xref: /openbmc/linux/mm/migrate.c (revision 2c6467d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		if (PageTransHuge(page) && PageMlocked(page))
279 			clear_page_mlock(page);
280 
281 		/* No need to invalidate - it was non-present before */
282 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 	}
284 
285 	return true;
286 }
287 
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 	struct rmap_walk_control rwc = {
295 		.rmap_one = remove_migration_pte,
296 		.arg = old,
297 	};
298 
299 	if (locked)
300 		rmap_walk_locked(new, &rwc);
301 	else
302 		rmap_walk(new, &rwc);
303 }
304 
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 				spinlock_t *ptl)
312 {
313 	pte_t pte;
314 	swp_entry_t entry;
315 	struct page *page;
316 
317 	spin_lock(ptl);
318 	pte = *ptep;
319 	if (!is_swap_pte(pte))
320 		goto out;
321 
322 	entry = pte_to_swp_entry(pte);
323 	if (!is_migration_entry(entry))
324 		goto out;
325 
326 	page = migration_entry_to_page(entry);
327 
328 	/*
329 	 * Once page cache replacement of page migration started, page_count
330 	 * is zero; but we must not call put_and_wait_on_page_locked() without
331 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332 	 */
333 	if (!get_page_unless_zero(page))
334 		goto out;
335 	pte_unmap_unlock(ptep, ptl);
336 	put_and_wait_on_page_locked(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	put_and_wait_on_page_locked(page);
371 	return;
372 unlock:
373 	spin_unlock(ptl);
374 }
375 #endif
376 
377 static int expected_page_refs(struct page *page)
378 {
379 	int expected_count = 1;
380 
381 	/*
382 	 * Device public or private pages have an extra refcount as they are
383 	 * ZONE_DEVICE pages.
384 	 */
385 	expected_count += is_device_private_page(page);
386 	expected_count += is_device_public_page(page);
387 	if (page_mapping(page))
388 		expected_count += hpage_nr_pages(page) + page_has_private(page);
389 
390 	return expected_count;
391 }
392 
393 /*
394  * Replace the page in the mapping.
395  *
396  * The number of remaining references must be:
397  * 1 for anonymous pages without a mapping
398  * 2 for pages with a mapping
399  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
400  */
401 int migrate_page_move_mapping(struct address_space *mapping,
402 		struct page *newpage, struct page *page, enum migrate_mode mode,
403 		int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage + i);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498 		}
499 		if (dirty && mapping_cap_account_dirty(mapping)) {
500 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504 		}
505 	}
506 	local_irq_enable();
507 
508 	return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511 
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 				   struct page *newpage, struct page *page)
518 {
519 	XA_STATE(xas, &mapping->i_pages, page_index(page));
520 	int expected_count;
521 
522 	xas_lock_irq(&xas);
523 	expected_count = 2 + page_has_private(page);
524 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	if (!page_ref_freeze(page, expected_count)) {
530 		xas_unlock_irq(&xas);
531 		return -EAGAIN;
532 	}
533 
534 	newpage->index = page->index;
535 	newpage->mapping = page->mapping;
536 
537 	get_page(newpage);
538 
539 	xas_store(&xas, newpage);
540 
541 	page_ref_unfreeze(page, expected_count - 1);
542 
543 	xas_unlock_irq(&xas);
544 
545 	return MIGRATEPAGE_SUCCESS;
546 }
547 
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554 				int nr_pages)
555 {
556 	int i;
557 	struct page *dst_base = dst;
558 	struct page *src_base = src;
559 
560 	for (i = 0; i < nr_pages; ) {
561 		cond_resched();
562 		copy_highpage(dst, src);
563 
564 		i++;
565 		dst = mem_map_next(dst, dst_base, i);
566 		src = mem_map_next(src, src_base, i);
567 	}
568 }
569 
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572 	int i;
573 	int nr_pages;
574 
575 	if (PageHuge(src)) {
576 		/* hugetlbfs page */
577 		struct hstate *h = page_hstate(src);
578 		nr_pages = pages_per_huge_page(h);
579 
580 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 			__copy_gigantic_page(dst, src, nr_pages);
582 			return;
583 		}
584 	} else {
585 		/* thp page */
586 		BUG_ON(!PageTransHuge(src));
587 		nr_pages = hpage_nr_pages(src);
588 	}
589 
590 	for (i = 0; i < nr_pages; i++) {
591 		cond_resched();
592 		copy_highpage(dst + i, src + i);
593 	}
594 }
595 
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601 	int cpupid;
602 
603 	if (PageError(page))
604 		SetPageError(newpage);
605 	if (PageReferenced(page))
606 		SetPageReferenced(newpage);
607 	if (PageUptodate(page))
608 		SetPageUptodate(newpage);
609 	if (TestClearPageActive(page)) {
610 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 		SetPageActive(newpage);
612 	} else if (TestClearPageUnevictable(page))
613 		SetPageUnevictable(newpage);
614 	if (PageWorkingset(page))
615 		SetPageWorkingset(newpage);
616 	if (PageChecked(page))
617 		SetPageChecked(newpage);
618 	if (PageMappedToDisk(page))
619 		SetPageMappedToDisk(newpage);
620 
621 	/* Move dirty on pages not done by migrate_page_move_mapping() */
622 	if (PageDirty(page))
623 		SetPageDirty(newpage);
624 
625 	if (page_is_young(page))
626 		set_page_young(newpage);
627 	if (page_is_idle(page))
628 		set_page_idle(newpage);
629 
630 	/*
631 	 * Copy NUMA information to the new page, to prevent over-eager
632 	 * future migrations of this same page.
633 	 */
634 	cpupid = page_cpupid_xchg_last(page, -1);
635 	page_cpupid_xchg_last(newpage, cpupid);
636 
637 	ksm_migrate_page(newpage, page);
638 	/*
639 	 * Please do not reorder this without considering how mm/ksm.c's
640 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 	 */
642 	if (PageSwapCache(page))
643 		ClearPageSwapCache(page);
644 	ClearPagePrivate(page);
645 	set_page_private(page, 0);
646 
647 	/*
648 	 * If any waiters have accumulated on the new page then
649 	 * wake them up.
