. This function is the right one for
854  * mappings where buffer heads are directly looked up and referenced (such as
855  * block device mappings).
856  */
857 int buffer_migrate_page_norefs(struct address_space *mapping,
858 		struct page *newpage, struct page *page, enum migrate_mode mode)
859 {
860 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
861 }
862 #endif
863 
864 /*
865  * Writeback a page to clean the dirty state
866  */
867 static int writeout(struct address_space *mapping, struct page *page)
868 {
869 	struct writeback_control wbc = {
870 		.sync_mode = WB_SYNC_NONE,
871 		.nr_to_write = 1,
872 		.range_start = 0,
873 		.range_end = LLONG_MAX,
874 		.for_reclaim = 1
875 	};
876 	int rc;
877 
878 	if (!mapping->a_ops->writepage)
879 		/* No write method for the address space */
880 		return -EINVAL;
881 
882 	if (!clear_page_dirty_for_io(page))
883 		/* Someone else already triggered a write */
884 		return -EAGAIN;
885 
886 	/*
887 	 * A dirty page may imply that the underlying filesystem has
888 	 * the page on some queue. So the page must be clean for
889 	 * migration. Writeout may mean we loose the lock and the
890 	 * page state is no longer what we checked for earlier.
891 	 * At this point we know that the migration attempt cannot
892 	 * be successful.
893 	 */
894 	remove_migration_ptes(page, page, false);
895 
896 	rc = mapping->a_ops->writepage(page, &wbc);
897 
898 	if (rc != AOP_WRITEPAGE_ACTIVATE)
899 		/* unlocked. Relock */
900 		lock_page(page);
901 
902 	return (rc < 0) ? -EIO : -EAGAIN;
903 }
904 
905 /*
906  * Default handling if a filesystem does not provide a migration function.
907  */
908 static int fallback_migrate_page(struct address_space *mapping,
909 	struct page *newpage, struct page *page, enum migrate_mode mode)
910 {
911 	if (PageDirty(page)) {
912 		/* Only writeback pages in full synchronous migration */
913 		switch (mode) {
914 		case MIGRATE_SYNC:
915 		case MIGRATE_SYNC_NO_COPY:
916 			break;
917 		default:
918 			return -EBUSY;
919 		}
920 		return writeout(mapping, page);
921 	}
922 
923 	/*
924 	 * Buffers may be managed in a filesystem specific way.
925 	 * We must have no buffers or drop them.
926 	 */
927 	if (page_has_private(page) &&
928 	    !try_to_release_page(page, GFP_KERNEL))
929 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
930 
931 	return migrate_page(mapping, newpage, page, mode);
932 }
933 
934 /*
935  * Move a page to a newly allocated page
936  * The page is locked and all ptes have been successfully removed.
937  *
938  * The new page will have replaced the old page if this function
939  * is successful.
940  *
941  * Return value:
942  *   < 0 - error code
943  *  MIGRATEPAGE_SUCCESS - success
944  */
945 static int move_to_new_page(struct page *newpage, struct page *page,
946 				enum migrate_mode mode)
947 {
948 	struct address_space *mapping;
949 	int rc = -EAGAIN;
950 	bool is_lru = !__PageMovable(page);
951 
952 	VM_BUG_ON_PAGE(!PageLocked(page), page);
953 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
954 
955 	mapping = page_mapping(page);
956 
957 	if (likely(is_lru)) {
958 		if (!mapping)
959 			rc = migrate_page(mapping, newpage, page, mode);
960 		else if (mapping->a_ops->migratepage)
961 			/*
962 			 * Most pages have a mapping and most filesystems
963 			 * provide a migratepage callback. Anonymous pages
964 			 * are part of swap space which also has its own
965 			 * migratepage callback. This is the most common path
966 			 * for page migration.
967 			 */
968 			rc = mapping->a_ops->migratepage(mapping, newpage,
969 							page, mode);
970 		else
971 			rc = fallback_migrate_page(mapping, newpage,
972 							page, mode);
973 	} else {
974 		/*
975 		 * In case of non-lru page, it could be released after
976 		 * isolation step. In that case, we shouldn't try migration.
977 		 */
978 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
979 		if (!PageMovable(page)) {
980 			rc = MIGRATEPAGE_SUCCESS;
981 			__ClearPageIsolated(page);
982 			goto out;
983 		}
984 
985 		rc = mapping->a_ops->migratepage(mapping, newpage,
986 						page, mode);
987 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
988 			!PageIsolated(page));
989 	}
990 
991 	/*
992 	 * When successful, old pagecache page->mapping must be cleared before
993 	 * page is freed; but stats require that PageAnon be left as PageAnon.
994 	 */
995 	if (rc == MIGRATEPAGE_SUCCESS) {
996 		if (__PageMovable(page)) {
997 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
998 
999 			/*
1000 			 * We clear PG_movable under page_lock so any compactor
1001 			 * cannot try to migrate this page.
1002 			 */
1003 			__ClearPageIsolated(page);
1004 		}
1005 
1006 		/*
1007 		 * Anonymous and movable page->mapping will be cleared by
1008 		 * free_pages_prepare so don't reset it here for keeping
1009 		 * the type to work PageAnon, for example.
1010 		 */
1011 		if (!PageMappingFlags(page))
1012 			page->mapping = NULL;
1013 
1014 		if (likely(!is_zone_device_page(newpage)))
1015 			flush_dcache_page(newpage);
1016 
1017 	}
1018 out:
1019 	return rc;
1020 }
1021 
1022 static int __unmap_and_move(struct page *page, struct page *newpage,
1023 				int force, enum migrate_mode mode)
1024 {
1025 	int rc = -EAGAIN;
1026 	int page_was_mapped = 0;
1027 	struct anon_vma *anon_vma = NULL;
1028 	bool is_lru = !__PageMovable(page);
1029 
1030 	if (!trylock_page(page)) {
1031 		if (!force || mode == MIGRATE_ASYNC)
1032 			goto out;
1033 
1034 		/*
1035 		 * It's not safe for direct compaction to call lock_page.
1036 		 * For example, during page readahead pages are added locked
1037 		 * to the LRU. Later, when the IO completes the pages are
1038 		 * marked uptodate and unlocked. However, the queueing
1039 		 * could be merging multiple pages for one bio (e.g.
1040 		 * mpage_readahead). If an allocation happens for the
1041 		 * second or third page, the process can end up locking
1042 		 * the same page twice and deadlocking. Rather than
1043 		 * trying to be clever about what pages can be locked,
1044 		 * avoid the use of lock_page for direct compaction
1045 		 * altogether.
1046 		 */
1047 		if (current->flags & PF_MEMALLOC)
1048 			goto out;
1049 
1050 		lock_page(page);
1051 	}
1052 
1053 	if (PageWriteback(page)) {
1054 		/*
1055 		 * Only in the case of a full synchronous migration is it
1056 		 * necessary to wait for PageWriteback. In the async case,
1057 		 * the retry loop is too short and in the sync-light case,
1058 		 * the overhead of stalling is too much
1059 		 */
1060 		switch (mode) {
1061 		case MIGRATE_SYNC:
1062 		case MIGRATE_SYNC_NO_COPY:
1063 			break;
1064 		default:
1065 			rc = -EBUSY;
1066 			goto out_unlock;
1067 		}
1068 		if (!force)
1069 			goto out_unlock;
1070 		wait_on_page_writeback(page);
1071 	}
1072 
1073 	/*
1074 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1075 	 * we cannot notice that anon_vma is freed while we migrates a page.
1076 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1077 	 * of migration. File cache pages are no problem because of page_lock()
1078 	 * File Caches may use write_page() or lock_page() in migration, then,
1079 	 * just care Anon page here.
1080 	 *
1081 	 * Only page_get_anon_vma() understands the subtleties of
1082 	 * getting a hold on an anon_vma from outside one of its mms.
1083 	 * But if we cannot get anon_vma, then we won't need it anyway,
1084 	 * because that implies that the anon page is no longer mapped
1085 	 * (and cannot be remapped so long as we hold the page lock).
1086 	 */
1087 	if (PageAnon(page) && !PageKsm(page))
1088 		anon_vma = page_get_anon_vma(page);
1089 
1090 	/*
1091 	 * Block others from accessing the new page when we get around to
1092 	 * establishing additional references. We are usually the only one
1093 	 * holding a reference to newpage at this point. We used to have a BUG
1094 	 * here if trylock_page(newpage) fails, but would like to allow for
1095 	 * cases where there might be a race with the previous use of newpage.
1096 	 * This is much like races on refcount of oldpage: just don't BUG().
1097 	 */
1098 	if (unlikely(!trylock_page(newpage)))
1099 		goto out_unlock;
1100 
1101 	if (unlikely(!is_lru)) {
1102 		rc = move_to_new_page(newpage, page, mode);
1103 		goto out_unlock_both;
1104 	}
1105 
1106 	/*
1107 	 * Corner case handling:
1108 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1109 	 * and treated as swapcache but it has no rmap yet.
1110 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1111 	 * trigger a BUG.  So handle it here.
1112 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1113 	 * fs-private metadata. The page can be picked up due to memory
1114 	 * offlining.  Everywhere else except page reclaim, the page is
1115 	 * invisible to the vm, so the page can not be migrated.  So try to
1116 	 * free the metadata, so the page can be freed.
