1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 #include <linux/memory-tiers.h> 54 55 #include <asm/tlbflush.h> 56 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 int isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (unlikely(!get_page_unless_zero(page))) 75 goto out; 76 77 if (unlikely(PageSlab(page))) 78 goto out_putpage; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__PageMovable(page))) 87 goto out_putpage; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(PageSlab(page))) 91 goto out_putpage; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!trylock_page(page))) 105 goto out_putpage; 106 107 if (!PageMovable(page) || PageIsolated(page)) 108 goto out_no_isolated; 109 110 mops = page_movable_ops(page); 111 VM_BUG_ON_PAGE(!mops, page); 112 113 if (!mops->isolate_page(page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(PageIsolated(page)); 118 SetPageIsolated(page); 119 unlock_page(page); 120 121 return 0; 122 123 out_no_isolated: 124 unlock_page(page); 125 out_putpage: 126 put_page(page); 127 out: 128 return -EBUSY; 129 } 130 131 static void putback_movable_page(struct page *page) 132 { 133 const struct movable_operations *mops = page_movable_ops(page); 134 135 mops->putback_page(page); 136 ClearPageIsolated(page); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct page *page; 150 struct page *page2; 151 152 list_for_each_entry_safe(page, page2, l, lru) { 153 if (unlikely(PageHuge(page))) { 154 putback_active_hugepage(page); 155 continue; 156 } 157 list_del(&page->lru); 158 /* 159 * We isolated non-lru movable page so here we can use 160 * __PageMovable because LRU page's mapping cannot have 161 * PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__PageMovable(page))) { 164 VM_BUG_ON_PAGE(!PageIsolated(page), page); 165 lock_page(page); 166 if (PageMovable(page)) 167 putback_movable_page(page); 168 else 169 ClearPageIsolated(page); 170 unlock_page(page); 171 put_page(page); 172 } else { 173 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 174 page_is_file_lru(page), -thp_nr_pages(page)); 175 putback_lru_page(page); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t pte; 191 swp_entry_t entry; 192 struct page *new; 193 unsigned long idx = 0; 194 195 /* pgoff is invalid for ksm pages, but they are never large */ 196 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 197 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 198 new = folio_page(folio, idx); 199 200 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 201 /* PMD-mapped THP migration entry */ 202 if (!pvmw.pte) { 203 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 204 !folio_test_pmd_mappable(folio), folio); 205 remove_migration_pmd(&pvmw, new); 206 continue; 207 } 208 #endif 209 210 folio_get(folio); 211 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 212 if (pte_swp_soft_dirty(*pvmw.pte)) 213 pte = pte_mksoft_dirty(pte); 214 215 /* 216 * Recheck VMA as permissions can change since migration started 217 */ 218 entry = pte_to_swp_entry(*pvmw.pte); 219 if (!is_migration_entry_young(entry)) 220 pte = pte_mkold(pte); 221 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 222 pte = pte_mkdirty(pte); 223 if (is_writable_migration_entry(entry)) 224 pte = maybe_mkwrite(pte, vma); 225 else if (pte_swp_uffd_wp(*pvmw.pte)) 226 pte = pte_mkuffd_wp(pte); 227 else 228 pte = pte_wrprotect(pte); 229 230 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 231 rmap_flags |= RMAP_EXCLUSIVE; 232 233 if (unlikely(is_device_private_page(new))) { 234 if (pte_write(pte)) 235 entry = make_writable_device_private_entry( 236 page_to_pfn(new)); 237 else 238 entry = make_readable_device_private_entry( 239 page_to_pfn(new)); 240 pte = swp_entry_to_pte(entry); 241 if (pte_swp_soft_dirty(*pvmw.pte)) 242 pte = pte_swp_mksoft_dirty(pte); 243 if (pte_swp_uffd_wp(*pvmw.pte)) 244 pte = pte_swp_mkuffd_wp(pte); 245 } 246 247 #ifdef CONFIG_HUGETLB_PAGE 248 if (folio_test_hugetlb(folio)) { 249 unsigned int shift = huge_page_shift(hstate_vma(vma)); 250 251 pte = pte_mkhuge(pte); 252 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 253 if (folio_test_anon(folio)) 254 hugepage_add_anon_rmap(new, vma, pvmw.address, 255 rmap_flags); 256 else 257 page_dup_file_rmap(new, true); 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 259 } else 260 #endif 261 { 262 if (folio_test_anon(folio)) 263 page_add_anon_rmap(new, vma, pvmw.address, 264 rmap_flags); 265 else 266 page_add_file_rmap(new, vma, false); 267 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 268 } 269 if (vma->vm_flags & VM_LOCKED) 270 mlock_page_drain_local(); 271 272 trace_remove_migration_pte(pvmw.address, pte_val(pte), 273 compound_order(new)); 274 275 /* No need to invalidate - it was non-present before */ 276 update_mmu_cache(vma, pvmw.address, pvmw.pte); 277 } 278 279 return true; 280 } 281 282 /* 283 * Get rid of all migration entries and replace them by 284 * references to the indicated page. 285 */ 286 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 287 { 288 struct rmap_walk_control rwc = { 289 .rmap_one = remove_migration_pte, 290 .arg = src, 291 }; 292 293 if (locked) 294 rmap_walk_locked(dst, &rwc); 295 else 296 rmap_walk(dst, &rwc); 297 } 298 299 /* 300 * Something used the pte of a page under migration. We need to 301 * get to the page and wait until migration is finished. 302 * When we return from this function the fault will be retried. 303 */ 304 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 305 spinlock_t *ptl) 306 { 307 pte_t pte; 308 swp_entry_t entry; 309 310 spin_lock(ptl); 311 pte = *ptep; 312 if (!is_swap_pte(pte)) 313 goto out; 314 315 entry = pte_to_swp_entry(pte); 316 if (!is_migration_entry(entry)) 317 goto out; 318 319 migration_entry_wait_on_locked(entry, ptep, ptl); 320 return; 321 out: 322 pte_unmap_unlock(ptep, ptl); 323 } 324 325 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 326 unsigned long address) 327 { 328 spinlock_t *ptl = pte_lockptr(mm, pmd); 329 pte_t *ptep = pte_offset_map(pmd, address); 330 __migration_entry_wait(mm, ptep, ptl); 331 } 332 333 #ifdef CONFIG_HUGETLB_PAGE 334 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) 335 { 336 pte_t pte; 337 338 spin_lock(ptl); 339 pte = huge_ptep_get(ptep); 340 341 if (unlikely(!is_hugetlb_entry_migration(pte))) 342 spin_unlock(ptl); 343 else 344 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); 345 } 346 347 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) 348 { 349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); 350 351 __migration_entry_wait_huge(pte, ptl); 352 } 353 #endif 354 355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 357 { 358 spinlock_t *ptl; 359 360 ptl = pmd_lock(mm, pmd); 361 if (!is_pmd_migration_entry(*pmd)) 362 goto unlock; 363 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 364 return; 365 unlock: 366 spin_unlock(ptl); 367 } 368 #endif 369 370 static int folio_expected_refs(struct address_space *mapping, 371 struct folio *folio) 372 { 373 int refs = 1; 374 if (!mapping) 375 return refs; 376 377 refs += folio_nr_pages(folio); 378 if (folio_test_private(folio)) 379 refs++; 380 381 return refs; 382 } 383 384 /* 385 * Replace the page in the mapping. 