xref: /openbmc/linux/mm/migrate.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 #include <linux/memory-tiers.h>
54 
55 #include <asm/tlbflush.h>
56 
57 #include <trace/events/migrate.h>
58 
59 #include "internal.h"
60 
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (unlikely(!get_page_unless_zero(page)))
75 		goto out;
76 
77 	if (unlikely(PageSlab(page)))
78 		goto out_putpage;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__PageMovable(page)))
87 		goto out_putpage;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(PageSlab(page)))
91 		goto out_putpage;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!trylock_page(page)))
105 		goto out_putpage;
106 
107 	if (!PageMovable(page) || PageIsolated(page))
108 		goto out_no_isolated;
109 
110 	mops = page_movable_ops(page);
111 	VM_BUG_ON_PAGE(!mops, page);
112 
113 	if (!mops->isolate_page(page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(PageIsolated(page));
118 	SetPageIsolated(page);
119 	unlock_page(page);
120 
121 	return 0;
122 
123 out_no_isolated:
124 	unlock_page(page);
125 out_putpage:
126 	put_page(page);
127 out:
128 	return -EBUSY;
129 }
130 
131 static void putback_movable_page(struct page *page)
132 {
133 	const struct movable_operations *mops = page_movable_ops(page);
134 
135 	mops->putback_page(page);
136 	ClearPageIsolated(page);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct page *page;
150 	struct page *page2;
151 
152 	list_for_each_entry_safe(page, page2, l, lru) {
153 		if (unlikely(PageHuge(page))) {
154 			putback_active_hugepage(page);
155 			continue;
156 		}
157 		list_del(&page->lru);
158 		/*
159 		 * We isolated non-lru movable page so here we can use
160 		 * __PageMovable because LRU page's mapping cannot have
161 		 * PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__PageMovable(page))) {
164 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
165 			lock_page(page);
166 			if (PageMovable(page))
167 				putback_movable_page(page);
168 			else
169 				ClearPageIsolated(page);
170 			unlock_page(page);
171 			put_page(page);
172 		} else {
173 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
174 					page_is_file_lru(page), -thp_nr_pages(page));
175 			putback_lru_page(page);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t pte;
191 		swp_entry_t entry;
192 		struct page *new;
193 		unsigned long idx = 0;
194 
195 		/* pgoff is invalid for ksm pages, but they are never large */
196 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
197 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
198 		new = folio_page(folio, idx);
199 
200 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
201 		/* PMD-mapped THP migration entry */
202 		if (!pvmw.pte) {
203 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
204 					!folio_test_pmd_mappable(folio), folio);
205 			remove_migration_pmd(&pvmw, new);
206 			continue;
207 		}
208 #endif
209 
210 		folio_get(folio);
211 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
212 		if (pte_swp_soft_dirty(*pvmw.pte))
213 			pte = pte_mksoft_dirty(pte);
214 
215 		/*
216 		 * Recheck VMA as permissions can change since migration started
217 		 */
218 		entry = pte_to_swp_entry(*pvmw.pte);
219 		if (!is_migration_entry_young(entry))
220 			pte = pte_mkold(pte);
221 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
222 			pte = pte_mkdirty(pte);
223 		if (is_writable_migration_entry(entry))
224 			pte = maybe_mkwrite(pte, vma);
225 		else if (pte_swp_uffd_wp(*pvmw.pte))
226 			pte = pte_mkuffd_wp(pte);
227 
228 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
229 			rmap_flags |= RMAP_EXCLUSIVE;
230 
231 		if (unlikely(is_device_private_page(new))) {
232 			if (pte_write(pte))
233 				entry = make_writable_device_private_entry(
234 							page_to_pfn(new));
235 			else
236 				entry = make_readable_device_private_entry(
237 							page_to_pfn(new));
238 			pte = swp_entry_to_pte(entry);
239 			if (pte_swp_soft_dirty(*pvmw.pte))
240 				pte = pte_swp_mksoft_dirty(pte);
241 			if (pte_swp_uffd_wp(*pvmw.pte))
242 				pte = pte_swp_mkuffd_wp(pte);
243 		}
244 
245 #ifdef CONFIG_HUGETLB_PAGE
246 		if (folio_test_hugetlb(folio)) {
247 			unsigned int shift = huge_page_shift(hstate_vma(vma));
248 
249 			pte = pte_mkhuge(pte);
250 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
251 			if (folio_test_anon(folio))
252 				hugepage_add_anon_rmap(new, vma, pvmw.address,
253 						       rmap_flags);
254 			else
255 				page_dup_file_rmap(new, true);
256 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257 		} else
258 #endif
259 		{
260 			if (folio_test_anon(folio))
261 				page_add_anon_rmap(new, vma, pvmw.address,
262 						   rmap_flags);
263 			else
264 				page_add_file_rmap(new, vma, false);
265 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266 		}
267 		if (vma->vm_flags & VM_LOCKED)
268 			mlock_page_drain_local();
269 
270 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
271 					   compound_order(new));
272 
273 		/* No need to invalidate - it was non-present before */
274 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
275 	}
276 
277 	return true;
278 }
279 
280 /*
281  * Get rid of all migration entries and replace them by
282  * references to the indicated page.
283  */
284 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
285 {
286 	struct rmap_walk_control rwc = {
287 		.rmap_one = remove_migration_pte,
288 		.arg = src,
289 	};
290 
291 	if (locked)
292 		rmap_walk_locked(dst, &rwc);
293 	else
294 		rmap_walk(dst, &rwc);
295 }
296 
297 /*
298  * Something used the pte of a page under migration. We need to
299  * get to the page and wait until migration is finished.
300  * When we return from this function the fault will be retried.
301  */
302 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
303 				spinlock_t *ptl)
304 {
305 	pte_t pte;
306 	swp_entry_t entry;
307 
308 	spin_lock(ptl);
309 	pte = *ptep;
310 	if (!is_swap_pte(pte))
311 		goto out;
312 
313 	entry = pte_to_swp_entry(pte);
314 	if (!is_migration_entry(entry))
315 		goto out;
316 
317 	migration_entry_wait_on_locked(entry, ptep, ptl);
318 	return;
319 out:
320 	pte_unmap_unlock(ptep, ptl);
321 }
322 
323 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
324 				unsigned long address)
325 {
326 	spinlock_t *ptl = pte_lockptr(mm, pmd);
327 	pte_t *ptep = pte_offset_map(pmd, address);
328 	__migration_entry_wait(mm, ptep, ptl);
329 }
330 
331 #ifdef CONFIG_HUGETLB_PAGE
332 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
333 {
334 	pte_t pte;
335 
336 	spin_lock(ptl);
337 	pte = huge_ptep_get(ptep);
338 
339 	if (unlikely(!is_hugetlb_entry_migration(pte)))
340 		spin_unlock(ptl);
341 	else
342 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
343 }
344 
345 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
346 {
347 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
348 
349 	__migration_entry_wait_huge(pte, ptl);
350 }
351 #endif
352 
353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
355 {
356 	spinlock_t *ptl;
357 
358 	ptl = pmd_lock(mm, pmd);
359 	if (!is_pmd_migration_entry(*pmd))
360 		goto unlock;
361 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
362 	return;
363 unlock:
364 	spin_unlock(ptl);
365 }
366 #endif
367 
368 static int folio_expected_refs(struct address_space *mapping,
369 		struct folio *folio)
370 {
371 	int refs = 1;
372 	if (!mapping)
373 		return refs;
374 
375 	refs += folio_nr_pages(folio);
376 	if (folio_test_private(folio))
377 		refs++;
378 
379 	return refs;
380 }
381 
382 /*
383  * Replace the page in the mapping.
384  *
385  * The number of remaining references must be:
386  * 1 for anonymous pages without a mapping
387  * 2 for pages with a mapping
388  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
389  */
390 int folio_migrate_mapping(struct address_space *mapping,
391 		struct folio *newfolio, struct folio *folio, int extra_count)
392 {
393 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
394 	struct zone *oldzone, *newzone;
395 	int dirty;
396 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
397 	long nr = folio_nr_pages(folio);
398 
399 	if (!mapping) {
400 		/* Anonymous page without mapping */
401 		if (folio_ref_count(folio) != expected_count)
402 			return -EAGAIN;
403 
404 		/* No turning back from here */
405 		newfolio->index = folio->index;
406 		newfolio->mapping = folio->mapping;
407 		if (folio_test_swapbacked(folio))
408 			__folio_set_swapbacked(newfolio);
409 
410 		return MIGRATEPAGE_SUCCESS;
411 	}
412 
413 	oldzone = folio_zone(folio);
414 	newzone = folio_zone(newfolio);
415 
416 	xas_lock_irq(&xas);
417 	if (!folio_ref_freeze(folio, expected_count)) {
418 		xas_unlock_irq(&xas);
419 		return -EAGAIN;
420 	}
421 
422 	/*
423 	 * Now we know that no one else is looking at the folio:
424 	 * no turning back from here.