1117 	 */
1118 	if (!page->mapping) {
1119 		VM_BUG_ON_PAGE(PageAnon(page), page);
1120 		if (page_has_private(page)) {
1121 			try_to_free_buffers(page);
1122 			goto out_unlock_both;
1123 		}
1124 	} else if (page_mapped(page)) {
1125 		/* Establish migration ptes */
1126 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1127 				page);
1128 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1129 		page_was_mapped = 1;
1130 	}
1131 
1132 	if (!page_mapped(page))
1133 		rc = move_to_new_page(newpage, page, mode);
1134 
1135 	if (page_was_mapped)
1136 		remove_migration_ptes(page,
1137 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1138 
1139 out_unlock_both:
1140 	unlock_page(newpage);
1141 out_unlock:
1142 	/* Drop an anon_vma reference if we took one */
1143 	if (anon_vma)
1144 		put_anon_vma(anon_vma);
1145 	unlock_page(page);
1146 out:
1147 	/*
1148 	 * If migration is successful, decrease refcount of the newpage
1149 	 * which will not free the page because new page owner increased
1150 	 * refcounter. As well, if it is LRU page, add the page to LRU
1151 	 * list in here. Use the old state of the isolated source page to
1152 	 * determine if we migrated a LRU page. newpage was already unlocked
1153 	 * and possibly modified by its owner - don't rely on the page
1154 	 * state.
1155 	 */
1156 	if (rc == MIGRATEPAGE_SUCCESS) {
1157 		if (unlikely(!is_lru))
1158 			put_page(newpage);
1159 		else
1160 			putback_lru_page(newpage);
1161 	}
1162 
1163 	return rc;
1164 }
1165 
1166 /*
1167  * Obtain the lock on page, remove all ptes and migrate the page
1168  * to the newly allocated page in newpage.
1169  */
1170 static int unmap_and_move(new_page_t get_new_page,
1171 				   free_page_t put_new_page,
1172 				   unsigned long private, struct page *page,
1173 				   int force, enum migrate_mode mode,
1174 				   enum migrate_reason reason,
1175 				   struct list_head *ret)
1176 {
1177 	int rc = MIGRATEPAGE_SUCCESS;
1178 	struct page *newpage = NULL;
1179 
1180 	if (!thp_migration_supported() && PageTransHuge(page))
1181 		return -ENOSYS;
1182 
1183 	if (page_count(page) == 1) {
1184 		/* page was freed from under us. So we are done. */
1185 		ClearPageActive(page);
1186 		ClearPageUnevictable(page);
1187 		if (unlikely(__PageMovable(page))) {
1188 			lock_page(page);
1189 			if (!PageMovable(page))
1190 				__ClearPageIsolated(page);
1191 			unlock_page(page);
1192 		}
1193 		goto out;
1194 	}
1195 
1196 	newpage = get_new_page(page, private);
1197 	if (!newpage)
1198 		return -ENOMEM;
1199 
1200 	rc = __unmap_and_move(page, newpage, force, mode);
1201 	if (rc == MIGRATEPAGE_SUCCESS)
1202 		set_page_owner_migrate_reason(newpage, reason);
1203 
1204 out:
1205 	if (rc != -EAGAIN) {
1206 		/*
1207 		 * A page that has been migrated has all references
1208 		 * removed and will be freed. A page that has not been
1209 		 * migrated will have kept its references and be restored.
1210 		 */
1211 		list_del(&page->lru);
1212 	}
1213 
1214 	/*
1215 	 * If migration is successful, releases reference grabbed during
1216 	 * isolation. Otherwise, restore the page to right list unless
1217 	 * we want to retry.
1218 	 */
1219 	if (rc == MIGRATEPAGE_SUCCESS) {
1220 		/*
1221 		 * Compaction can migrate also non-LRU pages which are
1222 		 * not accounted to NR_ISOLATED_*. They can be recognized
1223 		 * as __PageMovable
1224 		 */
1225 		if (likely(!__PageMovable(page)))
1226 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1227 					page_is_file_lru(page), -thp_nr_pages(page));
1228 
1229 		if (reason != MR_MEMORY_FAILURE)
1230 			/*
1231 			 * We release the page in page_handle_poison.
1232 			 */
1233 			put_page(page);
1234 	} else {
1235 		if (rc != -EAGAIN)
1236 			list_add_tail(&page->lru, ret);
1237 
1238 		if (put_new_page)
1239 			put_new_page(newpage, private);
1240 		else
1241 			put_page(newpage);
1242 	}
1243 
1244 	return rc;
1245 }
1246 
1247 /*
1248  * Counterpart of unmap_and_move_page() for hugepage migration.
1249  *
1250  * This function doesn't wait the completion of hugepage I/O
1251  * because there is no race between I/O and migration for hugepage.
1252  * Note that currently hugepage I/O occurs only in direct I/O
1253  * where no lock is held and PG_writeback is irrelevant,
1254  * and writeback status of all subpages are counted in the reference
1255  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1256  * under direct I/O, the reference of the head page is 512 and a bit more.)
1257  * This means that when we try to migrate hugepage whose subpages are
1258  * doing direct I/O, some references remain after try_to_unmap() and
1259  * hugepage migration fails without data corruption.
1260  *
1261  * There is also no race when direct I/O is issued on the page under migration,
1262  * because then pte is replaced with migration swap entry and direct I/O code
1263  * will wait in the page fault for migration to complete.
1264  */
1265 static int unmap_and_move_huge_page(new_page_t get_new_page,
1266 				free_page_t put_new_page, unsigned long private,
1267 				struct page *hpage, int force,
1268 				enum migrate_mode mode, int reason,
1269 				struct list_head *ret)
1270 {
1271 	int rc = -EAGAIN;
1272 	int page_was_mapped = 0;
1273 	struct page *new_hpage;
1274 	struct anon_vma *anon_vma = NULL;
1275 	struct address_space *mapping = NULL;
1276 
1277 	/*
1278 	 * Migratability of hugepages depends on architectures and their size.
1279 	 * This check is necessary because some callers of hugepage migration
1280 	 * like soft offline and memory hotremove don't walk through page
1281 	 * tables or check whether the hugepage is pmd-based or not before
1282 	 * kicking migration.
1283 	 */
1284 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1285 		list_move_tail(&hpage->lru, ret);
1286 		return -ENOSYS;
1287 	}
1288 
1289 	if (page_count(hpage) == 1) {
1290 		/* page was freed from under us. So we are done. */
1291 		putback_active_hugepage(hpage);
1292 		return MIGRATEPAGE_SUCCESS;
1293 	}
1294 
1295 	new_hpage = get_new_page(hpage, private);
1296 	if (!new_hpage)
1297 		return -ENOMEM;
1298 
1299 	if (!trylock_page(hpage)) {
1300 		if (!force)
1301 			goto out;
1302 		switch (mode) {
1303 		case MIGRATE_SYNC:
1304 		case MIGRATE_SYNC_NO_COPY:
1305 			break;
1306 		default:
1307 			goto out;
1308 		}
1309 		lock_page(hpage);
1310 	}
1311 
1312 	/*
1313 	 * Check for pages which are in the process of being freed.  Without
1314 	 * page_mapping() set, hugetlbfs specific move page routine will not
1315 	 * be called and we could leak usage counts for subpools.
1316 	 */
1317 	if (page_private(hpage) && !page_mapping(hpage)) {
1318 		rc = -EBUSY;
1319 		goto out_unlock;
1320 	}
1321 
1322 	if (PageAnon(hpage))
1323 		anon_vma = page_get_anon_vma(hpage);
1324 
1325 	if (unlikely(!trylock_page(new_hpage)))
1326 		goto put_anon;
1327 
1328 	if (page_mapped(hpage)) {
1329 		bool mapping_locked = false;
1330 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1331 
1332 		if (!PageAnon(hpage)) {
1333 			/*
1334 			 * In shared mappings, try_to_unmap could potentially
1335 			 * call huge_pmd_unshare.  Because of this, take
1336 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1337 			 * to let lower levels know we have taken the lock.
1338 			 */
1339 			mapping = hugetlb_page_mapping_lock_write(hpage);
1340 			if (unlikely(!mapping))
1341 				goto unlock_put_anon;
1342 
1343 			mapping_locked = true;
1344 			ttu |= TTU_RMAP_LOCKED;
1345 		}
1346 
1347 		try_to_unmap(hpage, ttu);
1348 		page_was_mapped = 1;
1349 
1350 		if (mapping_locked)
1351 			i_mmap_unlock_write(mapping);
1352 	}
1353 
1354 	if (!page_mapped(hpage))
1355 		rc = move_to_new_page(new_hpage, hpage, mode);
1356 
1357 	if (page_was_mapped)
1358 		remove_migration_ptes(hpage,
1359 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1360 
1361 unlock_put_anon:
1362 	unlock_page(new_hpage);
1363 
1364 put_anon:
1365 	if (anon_vma)
1366 		put_anon_vma(anon_vma);
1367 
1368 	if (rc == MIGRATEPAGE_SUCCESS) {
1369 		move_hugetlb_state(hpage, new_hpage, reason);
1370 		put_new_page = NULL;
1371 	}
1372 
1373 out_unlock:
1374 	unlock_page(hpage);
1375 out:
1376 	if (rc == MIGRATEPAGE_SUCCESS)
1377 		putback_active_hugepage(hpage);
1378 	else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1379 		list_move_tail(&hpage->lru, ret);
1380 
1381 	/*
1382 	 * If migration was not successful and there's a freeing callback, use
1383 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1384 	 * isolation.