650 	 */
651 	if (PageWriteback(newpage))
652 		end_page_writeback(newpage);
653 
654 	copy_page_owner(page, newpage);
655 
656 	mem_cgroup_migrate(page, newpage);
657 }
658 EXPORT_SYMBOL(migrate_page_states);
659 
660 void migrate_page_copy(struct page *newpage, struct page *page)
661 {
662 	if (PageHuge(page) || PageTransHuge(page))
663 		copy_huge_page(newpage, page);
664 	else
665 		copy_highpage(newpage, page);
666 
667 	migrate_page_states(newpage, page);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670 
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674 
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
681 int migrate_page(struct address_space *mapping,
682 		struct page *newpage, struct page *page,
683 		enum migrate_mode mode)
684 {
685 	int rc;
686 
687 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
688 
689 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
690 
691 	if (rc != MIGRATEPAGE_SUCCESS)
692 		return rc;
693 
694 	if (mode != MIGRATE_SYNC_NO_COPY)
695 		migrate_page_copy(newpage, page);
696 	else
697 		migrate_page_states(newpage, page);
698 	return MIGRATEPAGE_SUCCESS;
699 }
700 EXPORT_SYMBOL(migrate_page);
701 
702 #ifdef CONFIG_BLOCK
703 /* Returns true if all buffers are successfully locked */
704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 							enum migrate_mode mode)
706 {
707 	struct buffer_head *bh = head;
708 
709 	/* Simple case, sync compaction */
710 	if (mode != MIGRATE_ASYNC) {
711 		do {
712 			get_bh(bh);
713 			lock_buffer(bh);
714 			bh = bh->b_this_page;
715 
716 		} while (bh != head);
717 
718 		return true;
719 	}
720 
721 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
722 	do {
723 		get_bh(bh);
724 		if (!trylock_buffer(bh)) {
725 			/*
726 			 * We failed to lock the buffer and cannot stall in
727 			 * async migration. Release the taken locks
728 			 */
729 			struct buffer_head *failed_bh = bh;
730 			put_bh(failed_bh);
731 			bh = head;
732 			while (bh != failed_bh) {
733 				unlock_buffer(bh);
734 				put_bh(bh);
735 				bh = bh->b_this_page;
736 			}
737 			return false;
738 		}
739 
740 		bh = bh->b_this_page;
741 	} while (bh != head);
742 	return true;
743 }
744 
745 static int __buffer_migrate_page(struct address_space *mapping,
746 		struct page *newpage, struct page *page, enum migrate_mode mode,
747 		bool check_refs)
748 {
749 	struct buffer_head *bh, *head;
750 	int rc;
751 	int expected_count;
752 
753 	if (!page_has_buffers(page))
754 		return migrate_page(mapping, newpage, page, mode);
755 
756 	/* Check whether page does not have extra refs before we do more work */
757 	expected_count = expected_page_refs(page);
758 	if (page_count(page) != expected_count)
759 		return -EAGAIN;
760 
761 	head = page_buffers(page);
762 	if (!buffer_migrate_lock_buffers(head, mode))
763 		return -EAGAIN;
764 
765 	if (check_refs) {
766 		bool busy;
767 		bool invalidated = false;
768 
769 recheck_buffers:
770 		busy = false;
771 		spin_lock(&mapping->private_lock);
772 		bh = head;
773 		do {
774 			if (atomic_read(&bh->b_count)) {
775 				busy = true;
776 				break;
777 			}
778 			bh = bh->b_this_page;
779 		} while (bh != head);
780 		spin_unlock(&mapping->private_lock);
781 		if (busy) {
782 			if (invalidated) {
783 				rc = -EAGAIN;
784 				goto unlock_buffers;
785 			}
786 			invalidate_bh_lrus();
787 			invalidated = true;
788 			goto recheck_buffers;
789 		}
790 	}
791 
792 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
793 	if (rc != MIGRATEPAGE_SUCCESS)
794 		goto unlock_buffers;
795 
796 	ClearPagePrivate(page);
797 	set_page_private(newpage, page_private(page));
798 	set_page_private(page, 0);
799 	put_page(page);
800 	get_page(newpage);
801 
802 	bh = head;
803 	do {
804 		set_bh_page(bh, newpage, bh_offset(bh));
805 		bh = bh->b_this_page;
806 
807 	} while (bh != head);
808 
809 	SetPagePrivate(newpage);
810 
811 	if (mode != MIGRATE_SYNC_NO_COPY)
812 		migrate_page_copy(newpage, page);
813 	else
814 		migrate_page_states(newpage, page);
815 
816 	rc = MIGRATEPAGE_SUCCESS;
817 unlock_buffers:
818 	bh = head;
819 	do {
820 		unlock_buffer(bh);
821 		put_bh(bh);
822 		bh = bh->b_this_page;
823 
824 	} while (bh != head);
825 
826 	return rc;
827 }
828 
829 /*
830  * Migration function for pages with buffers. This function can only be used
831  * if the underlying filesystem guarantees that no other references to "page"
832  * exist. For example attached buffer heads are accessed only under page lock.
833  */
834 int buffer_migrate_page(struct address_space *mapping,
835 		struct page *newpage, struct page *page, enum migrate_mode mode)
836 {
837 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
838 }
839 EXPORT_SYMBOL(buffer_migrate_page);
840 
841 /*
842  * Same as above except that this variant is more careful and checks that there
843  * are also no buffer head references. This function is the right one for
844  * mappings where buffer heads are directly looked up and referenced (such as
845  * block device mappings).
846  */
847 int buffer_migrate_page_norefs(struct address_space *mapping,
848 		struct page *newpage, struct page *page, enum migrate_mode mode)
849 {
850 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
851 }
852 #endif
853 
854 /*
855  * Writeback a page to clean the dirty state
856  */
857 static int writeout(struct address_space *mapping, struct page *page)
858 {
859 	struct writeback_control wbc = {
860 		.sync_mode = WB_SYNC_NONE,
861 		.nr_to_write = 1,
862 		.range_start = 0,
863 		.range_end = LLONG_MAX,
864 		.for_reclaim = 1
865 	};
866 	int rc;
867 
868 	if (!mapping->a_ops->writepage)
869 		/* No write method for the address space */
870 		return -EINVAL;
871 
872 	if (!clear_page_dirty_for_io(page))
873 		/* Someone else already triggered a write */
874 		return -EAGAIN;
875 
876 	/*
877 	 * A dirty page may imply that the underlying filesystem has
878 	 * the page on some queue. So the page must be clean for
879 	 * migration. Writeout may mean we loose the lock and the
880 	 * page state is no longer what we checked for earlier.
881 	 * At this point we know that the migration attempt cannot
882 	 * be successful.
883 	 */
884 	remove_migration_ptes(page, page, false);
885 
886 	rc = mapping->a_ops->writepage(page, &wbc);
887 
888 	if (rc != AOP_WRITEPAGE_ACTIVATE)
889 		/* unlocked. Relock */
890 		lock_page(page);
891 
892 	return (rc < 0) ? -EIO : -EAGAIN;
893 }
894 
895 /*
896  * Default handling if a filesystem does not provide a migration function.
897  */
898 static int fallback_migrate_page(struct address_space *mapping,
899 	struct page *newpage, struct page *page, enum migrate_mode mode)
900 {
901 	if (PageDirty(page)) {
902 		/* Only writeback pages in full synchronous migration */
903 		switch (mode) {
904 		case MIGRATE_SYNC:
905 		case MIGRATE_SYNC_NO_COPY:
906 			break;
907 		default:
908 			return -EBUSY;
909 		}
910 		return writeout(mapping, page);
911 	}
912 
913 	/*
914 	 * Buffers may be managed in a filesystem specific way.
915 	 * We must have no buffers or drop them.
916 	 */
917 	if (page_has_private(page) &&
918 	    !try_to_release_page(page, GFP_KERNEL))
919 		return -EAGAIN;
920 
921 	return migrate_page(mapping, newpage, page, mode);
922 }
923 
924 /*
925  * Move a page to a newly allocated page
926  * The page is locked and all ptes have been successfully removed.
927  *
928  * The new page will have replaced the old page if this function
929  * is successful.
930  *
931  * Return value:
932  *   < 0 - error code
933  *  MIGRATEPAGE_SUCCESS - success
934  */
935 static int move_to_new_page(struct page *newpage, struct page *page,
936 				enum migrate_mode mode)
937 {
938 	struct address_space *mapping;
939 	int rc = -EAGAIN;
940 	bool is_lru = !__PageMovable(page);
941 
942 	VM_BUG_ON_PAGE(!PageLocked(page), page);
943 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
944 
945 	mapping = page_mapping(page);
946 
947 	if (likely(is_lru)) {
948 		if (!mapping)
949 			rc = migrate_page(mapping, newpage, page, mode);
950 		else if (mapping->a_ops->migratepage)
951 			/*
952 			 * Most pages have a mapping and most filesystems
953 			 * provide a migratepage callback. Anonymous pages
954 			 * are part of swap space which also has its own
955 			 * migratepage callback. This is the most common path
956 			 * for page migration.
957 			 */
958 			rc = mapping->a_ops->migratepage(mapping, newpage,
959 							page, mode);
960 		else
961 			rc = fallback_migrate_page(mapping, newpage,
962 							page, mode);
963 	} else {
964 		/*
965 		 * In case of non-lru page, it could be released after
966 		 * isolation step. In that case, we shouldn't try migration.
967 		 */
968 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
969 		if (!PageMovable(page)) {
970 			rc = MIGRATEPAGE_SUCCESS;
971 			__ClearPageIsolated(page);
972 			goto out;
973 		}
974 
975 		rc = mapping->a_ops->migratepage(mapping, newpage,
976 						page, mode);
977 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
978 			!PageIsolated(page));
979 	}
980 
981 	/*
982 	 * When successful, old pagecache page->mapping must be cleared before
983 	 * page is freed; but stats require that PageAnon be left as PageAnon.
984 	 */
985 	if (rc == MIGRATEPAGE_SUCCESS) {
986 		if (__PageMovable(page)) {
987 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
988 
989 			/*
990 			 * We clear PG_movable under page_lock so any compactor
991 			 * cannot try to migrate this page.
992 			 */
993 			__ClearPageIsolated(page);
994 		}
995 
996 		/*
997 		 * Anonymous and movable page->mapping will be cleard by
998 		 * free_pages_prepare so don't reset it here for keeping
999 		 * the type to work PageAnon, for example.