425 	 */
426 	newfolio->index = folio->index;
427 	newfolio->mapping = folio->mapping;
428 	folio_ref_add(newfolio, nr); /* add cache reference */
429 	if (folio_test_swapbacked(folio)) {
430 		__folio_set_swapbacked(newfolio);
431 		if (folio_test_swapcache(folio)) {
432 			folio_set_swapcache(newfolio);
433 			newfolio->private = folio_get_private(folio);
434 		}
435 	} else {
436 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
437 	}
438 
439 	/* Move dirty while page refs frozen and newpage not yet exposed */
440 	dirty = folio_test_dirty(folio);
441 	if (dirty) {
442 		folio_clear_dirty(folio);
443 		folio_set_dirty(newfolio);
444 	}
445 
446 	xas_store(&xas, newfolio);
447 
448 	/*
449 	 * Drop cache reference from old page by unfreezing
450 	 * to one less reference.
451 	 * We know this isn't the last reference.
452 	 */
453 	folio_ref_unfreeze(folio, expected_count - nr);
454 
455 	xas_unlock(&xas);
456 	/* Leave irq disabled to prevent preemption while updating stats */
457 
458 	/*
459 	 * If moved to a different zone then also account
460 	 * the page for that zone. Other VM counters will be
461 	 * taken care of when we establish references to the
462 	 * new page and drop references to the old page.
463 	 *
464 	 * Note that anonymous pages are accounted for
465 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
466 	 * are mapped to swap space.
467 	 */
468 	if (newzone != oldzone) {
469 		struct lruvec *old_lruvec, *new_lruvec;
470 		struct mem_cgroup *memcg;
471 
472 		memcg = folio_memcg(folio);
473 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
474 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
475 
476 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
477 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
478 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
479 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
480 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
481 		}
482 #ifdef CONFIG_SWAP
483 		if (folio_test_swapcache(folio)) {
484 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
485 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
486 		}
487 #endif
488 		if (dirty && mapping_can_writeback(mapping)) {
489 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
490 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
491 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
492 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
493 		}
494 	}
495 	local_irq_enable();
496 
497 	return MIGRATEPAGE_SUCCESS;
498 }
499 EXPORT_SYMBOL(folio_migrate_mapping);
500 
501 /*
502  * The expected number of remaining references is the same as that
503  * of folio_migrate_mapping().
504  */
505 int migrate_huge_page_move_mapping(struct address_space *mapping,
506 				   struct folio *dst, struct folio *src)
507 {
508 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
509 	int expected_count;
510 
511 	xas_lock_irq(&xas);
512 	expected_count = 2 + folio_has_private(src);
513 	if (!folio_ref_freeze(src, expected_count)) {
514 		xas_unlock_irq(&xas);
515 		return -EAGAIN;
516 	}
517 
518 	dst->index = src->index;
519 	dst->mapping = src->mapping;
520 
521 	folio_get(dst);
522 
523 	xas_store(&xas, dst);
524 
525 	folio_ref_unfreeze(src, expected_count - 1);
526 
527 	xas_unlock_irq(&xas);
528 
529 	return MIGRATEPAGE_SUCCESS;
530 }
531 
532 /*
533  * Copy the flags and some other ancillary information
534  */
535 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
536 {
537 	int cpupid;
538 
539 	if (folio_test_error(folio))
540 		folio_set_error(newfolio);
541 	if (folio_test_referenced(folio))
542 		folio_set_referenced(newfolio);
543 	if (folio_test_uptodate(folio))
544 		folio_mark_uptodate(newfolio);
545 	if (folio_test_clear_active(folio)) {
546 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
547 		folio_set_active(newfolio);
548 	} else if (folio_test_clear_unevictable(folio))
549 		folio_set_unevictable(newfolio);
550 	if (folio_test_workingset(folio))
551 		folio_set_workingset(newfolio);
552 	if (folio_test_checked(folio))
553 		folio_set_checked(newfolio);
554 	/*
555 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
556 	 * migration entries. We can still have PG_anon_exclusive set on an
557 	 * effectively unmapped and unreferenced first sub-pages of an
558 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
559 	 */
560 	if (folio_test_mappedtodisk(folio))
561 		folio_set_mappedtodisk(newfolio);
562 
563 	/* Move dirty on pages not done by folio_migrate_mapping() */
564 	if (folio_test_dirty(folio))
565 		folio_set_dirty(newfolio);
566 
567 	if (folio_test_young(folio))
568 		folio_set_young(newfolio);
569 	if (folio_test_idle(folio))
570 		folio_set_idle(newfolio);
571 
572 	/*
573 	 * Copy NUMA information to the new page, to prevent over-eager
574 	 * future migrations of this same page.
575 	 */
576 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
577 	/*
578 	 * For memory tiering mode, when migrate between slow and fast
579 	 * memory node, reset cpupid, because that is used to record
580 	 * page access time in slow memory node.
581 	 */
582 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
583 		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
584 		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
585 
586 		if (f_toptier != t_toptier)
587 			cpupid = -1;
588 	}
589 	page_cpupid_xchg_last(&newfolio->page, cpupid);
590 
591 	folio_migrate_ksm(newfolio, folio);
592 	/*
593 	 * Please do not reorder this without considering how mm/ksm.c's
594 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
595 	 */
596 	if (folio_test_swapcache(folio))
597 		folio_clear_swapcache(folio);
598 	folio_clear_private(folio);
599 
600 	/* page->private contains hugetlb specific flags */
601 	if (!folio_test_hugetlb(folio))
602 		folio->private = NULL;
603 
604 	/*
605 	 * If any waiters have accumulated on the new page then
606 	 * wake them up.
607 	 */
608 	if (folio_test_writeback(newfolio))
609 		folio_end_writeback(newfolio);
610 
611 	/*
612 	 * PG_readahead shares the same bit with PG_reclaim.  The above
613 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
614 	 * bit after that.
615 	 */
616 	if (folio_test_readahead(folio))
617 		folio_set_readahead(newfolio);
618 
619 	folio_copy_owner(newfolio, folio);
620 
621 	if (!folio_test_hugetlb(folio))
622 		mem_cgroup_migrate(folio, newfolio);
623 }
624 EXPORT_SYMBOL(folio_migrate_flags);
625 
626 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
627 {
628 	folio_copy(newfolio, folio);
629 	folio_migrate_flags(newfolio, folio);
630 }
631 EXPORT_SYMBOL(folio_migrate_copy);
632 
633 /************************************************************
634  *                    Migration functions
635  ***********************************************************/
636 
637 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
638 		struct folio *src, enum migrate_mode mode, int extra_count)
639 {
640 	int rc;
641 
642 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
643 
644 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
645 
646 	if (rc != MIGRATEPAGE_SUCCESS)
647 		return rc;
648 
649 	if (mode != MIGRATE_SYNC_NO_COPY)
650 		folio_migrate_copy(dst, src);
651 	else
652 		folio_migrate_flags(dst, src);
653 	return MIGRATEPAGE_SUCCESS;
654 }
655 
656 /**
657  * migrate_folio() - Simple folio migration.
658  * @mapping: The address_space containing the folio.
659  * @dst: The folio to migrate the data to.
660  * @src: The folio containing the current data.
661  * @mode: How to migrate the page.
662  *
663  * Common logic to directly migrate a single LRU folio suitable for
664  * folios that do not use PagePrivate/PagePrivate2.
665  *
666  * Folios are locked upon entry and exit.