1385 	 */
1386 	if (put_new_page)
1387 		put_new_page(new_hpage, private);
1388 	else
1389 		putback_active_hugepage(new_hpage);
1390 
1391 	return rc;
1392 }
1393 
1394 static inline int try_split_thp(struct page *page, struct page **page2,
1395 				struct list_head *from)
1396 {
1397 	int rc = 0;
1398 
1399 	lock_page(page);
1400 	rc = split_huge_page_to_list(page, from);
1401 	unlock_page(page);
1402 	if (!rc)
1403 		list_safe_reset_next(page, *page2, lru);
1404 
1405 	return rc;
1406 }
1407 
1408 /*
1409  * migrate_pages - migrate the pages specified in a list, to the free pages
1410  *		   supplied as the target for the page migration
1411  *
1412  * @from:		The list of pages to be migrated.
1413  * @get_new_page:	The function used to allocate free pages to be used
1414  *			as the target of the page migration.
1415  * @put_new_page:	The function used to free target pages if migration
1416  *			fails, or NULL if no special handling is necessary.
1417  * @private:		Private data to be passed on to get_new_page()
1418  * @mode:		The migration mode that specifies the constraints for
1419  *			page migration, if any.
1420  * @reason:		The reason for page migration.
1421  *
1422  * The function returns after 10 attempts or if no pages are movable any more
1423  * because the list has become empty or no retryable pages exist any more.
1424  * It is caller's responsibility to call putback_movable_pages() to return pages
1425  * to the LRU or free list only if ret != 0.
1426  *
1427  * Returns the number of pages that were not migrated, or an error code.
1428  */
1429 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1430 		free_page_t put_new_page, unsigned long private,
1431 		enum migrate_mode mode, int reason)
1432 {
1433 	int retry = 1;
1434 	int thp_retry = 1;
1435 	int nr_failed = 0;
1436 	int nr_succeeded = 0;
1437 	int nr_thp_succeeded = 0;
1438 	int nr_thp_failed = 0;
1439 	int nr_thp_split = 0;
1440 	int pass = 0;
1441 	bool is_thp = false;
1442 	struct page *page;
1443 	struct page *page2;
1444 	int swapwrite = current->flags & PF_SWAPWRITE;
1445 	int rc, nr_subpages;
1446 	LIST_HEAD(ret_pages);
1447 
1448 	if (!swapwrite)
1449 		current->flags |= PF_SWAPWRITE;
1450 
1451 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1452 		retry = 0;
1453 		thp_retry = 0;
1454 
1455 		list_for_each_entry_safe(page, page2, from, lru) {
1456 retry:
1457 			/*
1458 			 * THP statistics is based on the source huge page.
1459 			 * Capture required information that might get lost
1460 			 * during migration.
1461 			 */
1462 			is_thp = PageTransHuge(page) && !PageHuge(page);
1463 			nr_subpages = thp_nr_pages(page);
1464 			cond_resched();
1465 
1466 			if (PageHuge(page))
1467 				rc = unmap_and_move_huge_page(get_new_page,
1468 						put_new_page, private, page,
1469 						pass > 2, mode, reason,
1470 						&ret_pages);
1471 			else
1472 				rc = unmap_and_move(get_new_page, put_new_page,
1473 						private, page, pass > 2, mode,
1474 						reason, &ret_pages);
1475 			/*
1476 			 * The rules are:
1477 			 *	Success: non hugetlb page will be freed, hugetlb
1478 			 *		 page will be put back
1479 			 *	-EAGAIN: stay on the from list
1480 			 *	-ENOMEM: stay on the from list
1481 			 *	Other errno: put on ret_pages list then splice to
1482 			 *		     from list
1483 			 */
1484 			switch(rc) {
1485 			/*
1486 			 * THP migration might be unsupported or the
1487 			 * allocation could've failed so we should
1488 			 * retry on the same page with the THP split
1489 			 * to base pages.
1490 			 *
1491 			 * Head page is retried immediately and tail
1492 			 * pages are added to the tail of the list so
1493 			 * we encounter them after the rest of the list
1494 			 * is processed.
1495 			 */
1496 			case -ENOSYS:
1497 				/* THP migration is unsupported */
1498 				if (is_thp) {
1499 					if (!try_split_thp(page, &page2, from)) {
1500 						nr_thp_split++;
1501 						goto retry;
1502 					}
1503 
1504 					nr_thp_failed++;
1505 					nr_failed += nr_subpages;
1506 					break;
1507 				}
1508 
1509 				/* Hugetlb migration is unsupported */
1510 				nr_failed++;
1511 				break;
1512 			case -ENOMEM:
1513 				/*
1514 				 * When memory is low, don't bother to try to migrate
1515 				 * other pages, just exit.
1516 				 */
1517 				if (is_thp) {
1518 					if (!try_split_thp(page, &page2, from)) {
1519 						nr_thp_split++;
1520 						goto retry;
1521 					}
1522 
1523 					nr_thp_failed++;
1524 					nr_failed += nr_subpages;
1525 					goto out;
1526 				}
1527 				nr_failed++;
1528 				goto out;
1529 			case -EAGAIN:
1530 				if (is_thp) {
1531 					thp_retry++;
1532 					break;
1533 				}
1534 				retry++;
1535 				break;
1536 			case MIGRATEPAGE_SUCCESS:
1537 				if (is_thp) {
1538 					nr_thp_succeeded++;
1539 					nr_succeeded += nr_subpages;
1540 					break;
1541 				}
1542 				nr_succeeded++;
1543 				break;
1544 			default:
1545 				/*
1546 				 * Permanent failure (-EBUSY, etc.):
1547 				 * unlike -EAGAIN case, the failed page is
1548 				 * removed from migration page list and not
1549 				 * retried in the next outer loop.
1550 				 */
1551 				if (is_thp) {
1552 					nr_thp_failed++;
1553 					nr_failed += nr_subpages;
1554 					break;
1555 				}
1556 				nr_failed++;
1557 				break;
1558 			}
1559 		}
1560 	}
1561 	nr_failed += retry + thp_retry;
1562 	nr_thp_failed += thp_retry;
1563 	rc = nr_failed;
1564 out:
1565 	/*
1566 	 * Put the permanent failure page back to migration list, they
1567 	 * will be put back to the right list by the caller.
1568 	 */
1569 	list_splice(&ret_pages, from);
1570 
1571 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1572 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1573 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1574 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1575 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1576 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1577 			       nr_thp_failed, nr_thp_split, mode, reason);
1578 
1579 	if (!swapwrite)
1580 		current->flags &= ~PF_SWAPWRITE;
1581 
1582 	return rc;
1583 }
1584 
1585 struct page *alloc_migration_target(struct page *page, unsigned long private)
1586 {
1587 	struct migration_target_control *mtc;
1588 	gfp_t gfp_mask;
1589 	unsigned int order = 0;
1590 	struct page *new_page = NULL;
1591 	int nid;
1592 	int zidx;
1593 
1594 	mtc = (struct migration_target_control *)private;
1595 	gfp_mask = mtc->gfp_mask;
1596 	nid = mtc->nid;
1597 	if (nid == NUMA_NO_NODE)
1598 		nid = page_to_nid(page);
1599 
1600 	if (PageHuge(page)) {
1601 		struct hstate *h = page_hstate(compound_head(page));
1602 
1603 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1604 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1605 	}
1606 
1607 	if (PageTransHuge(page)) {
1608 		/*
1609 		 * clear __GFP_RECLAIM to make the migration callback
1610 		 * consistent with regular THP allocations.
1611 		 */
1612 		gfp_mask &= ~__GFP_RECLAIM;
1613 		gfp_mask |= GFP_TRANSHUGE;
1614 		order = HPAGE_PMD_ORDER;
1615 	}
1616 	zidx = zone_idx(page_zone(page));
1617 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1618 		gfp_mask |= __GFP_HIGHMEM;
1619 
1620 	new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1621 
1622 	if (new_page && PageTransHuge(new_page))
1623 		prep_transhuge_page(new_page);
1624 
1625 	return new_page;
1626 }
1627 
1628 #ifdef CONFIG_NUMA
1629 
1630 static int store_status(int __user *status, int start, int value, int nr)
1631 {
1632 	while (nr-- > 0) {
1633 		if (put_user(value, status + start))
1634 			return -EFAULT;
1635 		start++;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int do_move_pages_to_node(struct mm_struct *mm,
1642 		struct list_head *pagelist, int node)
1643 {
1644 	int err;
1645 	struct migration_target_control mtc = {
1646 		.nid = node,
1647 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1648 	};
1649 
1650 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1651 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1652 	if (err)
1653 		putback_movable_pages(pagelist);
1654 	return err;
1655 }
1656 
1657 /*
1658  * Resolves the given address to a struct page, isolates it from the LRU and
1659  * puts it to the given pagelist.