386 * 387 * The number of remaining references must be: 388 * 1 for anonymous pages without a mapping 389 * 2 for pages with a mapping 390 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 391 */ 392 int folio_migrate_mapping(struct address_space *mapping, 393 struct folio *newfolio, struct folio *folio, int extra_count) 394 { 395 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 396 struct zone *oldzone, *newzone; 397 int dirty; 398 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 399 long nr = folio_nr_pages(folio); 400 401 if (!mapping) { 402 /* Anonymous page without mapping */ 403 if (folio_ref_count(folio) != expected_count) 404 return -EAGAIN; 405 406 /* No turning back from here */ 407 newfolio->index = folio->index; 408 newfolio->mapping = folio->mapping; 409 if (folio_test_swapbacked(folio)) 410 __folio_set_swapbacked(newfolio); 411 412 return MIGRATEPAGE_SUCCESS; 413 } 414 415 oldzone = folio_zone(folio); 416 newzone = folio_zone(newfolio); 417 418 xas_lock_irq(&xas); 419 if (!folio_ref_freeze(folio, expected_count)) { 420 xas_unlock_irq(&xas); 421 return -EAGAIN; 422 } 423 424 /* 425 * Now we know that no one else is looking at the folio: 426 * no turning back from here. 427 */ 428 newfolio->index = folio->index; 429 newfolio->mapping = folio->mapping; 430 folio_ref_add(newfolio, nr); /* add cache reference */ 431 if (folio_test_swapbacked(folio)) { 432 __folio_set_swapbacked(newfolio); 433 if (folio_test_swapcache(folio)) { 434 folio_set_swapcache(newfolio); 435 newfolio->private = folio_get_private(folio); 436 } 437 } else { 438 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 439 } 440 441 /* Move dirty while page refs frozen and newpage not yet exposed */ 442 dirty = folio_test_dirty(folio); 443 if (dirty) { 444 folio_clear_dirty(folio); 445 folio_set_dirty(newfolio); 446 } 447 448 xas_store(&xas, newfolio); 449 450 /* 451 * Drop cache reference from old page by unfreezing 452 * to one less reference. 453 * We know this isn't the last reference. 454 */ 455 folio_ref_unfreeze(folio, expected_count - nr); 456 457 xas_unlock(&xas); 458 /* Leave irq disabled to prevent preemption while updating stats */ 459 460 /* 461 * If moved to a different zone then also account 462 * the page for that zone. Other VM counters will be 463 * taken care of when we establish references to the 464 * new page and drop references to the old page. 465 * 466 * Note that anonymous pages are accounted for 467 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 468 * are mapped to swap space. 469 */ 470 if (newzone != oldzone) { 471 struct lruvec *old_lruvec, *new_lruvec; 472 struct mem_cgroup *memcg; 473 474 memcg = folio_memcg(folio); 475 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 476 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 477 478 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 479 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 480 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 481 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 482 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 483 } 484 #ifdef CONFIG_SWAP 485 if (folio_test_swapcache(folio)) { 486 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 487 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 488 } 489 #endif 490 if (dirty && mapping_can_writeback(mapping)) { 491 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 492 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 493 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 494 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 495 } 496 } 497 local_irq_enable(); 498 499 return MIGRATEPAGE_SUCCESS; 500 } 501 EXPORT_SYMBOL(folio_migrate_mapping); 502 503 /* 504 * The expected number of remaining references is the same as that 505 * of folio_migrate_mapping(). 506 */ 507 int migrate_huge_page_move_mapping(struct address_space *mapping, 508 struct folio *dst, struct folio *src) 509 { 510 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 511 int expected_count; 512 513 xas_lock_irq(&xas); 514 expected_count = 2 + folio_has_private(src); 515 if (!folio_ref_freeze(src, expected_count)) { 516 xas_unlock_irq(&xas); 517 return -EAGAIN; 518 } 519 520 dst->index = src->index; 521 dst->mapping = src->mapping; 522 523 folio_get(dst); 524 525 xas_store(&xas, dst); 526 527 folio_ref_unfreeze(src, expected_count - 1); 528 529 xas_unlock_irq(&xas); 530 531 return MIGRATEPAGE_SUCCESS; 532 } 533 534 /* 535 * Copy the flags and some other ancillary information 536 */ 537 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 538 { 539 int cpupid; 540 541 if (folio_test_error(folio)) 542 folio_set_error(newfolio); 543 if (folio_test_referenced(folio)) 544 folio_set_referenced(newfolio); 545 if (folio_test_uptodate(folio)) 546 folio_mark_uptodate(newfolio); 547 if (folio_test_clear_active(folio)) { 548 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 549 folio_set_active(newfolio); 550 } else if (folio_test_clear_unevictable(folio)) 551 folio_set_unevictable(newfolio); 552 if (folio_test_workingset(folio)) 553 folio_set_workingset(newfolio); 554 if (folio_test_checked(folio)) 555 folio_set_checked(newfolio); 556 /* 557 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 558 * migration entries. We can still have PG_anon_exclusive set on an 559 * effectively unmapped and unreferenced first sub-pages of an 560 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 561 */ 562 if (folio_test_mappedtodisk(folio)) 563 folio_set_mappedtodisk(newfolio); 564 565 /* Move dirty on pages not done by folio_migrate_mapping() */ 566 if (folio_test_dirty(folio)) 567 folio_set_dirty(newfolio); 568 569 if (folio_test_young(folio)) 570 folio_set_young(newfolio); 571 if (folio_test_idle(folio)) 572 folio_set_idle(newfolio); 573 574 /* 575 * Copy NUMA information to the new page, to prevent over-eager 576 * future migrations of this same page. 577 */ 578 cpupid = page_cpupid_xchg_last(&folio->page, -1); 579 /* 580 * For memory tiering mode, when migrate between slow and fast 581 * memory node, reset cpupid, because that is used to record 582 * page access time in slow memory node. 583 */ 584 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 585 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 586 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 587 588 if (f_toptier != t_toptier) 589 cpupid = -1; 590 } 591 page_cpupid_xchg_last(&newfolio->page, cpupid); 592 593 folio_migrate_ksm(newfolio, folio); 594 /* 595 * Please do not reorder this without considering how mm/ksm.c's 596 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 597 */ 598 if (folio_test_swapcache(folio)) 599 folio_clear_swapcache(folio); 600 folio_clear_private(folio); 601 602 /* page->private contains hugetlb specific flags */ 603 if (!folio_test_hugetlb(folio)) 604 folio->private = NULL; 605 606 /* 607 * If any waiters have accumulated on the new page then 608 * wake them up. 609 */ 610 if (folio_test_writeback(newfolio)) 611 folio_end_writeback(newfolio); 612 613 /* 614 * PG_readahead shares the same bit with PG_reclaim. The above 615 * end_page_writeback() may clear PG_readahead mistakenly, so set the 616 * bit after that. 617 */ 618 if (folio_test_readahead(folio)) 619 folio_set_readahead(newfolio); 620 621 folio_copy_owner(newfolio, folio); 622 623 if (!folio_test_hugetlb(folio)) 624 mem_cgroup_migrate(folio, newfolio); 625 } 626 EXPORT_SYMBOL(folio_migrate_flags); 627 628 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 629 { 630 folio_copy(newfolio, folio); 631 folio_migrate_flags(newfolio, folio); 632 } 633 EXPORT_SYMBOL(folio_migrate_copy); 634 635 /************************************************************ 636 * Migration functions 637 ***********************************************************/ 638 639 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 640 struct folio *src, enum migrate_mode mode, int extra_count) 641 { 642 int rc; 643 644 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 645 646 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 647 648 if (rc != MIGRATEPAGE_SUCCESS) 649 return rc; 650 651 if (mode != MIGRATE_SYNC_NO_COPY) 652 folio_migrate_copy(dst, src); 653 else 654 folio_migrate_flags(dst, src); 655 return MIGRATEPAGE_SUCCESS; 656 } 657 658 /** 659 * migrate_folio() - Simple folio migration. 