667  */
668 int migrate_folio(struct address_space *mapping, struct folio *dst,
669 		struct folio *src, enum migrate_mode mode)
670 {
671 	return migrate_folio_extra(mapping, dst, src, mode, 0);
672 }
673 EXPORT_SYMBOL(migrate_folio);
674 
675 #ifdef CONFIG_BLOCK
676 /* Returns true if all buffers are successfully locked */
677 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
678 							enum migrate_mode mode)
679 {
680 	struct buffer_head *bh = head;
681 
682 	/* Simple case, sync compaction */
683 	if (mode != MIGRATE_ASYNC) {
684 		do {
685 			lock_buffer(bh);
686 			bh = bh->b_this_page;
687 
688 		} while (bh != head);
689 
690 		return true;
691 	}
692 
693 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
694 	do {
695 		if (!trylock_buffer(bh)) {
696 			/*
697 			 * We failed to lock the buffer and cannot stall in
698 			 * async migration. Release the taken locks
699 			 */
700 			struct buffer_head *failed_bh = bh;
701 			bh = head;
702 			while (bh != failed_bh) {
703 				unlock_buffer(bh);
704 				bh = bh->b_this_page;
705 			}
706 			return false;
707 		}
708 
709 		bh = bh->b_this_page;
710 	} while (bh != head);
711 	return true;
712 }
713 
714 static int __buffer_migrate_folio(struct address_space *mapping,
715 		struct folio *dst, struct folio *src, enum migrate_mode mode,
716 		bool check_refs)
717 {
718 	struct buffer_head *bh, *head;
719 	int rc;
720 	int expected_count;
721 
722 	head = folio_buffers(src);
723 	if (!head)
724 		return migrate_folio(mapping, dst, src, mode);
725 
726 	/* Check whether page does not have extra refs before we do more work */
727 	expected_count = folio_expected_refs(mapping, src);
728 	if (folio_ref_count(src) != expected_count)
729 		return -EAGAIN;
730 
731 	if (!buffer_migrate_lock_buffers(head, mode))
732 		return -EAGAIN;
733 
734 	if (check_refs) {
735 		bool busy;
736 		bool invalidated = false;
737 
738 recheck_buffers:
739 		busy = false;
740 		spin_lock(&mapping->private_lock);
741 		bh = head;
742 		do {
743 			if (atomic_read(&bh->b_count)) {
744 				busy = true;
745 				break;
746 			}
747 			bh = bh->b_this_page;
748 		} while (bh != head);
749 		if (busy) {
750 			if (invalidated) {
751 				rc = -EAGAIN;
752 				goto unlock_buffers;
753 			}
754 			spin_unlock(&mapping->private_lock);
755 			invalidate_bh_lrus();
756 			invalidated = true;
757 			goto recheck_buffers;
758 		}
759 	}
760 
761 	rc = folio_migrate_mapping(mapping, dst, src, 0);
762 	if (rc != MIGRATEPAGE_SUCCESS)
763 		goto unlock_buffers;
764 
765 	folio_attach_private(dst, folio_detach_private(src));
766 
767 	bh = head;
768 	do {
769 		set_bh_page(bh, &dst->page, bh_offset(bh));
770 		bh = bh->b_this_page;
771 	} while (bh != head);
772 
773 	if (mode != MIGRATE_SYNC_NO_COPY)
774 		folio_migrate_copy(dst, src);
775 	else
776 		folio_migrate_flags(dst, src);
777 
778 	rc = MIGRATEPAGE_SUCCESS;
779 unlock_buffers:
780 	if (check_refs)
781 		spin_unlock(&mapping->private_lock);
782 	bh = head;
783 	do {
784 		unlock_buffer(bh);
785 		bh = bh->b_this_page;
786 	} while (bh != head);
787 
788 	return rc;
789 }
790 
791 /**
792  * buffer_migrate_folio() - Migration function for folios with buffers.
793  * @mapping: The address space containing @src.
794  * @dst: The folio to migrate to.
795  * @src: The folio to migrate from.
796  * @mode: How to migrate the folio.
797  *
798  * This function can only be used if the underlying filesystem guarantees
799  * that no other references to @src exist. For example attached buffer
800  * heads are accessed only under the folio lock.  If your filesystem cannot
801  * provide this guarantee, buffer_migrate_folio_norefs() may be more
802  * appropriate.
803  *
804  * Return: 0 on success or a negative errno on failure.
805  */
806 int buffer_migrate_folio(struct address_space *mapping,
807 		struct folio *dst, struct folio *src, enum migrate_mode mode)
808 {
809 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
810 }
811 EXPORT_SYMBOL(buffer_migrate_folio);
812 
813 /**
814  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
815  * @mapping: The address space containing @src.
816  * @dst: The folio to migrate to.
817  * @src: The folio to migrate from.
818  * @mode: How to migrate the folio.
819  *
820  * Like buffer_migrate_folio() except that this variant is more careful
821  * and checks that there are also no buffer head references. This function
822  * is the right one for mappings where buffer heads are directly looked
823  * up and referenced (such as block device mappings).
824  *
825  * Return: 0 on success or a negative errno on failure.
826  */
827 int buffer_migrate_folio_norefs(struct address_space *mapping,
828 		struct folio *dst, struct folio *src, enum migrate_mode mode)
829 {
830 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
831 }
832 #endif
833 
834 int filemap_migrate_folio(struct address_space *mapping,
835 		struct folio *dst, struct folio *src, enum migrate_mode mode)
836 {
837 	int ret;
838 
839 	ret = folio_migrate_mapping(mapping, dst, src, 0);
840 	if (ret != MIGRATEPAGE_SUCCESS)
841 		return ret;
842 
843 	if (folio_get_private(src))
844 		folio_attach_private(dst, folio_detach_private(src));
845 
846 	if (mode != MIGRATE_SYNC_NO_COPY)
847 		folio_migrate_copy(dst, src);
848 	else
849 		folio_migrate_flags(dst, src);
850 	return MIGRATEPAGE_SUCCESS;
851 }
852 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
853 
854 /*
855  * Writeback a folio to clean the dirty state
856  */
857 static int writeout(struct address_space *mapping, struct folio *folio)
858 {
859 	struct writeback_control wbc = {
860 		.sync_mode = WB_SYNC_NONE,
861 		.nr_to_write = 1,
862 		.range_start = 0,
863 		.range_end = LLONG_MAX,
864 		.for_reclaim = 1
865 	};
866 	int rc;
867 
868 	if (!mapping->a_ops->writepage)
869 		/* No write method for the address space */
870 		return -EINVAL;
871 
872 	if (!folio_clear_dirty_for_io(folio))
873 		/* Someone else already triggered a write */
874 		return -EAGAIN;
875 
876 	/*
877 	 * A dirty folio may imply that the underlying filesystem has
878 	 * the folio on some queue. So the folio must be clean for
879 	 * migration. Writeout may mean we lose the lock and the
880 	 * folio state is no longer what we checked for earlier.
881 	 * At this point we know that the migration attempt cannot
882 	 * be successful.
883 	 */
884 	remove_migration_ptes(folio, folio, false);
885 
886 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
887 
888 	if (rc != AOP_WRITEPAGE_ACTIVATE)
889 		/* unlocked. Relock */
890 		folio_lock(folio);
891 
892 	return (rc < 0) ? -EIO : -EAGAIN;
893 }
894 
895 /*
896  * Default handling if a filesystem does not provide a migration function.
897  */
898 static int fallback_migrate_folio(struct address_space *mapping,
899 		struct folio *dst, struct folio *src, enum migrate_mode mode)
900 {
901 	if (folio_test_dirty(src)) {
902 		/* Only writeback folios in full synchronous migration */
903 		switch (mode) {
904 		case MIGRATE_SYNC:
905 		case MIGRATE_SYNC_NO_COPY:
906 			break;
907 		default:
908 			return -EBUSY;
909 		}
910 		return writeout(mapping, src);
911 	}
912 
913 	/*
914 	 * Buffers may be managed in a filesystem specific way.
915 	 * We must have no buffers or drop them.
916 	 */
917 	if (folio_test_private(src) &&
918 	    !filemap_release_folio(src, GFP_KERNEL))
919 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
920 
921 	return migrate_folio(mapping, dst, src, mode);
922 }
923 
924 /*
925  * Move a page to a newly allocated page
926  * The page is locked and all ptes have been successfully removed.
927  *
928  * The new page will have replaced the old page if this function
929  * is successful.
930  *
931  * Return value:
932  *   < 0 - error code
933  *  MIGRATEPAGE_SUCCESS - success
934  */
935 static int move_to_new_folio(struct folio *dst, struct folio *src,
936 				enum migrate_mode mode)
937 {
938 	int rc = -EAGAIN;
939 	bool is_lru = !__PageMovable(&src->page);
940 
941 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
942 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
943 
944 	if (likely(is_lru)) {
945 		struct address_space *mapping = folio_mapping(src);
946 
947 		if (!mapping)
948 			rc = migrate_folio(mapping, dst, src, mode);
949 		else if (mapping->a_ops->migrate_folio)
950 			/*
951 			 * Most folios have a mapping and most filesystems
952 			 * provide a migrate_folio callback. Anonymous folios
953 			 * are part of swap space which also has its own
954 			 * migrate_folio callback. This is the most common path
955 			 * for page migration.