1660  * Returns:
1661  *     errno - if the page cannot be found/isolated
1662  *     0 - when it doesn't have to be migrated because it is already on the
1663  *         target node
1664  *     1 - when it has been queued
1665  */
1666 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1667 		int node, struct list_head *pagelist, bool migrate_all)
1668 {
1669 	struct vm_area_struct *vma;
1670 	struct page *page;
1671 	unsigned int follflags;
1672 	int err;
1673 
1674 	mmap_read_lock(mm);
1675 	err = -EFAULT;
1676 	vma = find_vma(mm, addr);
1677 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1678 		goto out;
1679 
1680 	/* FOLL_DUMP to ignore special (like zero) pages */
1681 	follflags = FOLL_GET | FOLL_DUMP;
1682 	page = follow_page(vma, addr, follflags);
1683 
1684 	err = PTR_ERR(page);
1685 	if (IS_ERR(page))
1686 		goto out;
1687 
1688 	err = -ENOENT;
1689 	if (!page)
1690 		goto out;
1691 
1692 	err = 0;
1693 	if (page_to_nid(page) == node)
1694 		goto out_putpage;
1695 
1696 	err = -EACCES;
1697 	if (page_mapcount(page) > 1 && !migrate_all)
1698 		goto out_putpage;
1699 
1700 	if (PageHuge(page)) {
1701 		if (PageHead(page)) {
1702 			isolate_huge_page(page, pagelist);
1703 			err = 1;
1704 		}
1705 	} else {
1706 		struct page *head;
1707 
1708 		head = compound_head(page);
1709 		err = isolate_lru_page(head);
1710 		if (err)
1711 			goto out_putpage;
1712 
1713 		err = 1;
1714 		list_add_tail(&head->lru, pagelist);
1715 		mod_node_page_state(page_pgdat(head),
1716 			NR_ISOLATED_ANON + page_is_file_lru(head),
1717 			thp_nr_pages(head));
1718 	}
1719 out_putpage:
1720 	/*
1721 	 * Either remove the duplicate refcount from
1722 	 * isolate_lru_page() or drop the page ref if it was
1723 	 * not isolated.
1724 	 */
1725 	put_page(page);
1726 out:
1727 	mmap_read_unlock(mm);
1728 	return err;
1729 }
1730 
1731 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1732 		struct list_head *pagelist, int __user *status,
1733 		int start, int i, unsigned long nr_pages)
1734 {
1735 	int err;
1736 
1737 	if (list_empty(pagelist))
1738 		return 0;
1739 
1740 	err = do_move_pages_to_node(mm, pagelist, node);
1741 	if (err) {
1742 		/*
1743 		 * Positive err means the number of failed
1744 		 * pages to migrate.  Since we are going to
1745 		 * abort and return the number of non-migrated
1746 		 * pages, so need to include the rest of the
1747 		 * nr_pages that have not been attempted as
1748 		 * well.
1749 		 */
1750 		if (err > 0)
1751 			err += nr_pages - i - 1;
1752 		return err;
1753 	}
1754 	return store_status(status, start, node, i - start);
1755 }
1756 
1757 /*
1758  * Migrate an array of page address onto an array of nodes and fill
1759  * the corresponding array of status.
1760  */
1761 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1762 			 unsigned long nr_pages,
1763 			 const void __user * __user *pages,
1764 			 const int __user *nodes,
1765 			 int __user *status, int flags)
1766 {
1767 	int current_node = NUMA_NO_NODE;
1768 	LIST_HEAD(pagelist);
1769 	int start, i;
1770 	int err = 0, err1;
1771 
1772 	migrate_prep();
1773 
1774 	for (i = start = 0; i < nr_pages; i++) {
1775 		const void __user *p;
1776 		unsigned long addr;
1777 		int node;
1778 
1779 		err = -EFAULT;
1780 		if (get_user(p, pages + i))
1781 			goto out_flush;
1782 		if (get_user(node, nodes + i))
1783 			goto out_flush;
1784 		addr = (unsigned long)untagged_addr(p);
1785 
1786 		err = -ENODEV;
1787 		if (node < 0 || node >= MAX_NUMNODES)
1788 			goto out_flush;
1789 		if (!node_state(node, N_MEMORY))
1790 			goto out_flush;
1791 
1792 		err = -EACCES;
1793 		if (!node_isset(node, task_nodes))
1794 			goto out_flush;
1795 
1796 		if (current_node == NUMA_NO_NODE) {
1797 			current_node = node;
1798 			start = i;
1799 		} else if (node != current_node) {
1800 			err = move_pages_and_store_status(mm, current_node,
1801 					&pagelist, status, start, i, nr_pages);
1802 			if (err)
1803 				goto out;
1804 			start = i;
1805 			current_node = node;
1806 		}
1807 
1808 		/*
1809 		 * Errors in the page lookup or isolation are not fatal and we simply
1810 		 * report them via status
1811 		 */
1812 		err = add_page_for_migration(mm, addr, current_node,
1813 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1814 
1815 		if (err > 0) {
1816 			/* The page is successfully queued for migration */
1817 			continue;
1818 		}
1819 
1820 		/*
1821 		 * If the page is already on the target node (!err), store the
1822 		 * node, otherwise, store the err.
1823 		 */
1824 		err = store_status(status, i, err ? : current_node, 1);
1825 		if (err)
1826 			goto out_flush;
1827 
1828 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1829 				status, start, i, nr_pages);
1830 		if (err)
1831 			goto out;
1832 		current_node = NUMA_NO_NODE;
1833 	}
1834 out_flush:
1835 	/* Make sure we do not overwrite the existing error */
1836 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1837 				status, start, i, nr_pages);
1838 	if (err >= 0)
1839 		err = err1;
1840 out:
1841 	return err;
1842 }
1843 
1844 /*
1845  * Determine the nodes of an array of pages and store it in an array of status.
1846  */
1847 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1848 				const void __user **pages, int *status)
1849 {
1850 	unsigned long i;
1851 
1852 	mmap_read_lock(mm);
1853 
1854 	for (i = 0; i < nr_pages; i++) {
1855 		unsigned long addr = (unsigned long)(*pages);
1856 		struct vm_area_struct *vma;
1857 		struct page *page;
1858 		int err = -EFAULT;
1859 
1860 		vma = find_vma(mm, addr);
1861 		if (!vma || addr < vma->vm_start)
1862 			goto set_status;
1863 
1864 		/* FOLL_DUMP to ignore special (like zero) pages */
1865 		page = follow_page(vma, addr, FOLL_DUMP);
1866 
1867 		err = PTR_ERR(page);
1868 		if (IS_ERR(page))
1869 			goto set_status;
1870 
1871 		err = page ? page_to_nid(page) : -ENOENT;
1872 set_status:
1873 		*status = err;
1874 
1875 		pages++;
1876 		status++;
1877 	}
1878 
1879 	mmap_read_unlock(mm);
1880 }
1881 
1882 /*
1883  * Determine the nodes of a user array of pages and store it in
1884  * a user array of status.
1885  */
1886 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1887 			 const void __user * __user *pages,
1888 			 int __user *status)
1889 {
1890 #define DO_PAGES_STAT_CHUNK_NR 16
1891 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1892 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1893 
1894 	while (nr_pages) {
1895 		unsigned long chunk_nr;
1896 
1897 		chunk_nr = nr_pages;
1898 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1899 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1900 
1901 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1902 			break;
1903 
1904 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1905 
1906 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1907 			break;
1908 
1909 		pages += chunk_nr;
1910 		status += chunk_nr;
1911 		nr_pages -= chunk_nr;
1912 	}
1913 	return nr_pages ? -EFAULT : 0;
1914 }
1915 
1916 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1917 {
1918 	struct task_struct *task;
1919 	struct mm_struct *mm;
1920 
1921 	/*
1922 	 * There is no need to check if current process has the right to modify
1923 	 * the specified process when they are same.
1924 	 */
1925 	if (!pid) {
1926 		mmget(current->mm);
1927 		*mem_nodes = cpuset_mems_allowed(current);
1928 		return current->mm;
1929 	}
1930 
1931 	/* Find the mm_struct */
1932 	rcu_read_lock();
1933 	task = find_task_by_vpid(pid);
1934 	if (!task) {
1935 		rcu_read_unlock();
1936 		return ERR_PTR(-ESRCH);
1937 	}
1938 	get_task_struct(task);
1939 
1940 	/*
1941 	 * Check if this process has the right to modify the specified
1942 	 * process. Use the regular "ptrace_may_access()" checks.
1943 	 */
1944 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1945 		rcu_read_unlock();
1946 		mm = ERR_PTR(-EPERM);
1947 		goto out;
1948 	}
1949 	rcu_read_unlock();
1950 
1951 	mm = ERR_PTR(security_task_movememory(task));
1952 	if (IS_ERR(mm))
1953 		goto out;
1954 	*mem_nodes = cpuset_mems_allowed(task);
1955 	mm = get_task_mm(task);
1956 out:
1957 	put_task_struct(task);
1958 	if (!mm)
1959 		mm = ERR_PTR(-EINVAL);
1960 	return mm;
1961 }
1962 
1963 /*
1964  * Move a list of pages in the address space of the currently executing
1965  * process.