1000 		 */
1001 		if (!PageMappingFlags(page))
1002 			page->mapping = NULL;
1003 	}
1004 out:
1005 	return rc;
1006 }
1007 
1008 static int __unmap_and_move(struct page *page, struct page *newpage,
1009 				int force, enum migrate_mode mode)
1010 {
1011 	int rc = -EAGAIN;
1012 	int page_was_mapped = 0;
1013 	struct anon_vma *anon_vma = NULL;
1014 	bool is_lru = !__PageMovable(page);
1015 
1016 	if (!trylock_page(page)) {
1017 		if (!force || mode == MIGRATE_ASYNC)
1018 			goto out;
1019 
1020 		/*
1021 		 * It's not safe for direct compaction to call lock_page.
1022 		 * For example, during page readahead pages are added locked
1023 		 * to the LRU. Later, when the IO completes the pages are
1024 		 * marked uptodate and unlocked. However, the queueing
1025 		 * could be merging multiple pages for one bio (e.g.
1026 		 * mpage_readpages). If an allocation happens for the
1027 		 * second or third page, the process can end up locking
1028 		 * the same page twice and deadlocking. Rather than
1029 		 * trying to be clever about what pages can be locked,
1030 		 * avoid the use of lock_page for direct compaction
1031 		 * altogether.
1032 		 */
1033 		if (current->flags & PF_MEMALLOC)
1034 			goto out;
1035 
1036 		lock_page(page);
1037 	}
1038 
1039 	if (PageWriteback(page)) {
1040 		/*
1041 		 * Only in the case of a full synchronous migration is it
1042 		 * necessary to wait for PageWriteback. In the async case,
1043 		 * the retry loop is too short and in the sync-light case,
1044 		 * the overhead of stalling is too much
1045 		 */
1046 		switch (mode) {
1047 		case MIGRATE_SYNC:
1048 		case MIGRATE_SYNC_NO_COPY:
1049 			break;
1050 		default:
1051 			rc = -EBUSY;
1052 			goto out_unlock;
1053 		}
1054 		if (!force)
1055 			goto out_unlock;
1056 		wait_on_page_writeback(page);
1057 	}
1058 
1059 	/*
1060 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 	 * we cannot notice that anon_vma is freed while we migrates a page.
1062 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1063 	 * of migration. File cache pages are no problem because of page_lock()
1064 	 * File Caches may use write_page() or lock_page() in migration, then,
1065 	 * just care Anon page here.
1066 	 *
1067 	 * Only page_get_anon_vma() understands the subtleties of
1068 	 * getting a hold on an anon_vma from outside one of its mms.
1069 	 * But if we cannot get anon_vma, then we won't need it anyway,
1070 	 * because that implies that the anon page is no longer mapped
1071 	 * (and cannot be remapped so long as we hold the page lock).
1072 	 */
1073 	if (PageAnon(page) && !PageKsm(page))
1074 		anon_vma = page_get_anon_vma(page);
1075 
1076 	/*
1077 	 * Block others from accessing the new page when we get around to
1078 	 * establishing additional references. We are usually the only one
1079 	 * holding a reference to newpage at this point. We used to have a BUG
1080 	 * here if trylock_page(newpage) fails, but would like to allow for
1081 	 * cases where there might be a race with the previous use of newpage.
1082 	 * This is much like races on refcount of oldpage: just don't BUG().
1083 	 */
1084 	if (unlikely(!trylock_page(newpage)))
1085 		goto out_unlock;
1086 
1087 	if (unlikely(!is_lru)) {
1088 		rc = move_to_new_page(newpage, page, mode);
1089 		goto out_unlock_both;
1090 	}
1091 
1092 	/*
1093 	 * Corner case handling:
1094 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 	 * and treated as swapcache but it has no rmap yet.
1096 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 	 * trigger a BUG.  So handle it here.
1098 	 * 2. An orphaned page (see truncate_complete_page) might have
1099 	 * fs-private metadata. The page can be picked up due to memory
1100 	 * offlining.  Everywhere else except page reclaim, the page is
1101 	 * invisible to the vm, so the page can not be migrated.  So try to
1102 	 * free the metadata, so the page can be freed.
1103 	 */
1104 	if (!page->mapping) {
1105 		VM_BUG_ON_PAGE(PageAnon(page), page);
1106 		if (page_has_private(page)) {
1107 			try_to_free_buffers(page);
1108 			goto out_unlock_both;
1109 		}
1110 	} else if (page_mapped(page)) {
1111 		/* Establish migration ptes */
1112 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113 				page);
1114 		try_to_unmap(page,
1115 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1116 		page_was_mapped = 1;
1117 	}
1118 
1119 	if (!page_mapped(page))
1120 		rc = move_to_new_page(newpage, page, mode);
1121 
1122 	if (page_was_mapped)
1123 		remove_migration_ptes(page,
1124 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1125 
1126 out_unlock_both:
1127 	unlock_page(newpage);
1128 out_unlock:
1129 	/* Drop an anon_vma reference if we took one */
1130 	if (anon_vma)
1131 		put_anon_vma(anon_vma);
1132 	unlock_page(page);
1133 out:
1134 	/*
1135 	 * If migration is successful, decrease refcount of the newpage
1136 	 * which will not free the page because new page owner increased
1137 	 * refcounter. As well, if it is LRU page, add the page to LRU
1138 	 * list in here.
1139 	 */
1140 	if (rc == MIGRATEPAGE_SUCCESS) {
1141 		if (unlikely(__PageMovable(newpage)))
1142 			put_page(newpage);
1143 		else
1144 			putback_lru_page(newpage);
1145 	}
1146 
1147 	return rc;
1148 }
1149 
1150 /*
1151  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1152  * around it.
1153  */
1154 #if defined(CONFIG_ARM) && \
1155 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1157 #else
1158 #define ICE_noinline
1159 #endif
1160 
1161 /*
1162  * Obtain the lock on page, remove all ptes and migrate the page
1163  * to the newly allocated page in newpage.
1164  */
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 				   free_page_t put_new_page,
1167 				   unsigned long private, struct page *page,
1168 				   int force, enum migrate_mode mode,
1169 				   enum migrate_reason reason)
1170 {
1171 	int rc = MIGRATEPAGE_SUCCESS;
1172 	struct page *newpage;
1173 
1174 	if (!thp_migration_supported() && PageTransHuge(page))
1175 		return -ENOMEM;
1176 
1177 	newpage = get_new_page(page, private);
1178 	if (!newpage)
1179 		return -ENOMEM;
1180 
1181 	if (page_count(page) == 1) {
1182 		/* page was freed from under us. So we are done. */
1183 		ClearPageActive(page);
1184 		ClearPageUnevictable(page);
1185 		if (unlikely(__PageMovable(page))) {
1186 			lock_page(page);
1187 			if (!PageMovable(page))
1188 				__ClearPageIsolated(page);
1189 			unlock_page(page);
1190 		}
1191 		if (put_new_page)
1192 			put_new_page(newpage, private);
1193 		else
1194 			put_page(newpage);
1195 		goto out;
1196 	}
1197 
1198 	rc = __unmap_and_move(page, newpage, force, mode);
1199 	if (rc == MIGRATEPAGE_SUCCESS)
1200 		set_page_owner_migrate_reason(newpage, reason);
1201 
1202 out:
1203 	if (rc != -EAGAIN) {
1204 		/*
1205 		 * A page that has been migrated has all references
1206 		 * removed and will be freed. A page that has not been
1207 		 * migrated will have kepts its references and be
1208 		 * restored.
1209 		 */
1210 		list_del(&page->lru);
1211 
1212 		/*
1213 		 * Compaction can migrate also non-LRU pages which are
1214 		 * not accounted to NR_ISOLATED_*. They can be recognized
1215 		 * as __PageMovable
1216 		 */
1217 		if (likely(!__PageMovable(page)))
1218 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1219 					page_is_file_cache(page), -hpage_nr_pages(page));
1220 	}
1221 
1222 	/*
1223 	 * If migration is successful, releases reference grabbed during
1224 	 * isolation. Otherwise, restore the page to right list unless
1225 	 * we want to retry.