956 			 */
957 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
958 								mode);
959 		else
960 			rc = fallback_migrate_folio(mapping, dst, src, mode);
961 	} else {
962 		const struct movable_operations *mops;
963 
964 		/*
965 		 * In case of non-lru page, it could be released after
966 		 * isolation step. In that case, we shouldn't try migration.
967 		 */
968 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
969 		if (!folio_test_movable(src)) {
970 			rc = MIGRATEPAGE_SUCCESS;
971 			folio_clear_isolated(src);
972 			goto out;
973 		}
974 
975 		mops = page_movable_ops(&src->page);
976 		rc = mops->migrate_page(&dst->page, &src->page, mode);
977 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
978 				!folio_test_isolated(src));
979 	}
980 
981 	/*
982 	 * When successful, old pagecache src->mapping must be cleared before
983 	 * src is freed; but stats require that PageAnon be left as PageAnon.
984 	 */
985 	if (rc == MIGRATEPAGE_SUCCESS) {
986 		if (__PageMovable(&src->page)) {
987 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
988 
989 			/*
990 			 * We clear PG_movable under page_lock so any compactor
991 			 * cannot try to migrate this page.
992 			 */
993 			folio_clear_isolated(src);
994 		}
995 
996 		/*
997 		 * Anonymous and movable src->mapping will be cleared by
998 		 * free_pages_prepare so don't reset it here for keeping
999 		 * the type to work PageAnon, for example.
1000 		 */
1001 		if (!folio_mapping_flags(src))
1002 			src->mapping = NULL;
1003 
1004 		if (likely(!folio_is_zone_device(dst)))
1005 			flush_dcache_folio(dst);
1006 	}
1007 out:
1008 	return rc;
1009 }
1010 
1011 static int __unmap_and_move(struct folio *src, struct folio *dst,
1012 				int force, enum migrate_mode mode)
1013 {
1014 	int rc = -EAGAIN;
1015 	bool page_was_mapped = false;
1016 	struct anon_vma *anon_vma = NULL;
1017 	bool is_lru = !__PageMovable(&src->page);
1018 
1019 	if (!folio_trylock(src)) {
1020 		if (!force || mode == MIGRATE_ASYNC)
1021 			goto out;
1022 
1023 		/*
1024 		 * It's not safe for direct compaction to call lock_page.
1025 		 * For example, during page readahead pages are added locked
1026 		 * to the LRU. Later, when the IO completes the pages are
1027 		 * marked uptodate and unlocked. However, the queueing
1028 		 * could be merging multiple pages for one bio (e.g.
1029 		 * mpage_readahead). If an allocation happens for the
1030 		 * second or third page, the process can end up locking
1031 		 * the same page twice and deadlocking. Rather than
1032 		 * trying to be clever about what pages can be locked,
1033 		 * avoid the use of lock_page for direct compaction
1034 		 * altogether.
1035 		 */
1036 		if (current->flags & PF_MEMALLOC)
1037 			goto out;
1038 
1039 		folio_lock(src);
1040 	}
1041 
1042 	if (folio_test_writeback(src)) {
1043 		/*
1044 		 * Only in the case of a full synchronous migration is it
1045 		 * necessary to wait for PageWriteback. In the async case,
1046 		 * the retry loop is too short and in the sync-light case,
1047 		 * the overhead of stalling is too much
1048 		 */
1049 		switch (mode) {
1050 		case MIGRATE_SYNC:
1051 		case MIGRATE_SYNC_NO_COPY:
1052 			break;
1053 		default:
1054 			rc = -EBUSY;
1055 			goto out_unlock;
1056 		}
1057 		if (!force)
1058 			goto out_unlock;
1059 		folio_wait_writeback(src);
1060 	}
1061 
1062 	/*
1063 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1064 	 * we cannot notice that anon_vma is freed while we migrate a page.
1065 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1066 	 * of migration. File cache pages are no problem because of page_lock()
1067 	 * File Caches may use write_page() or lock_page() in migration, then,
1068 	 * just care Anon page here.
1069 	 *
1070 	 * Only folio_get_anon_vma() understands the subtleties of
1071 	 * getting a hold on an anon_vma from outside one of its mms.
1072 	 * But if we cannot get anon_vma, then we won't need it anyway,
1073 	 * because that implies that the anon page is no longer mapped
1074 	 * (and cannot be remapped so long as we hold the page lock).
1075 	 */
1076 	if (folio_test_anon(src) && !folio_test_ksm(src))
1077 		anon_vma = folio_get_anon_vma(src);
1078 
1079 	/*
1080 	 * Block others from accessing the new page when we get around to
1081 	 * establishing additional references. We are usually the only one
1082 	 * holding a reference to dst at this point. We used to have a BUG
1083 	 * here if folio_trylock(dst) fails, but would like to allow for
1084 	 * cases where there might be a race with the previous use of dst.
1085 	 * This is much like races on refcount of oldpage: just don't BUG().
1086 	 */
1087 	if (unlikely(!folio_trylock(dst)))
1088 		goto out_unlock;
1089 
1090 	if (unlikely(!is_lru)) {
1091 		rc = move_to_new_folio(dst, src, mode);
1092 		goto out_unlock_both;
1093 	}
1094 
1095 	/*
1096 	 * Corner case handling:
1097 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1098 	 * and treated as swapcache but it has no rmap yet.
1099 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1100 	 * trigger a BUG.  So handle it here.
1101 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1102 	 * fs-private metadata. The page can be picked up due to memory
1103 	 * offlining.  Everywhere else except page reclaim, the page is
1104 	 * invisible to the vm, so the page can not be migrated.  So try to
1105 	 * free the metadata, so the page can be freed.
1106 	 */
1107 	if (!src->mapping) {
1108 		if (folio_test_private(src)) {
1109 			try_to_free_buffers(src);
1110 			goto out_unlock_both;
1111 		}
1112 	} else if (folio_mapped(src)) {
1113 		/* Establish migration ptes */
1114 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1115 			       !folio_test_ksm(src) && !anon_vma, src);
1116 		try_to_migrate(src, 0);
1117 		page_was_mapped = true;
1118 	}
1119 
1120 	if (!folio_mapped(src))
1121 		rc = move_to_new_folio(dst, src, mode);
1122 
1123 	/*
1124 	 * When successful, push dst to LRU immediately: so that if it
1125 	 * turns out to be an mlocked page, remove_migration_ptes() will
1126 	 * automatically build up the correct dst->mlock_count for it.
1127 	 *
1128 	 * We would like to do something similar for the old page, when
1129 	 * unsuccessful, and other cases when a page has been temporarily
1130 	 * isolated from the unevictable LRU: but this case is the easiest.
1131 	 */
1132 	if (rc == MIGRATEPAGE_SUCCESS) {
1133 		folio_add_lru(dst);
1134 		if (page_was_mapped)
1135 			lru_add_drain();
1136 	}
1137 
1138 	if (page_was_mapped)
1139 		remove_migration_ptes(src,
1140 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1141 
1142 out_unlock_both:
1143 	folio_unlock(dst);
1144 out_unlock:
1145 	/* Drop an anon_vma reference if we took one */
1146 	if (anon_vma)
1147 		put_anon_vma(anon_vma);
1148 	folio_unlock(src);
1149 out:
1150 	/*
1151 	 * If migration is successful, decrease refcount of dst,
1152 	 * which will not free the page because new page owner increased
1153 	 * refcounter.
1154 	 */
1155 	if (rc == MIGRATEPAGE_SUCCESS)
1156 		folio_put(dst);
1157 
1158 	return rc;
1159 }
1160 
1161 /*
1162  * Obtain the lock on page, remove all ptes and migrate the page
1163  * to the newly allocated page in newpage.