1966  */
1967 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1968 			     const void __user * __user *pages,
1969 			     const int __user *nodes,
1970 			     int __user *status, int flags)
1971 {
1972 	struct mm_struct *mm;
1973 	int err;
1974 	nodemask_t task_nodes;
1975 
1976 	/* Check flags */
1977 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1978 		return -EINVAL;
1979 
1980 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1981 		return -EPERM;
1982 
1983 	mm = find_mm_struct(pid, &task_nodes);
1984 	if (IS_ERR(mm))
1985 		return PTR_ERR(mm);
1986 
1987 	if (nodes)
1988 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1989 				    nodes, status, flags);
1990 	else
1991 		err = do_pages_stat(mm, nr_pages, pages, status);
1992 
1993 	mmput(mm);
1994 	return err;
1995 }
1996 
1997 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1998 		const void __user * __user *, pages,
1999 		const int __user *, nodes,
2000 		int __user *, status, int, flags)
2001 {
2002 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2003 }
2004 
2005 #ifdef CONFIG_COMPAT
2006 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2007 		       compat_uptr_t __user *, pages32,
2008 		       const int __user *, nodes,
2009 		       int __user *, status,
2010 		       int, flags)
2011 {
2012 	const void __user * __user *pages;
2013 	int i;
2014 
2015 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2016 	for (i = 0; i < nr_pages; i++) {
2017 		compat_uptr_t p;
2018 
2019 		if (get_user(p, pages32 + i) ||
2020 			put_user(compat_ptr(p), pages + i))
2021 			return -EFAULT;
2022 	}
2023 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2024 }
2025 #endif /* CONFIG_COMPAT */
2026 
2027 #ifdef CONFIG_NUMA_BALANCING
2028 /*
2029  * Returns true if this is a safe migration target node for misplaced NUMA
2030  * pages. Currently it only checks the watermarks which crude
2031  */
2032 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2033 				   unsigned long nr_migrate_pages)
2034 {
2035 	int z;
2036 
2037 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2038 		struct zone *zone = pgdat->node_zones + z;
2039 
2040 		if (!populated_zone(zone))
2041 			continue;
2042 
2043 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2044 		if (!zone_watermark_ok(zone, 0,
2045 				       high_wmark_pages(zone) +
2046 				       nr_migrate_pages,
2047 				       ZONE_MOVABLE, 0))
2048 			continue;
2049 		return true;
2050 	}
2051 	return false;
2052 }
2053 
2054 static struct page *alloc_misplaced_dst_page(struct page *page,
2055 					   unsigned long data)
2056 {
2057 	int nid = (int) data;
2058 	struct page *newpage;
2059 
2060 	newpage = __alloc_pages_node(nid,
2061 					 (GFP_HIGHUSER_MOVABLE |
2062 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2063 					  __GFP_NORETRY | __GFP_NOWARN) &
2064 					 ~__GFP_RECLAIM, 0);
2065 
2066 	return newpage;
2067 }
2068 
2069 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2070 {
2071 	int page_lru;
2072 
2073 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2074 
2075 	/* Avoid migrating to a node that is nearly full */
2076 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2077 		return 0;
2078 
2079 	if (isolate_lru_page(page))
2080 		return 0;
2081 
2082 	/*
2083 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2084 	 * check on page_count(), so we must do it here, now that the page
2085 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2086 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2087 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2088 	 */
2089 	if (PageTransHuge(page) && page_count(page) != 3) {
2090 		putback_lru_page(page);
2091 		return 0;
2092 	}
2093 
2094 	page_lru = page_is_file_lru(page);
2095 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2096 				thp_nr_pages(page));
2097 
2098 	/*
2099 	 * Isolating the page has taken another reference, so the
2100 	 * caller's reference can be safely dropped without the page
2101 	 * disappearing underneath us during migration.
2102 	 */
2103 	put_page(page);
2104 	return 1;
2105 }
2106 
2107 bool pmd_trans_migrating(pmd_t pmd)
2108 {
2109 	struct page *page = pmd_page(pmd);
2110 	return PageLocked(page);
2111 }
2112 
2113 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2114 				       struct page *page)
2115 {
2116 	if (page_mapcount(page) != 1 &&
2117 	    (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2118 	    (vma->vm_flags & VM_EXEC))
2119 		return true;
2120 
2121 	return false;
2122 }
2123 
2124 /*
2125  * Attempt to migrate a misplaced page to the specified destination
2126  * node. Caller is expected to have an elevated reference count on
2127  * the page that will be dropped by this function before returning.
2128  */
2129 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2130 			   int node)
2131 {
2132 	pg_data_t *pgdat = NODE_DATA(node);
2133 	int isolated;
2134 	int nr_remaining;
2135 	LIST_HEAD(migratepages);
2136 
2137 	/*
2138 	 * Don't migrate file pages that are mapped in multiple processes
2139 	 * with execute permissions as they are probably shared libraries.
2140 	 */
2141 	if (is_shared_exec_page(vma, page))
2142 		goto out;
2143 
2144 	/*
2145 	 * Also do not migrate dirty pages as not all filesystems can move
2146 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2147 	 */
2148 	if (page_is_file_lru(page) && PageDirty(page))
2149 		goto out;
2150 
2151 	isolated = numamigrate_isolate_page(pgdat, page);
2152 	if (!isolated)
2153 		goto out;
2154 
2155 	list_add(&page->lru, &migratepages);
2156 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2157 				     NULL, node, MIGRATE_ASYNC,
2158 				     MR_NUMA_MISPLACED);
2159 	if (nr_remaining) {
2160 		if (!list_empty(&migratepages)) {
2161 			list_del(&page->lru);
2162 			dec_node_page_state(page, NR_ISOLATED_ANON +
2163 					page_is_file_lru(page));
2164 			putback_lru_page(page);
2165 		}
2166 		isolated = 0;
2167 	} else
2168 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2169 	BUG_ON(!list_empty(&migratepages));
2170 	return isolated;
2171 
2172 out:
2173 	put_page(page);
2174 	return 0;
2175 }
2176 #endif /* CONFIG_NUMA_BALANCING */
2177 
2178 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2179 /*
2180  * Migrates a THP to a given target node. page must be locked and is unlocked
2181  * before returning.
2182  */
2183 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2184 				struct vm_area_struct *vma,
2185 				pmd_t *pmd, pmd_t entry,
2186 				unsigned long address,
2187 				struct page *page, int node)
2188 {
2189 	spinlock_t *ptl;
2190 	pg_data_t *pgdat = NODE_DATA(node);
2191 	int isolated = 0;
2192 	struct page *new_page = NULL;
2193 	int page_lru = page_is_file_lru(page);
2194 	unsigned long start = address & HPAGE_PMD_MASK;
2195 
2196 	if (is_shared_exec_page(vma, page))
2197 		goto out;
2198 
2199 	new_page = alloc_pages_node(node,
2200 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2201 		HPAGE_PMD_ORDER);
2202 	if (!new_page)
2203 		goto out_fail;
2204 	prep_transhuge_page(new_page);
2205 
2206 	isolated = numamigrate_isolate_page(pgdat, page);
2207 	if (!isolated) {
2208 		put_page(new_page);
2209 		goto out_fail;
2210 	}
2211 
2212 	/* Prepare a page as a migration target */
2213 	__SetPageLocked(new_page);
2214 	if (PageSwapBacked(page))
2215 		__SetPageSwapBacked(new_page);
2216 
2217 	/* anon mapping, we can simply copy page->mapping to the new page: */
2218 	new_page->mapping = page->mapping;
2219 	new_page->index = page->index;
2220 	/* flush the cache before copying using the kernel virtual address */
2221 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2222 	migrate_page_copy(new_page, page);
2223 	WARN_ON(PageLRU(new_page));
2224 
2225 	/* Recheck the target PMD */
2226 	ptl = pmd_lock(mm, pmd);
2227 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2228 		spin_unlock(ptl);
2229 
2230 		/* Reverse changes made by migrate_page_copy() */
2231 		if (TestClearPageActive(new_page))
2232 			SetPageActive(page);
2233 		if (TestClearPageUnevictable(new_page))
2234 			SetPageUnevictable(page);
2235 
2236 		unlock_page(new_page);
2237 		put_page(new_page);		/* Free it */
2238 
2239 		/* Retake the callers reference and putback on LRU */
2240 		get_page(page);
2241 		putback_lru_page(page);
2242 		mod_node_page_state(page_pgdat(page),
2243 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2244 
2245 		goto out_unlock;
2246 	}
2247 
2248 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2249 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2250 
2251 	/*
2252 	 * Overwrite the old entry under pagetable lock and establish
2253 	 * the new PTE. Any parallel GUP will either observe the old
2254 	 * page blocking on the page lock, block on the page table
2255 	 * lock or observe the new page. The SetPageUptodate on the
2256 	 * new page and page_add_new_anon_rmap guarantee the copy is
2257 	 * visible before the pagetable update.
2258 	 */
2259 	page_add_anon_rmap(new_page, vma, start, true);
2260 	/*
2261 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2262 	 * has already been flushed globally.  So no TLB can be currently
2263 	 * caching this non present pmd mapping.  There's no need to clear the
2264 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2265 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2266 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2267 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2268 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2269 	 * pmd.