1226 	 */
1227 	if (rc == MIGRATEPAGE_SUCCESS) {
1228 		put_page(page);
1229 		if (reason == MR_MEMORY_FAILURE) {
1230 			/*
1231 			 * Set PG_HWPoison on just freed page
1232 			 * intentionally. Although it's rather weird,
1233 			 * it's how HWPoison flag works at the moment.
1234 			 */
1235 			if (set_hwpoison_free_buddy_page(page))
1236 				num_poisoned_pages_inc();
1237 		}
1238 	} else {
1239 		if (rc != -EAGAIN) {
1240 			if (likely(!__PageMovable(page))) {
1241 				putback_lru_page(page);
1242 				goto put_new;
1243 			}
1244 
1245 			lock_page(page);
1246 			if (PageMovable(page))
1247 				putback_movable_page(page);
1248 			else
1249 				__ClearPageIsolated(page);
1250 			unlock_page(page);
1251 			put_page(page);
1252 		}
1253 put_new:
1254 		if (put_new_page)
1255 			put_new_page(newpage, private);
1256 		else
1257 			put_page(newpage);
1258 	}
1259 
1260 	return rc;
1261 }
1262 
1263 /*
1264  * Counterpart of unmap_and_move_page() for hugepage migration.
1265  *
1266  * This function doesn't wait the completion of hugepage I/O
1267  * because there is no race between I/O and migration for hugepage.
1268  * Note that currently hugepage I/O occurs only in direct I/O
1269  * where no lock is held and PG_writeback is irrelevant,
1270  * and writeback status of all subpages are counted in the reference
1271  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1272  * under direct I/O, the reference of the head page is 512 and a bit more.)
1273  * This means that when we try to migrate hugepage whose subpages are
1274  * doing direct I/O, some references remain after try_to_unmap() and
1275  * hugepage migration fails without data corruption.
1276  *
1277  * There is also no race when direct I/O is issued on the page under migration,
1278  * because then pte is replaced with migration swap entry and direct I/O code
1279  * will wait in the page fault for migration to complete.
1280  */
1281 static int unmap_and_move_huge_page(new_page_t get_new_page,
1282 				free_page_t put_new_page, unsigned long private,
1283 				struct page *hpage, int force,
1284 				enum migrate_mode mode, int reason)
1285 {
1286 	int rc = -EAGAIN;
1287 	int page_was_mapped = 0;
1288 	struct page *new_hpage;
1289 	struct anon_vma *anon_vma = NULL;
1290 
1291 	/*
1292 	 * Movability of hugepages depends on architectures and hugepage size.
1293 	 * This check is necessary because some callers of hugepage migration
1294 	 * like soft offline and memory hotremove don't walk through page
1295 	 * tables or check whether the hugepage is pmd-based or not before
1296 	 * kicking migration.
1297 	 */
1298 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1299 		putback_active_hugepage(hpage);
1300 		return -ENOSYS;
1301 	}
1302 
1303 	new_hpage = get_new_page(hpage, private);
1304 	if (!new_hpage)
1305 		return -ENOMEM;
1306 
1307 	if (!trylock_page(hpage)) {
1308 		if (!force)
1309 			goto out;
1310 		switch (mode) {
1311 		case MIGRATE_SYNC:
1312 		case MIGRATE_SYNC_NO_COPY:
1313 			break;
1314 		default:
1315 			goto out;
1316 		}
1317 		lock_page(hpage);
1318 	}
1319 
1320 	if (PageAnon(hpage))
1321 		anon_vma = page_get_anon_vma(hpage);
1322 
1323 	if (unlikely(!trylock_page(new_hpage)))
1324 		goto put_anon;
1325 
1326 	if (page_mapped(hpage)) {
1327 		struct address_space *mapping = page_mapping(hpage);
1328 
1329 		/*
1330 		 * try_to_unmap could potentially call huge_pmd_unshare.
1331 		 * Because of this, take semaphore in write mode here and
1332 		 * set TTU_RMAP_LOCKED to let lower levels know we have
1333 		 * taken the lock.
1334 		 */
1335 		i_mmap_lock_write(mapping);
1336 		try_to_unmap(hpage,
1337 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1338 			TTU_RMAP_LOCKED);
1339 		i_mmap_unlock_write(mapping);
1340 		page_was_mapped = 1;
1341 	}
1342 
1343 	if (!page_mapped(hpage))
1344 		rc = move_to_new_page(new_hpage, hpage, mode);
1345 
1346 	if (page_was_mapped)
1347 		remove_migration_ptes(hpage,
1348 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1349 
1350 	unlock_page(new_hpage);
1351 
1352 put_anon:
1353 	if (anon_vma)
1354 		put_anon_vma(anon_vma);
1355 
1356 	if (rc == MIGRATEPAGE_SUCCESS) {
1357 		move_hugetlb_state(hpage, new_hpage, reason);
1358 		put_new_page = NULL;
1359 	}
1360 
1361 	unlock_page(hpage);
1362 out:
1363 	if (rc != -EAGAIN)
1364 		putback_active_hugepage(hpage);
1365 
1366 	/*
1367 	 * If migration was not successful and there's a freeing callback, use
1368 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1369 	 * isolation.
1370 	 */
1371 	if (put_new_page)
1372 		put_new_page(new_hpage, private);
1373 	else
1374 		putback_active_hugepage(new_hpage);
1375 
1376 	return rc;
1377 }
1378 
1379 /*
1380  * migrate_pages - migrate the pages specified in a list, to the free pages
1381  *		   supplied as the target for the page migration
1382  *
1383  * @from:		The list of pages to be migrated.
1384  * @get_new_page:	The function used to allocate free pages to be used
1385  *			as the target of the page migration.
1386  * @put_new_page:	The function used to free target pages if migration
1387  *			fails, or NULL if no special handling is necessary.
1388  * @private:		Private data to be passed on to get_new_page()
1389  * @mode:		The migration mode that specifies the constraints for
1390  *			page migration, if any.
1391  * @reason:		The reason for page migration.
1392  *
1393  * The function returns after 10 attempts or if no pages are movable any more
1394  * because the list has become empty or no retryable pages exist any more.
1395  * The caller should call putback_movable_pages() to return pages to the LRU
1396  * or free list only if ret != 0.
1397  *
1398  * Returns the number of pages that were not migrated, or an error code.
1399  */
1400 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1401 		free_page_t put_new_page, unsigned long private,
1402 		enum migrate_mode mode, int reason)
1403 {
1404 	int retry = 1;
1405 	int nr_failed = 0;
1406 	int nr_succeeded = 0;
1407 	int pass = 0;
1408 	struct page *page;
1409 	struct page *page2;
1410 	int swapwrite = current->flags & PF_SWAPWRITE;
1411 	int rc;
1412 
1413 	if (!swapwrite)
1414 		current->flags |= PF_SWAPWRITE;
1415 
1416 	for(pass = 0; pass < 10 && retry; pass++) {
1417 		retry = 0;
1418 
1419 		list_for_each_entry_safe(page, page2, from, lru) {
1420 retry:
1421 			cond_resched();
1422 
1423 			if (PageHuge(page))
1424 				rc = unmap_and_move_huge_page(get_new_page,
1425 						put_new_page, private, page,
1426 						pass > 2, mode, reason);
1427 			else
1428 				rc = unmap_and_move(get_new_page, put_new_page,
1429 						private, page, pass > 2, mode,
1430 						reason);
1431 
1432 			switch(rc) {
1433 			case -ENOMEM:
1434 				/*
1435 				 * THP migration might be unsupported or the
1436 				 * allocation could've failed so we should
1437 				 * retry on the same page with the THP split
1438 				 * to base pages.
1439 				 *
1440 				 * Head page is retried immediately and tail
1441 				 * pages are added to the tail of the list so
1442 				 * we encounter them after the rest of the list
1443 				 * is processed.
1444 				 */
1445 				if (PageTransHuge(page) && !PageHuge(page)) {
1446 					lock_page(page);
1447 					rc = split_huge_page_to_list(page, from);
1448 					unlock_page(page);
1449 					if (!rc) {
1450 						list_safe_reset_next(page, page2, lru);
1451 						goto retry;
1452 					}
1453 				}
1454 				nr_failed++;
1455 				goto out;
1456 			case -EAGAIN:
1457 				retry++;
1458 				break;
1459 			case MIGRATEPAGE_SUCCESS:
1460 				nr_succeeded++;
1461 				break;
1462 			default:
1463 				/*
1464 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1465 				 * unlike -EAGAIN case, the failed page is
1466 				 * removed from migration page list and not
1467 				 * retried in the next outer loop.