1164  */
1165 static int unmap_and_move(new_page_t get_new_page,
1166 				   free_page_t put_new_page,
1167 				   unsigned long private, struct page *page,
1168 				   int force, enum migrate_mode mode,
1169 				   enum migrate_reason reason,
1170 				   struct list_head *ret)
1171 {
1172 	struct folio *dst, *src = page_folio(page);
1173 	int rc = MIGRATEPAGE_SUCCESS;
1174 	struct page *newpage = NULL;
1175 
1176 	if (!thp_migration_supported() && PageTransHuge(page))
1177 		return -ENOSYS;
1178 
1179 	if (page_count(page) == 1) {
1180 		/* Page was freed from under us. So we are done. */
1181 		ClearPageActive(page);
1182 		ClearPageUnevictable(page);
1183 		/* free_pages_prepare() will clear PG_isolated. */
1184 		goto out;
1185 	}
1186 
1187 	newpage = get_new_page(page, private);
1188 	if (!newpage)
1189 		return -ENOMEM;
1190 	dst = page_folio(newpage);
1191 
1192 	newpage->private = 0;
1193 	rc = __unmap_and_move(src, dst, force, mode);
1194 	if (rc == MIGRATEPAGE_SUCCESS)
1195 		set_page_owner_migrate_reason(newpage, reason);
1196 
1197 out:
1198 	if (rc != -EAGAIN) {
1199 		/*
1200 		 * A page that has been migrated has all references
1201 		 * removed and will be freed. A page that has not been
1202 		 * migrated will have kept its references and be restored.
1203 		 */
1204 		list_del(&page->lru);
1205 	}
1206 
1207 	/*
1208 	 * If migration is successful, releases reference grabbed during
1209 	 * isolation. Otherwise, restore the page to right list unless
1210 	 * we want to retry.
1211 	 */
1212 	if (rc == MIGRATEPAGE_SUCCESS) {
1213 		/*
1214 		 * Compaction can migrate also non-LRU pages which are
1215 		 * not accounted to NR_ISOLATED_*. They can be recognized
1216 		 * as __PageMovable
1217 		 */
1218 		if (likely(!__PageMovable(page)))
1219 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220 					page_is_file_lru(page), -thp_nr_pages(page));
1221 
1222 		if (reason != MR_MEMORY_FAILURE)
1223 			/*
1224 			 * We release the page in page_handle_poison.
1225 			 */
1226 			put_page(page);
1227 	} else {
1228 		if (rc != -EAGAIN)
1229 			list_add_tail(&page->lru, ret);
1230 
1231 		if (put_new_page)
1232 			put_new_page(newpage, private);
1233 		else
1234 			put_page(newpage);
1235 	}
1236 
1237 	return rc;
1238 }
1239 
1240 /*
1241  * Counterpart of unmap_and_move_page() for hugepage migration.
1242  *
1243  * This function doesn't wait the completion of hugepage I/O
1244  * because there is no race between I/O and migration for hugepage.
1245  * Note that currently hugepage I/O occurs only in direct I/O
1246  * where no lock is held and PG_writeback is irrelevant,
1247  * and writeback status of all subpages are counted in the reference
1248  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1249  * under direct I/O, the reference of the head page is 512 and a bit more.)
1250  * This means that when we try to migrate hugepage whose subpages are
1251  * doing direct I/O, some references remain after try_to_unmap() and
1252  * hugepage migration fails without data corruption.
1253  *
1254  * There is also no race when direct I/O is issued on the page under migration,
1255  * because then pte is replaced with migration swap entry and direct I/O code
1256  * will wait in the page fault for migration to complete.
1257  */
1258 static int unmap_and_move_huge_page(new_page_t get_new_page,
1259 				free_page_t put_new_page, unsigned long private,
1260 				struct page *hpage, int force,
1261 				enum migrate_mode mode, int reason,
1262 				struct list_head *ret)
1263 {
1264 	struct folio *dst, *src = page_folio(hpage);
1265 	int rc = -EAGAIN;
1266 	int page_was_mapped = 0;
1267 	struct page *new_hpage;
1268 	struct anon_vma *anon_vma = NULL;
1269 	struct address_space *mapping = NULL;
1270 
1271 	/*
1272 	 * Migratability of hugepages depends on architectures and their size.
1273 	 * This check is necessary because some callers of hugepage migration
1274 	 * like soft offline and memory hotremove don't walk through page
1275 	 * tables or check whether the hugepage is pmd-based or not before
1276 	 * kicking migration.
1277 	 */
1278 	if (!hugepage_migration_supported(page_hstate(hpage)))
1279 		return -ENOSYS;
1280 
1281 	if (folio_ref_count(src) == 1) {
1282 		/* page was freed from under us. So we are done. */
1283 		putback_active_hugepage(hpage);
1284 		return MIGRATEPAGE_SUCCESS;
1285 	}
1286 
1287 	new_hpage = get_new_page(hpage, private);
1288 	if (!new_hpage)
1289 		return -ENOMEM;
1290 	dst = page_folio(new_hpage);
1291 
1292 	if (!folio_trylock(src)) {
1293 		if (!force)
1294 			goto out;
1295 		switch (mode) {
1296 		case MIGRATE_SYNC:
1297 		case MIGRATE_SYNC_NO_COPY:
1298 			break;
1299 		default:
1300 			goto out;
1301 		}
1302 		folio_lock(src);
1303 	}
1304 
1305 	/*
1306 	 * Check for pages which are in the process of being freed.  Without
1307 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1308 	 * be called and we could leak usage counts for subpools.
1309 	 */
1310 	if (hugetlb_page_subpool(hpage) && !folio_mapping(src)) {
1311 		rc = -EBUSY;
1312 		goto out_unlock;
1313 	}
1314 
1315 	if (folio_test_anon(src))
1316 		anon_vma = folio_get_anon_vma(src);
1317 
1318 	if (unlikely(!folio_trylock(dst)))
1319 		goto put_anon;
1320 
1321 	if (folio_mapped(src)) {
1322 		enum ttu_flags ttu = 0;
1323 
1324 		if (!folio_test_anon(src)) {
1325 			/*
1326 			 * In shared mappings, try_to_unmap could potentially
1327 			 * call huge_pmd_unshare.  Because of this, take
1328 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1329 			 * to let lower levels know we have taken the lock.
1330 			 */
1331 			mapping = hugetlb_page_mapping_lock_write(hpage);
1332 			if (unlikely(!mapping))
1333 				goto unlock_put_anon;
1334 
1335 			ttu = TTU_RMAP_LOCKED;
1336 		}
1337 
1338 		try_to_migrate(src, ttu);
1339 		page_was_mapped = 1;
1340 
1341 		if (ttu & TTU_RMAP_LOCKED)
1342 			i_mmap_unlock_write(mapping);
1343 	}
1344 
1345 	if (!folio_mapped(src))
1346 		rc = move_to_new_folio(dst, src, mode);
1347 
1348 	if (page_was_mapped)
1349 		remove_migration_ptes(src,
1350 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1351 
1352 unlock_put_anon:
1353 	folio_unlock(dst);
1354 
1355 put_anon:
1356 	if (anon_vma)
1357 		put_anon_vma(anon_vma);
1358 
1359 	if (rc == MIGRATEPAGE_SUCCESS) {
1360 		move_hugetlb_state(hpage, new_hpage, reason);
1361 		put_new_page = NULL;
1362 	}
1363 
1364 out_unlock:
1365 	folio_unlock(src);
1366 out:
1367 	if (rc == MIGRATEPAGE_SUCCESS)
1368 		putback_active_hugepage(hpage);
1369 	else if (rc != -EAGAIN)
1370 		list_move_tail(&src->lru, ret);
1371 
1372 	/*
1373 	 * If migration was not successful and there's a freeing callback, use
1374 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1375 	 * isolation.
1376 	 */
1377 	if (put_new_page)
1378 		put_new_page(new_hpage, private);
1379 	else
1380 		putback_active_hugepage(new_hpage);
1381 
1382 	return rc;
1383 }
1384 
1385 static inline int try_split_thp(struct page *page, struct list_head *split_pages)
1386 {
1387 	int rc;
1388 
1389 	lock_page(page);
1390 	rc = split_huge_page_to_list(page, split_pages);
1391 	unlock_page(page);
1392 	if (!rc)
1393 		list_move_tail(&page->lru, split_pages);
1394 
1395 	return rc;
1396 }
1397 
1398 /*
1399  * migrate_pages - migrate the pages specified in a list, to the free pages
1400  *		   supplied as the target for the page migration
1401  *
1402  * @from:		The list of pages to be migrated.
1403  * @get_new_page:	The function used to allocate free pages to be used
1404  *			as the target of the page migration.
1405  * @put_new_page:	The function used to free target pages if migration
1406  *			fails, or NULL if no special handling is necessary.
1407  * @private:		Private data to be passed on to get_new_page()
1408  * @mode:		The migration mode that specifies the constraints for
1409  *			page migration, if any.