660 * @mapping: The address_space containing the folio. 661 * @dst: The folio to migrate the data to. 662 * @src: The folio containing the current data. 663 * @mode: How to migrate the page. 664 * 665 * Common logic to directly migrate a single LRU folio suitable for 666 * folios that do not use PagePrivate/PagePrivate2. 667 * 668 * Folios are locked upon entry and exit. 669 */ 670 int migrate_folio(struct address_space *mapping, struct folio *dst, 671 struct folio *src, enum migrate_mode mode) 672 { 673 return migrate_folio_extra(mapping, dst, src, mode, 0); 674 } 675 EXPORT_SYMBOL(migrate_folio); 676 677 #ifdef CONFIG_BLOCK 678 /* Returns true if all buffers are successfully locked */ 679 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 680 enum migrate_mode mode) 681 { 682 struct buffer_head *bh = head; 683 684 /* Simple case, sync compaction */ 685 if (mode != MIGRATE_ASYNC) { 686 do { 687 lock_buffer(bh); 688 bh = bh->b_this_page; 689 690 } while (bh != head); 691 692 return true; 693 } 694 695 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 696 do { 697 if (!trylock_buffer(bh)) { 698 /* 699 * We failed to lock the buffer and cannot stall in 700 * async migration. Release the taken locks 701 */ 702 struct buffer_head *failed_bh = bh; 703 bh = head; 704 while (bh != failed_bh) { 705 unlock_buffer(bh); 706 bh = bh->b_this_page; 707 } 708 return false; 709 } 710 711 bh = bh->b_this_page; 712 } while (bh != head); 713 return true; 714 } 715 716 static int __buffer_migrate_folio(struct address_space *mapping, 717 struct folio *dst, struct folio *src, enum migrate_mode mode, 718 bool check_refs) 719 { 720 struct buffer_head *bh, *head; 721 int rc; 722 int expected_count; 723 724 head = folio_buffers(src); 725 if (!head) 726 return migrate_folio(mapping, dst, src, mode); 727 728 /* Check whether page does not have extra refs before we do more work */ 729 expected_count = folio_expected_refs(mapping, src); 730 if (folio_ref_count(src) != expected_count) 731 return -EAGAIN; 732 733 if (!buffer_migrate_lock_buffers(head, mode)) 734 return -EAGAIN; 735 736 if (check_refs) { 737 bool busy; 738 bool invalidated = false; 739 740 recheck_buffers: 741 busy = false; 742 spin_lock(&mapping->private_lock); 743 bh = head; 744 do { 745 if (atomic_read(&bh->b_count)) { 746 busy = true; 747 break; 748 } 749 bh = bh->b_this_page; 750 } while (bh != head); 751 if (busy) { 752 if (invalidated) { 753 rc = -EAGAIN; 754 goto unlock_buffers; 755 } 756 spin_unlock(&mapping->private_lock); 757 invalidate_bh_lrus(); 758 invalidated = true; 759 goto recheck_buffers; 760 } 761 } 762 763 rc = folio_migrate_mapping(mapping, dst, src, 0); 764 if (rc != MIGRATEPAGE_SUCCESS) 765 goto unlock_buffers; 766 767 folio_attach_private(dst, folio_detach_private(src)); 768 769 bh = head; 770 do { 771 set_bh_page(bh, &dst->page, bh_offset(bh)); 772 bh = bh->b_this_page; 773 } while (bh != head); 774 775 if (mode != MIGRATE_SYNC_NO_COPY) 776 folio_migrate_copy(dst, src); 777 else 778 folio_migrate_flags(dst, src); 779 780 rc = MIGRATEPAGE_SUCCESS; 781 unlock_buffers: 782 if (check_refs) 783 spin_unlock(&mapping->private_lock); 784 bh = head; 785 do { 786 unlock_buffer(bh); 787 bh = bh->b_this_page; 788 } while (bh != head); 789 790 return rc; 791 } 792 793 /** 794 * buffer_migrate_folio() - Migration function for folios with buffers. 795 * @mapping: The address space containing @src. 796 * @dst: The folio to migrate to. 797 * @src: The folio to migrate from. 798 * @mode: How to migrate the folio. 799 * 800 * This function can only be used if the underlying filesystem guarantees 801 * that no other references to @src exist. For example attached buffer 802 * heads are accessed only under the folio lock. If your filesystem cannot 803 * provide this guarantee, buffer_migrate_folio_norefs() may be more 804 * appropriate. 805 * 806 * Return: 0 on success or a negative errno on failure. 807 */ 808 int buffer_migrate_folio(struct address_space *mapping, 809 struct folio *dst, struct folio *src, enum migrate_mode mode) 810 { 811 return __buffer_migrate_folio(mapping, dst, src, mode, false); 812 } 813 EXPORT_SYMBOL(buffer_migrate_folio); 814 815 /** 816 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 817 * @mapping: The address space containing @src. 818 * @dst: The folio to migrate to. 819 * @src: The folio to migrate from. 820 * @mode: How to migrate the folio. 821 * 822 * Like buffer_migrate_folio() except that this variant is more careful 823 * and checks that there are also no buffer head references. This function 824 * is the right one for mappings where buffer heads are directly looked 825 * up and referenced (such as block device mappings). 826 * 827 * Return: 0 on success or a negative errno on failure. 828 */ 829 int buffer_migrate_folio_norefs(struct address_space *mapping, 830 struct folio *dst, struct folio *src, enum migrate_mode mode) 831 { 832 return __buffer_migrate_folio(mapping, dst, src, mode, true); 833 } 834 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 835 #endif 836 837 int filemap_migrate_folio(struct address_space *mapping, 838 struct folio *dst, struct folio *src, enum migrate_mode mode) 839 { 840 int ret; 841 842 ret = folio_migrate_mapping(mapping, dst, src, 0); 843 if (ret != MIGRATEPAGE_SUCCESS) 844 return ret; 845 846 if (folio_get_private(src)) 847 folio_attach_private(dst, folio_detach_private(src)); 848 849 if (mode != MIGRATE_SYNC_NO_COPY) 850 folio_migrate_copy(dst, src); 851 else 852 folio_migrate_flags(dst, src); 853 return MIGRATEPAGE_SUCCESS; 854 } 855 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 856 857 /* 858 * Writeback a folio to clean the dirty state 859 */ 860 static int writeout(struct address_space *mapping, struct folio *folio) 861 { 862 struct writeback_control wbc = { 863 .sync_mode = WB_SYNC_NONE, 864 .nr_to_write = 1, 865 .range_start = 0, 866 .range_end = LLONG_MAX, 867 .for_reclaim = 1 868 }; 869 int rc; 870 871 if (!mapping->a_ops->writepage) 872 /* No write method for the address space */ 873 return -EINVAL; 874 875 if (!folio_clear_dirty_for_io(folio)) 876 /* Someone else already triggered a write */ 877 return -EAGAIN; 878 879 /* 880 * A dirty folio may imply that the underlying filesystem has 881 * the folio on some queue. So the folio must be clean for 882 * migration. Writeout may mean we lose the lock and the 883 * folio state is no longer what we checked for earlier. 884 * At this point we know that the migration attempt cannot 885 * be successful. 886 */ 887 remove_migration_ptes(folio, folio, false); 888 889 rc = mapping->a_ops->writepage(&folio->page, &wbc); 890 891 if (rc != AOP_WRITEPAGE_ACTIVATE) 892 /* unlocked. Relock */ 893 folio_lock(folio); 894 895 return (rc < 0) ? -EIO : -EAGAIN; 896 } 897 898 /* 899 * Default handling if a filesystem does not provide a migration function. 900 */ 901 static int fallback_migrate_folio(struct address_space *mapping, 902 struct folio *dst, struct folio *src, enum migrate_mode mode) 903 { 904 if (folio_test_dirty(src)) { 905 /* Only writeback folios in full synchronous migration */ 906 switch (mode) { 907 case MIGRATE_SYNC: 908 case MIGRATE_SYNC_NO_COPY: 909 break; 910 default: 911 return -EBUSY; 912 } 913 return writeout(mapping, src); 914 } 915 916 /* 917 * Buffers may be managed in a filesystem specific way. 918 * We must have no buffers or drop them. 919 */ 920 if (folio_test_private(src) && 921 !filemap_release_folio(src, GFP_KERNEL)) 922 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 923 924 return migrate_folio(mapping, dst, src, mode); 925 } 926 927 /* 928 * Move a page to a newly allocated page 929 * The page is locked and all ptes have been successfully removed. 