2270 	 */
2271 	set_pmd_at(mm, start, pmd, entry);
2272 	update_mmu_cache_pmd(vma, address, &entry);
2273 
2274 	page_ref_unfreeze(page, 2);
2275 	mlock_migrate_page(new_page, page);
2276 	page_remove_rmap(page, true);
2277 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2278 
2279 	spin_unlock(ptl);
2280 
2281 	/* Take an "isolate" reference and put new page on the LRU. */
2282 	get_page(new_page);
2283 	putback_lru_page(new_page);
2284 
2285 	unlock_page(new_page);
2286 	unlock_page(page);
2287 	put_page(page);			/* Drop the rmap reference */
2288 	put_page(page);			/* Drop the LRU isolation reference */
2289 
2290 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2291 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2292 
2293 	mod_node_page_state(page_pgdat(page),
2294 			NR_ISOLATED_ANON + page_lru,
2295 			-HPAGE_PMD_NR);
2296 	return isolated;
2297 
2298 out_fail:
2299 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2300 	ptl = pmd_lock(mm, pmd);
2301 	if (pmd_same(*pmd, entry)) {
2302 		entry = pmd_modify(entry, vma->vm_page_prot);
2303 		set_pmd_at(mm, start, pmd, entry);
2304 		update_mmu_cache_pmd(vma, address, &entry);
2305 	}
2306 	spin_unlock(ptl);
2307 
2308 out_unlock:
2309 	unlock_page(page);
2310 out:
2311 	put_page(page);
2312 	return 0;
2313 }
2314 #endif /* CONFIG_NUMA_BALANCING */
2315 
2316 #endif /* CONFIG_NUMA */
2317 
2318 #ifdef CONFIG_DEVICE_PRIVATE
2319 static int migrate_vma_collect_hole(unsigned long start,
2320 				    unsigned long end,
2321 				    __always_unused int depth,
2322 				    struct mm_walk *walk)
2323 {
2324 	struct migrate_vma *migrate = walk->private;
2325 	unsigned long addr;
2326 
2327 	/* Only allow populating anonymous memory. */
2328 	if (!vma_is_anonymous(walk->vma)) {
2329 		for (addr = start; addr < end; addr += PAGE_SIZE) {
2330 			migrate->src[migrate->npages] = 0;
2331 			migrate->dst[migrate->npages] = 0;
2332 			migrate->npages++;
2333 		}
2334 		return 0;
2335 	}
2336 
2337 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2338 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2339 		migrate->dst[migrate->npages] = 0;
2340 		migrate->npages++;
2341 		migrate->cpages++;
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 static int migrate_vma_collect_skip(unsigned long start,
2348 				    unsigned long end,
2349 				    struct mm_walk *walk)
2350 {
2351 	struct migrate_vma *migrate = walk->private;
2352 	unsigned long addr;
2353 
2354 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2355 		migrate->dst[migrate->npages] = 0;
2356 		migrate->src[migrate->npages++] = 0;
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2363 				   unsigned long start,
2364 				   unsigned long end,
2365 				   struct mm_walk *walk)
2366 {
2367 	struct migrate_vma *migrate = walk->private;
2368 	struct vm_area_struct *vma = walk->vma;
2369 	struct mm_struct *mm = vma->vm_mm;
2370 	unsigned long addr = start, unmapped = 0;
2371 	spinlock_t *ptl;
2372 	pte_t *ptep;
2373 
2374 again:
2375 	if (pmd_none(*pmdp))
2376 		return migrate_vma_collect_hole(start, end, -1, walk);
2377 
2378 	if (pmd_trans_huge(*pmdp)) {
2379 		struct page *page;
2380 
2381 		ptl = pmd_lock(mm, pmdp);
2382 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2383 			spin_unlock(ptl);
2384 			goto again;
2385 		}
2386 
2387 		page = pmd_page(*pmdp);
2388 		if (is_huge_zero_page(page)) {
2389 			spin_unlock(ptl);
2390 			split_huge_pmd(vma, pmdp, addr);
2391 			if (pmd_trans_unstable(pmdp))
2392 				return migrate_vma_collect_skip(start, end,
2393 								walk);
2394 		} else {
2395 			int ret;
2396 
2397 			get_page(page);
2398 			spin_unlock(ptl);
2399 			if (unlikely(!trylock_page(page)))
2400 				return migrate_vma_collect_skip(start, end,
2401 								walk);
2402 			ret = split_huge_page(page);
2403 			unlock_page(page);
2404 			put_page(page);
2405 			if (ret)
2406 				return migrate_vma_collect_skip(start, end,
2407 								walk);
2408 			if (pmd_none(*pmdp))
2409 				return migrate_vma_collect_hole(start, end, -1,
2410 								walk);
2411 		}
2412 	}
2413 
2414 	if (unlikely(pmd_bad(*pmdp)))
2415 		return migrate_vma_collect_skip(start, end, walk);
2416 
2417 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2418 	arch_enter_lazy_mmu_mode();
2419 
2420 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2421 		unsigned long mpfn = 0, pfn;
2422 		struct page *page;
2423 		swp_entry_t entry;
2424 		pte_t pte;
2425 
2426 		pte = *ptep;
2427 
2428 		if (pte_none(pte)) {
2429 			if (vma_is_anonymous(vma)) {
2430 				mpfn = MIGRATE_PFN_MIGRATE;
2431 				migrate->cpages++;
2432 			}
2433 			goto next;
2434 		}
2435 
2436 		if (!pte_present(pte)) {
2437 			/*
2438 			 * Only care about unaddressable device page special
2439 			 * page table entry. Other special swap entries are not
2440 			 * migratable, and we ignore regular swapped page.
2441 			 */
2442 			entry = pte_to_swp_entry(pte);
2443 			if (!is_device_private_entry(entry))
2444 				goto next;
2445 
2446 			page = device_private_entry_to_page(entry);
2447 			if (!(migrate->flags &
2448 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2449 			    page->pgmap->owner != migrate->pgmap_owner)
2450 				goto next;
2451 
2452 			mpfn = migrate_pfn(page_to_pfn(page)) |
2453 					MIGRATE_PFN_MIGRATE;
2454 			if (is_write_device_private_entry(entry))
2455 				mpfn |= MIGRATE_PFN_WRITE;
2456 		} else {
2457 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2458 				goto next;
2459 			pfn = pte_pfn(pte);
2460 			if (is_zero_pfn(pfn)) {
2461 				mpfn = MIGRATE_PFN_MIGRATE;
2462 				migrate->cpages++;
2463 				goto next;
2464 			}
2465 			page = vm_normal_page(migrate->vma, addr, pte);
2466 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2467 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2468 		}
2469 
2470 		/* FIXME support THP */
2471 		if (!page || !page->mapping || PageTransCompound(page)) {
2472 			mpfn = 0;
2473 			goto next;
2474 		}
2475 
2476 		/*
2477 		 * By getting a reference on the page we pin it and that blocks
2478 		 * any kind of migration. Side effect is that it "freezes" the
2479 		 * pte.
2480 		 *
2481 		 * We drop this reference after isolating the page from the lru
2482 		 * for non device page (device page are not on the lru and thus
2483 		 * can't be dropped from it).
2484 		 */
2485 		get_page(page);
2486 		migrate->cpages++;
2487 
2488 		/*
2489 		 * Optimize for the common case where page is only mapped once
2490 		 * in one process. If we can lock the page, then we can safely
2491 		 * set up a special migration page table entry now.
2492 		 */
2493 		if (trylock_page(page)) {
2494 			pte_t swp_pte;
2495 
2496 			mpfn |= MIGRATE_PFN_LOCKED;
2497 			ptep_get_and_clear(mm, addr, ptep);
2498 
2499 			/* Setup special migration page table entry */
2500 			entry = make_migration_entry(page, mpfn &
2501 						     MIGRATE_PFN_WRITE);
2502 			swp_pte = swp_entry_to_pte(entry);
2503 			if (pte_present(pte)) {
2504 				if (pte_soft_dirty(pte))
2505 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2506 				if (pte_uffd_wp(pte))
2507 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2508 			} else {
2509 				if (pte_swp_soft_dirty(pte))
2510 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2511 				if (pte_swp_uffd_wp(pte))
2512 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2513 			}
2514 			set_pte_at(mm, addr, ptep, swp_pte);
2515 
2516 			/*
2517 			 * This is like regular unmap: we remove the rmap and
2518 			 * drop page refcount. Page won't be freed, as we took
2519 			 * a reference just above.
2520 			 */
2521 			page_remove_rmap(page, false);
2522 			put_page(page);
2523 
2524 			if (pte_present(pte))
2525 				unmapped++;
2526 		}
2527 
2528 next:
2529 		migrate->dst[migrate->npages] = 0;
2530 		migrate->src[migrate->npages++] = mpfn;
2531 	}
2532 	arch_leave_lazy_mmu_mode();
2533 	pte_unmap_unlock(ptep - 1, ptl);
2534 
2535 	/* Only flush the TLB if we actually modified any entries */
2536 	if (unmapped)
2537 		flush_tlb_range(walk->vma, start, end);
2538 
2539 	return 0;
2540 }
2541 
2542 static const struct mm_walk_ops migrate_vma_walk_ops = {
2543 	.pmd_entry		= migrate_vma_collect_pmd,
2544 	.pte_hole		= migrate_vma_collect_hole,
2545 };
2546 
2547 /*
2548  * migrate_vma_collect() - collect pages over a range of virtual addresses
2549  * @migrate: migrate struct containing all migration information
2550  *
2551  * This will walk the CPU page table. For each virtual address backed by a
2552  * valid page, it updates the src array and takes a reference on the page, in
2553  * order to pin the page until we lock it and unmap it.
2554  */
2555 static void migrate_vma_collect(struct migrate_vma *migrate)
2556 {
2557 	struct mmu_notifier_range range;
2558 
2559 	/*
2560 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2561 	 * that the registered device driver can skip invalidating device
2562 	 * private page mappings that won't be migrated.
2563 	 */
2564 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2565 		migrate->vma->vm_mm, migrate->start, migrate->end,
2566 		migrate->pgmap_owner);
2567 	mmu_notifier_invalidate_range_start(&range);
2568 
2569 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2570 			&migrate_vma_walk_ops, migrate);
2571 
2572 	mmu_notifier_invalidate_range_end(&range);
2573 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2574 }
2575 
2576 /*
2577  * migrate_vma_check_page() - check if page is pinned or not
2578  * @page: struct page to check
2579  *
2580  * Pinned pages cannot be migrated. This is the same test as in
2581  * migrate_page_move_mapping(), except that here we allow migration of a
2582  * ZONE_DEVICE page.