1410  * @reason:		The reason for page migration.
1411  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1412  *			the caller passes a non-NULL pointer.
1413  *
1414  * The function returns after 10 attempts or if no pages are movable any more
1415  * because the list has become empty or no retryable pages exist any more.
1416  * It is caller's responsibility to call putback_movable_pages() to return pages
1417  * to the LRU or free list only if ret != 0.
1418  *
1419  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1420  * an error code. The number of THP splits will be considered as the number of
1421  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1422  */
1423 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424 		free_page_t put_new_page, unsigned long private,
1425 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1426 {
1427 	int retry = 1;
1428 	int thp_retry = 1;
1429 	int nr_failed = 0;
1430 	int nr_failed_pages = 0;
1431 	int nr_retry_pages = 0;
1432 	int nr_succeeded = 0;
1433 	int nr_thp_succeeded = 0;
1434 	int nr_thp_failed = 0;
1435 	int nr_thp_split = 0;
1436 	int pass = 0;
1437 	bool is_thp = false;
1438 	struct page *page;
1439 	struct page *page2;
1440 	int rc, nr_subpages;
1441 	LIST_HEAD(ret_pages);
1442 	LIST_HEAD(thp_split_pages);
1443 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1444 	bool no_subpage_counting = false;
1445 
1446 	trace_mm_migrate_pages_start(mode, reason);
1447 
1448 thp_subpage_migration:
1449 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1450 		retry = 0;
1451 		thp_retry = 0;
1452 		nr_retry_pages = 0;
1453 
1454 		list_for_each_entry_safe(page, page2, from, lru) {
1455 			/*
1456 			 * THP statistics is based on the source huge page.
1457 			 * Capture required information that might get lost
1458 			 * during migration.
1459 			 */
1460 			is_thp = PageTransHuge(page) && !PageHuge(page);
1461 			nr_subpages = compound_nr(page);
1462 			cond_resched();
1463 
1464 			if (PageHuge(page))
1465 				rc = unmap_and_move_huge_page(get_new_page,
1466 						put_new_page, private, page,
1467 						pass > 2, mode, reason,
1468 						&ret_pages);
1469 			else
1470 				rc = unmap_and_move(get_new_page, put_new_page,
1471 						private, page, pass > 2, mode,
1472 						reason, &ret_pages);
1473 			/*
1474 			 * The rules are:
1475 			 *	Success: non hugetlb page will be freed, hugetlb
1476 			 *		 page will be put back
1477 			 *	-EAGAIN: stay on the from list
1478 			 *	-ENOMEM: stay on the from list
1479 			 *	-ENOSYS: stay on the from list
1480 			 *	Other errno: put on ret_pages list then splice to
1481 			 *		     from list
1482 			 */
1483 			switch(rc) {
1484 			/*
1485 			 * THP migration might be unsupported or the
1486 			 * allocation could've failed so we should
1487 			 * retry on the same page with the THP split
1488 			 * to base pages.
1489 			 *
1490 			 * Sub-pages are put in thp_split_pages, and
1491 			 * we will migrate them after the rest of the
1492 			 * list is processed.
1493 			 */
1494 			case -ENOSYS:
1495 				/* THP migration is unsupported */
1496 				if (is_thp) {
1497 					nr_thp_failed++;
1498 					if (!try_split_thp(page, &thp_split_pages)) {
1499 						nr_thp_split++;
1500 						break;
1501 					}
1502 				/* Hugetlb migration is unsupported */
1503 				} else if (!no_subpage_counting) {
1504 					nr_failed++;
1505 				}
1506 
1507 				nr_failed_pages += nr_subpages;
1508 				list_move_tail(&page->lru, &ret_pages);
1509 				break;
1510 			case -ENOMEM:
1511 				/*
1512 				 * When memory is low, don't bother to try to migrate
1513 				 * other pages, just exit.
1514 				 */
1515 				if (is_thp) {
1516 					nr_thp_failed++;
1517 					/* THP NUMA faulting doesn't split THP to retry. */
1518 					if (!nosplit && !try_split_thp(page, &thp_split_pages)) {
1519 						nr_thp_split++;
1520 						break;
1521 					}
1522 				} else if (!no_subpage_counting) {
1523 					nr_failed++;
1524 				}
1525 
1526 				nr_failed_pages += nr_subpages + nr_retry_pages;
1527 				/*
1528 				 * There might be some subpages of fail-to-migrate THPs
1529 				 * left in thp_split_pages list. Move them back to migration
1530 				 * list so that they could be put back to the right list by
1531 				 * the caller otherwise the page refcnt will be leaked.
1532 				 */
1533 				list_splice_init(&thp_split_pages, from);
1534 				/* nr_failed isn't updated for not used */
1535 				nr_thp_failed += thp_retry;
1536 				goto out;
1537 			case -EAGAIN:
1538 				if (is_thp)
1539 					thp_retry++;
1540 				else if (!no_subpage_counting)
1541 					retry++;
1542 				nr_retry_pages += nr_subpages;
1543 				break;
1544 			case MIGRATEPAGE_SUCCESS:
1545 				nr_succeeded += nr_subpages;
1546 				if (is_thp)
1547 					nr_thp_succeeded++;
1548 				break;
1549 			default:
1550 				/*
1551 				 * Permanent failure (-EBUSY, etc.):
1552 				 * unlike -EAGAIN case, the failed page is
1553 				 * removed from migration page list and not
1554 				 * retried in the next outer loop.
1555 				 */
1556 				if (is_thp)
1557 					nr_thp_failed++;
1558 				else if (!no_subpage_counting)
1559 					nr_failed++;
1560 
1561 				nr_failed_pages += nr_subpages;
1562 				break;
1563 			}
1564 		}
1565 	}
1566 	nr_failed += retry;
1567 	nr_thp_failed += thp_retry;
1568 	nr_failed_pages += nr_retry_pages;
1569 	/*
1570 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1571 	 * counting in this round, since all subpages of a THP is counted
1572 	 * as 1 failure in the first round.
1573 	 */
1574 	if (!list_empty(&thp_split_pages)) {
1575 		/*
1576 		 * Move non-migrated pages (after 10 retries) to ret_pages
1577 		 * to avoid migrating them again.
1578 		 */
1579 		list_splice_init(from, &ret_pages);
1580 		list_splice_init(&thp_split_pages, from);
1581 		no_subpage_counting = true;
1582 		retry = 1;
1583 		goto thp_subpage_migration;
1584 	}
1585 
1586 	rc = nr_failed + nr_thp_failed;
1587 out:
1588 	/*
1589 	 * Put the permanent failure page back to migration list, they
1590 	 * will be put back to the right list by the caller.
1591 	 */
1592 	list_splice(&ret_pages, from);
1593 
1594 	/*
1595 	 * Return 0 in case all subpages of fail-to-migrate THPs are
1596 	 * migrated successfully.
1597 	 */
1598 	if (list_empty(from))
1599 		rc = 0;
1600 
1601 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1602 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1603 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1604 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1605 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1606 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1607 			       nr_thp_failed, nr_thp_split, mode, reason);
1608 
1609 	if (ret_succeeded)
1610 		*ret_succeeded = nr_succeeded;
1611 
1612 	return rc;
1613 }
1614 
1615 struct page *alloc_migration_target(struct page *page, unsigned long private)
1616 {
1617 	struct folio *folio = page_folio(page);
1618 	struct migration_target_control *mtc;
1619 	gfp_t gfp_mask;
1620 	unsigned int order = 0;
1621 	struct folio *new_folio = NULL;
1622 	int nid;
1623 	int zidx;
1624 
1625 	mtc = (struct migration_target_control *)private;
1626 	gfp_mask = mtc->gfp_mask;
1627 	nid = mtc->nid;
1628 	if (nid == NUMA_NO_NODE)
1629 		nid = folio_nid(folio);
1630 
1631 	if (folio_test_hugetlb(folio)) {
1632 		struct hstate *h = page_hstate(&folio->page);
1633 
1634 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1635 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1636 	}
1637 
1638 	if (folio_test_large(folio)) {
1639 		/*
1640 		 * clear __GFP_RECLAIM to make the migration callback
1641 		 * consistent with regular THP allocations.