930 * 931 * The new page will have replaced the old page if this function 932 * is successful. 933 * 934 * Return value: 935 * < 0 - error code 936 * MIGRATEPAGE_SUCCESS - success 937 */ 938 static int move_to_new_folio(struct folio *dst, struct folio *src, 939 enum migrate_mode mode) 940 { 941 int rc = -EAGAIN; 942 bool is_lru = !__PageMovable(&src->page); 943 944 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 945 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 946 947 if (likely(is_lru)) { 948 struct address_space *mapping = folio_mapping(src); 949 950 if (!mapping) 951 rc = migrate_folio(mapping, dst, src, mode); 952 else if (mapping->a_ops->migrate_folio) 953 /* 954 * Most folios have a mapping and most filesystems 955 * provide a migrate_folio callback. Anonymous folios 956 * are part of swap space which also has its own 957 * migrate_folio callback. This is the most common path 958 * for page migration. 959 */ 960 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 961 mode); 962 else 963 rc = fallback_migrate_folio(mapping, dst, src, mode); 964 } else { 965 const struct movable_operations *mops; 966 967 /* 968 * In case of non-lru page, it could be released after 969 * isolation step. In that case, we shouldn't try migration. 970 */ 971 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 972 if (!folio_test_movable(src)) { 973 rc = MIGRATEPAGE_SUCCESS; 974 folio_clear_isolated(src); 975 goto out; 976 } 977 978 mops = page_movable_ops(&src->page); 979 rc = mops->migrate_page(&dst->page, &src->page, mode); 980 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 981 !folio_test_isolated(src)); 982 } 983 984 /* 985 * When successful, old pagecache src->mapping must be cleared before 986 * src is freed; but stats require that PageAnon be left as PageAnon. 987 */ 988 if (rc == MIGRATEPAGE_SUCCESS) { 989 if (__PageMovable(&src->page)) { 990 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 991 992 /* 993 * We clear PG_movable under page_lock so any compactor 994 * cannot try to migrate this page. 995 */ 996 folio_clear_isolated(src); 997 } 998 999 /* 1000 * Anonymous and movable src->mapping will be cleared by 1001 * free_pages_prepare so don't reset it here for keeping 1002 * the type to work PageAnon, for example. 1003 */ 1004 if (!folio_mapping_flags(src)) 1005 src->mapping = NULL; 1006 1007 if (likely(!folio_is_zone_device(dst))) 1008 flush_dcache_folio(dst); 1009 } 1010 out: 1011 return rc; 1012 } 1013 1014 static int __unmap_and_move(struct folio *src, struct folio *dst, 1015 int force, enum migrate_mode mode) 1016 { 1017 int rc = -EAGAIN; 1018 bool page_was_mapped = false; 1019 struct anon_vma *anon_vma = NULL; 1020 bool is_lru = !__PageMovable(&src->page); 1021 1022 if (!folio_trylock(src)) { 1023 if (!force || mode == MIGRATE_ASYNC) 1024 goto out; 1025 1026 /* 1027 * It's not safe for direct compaction to call lock_page. 1028 * For example, during page readahead pages are added locked 1029 * to the LRU. Later, when the IO completes the pages are 1030 * marked uptodate and unlocked. However, the queueing 1031 * could be merging multiple pages for one bio (e.g. 1032 * mpage_readahead). If an allocation happens for the 1033 * second or third page, the process can end up locking 1034 * the same page twice and deadlocking. Rather than 1035 * trying to be clever about what pages can be locked, 1036 * avoid the use of lock_page for direct compaction 1037 * altogether. 1038 */ 1039 if (current->flags & PF_MEMALLOC) 1040 goto out; 1041 1042 folio_lock(src); 1043 } 1044 1045 if (folio_test_writeback(src)) { 1046 /* 1047 * Only in the case of a full synchronous migration is it 1048 * necessary to wait for PageWriteback. In the async case, 1049 * the retry loop is too short and in the sync-light case, 1050 * the overhead of stalling is too much 1051 */ 1052 switch (mode) { 1053 case MIGRATE_SYNC: 1054 case MIGRATE_SYNC_NO_COPY: 1055 break; 1056 default: 1057 rc = -EBUSY; 1058 goto out_unlock; 1059 } 1060 if (!force) 1061 goto out_unlock; 1062 folio_wait_writeback(src); 1063 } 1064 1065 /* 1066 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1067 * we cannot notice that anon_vma is freed while we migrate a page. 1068 * This get_anon_vma() delays freeing anon_vma pointer until the end 1069 * of migration. File cache pages are no problem because of page_lock() 1070 * File Caches may use write_page() or lock_page() in migration, then, 1071 * just care Anon page here. 1072 * 1073 * Only folio_get_anon_vma() understands the subtleties of 1074 * getting a hold on an anon_vma from outside one of its mms. 1075 * But if we cannot get anon_vma, then we won't need it anyway, 1076 * because that implies that the anon page is no longer mapped 1077 * (and cannot be remapped so long as we hold the page lock). 1078 */ 1079 if (folio_test_anon(src) && !folio_test_ksm(src)) 1080 anon_vma = folio_get_anon_vma(src); 1081 1082 /* 1083 * Block others from accessing the new page when we get around to 1084 * establishing additional references. We are usually the only one 1085 * holding a reference to dst at this point. We used to have a BUG 1086 * here if folio_trylock(dst) fails, but would like to allow for 1087 * cases where there might be a race with the previous use of dst. 1088 * This is much like races on refcount of oldpage: just don't BUG(). 1089 */ 1090 if (unlikely(!folio_trylock(dst))) 1091 goto out_unlock; 1092 1093 if (unlikely(!is_lru)) { 1094 rc = move_to_new_folio(dst, src, mode); 1095 goto out_unlock_both; 1096 } 1097 1098 /* 1099 * Corner case handling: 1100 * 1. When a new swap-cache page is read into, it is added to the LRU 1101 * and treated as swapcache but it has no rmap yet. 1102 * Calling try_to_unmap() against a src->mapping==NULL page will 1103 * trigger a BUG. So handle it here. 1104 * 2. An orphaned page (see truncate_cleanup_page) might have 1105 * fs-private metadata. The page can be picked up due to memory 1106 * offlining. Everywhere else except page reclaim, the page is 1107 * invisible to the vm, so the page can not be migrated. So try to 1108 * free the metadata, so the page can be freed. 1109 */ 1110 if (!src->mapping) { 1111 if (folio_test_private(src)) { 1112 try_to_free_buffers(src); 1113 goto out_unlock_both; 1114 } 1115 } else if (folio_mapped(src)) { 1116 /* Establish migration ptes */ 1117 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1118 !folio_test_ksm(src) && !anon_vma, src); 1119 try_to_migrate(src, 0); 1120 page_was_mapped = true; 1121 } 1122 1123 if (!folio_mapped(src)) 1124 rc = move_to_new_folio(dst, src, mode); 1125 1126 /* 1127 * When successful, push dst to LRU immediately: so that if it 1128 * turns out to be an mlocked page, remove_migration_ptes() will 1129 * automatically build up the correct dst->mlock_count for it. 1130 * 1131 * We would like to do something similar for the old page, when 1132 * unsuccessful, and other cases when a page has been temporarily 1133 * isolated from the unevictable LRU: but this case is the easiest. 1134 */ 1135 if (rc == MIGRATEPAGE_SUCCESS) { 1136 folio_add_lru(dst); 1137 if (page_was_mapped) 1138 lru_add_drain(); 1139 } 1140 1141 if (page_was_mapped) 1142 remove_migration_ptes(src, 1143 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1144 1145 out_unlock_both: 1146 folio_unlock(dst); 1147 out_unlock: 1148 /* Drop an anon_vma reference if we took one */ 1149 if (anon_vma) 1150 put_anon_vma(anon_vma); 1151 folio_unlock(src); 1152 out: 1153 /* 1154 * If migration is successful, decrease refcount of dst, 1155 * which will not free the page because new page owner increased 1156 * refcounter. 