1468 				 */
1469 				nr_failed++;
1470 				break;
1471 			}
1472 		}
1473 	}
1474 	nr_failed += retry;
1475 	rc = nr_failed;
1476 out:
1477 	if (nr_succeeded)
1478 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1479 	if (nr_failed)
1480 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1481 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1482 
1483 	if (!swapwrite)
1484 		current->flags &= ~PF_SWAPWRITE;
1485 
1486 	return rc;
1487 }
1488 
1489 #ifdef CONFIG_NUMA
1490 
1491 static int store_status(int __user *status, int start, int value, int nr)
1492 {
1493 	while (nr-- > 0) {
1494 		if (put_user(value, status + start))
1495 			return -EFAULT;
1496 		start++;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 static int do_move_pages_to_node(struct mm_struct *mm,
1503 		struct list_head *pagelist, int node)
1504 {
1505 	int err;
1506 
1507 	if (list_empty(pagelist))
1508 		return 0;
1509 
1510 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1511 			MIGRATE_SYNC, MR_SYSCALL);
1512 	if (err)
1513 		putback_movable_pages(pagelist);
1514 	return err;
1515 }
1516 
1517 /*
1518  * Resolves the given address to a struct page, isolates it from the LRU and
1519  * puts it to the given pagelist.
1520  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1521  * queued or the page doesn't need to be migrated because it is already on
1522  * the target node
1523  */
1524 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1525 		int node, struct list_head *pagelist, bool migrate_all)
1526 {
1527 	struct vm_area_struct *vma;
1528 	struct page *page;
1529 	unsigned int follflags;
1530 	int err;
1531 
1532 	down_read(&mm->mmap_sem);
1533 	err = -EFAULT;
1534 	vma = find_vma(mm, addr);
1535 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1536 		goto out;
1537 
1538 	/* FOLL_DUMP to ignore special (like zero) pages */
1539 	follflags = FOLL_GET | FOLL_DUMP;
1540 	page = follow_page(vma, addr, follflags);
1541 
1542 	err = PTR_ERR(page);
1543 	if (IS_ERR(page))
1544 		goto out;
1545 
1546 	err = -ENOENT;
1547 	if (!page)
1548 		goto out;
1549 
1550 	err = 0;
1551 	if (page_to_nid(page) == node)
1552 		goto out_putpage;
1553 
1554 	err = -EACCES;
1555 	if (page_mapcount(page) > 1 && !migrate_all)
1556 		goto out_putpage;
1557 
1558 	if (PageHuge(page)) {
1559 		if (PageHead(page)) {
1560 			isolate_huge_page(page, pagelist);
1561 			err = 0;
1562 		}
1563 	} else {
1564 		struct page *head;
1565 
1566 		head = compound_head(page);
1567 		err = isolate_lru_page(head);
1568 		if (err)
1569 			goto out_putpage;
1570 
1571 		err = 0;
1572 		list_add_tail(&head->lru, pagelist);
1573 		mod_node_page_state(page_pgdat(head),
1574 			NR_ISOLATED_ANON + page_is_file_cache(head),
1575 			hpage_nr_pages(head));
1576 	}
1577 out_putpage:
1578 	/*
1579 	 * Either remove the duplicate refcount from
1580 	 * isolate_lru_page() or drop the page ref if it was
1581 	 * not isolated.
1582 	 */
1583 	put_page(page);
1584 out:
1585 	up_read(&mm->mmap_sem);
1586 	return err;
1587 }
1588 
1589 /*
1590  * Migrate an array of page address onto an array of nodes and fill
1591  * the corresponding array of status.
1592  */
1593 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1594 			 unsigned long nr_pages,
1595 			 const void __user * __user *pages,
1596 			 const int __user *nodes,
1597 			 int __user *status, int flags)
1598 {
1599 	int current_node = NUMA_NO_NODE;
1600 	LIST_HEAD(pagelist);
1601 	int start, i;
1602 	int err = 0, err1;
1603 
1604 	migrate_prep();
1605 
1606 	for (i = start = 0; i < nr_pages; i++) {
1607 		const void __user *p;
1608 		unsigned long addr;
1609 		int node;
1610 
1611 		err = -EFAULT;
1612 		if (get_user(p, pages + i))
1613 			goto out_flush;
1614 		if (get_user(node, nodes + i))
1615 			goto out_flush;
1616 		addr = (unsigned long)p;
1617 
1618 		err = -ENODEV;
1619 		if (node < 0 || node >= MAX_NUMNODES)
1620 			goto out_flush;
1621 		if (!node_state(node, N_MEMORY))
1622 			goto out_flush;
1623 
1624 		err = -EACCES;
1625 		if (!node_isset(node, task_nodes))
1626 			goto out_flush;
1627 
1628 		if (current_node == NUMA_NO_NODE) {
1629 			current_node = node;
1630 			start = i;
1631 		} else if (node != current_node) {
1632 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1633 			if (err)
1634 				goto out;
1635 			err = store_status(status, start, current_node, i - start);
1636 			if (err)
1637 				goto out;
1638 			start = i;
1639 			current_node = node;
1640 		}
1641 
1642 		/*
1643 		 * Errors in the page lookup or isolation are not fatal and we simply
1644 		 * report them via status
1645 		 */
1646 		err = add_page_for_migration(mm, addr, current_node,
1647 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1648 		if (!err)
1649 			continue;
1650 
1651 		err = store_status(status, i, err, 1);
1652 		if (err)
1653 			goto out_flush;
1654 
1655 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1656 		if (err)
1657 			goto out;
1658 		if (i > start) {
1659 			err = store_status(status, start, current_node, i - start);
1660 			if (err)
1661 				goto out;
1662 		}
1663 		current_node = NUMA_NO_NODE;
1664 	}
1665 out_flush:
1666 	if (list_empty(&pagelist))
1667 		return err;
1668 
1669 	/* Make sure we do not overwrite the existing error */
1670 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1671 	if (!err1)
1672 		err1 = store_status(status, start, current_node, i - start);
1673 	if (!err)
1674 		err = err1;
1675 out:
1676 	return err;
1677 }
1678 
1679 /*
1680  * Determine the nodes of an array of pages and store it in an array of status.
1681  */
1682 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1683 				const void __user **pages, int *status)
1684 {
1685 	unsigned long i;
1686 
1687 	down_read(&mm->mmap_sem);
1688 
1689 	for (i = 0; i < nr_pages; i++) {
1690 		unsigned long addr = (unsigned long)(*pages);
1691 		struct vm_area_struct *vma;
1692 		struct page *page;
1693 		int err = -EFAULT;
1694 
1695 		vma = find_vma(mm, addr);
1696 		if (!vma || addr < vma->vm_start)
1697 			goto set_status;
1698 
1699 		/* FOLL_DUMP to ignore special (like zero) pages */
1700 		page = follow_page(vma, addr, FOLL_DUMP);
1701 
1702 		err = PTR_ERR(page);
1703 		if (IS_ERR(page))
1704 			goto set_status;
1705 
1706 		err = page ? page_to_nid(page) : -ENOENT;
1707 set_status:
1708 		*status = err;
1709 
1710 		pages++;
1711 		status++;
1712 	}
1713 
1714 	up_read(&mm->mmap_sem);
1715 }
1716 
1717 /*
1718  * Determine the nodes of a user array of pages and store it in
1719  * a user array of status.
1720  */
1721 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1722 			 const void __user * __user *pages,
1723 			 int __user *status)
1724 {
1725 #define DO_PAGES_STAT_CHUNK_NR 16
1726 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1727 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1728 
1729 	while (nr_pages) {
1730 		unsigned long chunk_nr;
1731 
1732 		chunk_nr = nr_pages;
1733 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1734 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1735 
1736 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1737 			break;
1738 
1739 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1740 
1741 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1742 			break;
1743 
1744 		pages += chunk_nr;
1745 		status += chunk_nr;
1746 		nr_pages -= chunk_nr;
1747 	}
1748 	return nr_pages ? -EFAULT : 0;
1749 }
1750 
1751 /*
1752  * Move a list of pages in the address space of the currently executing
1753  * process.