1642 		 */
1643 		gfp_mask &= ~__GFP_RECLAIM;
1644 		gfp_mask |= GFP_TRANSHUGE;
1645 		order = folio_order(folio);
1646 	}
1647 	zidx = zone_idx(folio_zone(folio));
1648 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1649 		gfp_mask |= __GFP_HIGHMEM;
1650 
1651 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1652 
1653 	return &new_folio->page;
1654 }
1655 
1656 #ifdef CONFIG_NUMA
1657 
1658 static int store_status(int __user *status, int start, int value, int nr)
1659 {
1660 	while (nr-- > 0) {
1661 		if (put_user(value, status + start))
1662 			return -EFAULT;
1663 		start++;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static int do_move_pages_to_node(struct mm_struct *mm,
1670 		struct list_head *pagelist, int node)
1671 {
1672 	int err;
1673 	struct migration_target_control mtc = {
1674 		.nid = node,
1675 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1676 	};
1677 
1678 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1679 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1680 	if (err)
1681 		putback_movable_pages(pagelist);
1682 	return err;
1683 }
1684 
1685 /*
1686  * Resolves the given address to a struct page, isolates it from the LRU and
1687  * puts it to the given pagelist.
1688  * Returns:
1689  *     errno - if the page cannot be found/isolated
1690  *     0 - when it doesn't have to be migrated because it is already on the
1691  *         target node
1692  *     1 - when it has been queued
1693  */
1694 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1695 		int node, struct list_head *pagelist, bool migrate_all)
1696 {
1697 	struct vm_area_struct *vma;
1698 	struct page *page;
1699 	int err;
1700 
1701 	mmap_read_lock(mm);
1702 	err = -EFAULT;
1703 	vma = vma_lookup(mm, addr);
1704 	if (!vma || !vma_migratable(vma))
1705 		goto out;
1706 
1707 	/* FOLL_DUMP to ignore special (like zero) pages */
1708 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1709 
1710 	err = PTR_ERR(page);
1711 	if (IS_ERR(page))
1712 		goto out;
1713 
1714 	err = -ENOENT;
1715 	if (!page)
1716 		goto out;
1717 
1718 	if (is_zone_device_page(page))
1719 		goto out_putpage;
1720 
1721 	err = 0;
1722 	if (page_to_nid(page) == node)
1723 		goto out_putpage;
1724 
1725 	err = -EACCES;
1726 	if (page_mapcount(page) > 1 && !migrate_all)
1727 		goto out_putpage;
1728 
1729 	if (PageHuge(page)) {
1730 		if (PageHead(page)) {
1731 			err = isolate_hugetlb(page, pagelist);
1732 			if (!err)
1733 				err = 1;
1734 		}
1735 	} else {
1736 		struct page *head;
1737 
1738 		head = compound_head(page);
1739 		err = isolate_lru_page(head);
1740 		if (err)
1741 			goto out_putpage;
1742 
1743 		err = 1;
1744 		list_add_tail(&head->lru, pagelist);
1745 		mod_node_page_state(page_pgdat(head),
1746 			NR_ISOLATED_ANON + page_is_file_lru(head),
1747 			thp_nr_pages(head));
1748 	}
1749 out_putpage:
1750 	/*
1751 	 * Either remove the duplicate refcount from
1752 	 * isolate_lru_page() or drop the page ref if it was
1753 	 * not isolated.
1754 	 */
1755 	put_page(page);
1756 out:
1757 	mmap_read_unlock(mm);
1758 	return err;
1759 }
1760 
1761 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1762 		struct list_head *pagelist, int __user *status,
1763 		int start, int i, unsigned long nr_pages)
1764 {
1765 	int err;
1766 
1767 	if (list_empty(pagelist))
1768 		return 0;
1769 
1770 	err = do_move_pages_to_node(mm, pagelist, node);
1771 	if (err) {
1772 		/*
1773 		 * Positive err means the number of failed
1774 		 * pages to migrate.  Since we are going to
1775 		 * abort and return the number of non-migrated
1776 		 * pages, so need to include the rest of the
1777 		 * nr_pages that have not been attempted as
1778 		 * well.
1779 		 */
1780 		if (err > 0)
1781 			err += nr_pages - i;
1782 		return err;
1783 	}
1784 	return store_status(status, start, node, i - start);
1785 }
1786 
1787 /*
1788  * Migrate an array of page address onto an array of nodes and fill
1789  * the corresponding array of status.
1790  */
1791 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1792 			 unsigned long nr_pages,
1793 			 const void __user * __user *pages,
1794 			 const int __user *nodes,
1795 			 int __user *status, int flags)
1796 {
1797 	int current_node = NUMA_NO_NODE;
1798 	LIST_HEAD(pagelist);
1799 	int start, i;
1800 	int err = 0, err1;
1801 
1802 	lru_cache_disable();
1803 
1804 	for (i = start = 0; i < nr_pages; i++) {
1805 		const void __user *p;
1806 		unsigned long addr;
1807 		int node;
1808 
1809 		err = -EFAULT;
1810 		if (get_user(p, pages + i))
1811 			goto out_flush;
1812 		if (get_user(node, nodes + i))
1813 			goto out_flush;
1814 		addr = (unsigned long)untagged_addr(p);
1815 
1816 		err = -ENODEV;
1817 		if (node < 0 || node >= MAX_NUMNODES)
1818 			goto out_flush;
1819 		if (!node_state(node, N_MEMORY))
1820 			goto out_flush;
1821 
1822 		err = -EACCES;
1823 		if (!node_isset(node, task_nodes))
1824 			goto out_flush;
1825 
1826 		if (current_node == NUMA_NO_NODE) {
1827 			current_node = node;
1828 			start = i;
1829 		} else if (node != current_node) {
1830 			err = move_pages_and_store_status(mm, current_node,
1831 					&pagelist, status, start, i, nr_pages);
1832 			if (err)
1833 				goto out;
1834 			start = i;
1835 			current_node = node;
1836 		}
1837 
1838 		/*
1839 		 * Errors in the page lookup or isolation are not fatal and we simply
1840 		 * report them via status
1841 		 */
1842 		err = add_page_for_migration(mm, addr, current_node,
1843 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1844 
1845 		if (err > 0) {
1846 			/* The page is successfully queued for migration */
1847 			continue;
1848 		}
1849 
1850 		/*
1851 		 * The move_pages() man page does not have an -EEXIST choice, so
1852 		 * use -EFAULT instead.
1853 		 */
1854 		if (err == -EEXIST)
1855 			err = -EFAULT;
1856 
1857 		/*
1858 		 * If the page is already on the target node (!err), store the
1859 		 * node, otherwise, store the err.
1860 		 */
1861 		err = store_status(status, i, err ? : current_node, 1);
1862 		if (err)
1863 			goto out_flush;
1864 
1865 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1866 				status, start, i, nr_pages);
1867 		if (err) {
1868 			/* We have accounted for page i */
1869 			if (err > 0)
1870 				err--;
1871 			goto out;
1872 		}
1873 		current_node = NUMA_NO_NODE;
1874 	}
1875 out_flush:
1876 	/* Make sure we do not overwrite the existing error */
1877 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1878 				status, start, i, nr_pages);
1879 	if (err >= 0)
1880 		err = err1;
1881 out:
1882 	lru_cache_enable();
1883 	return err;
1884 }
1885 
1886 /*
1887  * Determine the nodes of an array of pages and store it in an array of status.
1888  */
1889 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1890 				const void __user **pages, int *status)
1891 {
1892 	unsigned long i;
1893 
1894 	mmap_read_lock(mm);
1895 
1896 	for (i = 0; i < nr_pages; i++) {
1897 		unsigned long addr = (unsigned long)(*pages);
1898 		unsigned int foll_flags = FOLL_DUMP;
1899 		struct vm_area_struct *vma;
1900 		struct page *page;
1901 		int err = -EFAULT;
1902 
1903 		vma = vma_lookup(mm, addr);
1904 		if (!vma)
1905 			goto set_status;
1906 
1907 		/* Not all huge page follow APIs support 'FOLL_GET' */
1908 		if (!is_vm_hugetlb_page(vma))
1909 			foll_flags |= FOLL_GET;
1910 
1911 		/* FOLL_DUMP to ignore special (like zero) pages */
1912 		page = follow_page(vma, addr, foll_flags);
1913 
1914 		err = PTR_ERR(page);
1915 		if (IS_ERR(page))
1916 			goto set_status;
1917 
1918 		err = -ENOENT;
1919 		if (!page)
1920 			goto set_status;
1921 
1922 		if (!is_zone_device_page(page))
1923 			err = page_to_nid(page);
1924 
1925 		if (foll_flags & FOLL_GET)
1926 			put_page(page);
1927 set_status:
1928 		*status = err;
1929 
1930 		pages++;
1931 		status++;
1932 	}
1933 
1934 	mmap_read_unlock(mm);
1935 }
1936 
1937 static int get_compat_pages_array(const void __user *chunk_pages[],
1938 				  const void __user * __user *pages,
1939 				  unsigned long chunk_nr)
1940 {
1941 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1942 	compat_uptr_t p;
1943 	int i;
1944 
1945 	for (i = 0; i < chunk_nr; i++) {
1946 		if (get_user(p, pages32 + i))
1947 			return -EFAULT;
1948 		chunk_pages[i] = compat_ptr(p);
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 /*
1955  * Determine the nodes of a user array of pages and store it in
1956  * a user array of status.