1157 */ 1158 if (rc == MIGRATEPAGE_SUCCESS) 1159 folio_put(dst); 1160 1161 return rc; 1162 } 1163 1164 /* 1165 * Obtain the lock on folio, remove all ptes and migrate the folio 1166 * to the newly allocated folio in dst. 1167 */ 1168 static int unmap_and_move(new_page_t get_new_page, 1169 free_page_t put_new_page, 1170 unsigned long private, struct folio *src, 1171 int force, enum migrate_mode mode, 1172 enum migrate_reason reason, 1173 struct list_head *ret) 1174 { 1175 struct folio *dst; 1176 int rc = MIGRATEPAGE_SUCCESS; 1177 struct page *newpage = NULL; 1178 1179 if (!thp_migration_supported() && folio_test_transhuge(src)) 1180 return -ENOSYS; 1181 1182 if (folio_ref_count(src) == 1) { 1183 /* Folio was freed from under us. So we are done. */ 1184 folio_clear_active(src); 1185 folio_clear_unevictable(src); 1186 /* free_pages_prepare() will clear PG_isolated. */ 1187 goto out; 1188 } 1189 1190 newpage = get_new_page(&src->page, private); 1191 if (!newpage) 1192 return -ENOMEM; 1193 dst = page_folio(newpage); 1194 1195 dst->private = NULL; 1196 rc = __unmap_and_move(src, dst, force, mode); 1197 if (rc == MIGRATEPAGE_SUCCESS) 1198 set_page_owner_migrate_reason(&dst->page, reason); 1199 1200 out: 1201 if (rc != -EAGAIN) { 1202 /* 1203 * A folio that has been migrated has all references 1204 * removed and will be freed. A folio that has not been 1205 * migrated will have kept its references and be restored. 1206 */ 1207 list_del(&src->lru); 1208 } 1209 1210 /* 1211 * If migration is successful, releases reference grabbed during 1212 * isolation. Otherwise, restore the folio to right list unless 1213 * we want to retry. 1214 */ 1215 if (rc == MIGRATEPAGE_SUCCESS) { 1216 /* 1217 * Compaction can migrate also non-LRU folios which are 1218 * not accounted to NR_ISOLATED_*. They can be recognized 1219 * as __folio_test_movable 1220 */ 1221 if (likely(!__folio_test_movable(src))) 1222 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1223 folio_is_file_lru(src), -folio_nr_pages(src)); 1224 1225 if (reason != MR_MEMORY_FAILURE) 1226 /* 1227 * We release the folio in page_handle_poison. 1228 */ 1229 folio_put(src); 1230 } else { 1231 if (rc != -EAGAIN) 1232 list_add_tail(&src->lru, ret); 1233 1234 if (put_new_page) 1235 put_new_page(&dst->page, private); 1236 else 1237 folio_put(dst); 1238 } 1239 1240 return rc; 1241 } 1242 1243 /* 1244 * Counterpart of unmap_and_move_page() for hugepage migration. 1245 * 1246 * This function doesn't wait the completion of hugepage I/O 1247 * because there is no race between I/O and migration for hugepage. 1248 * Note that currently hugepage I/O occurs only in direct I/O 1249 * where no lock is held and PG_writeback is irrelevant, 1250 * and writeback status of all subpages are counted in the reference 1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1252 * under direct I/O, the reference of the head page is 512 and a bit more.) 1253 * This means that when we try to migrate hugepage whose subpages are 1254 * doing direct I/O, some references remain after try_to_unmap() and 1255 * hugepage migration fails without data corruption. 1256 * 1257 * There is also no race when direct I/O is issued on the page under migration, 1258 * because then pte is replaced with migration swap entry and direct I/O code 1259 * will wait in the page fault for migration to complete. 1260 */ 1261 static int unmap_and_move_huge_page(new_page_t get_new_page, 1262 free_page_t put_new_page, unsigned long private, 1263 struct page *hpage, int force, 1264 enum migrate_mode mode, int reason, 1265 struct list_head *ret) 1266 { 1267 struct folio *dst, *src = page_folio(hpage); 1268 int rc = -EAGAIN; 1269 int page_was_mapped = 0; 1270 struct page *new_hpage; 1271 struct anon_vma *anon_vma = NULL; 1272 struct address_space *mapping = NULL; 1273 1274 /* 1275 * Migratability of hugepages depends on architectures and their size. 1276 * This check is necessary because some callers of hugepage migration 1277 * like soft offline and memory hotremove don't walk through page 1278 * tables or check whether the hugepage is pmd-based or not before 1279 * kicking migration. 1280 */ 1281 if (!hugepage_migration_supported(page_hstate(hpage))) 1282 return -ENOSYS; 1283 1284 if (folio_ref_count(src) == 1) { 1285 /* page was freed from under us. So we are done. */ 1286 putback_active_hugepage(hpage); 1287 return MIGRATEPAGE_SUCCESS; 1288 } 1289 1290 new_hpage = get_new_page(hpage, private); 1291 if (!new_hpage) 1292 return -ENOMEM; 1293 dst = page_folio(new_hpage); 1294 1295 if (!folio_trylock(src)) { 1296 if (!force) 1297 goto out; 1298 switch (mode) { 1299 case MIGRATE_SYNC: 1300 case MIGRATE_SYNC_NO_COPY: 1301 break; 1302 default: 1303 goto out; 1304 } 1305 folio_lock(src); 1306 } 1307 1308 /* 1309 * Check for pages which are in the process of being freed. Without 1310 * folio_mapping() set, hugetlbfs specific move page routine will not 1311 * be called and we could leak usage counts for subpools. 1312 */ 1313 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1314 rc = -EBUSY; 1315 goto out_unlock; 1316 } 1317 1318 if (folio_test_anon(src)) 1319 anon_vma = folio_get_anon_vma(src); 1320 1321 if (unlikely(!folio_trylock(dst))) 1322 goto put_anon; 1323 1324 if (folio_mapped(src)) { 1325 enum ttu_flags ttu = 0; 1326 1327 if (!folio_test_anon(src)) { 1328 /* 1329 * In shared mappings, try_to_unmap could potentially 1330 * call huge_pmd_unshare. Because of this, take 1331 * semaphore in write mode here and set TTU_RMAP_LOCKED 1332 * to let lower levels know we have taken the lock. 1333 */ 1334 mapping = hugetlb_page_mapping_lock_write(hpage); 1335 if (unlikely(!mapping)) 1336 goto unlock_put_anon; 1337 1338 ttu = TTU_RMAP_LOCKED; 1339 } 1340 1341 try_to_migrate(src, ttu); 1342 page_was_mapped = 1; 1343 1344 if (ttu & TTU_RMAP_LOCKED) 1345 i_mmap_unlock_write(mapping); 1346 } 1347 1348 if (!folio_mapped(src)) 1349 rc = move_to_new_folio(dst, src, mode); 1350 1351 if (page_was_mapped) 1352 remove_migration_ptes(src, 1353 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1354 1355 unlock_put_anon: 1356 folio_unlock(dst); 1357 1358 put_anon: 1359 if (anon_vma) 1360 put_anon_vma(anon_vma); 1361 1362 if (rc == MIGRATEPAGE_SUCCESS) { 1363 move_hugetlb_state(src, dst, reason); 1364 put_new_page = NULL; 1365 } 1366 1367 out_unlock: 1368 folio_unlock(src); 1369 out: 1370 if (rc == MIGRATEPAGE_SUCCESS) 1371 putback_active_hugepage(hpage); 1372 else if (rc != -EAGAIN) 1373 list_move_tail(&src->lru, ret); 1374 1375 /* 1376 * If migration was not successful and there's a freeing callback, use 1377 * it. Otherwise, put_page() will drop the reference grabbed during 1378 * isolation. 1379 */ 1380 if (put_new_page) 1381 put_new_page(new_hpage, private); 1382 else 1383 putback_active_hugepage(new_hpage); 1384 1385 return rc; 1386 } 1387 1388 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1389 { 1390 int rc; 1391 1392 folio_lock(folio); 1393 rc = split_folio_to_list(folio, split_folios); 1394 folio_unlock(folio); 1395 if (!rc) 1396 list_move_tail(&folio->lru, split_folios); 1397 1398 return rc; 1399 } 1400 1401 /* 1402 * migrate_pages - migrate the folios specified in a list, to the free folios 1403 * supplied as the target for the page migration 1404 * 1405 * @from: The list of folios to be migrated. 1406 * @get_new_page: The function used to allocate free folios to be used 1407 * as the target of the folio migration. 1408 * @put_new_page: The function used to free target folios if migration 1409 * fails, or NULL if no special handling is necessary. 1410 * @private: Private data to be passed on to get_new_page() 1411 * @mode: The migration mode that specifies the constraints for 1412 * folio migration, if any. 1413 * @reason: The reason for folio migration. 