2583  */
2584 static bool migrate_vma_check_page(struct page *page)
2585 {
2586 	/*
2587 	 * One extra ref because caller holds an extra reference, either from
2588 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2589 	 * a device page.
2590 	 */
2591 	int extra = 1;
2592 
2593 	/*
2594 	 * FIXME support THP (transparent huge page), it is bit more complex to
2595 	 * check them than regular pages, because they can be mapped with a pmd
2596 	 * or with a pte (split pte mapping).
2597 	 */
2598 	if (PageCompound(page))
2599 		return false;
2600 
2601 	/* Page from ZONE_DEVICE have one extra reference */
2602 	if (is_zone_device_page(page)) {
2603 		/*
2604 		 * Private page can never be pin as they have no valid pte and
2605 		 * GUP will fail for those. Yet if there is a pending migration
2606 		 * a thread might try to wait on the pte migration entry and
2607 		 * will bump the page reference count. Sadly there is no way to
2608 		 * differentiate a regular pin from migration wait. Hence to
2609 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2610 		 * infinite loop (one stopping migration because the other is
2611 		 * waiting on pte migration entry). We always return true here.
2612 		 *
2613 		 * FIXME proper solution is to rework migration_entry_wait() so
2614 		 * it does not need to take a reference on page.
2615 		 */
2616 		return is_device_private_page(page);
2617 	}
2618 
2619 	/* For file back page */
2620 	if (page_mapping(page))
2621 		extra += 1 + page_has_private(page);
2622 
2623 	if ((page_count(page) - extra) > page_mapcount(page))
2624 		return false;
2625 
2626 	return true;
2627 }
2628 
2629 /*
2630  * migrate_vma_prepare() - lock pages and isolate them from the lru
2631  * @migrate: migrate struct containing all migration information
2632  *
2633  * This locks pages that have been collected by migrate_vma_collect(). Once each
2634  * page is locked it is isolated from the lru (for non-device pages). Finally,
2635  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2636  * migrated by concurrent kernel threads.
2637  */
2638 static void migrate_vma_prepare(struct migrate_vma *migrate)
2639 {
2640 	const unsigned long npages = migrate->npages;
2641 	const unsigned long start = migrate->start;
2642 	unsigned long addr, i, restore = 0;
2643 	bool allow_drain = true;
2644 
2645 	lru_add_drain();
2646 
2647 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2648 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2649 		bool remap = true;
2650 
2651 		if (!page)
2652 			continue;
2653 
2654 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2655 			/*
2656 			 * Because we are migrating several pages there can be
2657 			 * a deadlock between 2 concurrent migration where each
2658 			 * are waiting on each other page lock.
2659 			 *
2660 			 * Make migrate_vma() a best effort thing and backoff
2661 			 * for any page we can not lock right away.
2662 			 */
2663 			if (!trylock_page(page)) {
2664 				migrate->src[i] = 0;
2665 				migrate->cpages--;
2666 				put_page(page);
2667 				continue;
2668 			}
2669 			remap = false;
2670 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2671 		}
2672 
2673 		/* ZONE_DEVICE pages are not on LRU */
2674 		if (!is_zone_device_page(page)) {
2675 			if (!PageLRU(page) && allow_drain) {
2676 				/* Drain CPU's pagevec */
2677 				lru_add_drain_all();
2678 				allow_drain = false;
2679 			}
2680 
2681 			if (isolate_lru_page(page)) {
2682 				if (remap) {
2683 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2684 					migrate->cpages--;
2685 					restore++;
2686 				} else {
2687 					migrate->src[i] = 0;
2688 					unlock_page(page);
2689 					migrate->cpages--;
2690 					put_page(page);
2691 				}
2692 				continue;
2693 			}
2694 
2695 			/* Drop the reference we took in collect */
2696 			put_page(page);
2697 		}
2698 
2699 		if (!migrate_vma_check_page(page)) {
2700 			if (remap) {
2701 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2702 				migrate->cpages--;
2703 				restore++;
2704 
2705 				if (!is_zone_device_page(page)) {
2706 					get_page(page);
2707 					putback_lru_page(page);
2708 				}
2709 			} else {
2710 				migrate->src[i] = 0;
2711 				unlock_page(page);
2712 				migrate->cpages--;
2713 
2714 				if (!is_zone_device_page(page))
2715 					putback_lru_page(page);
2716 				else
2717 					put_page(page);
2718 			}
2719 		}
2720 	}
2721 
2722 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2723 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2724 
2725 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2726 			continue;
2727 
2728 		remove_migration_pte(page, migrate->vma, addr, page);
2729 
2730 		migrate->src[i] = 0;
2731 		unlock_page(page);
2732 		put_page(page);
2733 		restore--;
2734 	}
2735 }
2736 
2737 /*
2738  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2739  * @migrate: migrate struct containing all migration information
2740  *
2741  * Replace page mapping (CPU page table pte) with a special migration pte entry
2742  * and check again if it has been pinned. Pinned pages are restored because we
2743  * cannot migrate them.
2744  *
2745  * This is the last step before we call the device driver callback to allocate
2746  * destination memory and copy contents of original page over to new page.
2747  */
2748 static void migrate_vma_unmap(struct migrate_vma *migrate)
2749 {
2750 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2751 	const unsigned long npages = migrate->npages;
2752 	const unsigned long start = migrate->start;
2753 	unsigned long addr, i, restore = 0;
2754 
2755 	for (i = 0; i < npages; i++) {
2756 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2757 
2758 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2759 			continue;
2760 
2761 		if (page_mapped(page)) {
2762 			try_to_unmap(page, flags);
2763 			if (page_mapped(page))
2764 				goto restore;
2765 		}
2766 
2767 		if (migrate_vma_check_page(page))
2768 			continue;
2769 
2770 restore:
2771 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2772 		migrate->cpages--;
2773 		restore++;
2774 	}
2775 
2776 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2777 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2778 
2779 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2780 			continue;
2781 
2782 		remove_migration_ptes(page, page, false);
2783 
2784 		migrate->src[i] = 0;
2785 		unlock_page(page);
2786 		restore--;
2787 
2788 		if (is_zone_device_page(page))
2789 			put_page(page);
2790 		else
2791 			putback_lru_page(page);
2792 	}
2793 }
2794 
2795 /**
2796  * migrate_vma_setup() - prepare to migrate a range of memory
2797  * @args: contains the vma, start, and pfns arrays for the migration
2798  *
2799  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2800  * without an error.
2801  *
2802  * Prepare to migrate a range of memory virtual address range by collecting all
2803  * the pages backing each virtual address in the range, saving them inside the
2804  * src array.  Then lock those pages and unmap them. Once the pages are locked
2805  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2806  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2807  * corresponding src array entry.  Then restores any pages that are pinned, by
2808  * remapping and unlocking those pages.
2809  *
2810  * The caller should then allocate destination memory and copy source memory to
2811  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2812  * flag set).  Once these are allocated and copied, the caller must update each
2813  * corresponding entry in the dst array with the pfn value of the destination
2814  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2815  * (destination pages must have their struct pages locked, via lock_page()).
2816  *
2817  * Note that the caller does not have to migrate all the pages that are marked
2818  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2819  * device memory to system memory.  If the caller cannot migrate a device page
2820  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2821  * consequences for the userspace process, so it must be avoided if at all
2822  * possible.
2823  *
2824  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2825  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2826  * allowing the caller to allocate device memory for those unback virtual
2827  * address.  For this the caller simply has to allocate device memory and
2828  * properly set the destination entry like for regular migration.  Note that
2829  * this can still fails and thus inside the device driver must check if the
2830  * migration was successful for those entries after calling migrate_vma_pages()
2831  * just like for regular migration.
2832  *
2833  * After that, the callers must call migrate_vma_pages() to go over each entry
2834  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2835  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2836  * then migrate_vma_pages() to migrate struct page information from the source
2837  * struct page to the destination struct page.  If it fails to migrate the
2838  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2839  * src array.
2840  *
2841  * At this point all successfully migrated pages have an entry in the src
2842  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2843  * array entry with MIGRATE_PFN_VALID flag set.
2844  *
2845  * Once migrate_vma_pages() returns the caller may inspect which pages were
2846  * successfully migrated, and which were not.  Successfully migrated pages will
2847  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2848  *
2849  * It is safe to update device page table after migrate_vma_pages() because
2850  * both destination and source page are still locked, and the mmap_lock is held
2851  * in read mode (hence no one can unmap the range being migrated).
2852  *
2853  * Once the caller is done cleaning up things and updating its page table (if it
2854  * chose to do so, this is not an obligation) it finally calls
2855  * migrate_vma_finalize() to update the CPU page table to point to new pages
2856  * for successfully migrated pages or otherwise restore the CPU page table to
2857  * point to the original source pages.