1957  */
1958 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1959 			 const void __user * __user *pages,
1960 			 int __user *status)
1961 {
1962 #define DO_PAGES_STAT_CHUNK_NR 16UL
1963 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1964 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1965 
1966 	while (nr_pages) {
1967 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1968 
1969 		if (in_compat_syscall()) {
1970 			if (get_compat_pages_array(chunk_pages, pages,
1971 						   chunk_nr))
1972 				break;
1973 		} else {
1974 			if (copy_from_user(chunk_pages, pages,
1975 				      chunk_nr * sizeof(*chunk_pages)))
1976 				break;
1977 		}
1978 
1979 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1980 
1981 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1982 			break;
1983 
1984 		pages += chunk_nr;
1985 		status += chunk_nr;
1986 		nr_pages -= chunk_nr;
1987 	}
1988 	return nr_pages ? -EFAULT : 0;
1989 }
1990 
1991 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1992 {
1993 	struct task_struct *task;
1994 	struct mm_struct *mm;
1995 
1996 	/*
1997 	 * There is no need to check if current process has the right to modify
1998 	 * the specified process when they are same.
1999 	 */
2000 	if (!pid) {
2001 		mmget(current->mm);
2002 		*mem_nodes = cpuset_mems_allowed(current);
2003 		return current->mm;
2004 	}
2005 
2006 	/* Find the mm_struct */
2007 	rcu_read_lock();
2008 	task = find_task_by_vpid(pid);
2009 	if (!task) {
2010 		rcu_read_unlock();
2011 		return ERR_PTR(-ESRCH);
2012 	}
2013 	get_task_struct(task);
2014 
2015 	/*
2016 	 * Check if this process has the right to modify the specified
2017 	 * process. Use the regular "ptrace_may_access()" checks.
2018 	 */
2019 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2020 		rcu_read_unlock();
2021 		mm = ERR_PTR(-EPERM);
2022 		goto out;
2023 	}
2024 	rcu_read_unlock();
2025 
2026 	mm = ERR_PTR(security_task_movememory(task));
2027 	if (IS_ERR(mm))
2028 		goto out;
2029 	*mem_nodes = cpuset_mems_allowed(task);
2030 	mm = get_task_mm(task);
2031 out:
2032 	put_task_struct(task);
2033 	if (!mm)
2034 		mm = ERR_PTR(-EINVAL);
2035 	return mm;
2036 }
2037 
2038 /*
2039  * Move a list of pages in the address space of the currently executing
2040  * process.
2041  */
2042 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2043 			     const void __user * __user *pages,
2044 			     const int __user *nodes,
2045 			     int __user *status, int flags)
2046 {
2047 	struct mm_struct *mm;
2048 	int err;
2049 	nodemask_t task_nodes;
2050 
2051 	/* Check flags */
2052 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2053 		return -EINVAL;
2054 
2055 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2056 		return -EPERM;
2057 
2058 	mm = find_mm_struct(pid, &task_nodes);
2059 	if (IS_ERR(mm))
2060 		return PTR_ERR(mm);
2061 
2062 	if (nodes)
2063 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2064 				    nodes, status, flags);
2065 	else
2066 		err = do_pages_stat(mm, nr_pages, pages, status);
2067 
2068 	mmput(mm);
2069 	return err;
2070 }
2071 
2072 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2073 		const void __user * __user *, pages,
2074 		const int __user *, nodes,
2075 		int __user *, status, int, flags)
2076 {
2077 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2078 }
2079 
2080 #ifdef CONFIG_NUMA_BALANCING
2081 /*
2082  * Returns true if this is a safe migration target node for misplaced NUMA
2083  * pages. Currently it only checks the watermarks which is crude.
2084  */
2085 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2086 				   unsigned long nr_migrate_pages)
2087 {
2088 	int z;
2089 
2090 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2091 		struct zone *zone = pgdat->node_zones + z;
2092 
2093 		if (!managed_zone(zone))
2094 			continue;
2095 
2096 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2097 		if (!zone_watermark_ok(zone, 0,
2098 				       high_wmark_pages(zone) +
2099 				       nr_migrate_pages,
2100 				       ZONE_MOVABLE, 0))
2101 			continue;
2102 		return true;
2103 	}
2104 	return false;
2105 }
2106 
2107 static struct page *alloc_misplaced_dst_page(struct page *page,
2108 					   unsigned long data)
2109 {
2110 	int nid = (int) data;
2111 	int order = compound_order(page);
2112 	gfp_t gfp = __GFP_THISNODE;
2113 	struct folio *new;
2114 
2115 	if (order > 0)
2116 		gfp |= GFP_TRANSHUGE_LIGHT;
2117 	else {
2118 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2119 			__GFP_NOWARN;
2120 		gfp &= ~__GFP_RECLAIM;
2121 	}
2122 	new = __folio_alloc_node(gfp, order, nid);
2123 
2124 	return &new->page;
2125 }
2126 
2127 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2128 {
2129 	int nr_pages = thp_nr_pages(page);
2130 	int order = compound_order(page);
2131 
2132 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2133 
2134 	/* Do not migrate THP mapped by multiple processes */
2135 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2136 		return 0;
2137 
2138 	/* Avoid migrating to a node that is nearly full */
2139 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2140 		int z;
2141 
2142 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2143 			return 0;
2144 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2145 			if (managed_zone(pgdat->node_zones + z))
2146 				break;
2147 		}
2148 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2149 		return 0;
2150 	}
2151 
2152 	if (isolate_lru_page(page))
2153 		return 0;
2154 
2155 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2156 			    nr_pages);
2157 
2158 	/*
2159 	 * Isolating the page has taken another reference, so the
2160 	 * caller's reference can be safely dropped without the page
2161 	 * disappearing underneath us during migration.
2162 	 */
2163 	put_page(page);
2164 	return 1;
2165 }
2166 
2167 /*
2168  * Attempt to migrate a misplaced page to the specified destination
2169  * node. Caller is expected to have an elevated reference count on
2170  * the page that will be dropped by this function before returning.
2171  */
2172 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2173 			   int node)
2174 {
2175 	pg_data_t *pgdat = NODE_DATA(node);
2176 	int isolated;
2177 	int nr_remaining;
2178 	unsigned int nr_succeeded;
2179 	LIST_HEAD(migratepages);
2180 	int nr_pages = thp_nr_pages(page);
2181 
2182 	/*
2183 	 * Don't migrate file pages that are mapped in multiple processes
2184 	 * with execute permissions as they are probably shared libraries.
2185 	 */
2186 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2187 	    (vma->vm_flags & VM_EXEC))
2188 		goto out;
2189 
2190 	/*
2191 	 * Also do not migrate dirty pages as not all filesystems can move
2192 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2193 	 */
2194 	if (page_is_file_lru(page) && PageDirty(page))
2195 		goto out;
2196 
2197 	isolated = numamigrate_isolate_page(pgdat, page);
2198 	if (!isolated)
2199 		goto out;
2200 
2201 	list_add(&page->lru, &migratepages);
2202 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2203 				     NULL, node, MIGRATE_ASYNC,
2204 				     MR_NUMA_MISPLACED, &nr_succeeded);
2205 	if (nr_remaining) {
2206 		if (!list_empty(&migratepages)) {
2207 			list_del(&page->lru);
2208 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2209 					page_is_file_lru(page), -nr_pages);
2210 			putback_lru_page(page);
2211 		}
2212 		isolated = 0;
2213 	}
2214 	if (nr_succeeded) {
2215 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2216 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2217 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2218 					    nr_succeeded);
2219 	}
2220 	BUG_ON(!list_empty(&migratepages));
2221 	return isolated;
2222 
2223 out:
2224 	put_page(page);
2225 	return 0;
2226 }
2227 #endif /* CONFIG_NUMA_BALANCING */
2228 #endif /* CONFIG_NUMA */
2229