1414 * @ret_succeeded: Set to the number of folios migrated successfully if 1415 * the caller passes a non-NULL pointer. 1416 * 1417 * The function returns after 10 attempts or if no folios are movable any more 1418 * because the list has become empty or no retryable folios exist any more. 1419 * It is caller's responsibility to call putback_movable_pages() to return folios 1420 * to the LRU or free list only if ret != 0. 1421 * 1422 * Returns the number of {normal folio, large folio, hugetlb} that were not 1423 * migrated, or an error code. The number of large folio splits will be 1424 * considered as the number of non-migrated large folio, no matter how many 1425 * split folios of the large folio are migrated successfully. 1426 */ 1427 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1428 free_page_t put_new_page, unsigned long private, 1429 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1430 { 1431 int retry = 1; 1432 int large_retry = 1; 1433 int thp_retry = 1; 1434 int nr_failed = 0; 1435 int nr_failed_pages = 0; 1436 int nr_retry_pages = 0; 1437 int nr_succeeded = 0; 1438 int nr_thp_succeeded = 0; 1439 int nr_large_failed = 0; 1440 int nr_thp_failed = 0; 1441 int nr_thp_split = 0; 1442 int pass = 0; 1443 bool is_large = false; 1444 bool is_thp = false; 1445 struct folio *folio, *folio2; 1446 int rc, nr_pages; 1447 LIST_HEAD(ret_folios); 1448 LIST_HEAD(split_folios); 1449 bool nosplit = (reason == MR_NUMA_MISPLACED); 1450 bool no_split_folio_counting = false; 1451 1452 trace_mm_migrate_pages_start(mode, reason); 1453 1454 split_folio_migration: 1455 for (pass = 0; pass < 10 && (retry || large_retry); pass++) { 1456 retry = 0; 1457 large_retry = 0; 1458 thp_retry = 0; 1459 nr_retry_pages = 0; 1460 1461 list_for_each_entry_safe(folio, folio2, from, lru) { 1462 /* 1463 * Large folio statistics is based on the source large 1464 * folio. Capture required information that might get 1465 * lost during migration. 1466 */ 1467 is_large = folio_test_large(folio) && !folio_test_hugetlb(folio); 1468 is_thp = is_large && folio_test_pmd_mappable(folio); 1469 nr_pages = folio_nr_pages(folio); 1470 cond_resched(); 1471 1472 if (folio_test_hugetlb(folio)) 1473 rc = unmap_and_move_huge_page(get_new_page, 1474 put_new_page, private, 1475 &folio->page, pass > 2, mode, 1476 reason, 1477 &ret_folios); 1478 else 1479 rc = unmap_and_move(get_new_page, put_new_page, 1480 private, folio, pass > 2, mode, 1481 reason, &ret_folios); 1482 /* 1483 * The rules are: 1484 * Success: non hugetlb folio will be freed, hugetlb 1485 * folio will be put back 1486 * -EAGAIN: stay on the from list 1487 * -ENOMEM: stay on the from list 1488 * -ENOSYS: stay on the from list 1489 * Other errno: put on ret_folios list then splice to 1490 * from list 1491 */ 1492 switch(rc) { 1493 /* 1494 * Large folio migration might be unsupported or 1495 * the allocation could've failed so we should retry 1496 * on the same folio with the large folio split 1497 * to normal folios. 1498 * 1499 * Split folios are put in split_folios, and 1500 * we will migrate them after the rest of the 1501 * list is processed. 1502 */ 1503 case -ENOSYS: 1504 /* Large folio migration is unsupported */ 1505 if (is_large) { 1506 nr_large_failed++; 1507 nr_thp_failed += is_thp; 1508 if (!try_split_folio(folio, &split_folios)) { 1509 nr_thp_split += is_thp; 1510 break; 1511 } 1512 /* Hugetlb migration is unsupported */ 1513 } else if (!no_split_folio_counting) { 1514 nr_failed++; 1515 } 1516 1517 nr_failed_pages += nr_pages; 1518 list_move_tail(&folio->lru, &ret_folios); 1519 break; 1520 case -ENOMEM: 1521 /* 1522 * When memory is low, don't bother to try to migrate 1523 * other folios, just exit. 1524 */ 1525 if (is_large) { 1526 nr_large_failed++; 1527 nr_thp_failed += is_thp; 1528 /* Large folio NUMA faulting doesn't split to retry. */ 1529 if (!nosplit) { 1530 int ret = try_split_folio(folio, &split_folios); 1531 1532 if (!ret) { 1533 nr_thp_split += is_thp; 1534 break; 1535 } else if (reason == MR_LONGTERM_PIN && 1536 ret == -EAGAIN) { 1537 /* 1538 * Try again to split large folio to 1539 * mitigate the failure of longterm pinning. 1540 */ 1541 large_retry++; 1542 thp_retry += is_thp; 1543 nr_retry_pages += nr_pages; 1544 break; 1545 } 1546 } 1547 } else if (!no_split_folio_counting) { 1548 nr_failed++; 1549 } 1550 1551 nr_failed_pages += nr_pages + nr_retry_pages; 1552 /* 1553 * There might be some split folios of fail-to-migrate large 1554 * folios left in split_folios list. Move them back to migration 1555 * list so that they could be put back to the right list by 1556 * the caller otherwise the folio refcnt will be leaked. 1557 */ 1558 list_splice_init(&split_folios, from); 1559 /* nr_failed isn't updated for not used */ 1560 nr_large_failed += large_retry; 1561 nr_thp_failed += thp_retry; 1562 goto out; 1563 case -EAGAIN: 1564 if (is_large) { 1565 large_retry++; 1566 thp_retry += is_thp; 1567 } else if (!no_split_folio_counting) { 1568 retry++; 1569 } 1570 nr_retry_pages += nr_pages; 1571 break; 1572 case MIGRATEPAGE_SUCCESS: 1573 nr_succeeded += nr_pages; 1574 nr_thp_succeeded += is_thp; 1575 break; 1576 default: 1577 /* 1578 * Permanent failure (-EBUSY, etc.): 1579 * unlike -EAGAIN case, the failed folio is 1580 * removed from migration folio list and not 1581 * retried in the next outer loop. 1582 */ 1583 if (is_large) { 1584 nr_large_failed++; 1585 nr_thp_failed += is_thp; 1586 } else if (!no_split_folio_counting) { 1587 nr_failed++; 1588 } 1589 1590 nr_failed_pages += nr_pages; 1591 break; 1592 } 1593 } 1594 } 1595 nr_failed += retry; 1596 nr_large_failed += large_retry; 1597 nr_thp_failed += thp_retry; 1598 nr_failed_pages += nr_retry_pages; 1599 /* 1600 * Try to migrate split folios of fail-to-migrate large folios, no 1601 * nr_failed counting in this round, since all split folios of a 1602 * large folio is counted as 1 failure in the first round. 1603 */ 1604 if (!list_empty(&split_folios)) { 1605 /* 1606 * Move non-migrated folios (after 10 retries) to ret_folios 1607 * to avoid migrating them again. 1608 */ 1609 list_splice_init(from, &ret_folios); 1610 list_splice_init(&split_folios, from); 1611 no_split_folio_counting = true; 1612 retry = 1; 1613 goto split_folio_migration; 1614 } 1615 1616 rc = nr_failed + nr_large_failed; 1617 out: 1618 /* 1619 * Put the permanent failure folio back to migration list, they 1620 * will be put back to the right list by the caller. 1621 */ 1622 list_splice(&ret_folios, from); 1623 1624 /* 1625 * Return 0 in case all split folios of fail-to-migrate large folios 1626 * are migrated successfully. 1627 */ 1628 if (list_empty(from)) 1629 rc = 0; 1630 1631 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1632 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1633 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1634 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1635 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1636 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1637 nr_thp_failed, nr_thp_split, mode, reason); 1638 1639 if (ret_succeeded) 1640 *ret_succeeded = nr_succeeded; 1641 1642 return rc; 1643 } 1644 1645 struct page *alloc_migration_target(struct page *page, unsigned long private) 1646 { 1647 struct folio *folio = page_folio(page); 1648 struct migration_target_control *mtc; 1649 gfp_t gfp_mask; 1650 unsigned int order = 0; 1651 struct folio *new_folio = NULL; 1652 int nid; 1653 int zidx; 1654 1655 mtc = (struct migration_target_control *)private; 1656 gfp_mask = mtc->gfp_mask; 1657 nid = mtc->nid; 1658 if (nid == NUMA_NO_NODE) 1659 nid = folio_nid(folio); 1660 1661 if (folio_test_hugetlb(folio)) { 1662 struct hstate *h = folio_hstate(folio); 1663 1664 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1665 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1666 } 1667 1668 if (folio_test_large(folio)) { 1669 /* 1670 * clear __GFP_RECLAIM to make the migration callback 1671 * consistent with regular THP allocations. 