2858  */
2859 int migrate_vma_setup(struct migrate_vma *args)
2860 {
2861 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2862 
2863 	args->start &= PAGE_MASK;
2864 	args->end &= PAGE_MASK;
2865 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2866 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2867 		return -EINVAL;
2868 	if (nr_pages <= 0)
2869 		return -EINVAL;
2870 	if (args->start < args->vma->vm_start ||
2871 	    args->start >= args->vma->vm_end)
2872 		return -EINVAL;
2873 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2874 		return -EINVAL;
2875 	if (!args->src || !args->dst)
2876 		return -EINVAL;
2877 
2878 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2879 	args->cpages = 0;
2880 	args->npages = 0;
2881 
2882 	migrate_vma_collect(args);
2883 
2884 	if (args->cpages)
2885 		migrate_vma_prepare(args);
2886 	if (args->cpages)
2887 		migrate_vma_unmap(args);
2888 
2889 	/*
2890 	 * At this point pages are locked and unmapped, and thus they have
2891 	 * stable content and can safely be copied to destination memory that
2892 	 * is allocated by the drivers.
2893 	 */
2894 	return 0;
2895 
2896 }
2897 EXPORT_SYMBOL(migrate_vma_setup);
2898 
2899 /*
2900  * This code closely matches the code in:
2901  *   __handle_mm_fault()
2902  *     handle_pte_fault()
2903  *       do_anonymous_page()
2904  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2905  * private page.
2906  */
2907 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2908 				    unsigned long addr,
2909 				    struct page *page,
2910 				    unsigned long *src)
2911 {
2912 	struct vm_area_struct *vma = migrate->vma;
2913 	struct mm_struct *mm = vma->vm_mm;
2914 	bool flush = false;
2915 	spinlock_t *ptl;
2916 	pte_t entry;
2917 	pgd_t *pgdp;
2918 	p4d_t *p4dp;
2919 	pud_t *pudp;
2920 	pmd_t *pmdp;
2921 	pte_t *ptep;
2922 
2923 	/* Only allow populating anonymous memory */
2924 	if (!vma_is_anonymous(vma))
2925 		goto abort;
2926 
2927 	pgdp = pgd_offset(mm, addr);
2928 	p4dp = p4d_alloc(mm, pgdp, addr);
2929 	if (!p4dp)
2930 		goto abort;
2931 	pudp = pud_alloc(mm, p4dp, addr);
2932 	if (!pudp)
2933 		goto abort;
2934 	pmdp = pmd_alloc(mm, pudp, addr);
2935 	if (!pmdp)
2936 		goto abort;
2937 
2938 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2939 		goto abort;
2940 
2941 	/*
2942 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2943 	 * pte_offset_map() on pmds where a huge pmd might be created
2944 	 * from a different thread.
2945 	 *
2946 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2947 	 * parallel threads are excluded by other means.
2948 	 *
2949 	 * Here we only have mmap_read_lock(mm).
2950 	 */
2951 	if (pte_alloc(mm, pmdp))
2952 		goto abort;
2953 
2954 	/* See the comment in pte_alloc_one_map() */
2955 	if (unlikely(pmd_trans_unstable(pmdp)))
2956 		goto abort;
2957 
2958 	if (unlikely(anon_vma_prepare(vma)))
2959 		goto abort;
2960 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2961 		goto abort;
2962 
2963 	/*
2964 	 * The memory barrier inside __SetPageUptodate makes sure that
2965 	 * preceding stores to the page contents become visible before
2966 	 * the set_pte_at() write.
2967 	 */
2968 	__SetPageUptodate(page);
2969 
2970 	if (is_zone_device_page(page)) {
2971 		if (is_device_private_page(page)) {
2972 			swp_entry_t swp_entry;
2973 
2974 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2975 			entry = swp_entry_to_pte(swp_entry);
2976 		}
2977 	} else {
2978 		entry = mk_pte(page, vma->vm_page_prot);
2979 		if (vma->vm_flags & VM_WRITE)
2980 			entry = pte_mkwrite(pte_mkdirty(entry));
2981 	}
2982 
2983 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2984 
2985 	if (check_stable_address_space(mm))
2986 		goto unlock_abort;
2987 
2988 	if (pte_present(*ptep)) {
2989 		unsigned long pfn = pte_pfn(*ptep);
2990 
2991 		if (!is_zero_pfn(pfn))
2992 			goto unlock_abort;
2993 		flush = true;
2994 	} else if (!pte_none(*ptep))
2995 		goto unlock_abort;
2996 
2997 	/*
2998 	 * Check for userfaultfd but do not deliver the fault. Instead,
2999 	 * just back off.
3000 	 */
3001 	if (userfaultfd_missing(vma))
3002 		goto unlock_abort;
3003 
3004 	inc_mm_counter(mm, MM_ANONPAGES);
3005 	page_add_new_anon_rmap(page, vma, addr, false);
3006 	if (!is_zone_device_page(page))
3007 		lru_cache_add_inactive_or_unevictable(page, vma);
3008 	get_page(page);
3009 
3010 	if (flush) {
3011 		flush_cache_page(vma, addr, pte_pfn(*ptep));
3012 		ptep_clear_flush_notify(vma, addr, ptep);
3013 		set_pte_at_notify(mm, addr, ptep, entry);
3014 		update_mmu_cache(vma, addr, ptep);
3015 	} else {
3016 		/* No need to invalidate - it was non-present before */
3017 		set_pte_at(mm, addr, ptep, entry);
3018 		update_mmu_cache(vma, addr, ptep);
3019 	}
3020 
3021 	pte_unmap_unlock(ptep, ptl);
3022 	*src = MIGRATE_PFN_MIGRATE;
3023 	return;
3024 
3025 unlock_abort:
3026 	pte_unmap_unlock(ptep, ptl);
3027 abort:
3028 	*src &= ~MIGRATE_PFN_MIGRATE;
3029 }
3030 
3031 /**
3032  * migrate_vma_pages() - migrate meta-data from src page to dst page
3033  * @migrate: migrate struct containing all migration information
3034  *
3035  * This migrates struct page meta-data from source struct page to destination
3036  * struct page. This effectively finishes the migration from source page to the
3037  * destination page.
3038  */
3039 void migrate_vma_pages(struct migrate_vma *migrate)
3040 {
3041 	const unsigned long npages = migrate->npages;
3042 	const unsigned long start = migrate->start;
3043 	struct mmu_notifier_range range;
3044 	unsigned long addr, i;
3045 	bool notified = false;
3046 
3047 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3048 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3049 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3050 		struct address_space *mapping;
3051 		int r;
3052 
3053 		if (!newpage) {
3054 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3055 			continue;
3056 		}
3057 
3058 		if (!page) {
3059 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3060 				continue;
3061 			if (!notified) {
3062 				notified = true;
3063 
3064 				mmu_notifier_range_init_migrate(&range, 0,
3065 					migrate->vma, migrate->vma->vm_mm,
3066 					addr, migrate->end,
3067 					migrate->pgmap_owner);
3068 				mmu_notifier_invalidate_range_start(&range);
3069 			}
3070 			migrate_vma_insert_page(migrate, addr, newpage,
3071 						&migrate->src[i]);
3072 			continue;
3073 		}
3074 
3075 		mapping = page_mapping(page);
3076 
3077 		if (is_zone_device_page(newpage)) {
3078 			if (is_device_private_page(newpage)) {
3079 				/*
3080 				 * For now only support private anonymous when
3081 				 * migrating to un-addressable device memory.
3082 				 */
3083 				if (mapping) {
3084 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3085 					continue;
3086 				}
3087 			} else {
3088 				/*
3089 				 * Other types of ZONE_DEVICE page are not
3090 				 * supported.
3091 				 */
3092 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3093 				continue;
3094 			}
3095 		}
3096 
3097 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3098 		if (r != MIGRATEPAGE_SUCCESS)
3099 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3100 	}
3101 
3102 	/*
3103 	 * No need to double call mmu_notifier->invalidate_range() callback as
3104 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3105 	 * did already call it.
3106 	 */
3107 	if (notified)
3108 		mmu_notifier_invalidate_range_only_end(&range);
3109 }
3110 EXPORT_SYMBOL(migrate_vma_pages);
3111 
3112 /**
3113  * migrate_vma_finalize() - restore CPU page table entry
3114  * @migrate: migrate struct containing all migration information
3115  *
3116  * This replaces the special migration pte entry with either a mapping to the
3117  * new page if migration was successful for that page, or to the original page
3118  * otherwise.
3119  *
3120  * This also unlocks the pages and puts them back on the lru, or drops the extra
3121  * refcount, for device pages.
3122  */
3123 void migrate_vma_finalize(struct migrate_vma *migrate)
3124 {
3125 	const unsigned long npages = migrate->npages;
3126 	unsigned long i;
3127 
3128 	for (i = 0; i < npages; i++) {
3129 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3130 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3131 
3132 		if (!page) {
3133 			if (newpage) {
3134 				unlock_page(newpage);
3135 				put_page(newpage);
3136 			}
3137 			continue;
3138 		}
3139 
3140 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3141 			if (newpage) {
3142 				unlock_page(newpage);
3143 				put_page(newpage);
3144 			}
3145 			newpage = page;
3146 		}
3147 
3148 		remove_migration_ptes(page, newpage, false);
3149 		unlock_page(page);
3150 
3151 		if (is_zone_device_page(page))
3152 			put_page(page);
3153 		else
3154 			putback_lru_page(page);
3155 
3156 		if (newpage != page) {
3157 			unlock_page(newpage);
3158 			if (is_zone_device_page(newpage))
3159 				put_page(newpage);
3160 			else
3161 				putback_lru_page(newpage);
3162 		}
3163 	}
3164 }
3165 EXPORT_SYMBOL(migrate_vma_finalize);
3166 #endif /* CONFIG_DEVICE_PRIVATE */
3167