1754  */
1755 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1756 			     const void __user * __user *pages,
1757 			     const int __user *nodes,
1758 			     int __user *status, int flags)
1759 {
1760 	struct task_struct *task;
1761 	struct mm_struct *mm;
1762 	int err;
1763 	nodemask_t task_nodes;
1764 
1765 	/* Check flags */
1766 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1767 		return -EINVAL;
1768 
1769 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1770 		return -EPERM;
1771 
1772 	/* Find the mm_struct */
1773 	rcu_read_lock();
1774 	task = pid ? find_task_by_vpid(pid) : current;
1775 	if (!task) {
1776 		rcu_read_unlock();
1777 		return -ESRCH;
1778 	}
1779 	get_task_struct(task);
1780 
1781 	/*
1782 	 * Check if this process has the right to modify the specified
1783 	 * process. Use the regular "ptrace_may_access()" checks.
1784 	 */
1785 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1786 		rcu_read_unlock();
1787 		err = -EPERM;
1788 		goto out;
1789 	}
1790 	rcu_read_unlock();
1791 
1792  	err = security_task_movememory(task);
1793  	if (err)
1794 		goto out;
1795 
1796 	task_nodes = cpuset_mems_allowed(task);
1797 	mm = get_task_mm(task);
1798 	put_task_struct(task);
1799 
1800 	if (!mm)
1801 		return -EINVAL;
1802 
1803 	if (nodes)
1804 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1805 				    nodes, status, flags);
1806 	else
1807 		err = do_pages_stat(mm, nr_pages, pages, status);
1808 
1809 	mmput(mm);
1810 	return err;
1811 
1812 out:
1813 	put_task_struct(task);
1814 	return err;
1815 }
1816 
1817 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1818 		const void __user * __user *, pages,
1819 		const int __user *, nodes,
1820 		int __user *, status, int, flags)
1821 {
1822 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1823 }
1824 
1825 #ifdef CONFIG_COMPAT
1826 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1827 		       compat_uptr_t __user *, pages32,
1828 		       const int __user *, nodes,
1829 		       int __user *, status,
1830 		       int, flags)
1831 {
1832 	const void __user * __user *pages;
1833 	int i;
1834 
1835 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1836 	for (i = 0; i < nr_pages; i++) {
1837 		compat_uptr_t p;
1838 
1839 		if (get_user(p, pages32 + i) ||
1840 			put_user(compat_ptr(p), pages + i))
1841 			return -EFAULT;
1842 	}
1843 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1844 }
1845 #endif /* CONFIG_COMPAT */
1846 
1847 #ifdef CONFIG_NUMA_BALANCING
1848 /*
1849  * Returns true if this is a safe migration target node for misplaced NUMA
1850  * pages. Currently it only checks the watermarks which crude
1851  */
1852 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1853 				   unsigned long nr_migrate_pages)
1854 {
1855 	int z;
1856 
1857 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1858 		struct zone *zone = pgdat->node_zones + z;
1859 
1860 		if (!populated_zone(zone))
1861 			continue;
1862 
1863 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1864 		if (!zone_watermark_ok(zone, 0,
1865 				       high_wmark_pages(zone) +
1866 				       nr_migrate_pages,
1867 				       0, 0))
1868 			continue;
1869 		return true;
1870 	}
1871 	return false;
1872 }
1873 
1874 static struct page *alloc_misplaced_dst_page(struct page *page,
1875 					   unsigned long data)
1876 {
1877 	int nid = (int) data;
1878 	struct page *newpage;
1879 
1880 	newpage = __alloc_pages_node(nid,
1881 					 (GFP_HIGHUSER_MOVABLE |
1882 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1883 					  __GFP_NORETRY | __GFP_NOWARN) &
1884 					 ~__GFP_RECLAIM, 0);
1885 
1886 	return newpage;
1887 }
1888 
1889 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1890 {
1891 	int page_lru;
1892 
1893 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1894 
1895 	/* Avoid migrating to a node that is nearly full */
1896 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1897 		return 0;
1898 
1899 	if (isolate_lru_page(page))
1900 		return 0;
1901 
1902 	/*
1903 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1904 	 * check on page_count(), so we must do it here, now that the page
1905 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1906 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1907 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1908 	 */
1909 	if (PageTransHuge(page) && page_count(page) != 3) {
1910 		putback_lru_page(page);
1911 		return 0;
1912 	}
1913 
1914 	page_lru = page_is_file_cache(page);
1915 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1916 				hpage_nr_pages(page));
1917 
1918 	/*
1919 	 * Isolating the page has taken another reference, so the
1920 	 * caller's reference can be safely dropped without the page
1921 	 * disappearing underneath us during migration.
1922 	 */
1923 	put_page(page);
1924 	return 1;
1925 }
1926 
1927 bool pmd_trans_migrating(pmd_t pmd)
1928 {
1929 	struct page *page = pmd_page(pmd);
1930 	return PageLocked(page);
1931 }
1932 
1933 /*
1934  * Attempt to migrate a misplaced page to the specified destination
1935  * node. Caller is expected to have an elevated reference count on
1936  * the page that will be dropped by this function before returning.
1937  */
1938 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1939 			   int node)
1940 {
1941 	pg_data_t *pgdat = NODE_DATA(node);
1942 	int isolated;
1943 	int nr_remaining;
1944 	LIST_HEAD(migratepages);
1945 
1946 	/*
1947 	 * Don't migrate file pages that are mapped in multiple processes
1948 	 * with execute permissions as they are probably shared libraries.
1949 	 */
1950 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1951 	    (vma->vm_flags & VM_EXEC))
1952 		goto out;
1953 
1954 	/*
1955 	 * Also do not migrate dirty pages as not all filesystems can move
1956 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1957 	 */
1958 	if (page_is_file_cache(page) && PageDirty(page))
1959 		goto out;
1960 
1961 	isolated = numamigrate_isolate_page(pgdat, page);
1962 	if (!isolated)
1963 		goto out;
1964 
1965 	list_add(&page->lru, &migratepages);
1966 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1967 				     NULL, node, MIGRATE_ASYNC,
1968 				     MR_NUMA_MISPLACED);
1969 	if (nr_remaining) {
1970 		if (!list_empty(&migratepages)) {
1971 			list_del(&page->lru);
1972 			dec_node_page_state(page, NR_ISOLATED_ANON +
1973 					page_is_file_cache(page));
1974 			putback_lru_page(page);
1975 		}
1976 		isolated = 0;
1977 	} else
1978 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1979 	BUG_ON(!list_empty(&migratepages));
1980 	return isolated;
1981 
1982 out:
1983 	put_page(page);
1984 	return 0;
1985 }
1986 #endif /* CONFIG_NUMA_BALANCING */
1987 
1988 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1989 /*
1990  * Migrates a THP to a given target node. page must be locked and is unlocked
1991  * before returning.