1672 */ 1673 gfp_mask &= ~__GFP_RECLAIM; 1674 gfp_mask |= GFP_TRANSHUGE; 1675 order = folio_order(folio); 1676 } 1677 zidx = zone_idx(folio_zone(folio)); 1678 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1679 gfp_mask |= __GFP_HIGHMEM; 1680 1681 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1682 1683 return &new_folio->page; 1684 } 1685 1686 #ifdef CONFIG_NUMA 1687 1688 static int store_status(int __user *status, int start, int value, int nr) 1689 { 1690 while (nr-- > 0) { 1691 if (put_user(value, status + start)) 1692 return -EFAULT; 1693 start++; 1694 } 1695 1696 return 0; 1697 } 1698 1699 static int do_move_pages_to_node(struct mm_struct *mm, 1700 struct list_head *pagelist, int node) 1701 { 1702 int err; 1703 struct migration_target_control mtc = { 1704 .nid = node, 1705 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1706 }; 1707 1708 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1709 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1710 if (err) 1711 putback_movable_pages(pagelist); 1712 return err; 1713 } 1714 1715 /* 1716 * Resolves the given address to a struct page, isolates it from the LRU and 1717 * puts it to the given pagelist. 1718 * Returns: 1719 * errno - if the page cannot be found/isolated 1720 * 0 - when it doesn't have to be migrated because it is already on the 1721 * target node 1722 * 1 - when it has been queued 1723 */ 1724 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1725 int node, struct list_head *pagelist, bool migrate_all) 1726 { 1727 struct vm_area_struct *vma; 1728 struct page *page; 1729 int err; 1730 1731 mmap_read_lock(mm); 1732 err = -EFAULT; 1733 vma = vma_lookup(mm, addr); 1734 if (!vma || !vma_migratable(vma)) 1735 goto out; 1736 1737 /* FOLL_DUMP to ignore special (like zero) pages */ 1738 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1739 1740 err = PTR_ERR(page); 1741 if (IS_ERR(page)) 1742 goto out; 1743 1744 err = -ENOENT; 1745 if (!page) 1746 goto out; 1747 1748 if (is_zone_device_page(page)) 1749 goto out_putpage; 1750 1751 err = 0; 1752 if (page_to_nid(page) == node) 1753 goto out_putpage; 1754 1755 err = -EACCES; 1756 if (page_mapcount(page) > 1 && !migrate_all) 1757 goto out_putpage; 1758 1759 if (PageHuge(page)) { 1760 if (PageHead(page)) { 1761 err = isolate_hugetlb(page, pagelist); 1762 if (!err) 1763 err = 1; 1764 } 1765 } else { 1766 struct page *head; 1767 1768 head = compound_head(page); 1769 err = isolate_lru_page(head); 1770 if (err) 1771 goto out_putpage; 1772 1773 err = 1; 1774 list_add_tail(&head->lru, pagelist); 1775 mod_node_page_state(page_pgdat(head), 1776 NR_ISOLATED_ANON + page_is_file_lru(head), 1777 thp_nr_pages(head)); 1778 } 1779 out_putpage: 1780 /* 1781 * Either remove the duplicate refcount from 1782 * isolate_lru_page() or drop the page ref if it was 1783 * not isolated. 1784 */ 1785 put_page(page); 1786 out: 1787 mmap_read_unlock(mm); 1788 return err; 1789 } 1790 1791 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1792 struct list_head *pagelist, int __user *status, 1793 int start, int i, unsigned long nr_pages) 1794 { 1795 int err; 1796 1797 if (list_empty(pagelist)) 1798 return 0; 1799 1800 err = do_move_pages_to_node(mm, pagelist, node); 1801 if (err) { 1802 /* 1803 * Positive err means the number of failed 1804 * pages to migrate. Since we are going to 1805 * abort and return the number of non-migrated 1806 * pages, so need to include the rest of the 1807 * nr_pages that have not been attempted as 1808 * well. 1809 */ 1810 if (err > 0) 1811 err += nr_pages - i; 1812 return err; 1813 } 1814 return store_status(status, start, node, i - start); 1815 } 1816 1817 /* 1818 * Migrate an array of page address onto an array of nodes and fill 1819 * the corresponding array of status. 1820 */ 1821 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1822 unsigned long nr_pages, 1823 const void __user * __user *pages, 1824 const int __user *nodes, 1825 int __user *status, int flags) 1826 { 1827 int current_node = NUMA_NO_NODE; 1828 LIST_HEAD(pagelist); 1829 int start, i; 1830 int err = 0, err1; 1831 1832 lru_cache_disable(); 1833 1834 for (i = start = 0; i < nr_pages; i++) { 1835 const void __user *p; 1836 unsigned long addr; 1837 int node; 1838 1839 err = -EFAULT; 1840 if (get_user(p, pages + i)) 1841 goto out_flush; 1842 if (get_user(node, nodes + i)) 1843 goto out_flush; 1844 addr = (unsigned long)untagged_addr(p); 1845 1846 err = -ENODEV; 1847 if (node < 0 || node >= MAX_NUMNODES) 1848 goto out_flush; 1849 if (!node_state(node, N_MEMORY)) 1850 goto out_flush; 1851 1852 err = -EACCES; 1853 if (!node_isset(node, task_nodes)) 1854 goto out_flush; 1855 1856 if (current_node == NUMA_NO_NODE) { 1857 current_node = node; 1858 start = i; 1859 } else if (node != current_node) { 1860 err = move_pages_and_store_status(mm, current_node, 1861 &pagelist, status, start, i, nr_pages); 1862 if (err) 1863 goto out; 1864 start = i; 1865 current_node = node; 1866 } 1867 1868 /* 1869 * Errors in the page lookup or isolation are not fatal and we simply 1870 * report them via status 1871 */ 1872 err = add_page_for_migration(mm, addr, current_node, 1873 &pagelist, flags & MPOL_MF_MOVE_ALL); 1874 1875 if (err > 0) { 1876 /* The page is successfully queued for migration */ 1877 continue; 1878 } 1879 1880 /* 1881 * The move_pages() man page does not have an -EEXIST choice, so 1882 * use -EFAULT instead. 1883 */ 1884 if (err == -EEXIST) 1885 err = -EFAULT; 1886 1887 /* 1888 * If the page is already on the target node (!err), store the 1889 * node, otherwise, store the err. 1890 */ 1891 err = store_status(status, i, err ? : current_node, 1); 1892 if (err) 1893 goto out_flush; 1894 1895 err = move_pages_and_store_status(mm, current_node, &pagelist, 1896 status, start, i, nr_pages); 1897 if (err) { 1898 /* We have accounted for page i */ 1899 if (err > 0) 1900 err--; 1901 goto out; 1902 } 1903 current_node = NUMA_NO_NODE; 1904 } 1905 out_flush: 1906 /* Make sure we do not overwrite the existing error */ 1907 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1908 status, start, i, nr_pages); 1909 if (err >= 0) 1910 err = err1; 1911 out: 1912 lru_cache_enable(); 1913 return err; 1914 } 1915 1916 /* 1917 * Determine the nodes of an array of pages and store it in an array of status. 1918 */ 1919 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1920 const void __user **pages, int *status) 1921 { 1922 unsigned long i; 1923 1924 mmap_read_lock(mm); 1925 1926 for (i = 0; i < nr_pages; i++) { 1927 unsigned long addr = (unsigned long)(*pages); 1928 struct vm_area_struct *vma; 1929 struct page *page; 1930 int err = -EFAULT; 1931 1932 vma = vma_lookup(mm, addr); 1933 if (!vma) 1934 goto set_status; 1935 1936 /* FOLL_DUMP to ignore special (like zero) pages */ 1937 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1938 1939 err = PTR_ERR(page); 1940 if (IS_ERR(page)) 1941 goto set_status; 1942 1943 err = -ENOENT; 1944 if (!page) 1945 goto set_status; 1946 1947 if (!is_zone_device_page(page)) 1948 err = page_to_nid(page); 1949 1950 put_page(page); 1951 set_status: 1952 *status = err; 1953 1954 pages++; 1955 status++; 1956 } 1957 1958 mmap_read_unlock(mm); 1959 } 1960 1961 static int get_compat_pages_array(const void __user *chunk_pages[], 1962 const void __user * __user *pages, 1963 unsigned long chunk_nr) 1964 { 1965 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1966 compat_uptr_t p; 1967 int i; 1968 1969 for (i = 0; i < chunk_nr; i++) { 1970 if (get_user(p, pages32 + i)) 1971 return -EFAULT; 1972 chunk_pages[i] = compat_ptr(p); 1973 } 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Determine the nodes of a user array of pages and store it in 1980 * a user array of status. 1981 */ 1982 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1983 const void __user * __user *pages, 1984 int __user *status) 1985 { 1986 #define DO_PAGES_STAT_CHUNK_NR 16UL 1987 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1988 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1989 1990 while (nr_pages) { 1991 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 1992 1993 if (in_compat_syscall()) { 1994 if (get_compat_pages_array(chunk_pages, pages, 1995 chunk_nr)) 1996 break; 1997 } else { 1998 if (copy_from_user(chunk_pages, pages, 1999 chunk_nr * sizeof(*chunk_pages))) 2000 break; 2001 } 2002 2003 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2004 2005 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2006 break; 2007 2008 pages += chunk_nr; 2009 status += chunk_nr; 2010 nr_pages -= chunk_nr; 2011 } 2012 return nr_pages ? -EFAULT : 0; 2013 } 2014 2015 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2016 { 2017 struct task_struct *task; 2018 struct mm_struct *mm; 2019 2020 /* 2021 * There is no need to check if current process has the right to modify 2022 * the specified process when they are same. 2023 */ 2024 if (!pid) { 2025 mmget(current->mm); 2026 *mem_nodes = cpuset_mems_allowed(current); 2027 return current->mm; 2028 } 2029 2030 /* Find the mm_struct */ 2031 rcu_read_lock(); 2032 task = find_task_by_vpid(pid); 2033 if (!task) { 2034 rcu_read_unlock(); 2035 return ERR_PTR(-ESRCH); 2036 } 2037 get_task_struct(task); 2038 2039 /* 2040 * Check if this process has the right to modify the specified 2041 * process. Use the regular "ptrace_may_access()" checks. 2042 */ 2043 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2044 rcu_read_unlock(); 2045 mm = ERR_PTR(-EPERM); 2046 goto out; 2047 } 2048 rcu_read_unlock(); 2049 2050 mm = ERR_PTR(security_task_movememory(task)); 2051 if (IS_ERR(mm)) 2052 goto out; 2053 *mem_nodes = cpuset_mems_allowed(task); 2054 mm = get_task_mm(task); 2055 out: 2056 put_task_struct(task); 2057 if (!mm) 2058 mm = ERR_PTR(-EINVAL); 2059 return mm; 2060 } 2061 2062 /* 2063 * Move a list of pages in the address space of the currently executing 2064 * process. 2065 */ 2066 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2067 const void __user * __user *pages, 2068 const int __user *nodes, 2069 int __user *status, int flags) 2070 { 2071 struct mm_struct *mm; 2072 int err; 2073 nodemask_t task_nodes; 2074 2075 /* Check flags */ 2076 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2077 return -EINVAL; 2078 2079 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2080 return -EPERM; 2081 2082 mm = find_mm_struct(pid, &task_nodes); 2083 if (IS_ERR(mm)) 2084 return PTR_ERR(mm); 2085 2086 if (nodes) 2087 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2088 nodes, status, flags); 2089 else 2090 err = do_pages_stat(mm, nr_pages, pages, status); 2091 2092 mmput(mm); 2093 return err; 2094 } 2095 2096 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2097 const void __user * __user *, pages, 2098 const int __user *, nodes, 2099 int __user *, status, int, flags) 2100 { 2101 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2102 } 2103 2104 #ifdef CONFIG_NUMA_BALANCING 2105 /* 2106 * Returns true if this is a safe migration target node for misplaced NUMA 2107 * pages. Currently it only checks the watermarks which is crude. 2108 */ 2109 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2110 unsigned long nr_migrate_pages) 2111 { 2112 int z; 2113 2114 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2115 struct zone *zone = pgdat->node_zones + z; 2116 2117 if (!managed_zone(zone)) 2118 continue; 2119 2120 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2121 if (!zone_watermark_ok(zone, 0, 2122 high_wmark_pages(zone) + 2123 nr_migrate_pages, 2124 ZONE_MOVABLE, 0)) 2125 continue; 2126 return true; 2127 } 2128 return false; 2129 } 2130 2131 static struct page *alloc_misplaced_dst_page(struct page *page, 2132 unsigned long data) 2133 { 2134 int nid = (int) data; 2135 int order = compound_order(page); 2136 gfp_t gfp = __GFP_THISNODE; 2137 struct folio *new; 2138 2139 if (order > 0) 2140 gfp |= GFP_TRANSHUGE_LIGHT; 2141 else { 2142 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2143 __GFP_NOWARN; 2144 gfp &= ~__GFP_RECLAIM; 2145 } 2146 new = __folio_alloc_node(gfp, order, nid); 2147 2148 return &new->page; 2149 } 2150 2151 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2152 { 2153 int nr_pages = thp_nr_pages(page); 2154 int order = compound_order(page); 2155 2156 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2157 2158 /* Do not migrate THP mapped by multiple processes */ 2159 if (PageTransHuge(page) && total_mapcount(page) > 1) 2160 return 0; 2161 2162 /* Avoid migrating to a node that is nearly full */ 2163 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2164 int z; 2165 2166 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2167 return 0; 2168 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2169 if (managed_zone(pgdat->node_zones + z)) 2170 break; 2171 } 2172 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2173 return 0; 2174 } 2175 2176 if (isolate_lru_page(page)) 2177 return 0; 2178 2179 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2180 nr_pages); 2181 2182 /* 2183 * Isolating the page has taken another reference, so the 2184 * caller's reference can be safely dropped without the page 2185 * disappearing underneath us during migration. 2186 */ 2187 put_page(page); 2188 return 1; 2189 } 2190 2191 /* 2192 * Attempt to migrate a misplaced page to the specified destination 2193 * node. Caller is expected to have an elevated reference count on 2194 * the page that will be dropped by this function before returning. 2195 */ 2196 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2197 int node) 2198 { 2199 pg_data_t *pgdat = NODE_DATA(node); 2200 int isolated; 2201 int nr_remaining; 2202 unsigned int nr_succeeded; 2203 LIST_HEAD(migratepages); 2204 int nr_pages = thp_nr_pages(page); 2205 2206 /* 2207 * Don't migrate file pages that are mapped in multiple processes 2208 * with execute permissions as they are probably shared libraries. 2209 */ 2210 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2211 (vma->vm_flags & VM_EXEC)) 2212 goto out; 2213 2214 /* 2215 * Also do not migrate dirty pages as not all filesystems can move 2216 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2217 */ 2218 if (page_is_file_lru(page) && PageDirty(page)) 2219 goto out; 2220 2221 isolated = numamigrate_isolate_page(pgdat, page); 2222 if (!isolated) 2223 goto out; 2224 2225 list_add(&page->lru, &migratepages); 2226 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2227 NULL, node, MIGRATE_ASYNC, 2228 MR_NUMA_MISPLACED, &nr_succeeded); 2229 if (nr_remaining) { 2230 if (!list_empty(&migratepages)) { 2231 list_del(&page->lru); 2232 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2233 page_is_file_lru(page), -nr_pages); 2234 putback_lru_page(page); 2235 } 2236 isolated = 0; 2237 } 2238 if (nr_succeeded) { 2239 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2240 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2241 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2242 nr_succeeded); 2243 } 2244 BUG_ON(!list_empty(&migratepages)); 2245 return isolated; 2246 2247 out: 2248 put_page(page); 2249 return 0; 2250 } 2251 #endif /* CONFIG_NUMA_BALANCING */ 2252 #endif /* CONFIG_NUMA */ 2253