1992  */
1993 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1994 				struct vm_area_struct *vma,
1995 				pmd_t *pmd, pmd_t entry,
1996 				unsigned long address,
1997 				struct page *page, int node)
1998 {
1999 	spinlock_t *ptl;
2000 	pg_data_t *pgdat = NODE_DATA(node);
2001 	int isolated = 0;
2002 	struct page *new_page = NULL;
2003 	int page_lru = page_is_file_cache(page);
2004 	unsigned long start = address & HPAGE_PMD_MASK;
2005 
2006 	new_page = alloc_pages_node(node,
2007 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2008 		HPAGE_PMD_ORDER);
2009 	if (!new_page)
2010 		goto out_fail;
2011 	prep_transhuge_page(new_page);
2012 
2013 	isolated = numamigrate_isolate_page(pgdat, page);
2014 	if (!isolated) {
2015 		put_page(new_page);
2016 		goto out_fail;
2017 	}
2018 
2019 	/* Prepare a page as a migration target */
2020 	__SetPageLocked(new_page);
2021 	if (PageSwapBacked(page))
2022 		__SetPageSwapBacked(new_page);
2023 
2024 	/* anon mapping, we can simply copy page->mapping to the new page: */
2025 	new_page->mapping = page->mapping;
2026 	new_page->index = page->index;
2027 	/* flush the cache before copying using the kernel virtual address */
2028 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2029 	migrate_page_copy(new_page, page);
2030 	WARN_ON(PageLRU(new_page));
2031 
2032 	/* Recheck the target PMD */
2033 	ptl = pmd_lock(mm, pmd);
2034 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2035 		spin_unlock(ptl);
2036 
2037 		/* Reverse changes made by migrate_page_copy() */
2038 		if (TestClearPageActive(new_page))
2039 			SetPageActive(page);
2040 		if (TestClearPageUnevictable(new_page))
2041 			SetPageUnevictable(page);
2042 
2043 		unlock_page(new_page);
2044 		put_page(new_page);		/* Free it */
2045 
2046 		/* Retake the callers reference and putback on LRU */
2047 		get_page(page);
2048 		putback_lru_page(page);
2049 		mod_node_page_state(page_pgdat(page),
2050 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2051 
2052 		goto out_unlock;
2053 	}
2054 
2055 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2056 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2057 
2058 	/*
2059 	 * Overwrite the old entry under pagetable lock and establish
2060 	 * the new PTE. Any parallel GUP will either observe the old
2061 	 * page blocking on the page lock, block on the page table
2062 	 * lock or observe the new page. The SetPageUptodate on the
2063 	 * new page and page_add_new_anon_rmap guarantee the copy is
2064 	 * visible before the pagetable update.
2065 	 */
2066 	page_add_anon_rmap(new_page, vma, start, true);
2067 	/*
2068 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2069 	 * has already been flushed globally.  So no TLB can be currently
2070 	 * caching this non present pmd mapping.  There's no need to clear the
2071 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2072 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2073 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2074 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2075 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2076 	 * pmd.
2077 	 */
2078 	set_pmd_at(mm, start, pmd, entry);
2079 	update_mmu_cache_pmd(vma, address, &entry);
2080 
2081 	page_ref_unfreeze(page, 2);
2082 	mlock_migrate_page(new_page, page);
2083 	page_remove_rmap(page, true);
2084 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2085 
2086 	spin_unlock(ptl);
2087 
2088 	/* Take an "isolate" reference and put new page on the LRU. */
2089 	get_page(new_page);
2090 	putback_lru_page(new_page);
2091 
2092 	unlock_page(new_page);
2093 	unlock_page(page);
2094 	put_page(page);			/* Drop the rmap reference */
2095 	put_page(page);			/* Drop the LRU isolation reference */
2096 
2097 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2098 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2099 
2100 	mod_node_page_state(page_pgdat(page),
2101 			NR_ISOLATED_ANON + page_lru,
2102 			-HPAGE_PMD_NR);
2103 	return isolated;
2104 
2105 out_fail:
2106 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2107 	ptl = pmd_lock(mm, pmd);
2108 	if (pmd_same(*pmd, entry)) {
2109 		entry = pmd_modify(entry, vma->vm_page_prot);
2110 		set_pmd_at(mm, start, pmd, entry);
2111 		update_mmu_cache_pmd(vma, address, &entry);
2112 	}
2113 	spin_unlock(ptl);
2114 
2115 out_unlock:
2116 	unlock_page(page);
2117 	put_page(page);
2118 	return 0;
2119 }
2120 #endif /* CONFIG_NUMA_BALANCING */
2121 
2122 #endif /* CONFIG_NUMA */
2123 
2124 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2125 struct migrate_vma {
2126 	struct vm_area_struct	*vma;
2127 	unsigned long		*dst;
2128 	unsigned long		*src;
2129 	unsigned long		cpages;
2130 	unsigned long		npages;
2131 	unsigned long		start;
2132 	unsigned long		end;
2133 };
2134 
2135 static int migrate_vma_collect_hole(unsigned long start,
2136 				    unsigned long end,
2137 				    struct mm_walk *walk)
2138 {
2139 	struct migrate_vma *migrate = walk->private;
2140 	unsigned long addr;
2141 
2142 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2143 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2144 		migrate->dst[migrate->npages] = 0;
2145 		migrate->npages++;
2146 		migrate->cpages++;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static int migrate_vma_collect_skip(unsigned long start,
2153 				    unsigned long end,
2154 				    struct mm_walk *walk)
2155 {
2156 	struct migrate_vma *migrate = walk->private;
2157 	unsigned long addr;
2158 
2159 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2160 		migrate->dst[migrate->npages] = 0;
2161 		migrate->src[migrate->npages++] = 0;
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2168 				   unsigned long start,
2169 				   unsigned long end,
2170 				   struct mm_walk *walk)
2171 {
2172 	struct migrate_vma *migrate = walk->private;
2173 	struct vm_area_struct *vma = walk->vma;
2174 	struct mm_struct *mm = vma->vm_mm;
2175 	unsigned long addr = start, unmapped = 0;
2176 	spinlock_t *ptl;
2177 	pte_t *ptep;
2178 
2179 again:
2180 	if (pmd_none(*pmdp))
2181 		return migrate_vma_collect_hole(start, end, walk);
2182 
2183 	if (pmd_trans_huge(*pmdp)) {
2184 		struct page *page;
2185 
2186 		ptl = pmd_lock(mm, pmdp);
2187 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2188 			spin_unlock(ptl);
2189 			goto again;
2190 		}
2191 
2192 		page = pmd_page(*pmdp);
2193 		if (is_huge_zero_page(page)) {
2194 			spin_unlock(ptl);
2195 			split_huge_pmd(vma, pmdp, addr);
2196 			if (pmd_trans_unstable(pmdp))
2197 				return migrate_vma_collect_skip(start, end,
2198 								walk);
2199 		} else {
2200 			int ret;
2201 
2202 			get_page(page);
2203 			spin_unlock(ptl);
2204 			if (unlikely(!trylock_page(page)))
2205 				return migrate_vma_collect_skip(start, end,
2206 								walk);
2207 			ret = split_huge_page(page);
2208 			unlock_page(page);
2209 			put_page(page);
2210 			if (ret)
2211 				return migrate_vma_collect_skip(start, end,
2212 								walk);
2213 			if (pmd_none(*pmdp))
2214 				return migrate_vma_collect_hole(start, end,
2215 								walk);
2216 		}
2217 	}
2218 
2219 	if (unlikely(pmd_bad(*pmdp)))
2220 		return migrate_vma_collect_skip(start, end, walk);
2221 
2222 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2223 	arch_enter_lazy_mmu_mode();
2224 
2225 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2226 		unsigned long mpfn, pfn;
2227 		struct page *page;
2228 		swp_entry_t entry;
2229 		pte_t pte;
2230 
2231 		pte = *ptep;
2232 		pfn = pte_pfn(pte);
2233 
2234 		if (pte_none(pte)) {
2235 			mpfn = MIGRATE_PFN_MIGRATE;
2236 			migrate->cpages++;
2237 			pfn = 0;
2238 			goto next;
2239 		}
2240 
2241 		if (!pte_present(pte)) {
2242 			mpfn = pfn = 0;
2243 
2244 			/*
2245 			 * Only care about unaddressable device page special
2246 			 * page table entry. Other special swap entries are not
2247 			 * migratable, and we ignore regular swapped page.
2248 			 */
2249 			entry = pte_to_swp_entry(pte);
2250 			if (!is_device_private_entry(entry))
2251 				goto next;
2252 
2253 			page = device_private_entry_to_page(entry);
2254 			mpfn = migrate_pfn(page_to_pfn(page))|
2255 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2256 			if (is_write_device_private_entry(entry))
2257 				mpfn |= MIGRATE_PFN_WRITE;
2258 		} else {
2259 			if (is_zero_pfn(pfn)) {
2260 				mpfn = MIGRATE_PFN_MIGRATE;
2261 				migrate->cpages++;
2262 				pfn = 0;
2263 				goto next;
2264 			}
2265 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2266 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2267 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2268 		}
2269 
2270 		/* FIXME support THP */
2271 		if (!page || !page->mapping || PageTransCompound(page)) {
2272 			mpfn = pfn = 0;
2273 			goto next;
2274 		}
2275 		pfn = page_to_pfn(page);
2276 
2277 		/*
2278 		 * By getting a reference on the page we pin it and that blocks
2279 		 * any kind of migration. Side effect is that it "freezes" the
2280 		 * pte.
2281 		 *
2282 		 * We drop this reference after isolating the page from the lru
2283 		 * for non device page (device page are not on the lru and thus
2284 		 * can't be dropped from it).
2285 		 */
2286 		get_page(page);
2287 		migrate->cpages++;
2288 
2289 		/*
2290 		 * Optimize for the common case where page is only mapped once
2291 		 * in one process. If we can lock the page, then we can safely
2292 		 * set up a special migration page table entry now.
2293 		 */
2294 		if (trylock_page(page)) {
2295 			pte_t swp_pte;
2296 
2297 			mpfn |= MIGRATE_PFN_LOCKED;
2298 			ptep_get_and_clear(mm, addr, ptep);
2299 
2300 			/* Setup special migration page table entry */
2301 			entry = make_migration_entry(page, mpfn &
2302 						     MIGRATE_PFN_WRITE);
2303 			swp_pte = swp_entry_to_pte(entry);
2304 			if (pte_soft_dirty(pte))
2305 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2306 			set_pte_at(mm, addr, ptep, swp_pte);
2307 
2308 			/*
2309 			 * This is like regular unmap: we remove the rmap and
2310 			 * drop page refcount. Page won't be freed, as we took
2311 			 * a reference just above.
2312 			 */
2313 			page_remove_rmap(page, false);
2314 			put_page(page);
2315 
2316 			if (pte_present(pte))
2317 				unmapped++;
2318 		}
2319 
2320 next:
2321 		migrate->dst[migrate->npages] = 0;
2322 		migrate->src[migrate->npages++] = mpfn;
2323 	}
2324 	arch_leave_lazy_mmu_mode();
2325 	pte_unmap_unlock(ptep - 1, ptl);
2326 
2327 	/* Only flush the TLB if we actually modified any entries */
2328 	if (unmapped)
2329 		flush_tlb_range(walk->vma, start, end);
2330 
2331 	return 0;
2332 }
2333 
2334 /*
2335  * migrate_vma_collect() - collect pages over a range of virtual addresses
2336  * @migrate: migrate struct containing all migration information
2337  *
2338  * This will walk the CPU page table. For each virtual address backed by a
2339  * valid page, it updates the src array and takes a reference on the page, in
2340  * order to pin the page until we lock it and unmap it.
2341  */
2342 static void migrate_vma_collect(struct migrate_vma *migrate)
2343 {
2344 	struct mmu_notifier_range range;
2345 	struct mm_walk mm_walk;
2346 
2347 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2348 	mm_walk.pte_entry = NULL;
2349 	mm_walk.pte_hole = migrate_vma_collect_hole;
2350 	mm_walk.hugetlb_entry = NULL;
2351 	mm_walk.test_walk = NULL;
2352 	mm_walk.vma = migrate->vma;
2353 	mm_walk.mm = migrate->vma->vm_mm;
2354 	mm_walk.private = migrate;
2355 
2356 	mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2357 				migrate->end);
2358 	mmu_notifier_invalidate_range_start(&range);
2359 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2360 	mmu_notifier_invalidate_range_end(&range);
2361 
2362 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2363 }
2364 
2365 /*
2366  * migrate_vma_check_page() - check if page is pinned or not
2367  * @page: struct page to check
2368  *
2369  * Pinned pages cannot be migrated. This is the same test as in
2370  * migrate_page_move_mapping(), except that here we allow migration of a
2371  * ZONE_DEVICE page.
2372  */
2373 static bool migrate_vma_check_page(struct page *page)
2374 {
2375 	/*
2376 	 * One extra ref because caller holds an extra reference, either from
2377 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2378 	 * a device page.
2379 	 */
2380 	int extra = 1;
2381 
2382 	/*
2383 	 * FIXME support THP (transparent huge page), it is bit more complex to
2384 	 * check them than regular pages, because they can be mapped with a pmd
2385 	 * or with a pte (split pte mapping).
2386 	 */
2387 	if (PageCompound(page))
2388 		return false;
2389 
2390 	/* Page from ZONE_DEVICE have one extra reference */
2391 	if (is_zone_device_page(page)) {
2392 		/*
2393 		 * Private page can never be pin as they have no valid pte and
2394 		 * GUP will fail for those. Yet if there is a pending migration
2395 		 * a thread might try to wait on the pte migration entry and
2396 		 * will bump the page reference count. Sadly there is no way to
2397 		 * differentiate a regular pin from migration wait. Hence to
2398 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2399 		 * infinite loop (one stoping migration because the other is
2400 		 * waiting on pte migration entry). We always return true here.
2401 		 *
2402 		 * FIXME proper solution is to rework migration_entry_wait() so
2403 		 * it does not need to take a reference on page.
2404 		 */
2405 		if (is_device_private_page(page))
2406 			return true;
2407 
2408 		/*
2409 		 * Only allow device public page to be migrated and account for
2410 		 * the extra reference count imply by ZONE_DEVICE pages.
2411 		 */
2412 		if (!is_device_public_page(page))
2413 			return false;
2414 		extra++;
2415 	}
2416 
2417 	/* For file back page */
2418 	if (page_mapping(page))
2419 		extra += 1 + page_has_private(page);
2420 
2421 	if ((page_count(page) - extra) > page_mapcount(page))
2422 		return false;
2423 
2424 	return true;
2425 }
2426 
2427 /*
2428  * migrate_vma_prepare() - lock pages and isolate them from the lru
2429  * @migrate: migrate struct containing all migration information
2430  *
2431  * This locks pages that have been collected by migrate_vma_collect(). Once each
2432  * page is locked it is isolated from the lru (for non-device pages). Finally,
2433  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2434  * migrated by concurrent kernel threads.
2435  */
2436 static void migrate_vma_prepare(struct migrate_vma *migrate)
2437 {
2438 	const unsigned long npages = migrate->npages;
2439 	const unsigned long start = migrate->start;
2440 	unsigned long addr, i, restore = 0;
2441 	bool allow_drain = true;
2442 
2443 	lru_add_drain();
2444 
2445 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2446 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2447 		bool remap = true;
2448 
2449 		if (!page)
2450 			continue;
2451 
2452 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2453 			/*
2454 			 * Because we are migrating several pages there can be
2455 			 * a deadlock between 2 concurrent migration where each
2456 			 * are waiting on each other page lock.
2457 			 *
2458 			 * Make migrate_vma() a best effort thing and backoff
2459 			 * for any page we can not lock right away.
2460 			 */
2461 			if (!trylock_page(page)) {
2462 				migrate->src[i] = 0;
2463 				migrate->cpages--;
2464 				put_page(page);
2465 				continue;
2466 			}
2467 			remap = false;
2468 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2469 		}
2470 
2471 		/* ZONE_DEVICE pages are not on LRU */
2472 		if (!is_zone_device_page(page)) {
2473 			if (!PageLRU(page) && allow_drain) {
2474 				/* Drain CPU's pagevec */
2475 				lru_add_drain_all();
2476 				allow_drain = false;
2477 			}
2478 
2479 			if (isolate_lru_page(page)) {
2480 				if (remap) {
2481 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2482 					migrate->cpages--;
2483 					restore++;
2484 				} else {
2485 					migrate->src[i] = 0;
2486 					unlock_page(page);
2487 					migrate->cpages--;
2488 					put_page(page);
2489 				}
2490 				continue;
2491 			}
2492 
2493 			/* Drop the reference we took in collect */
2494 			put_page(page);
2495 		}
2496 
2497 		if (!migrate_vma_check_page(page)) {
2498 			if (remap) {
2499 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2500 				migrate->cpages--;
2501 				restore++;
2502 
2503 				if (!is_zone_device_page(page)) {
2504 					get_page(page);
2505 					putback_lru_page(page);
2506 				}
2507 			} else {
2508 				migrate->src[i] = 0;
2509 				unlock_page(page);
2510 				migrate->cpages--;
2511 
2512 				if (!is_zone_device_page(page))
2513 					putback_lru_page(page);
2514 				else
2515 					put_page(page);
2516 			}
2517 		}
2518 	}
2519 
2520 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2521 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2522 
2523 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2524 			continue;
2525 
2526 		remove_migration_pte(page, migrate->vma, addr, page);
2527 
2528 		migrate->src[i] = 0;
2529 		unlock_page(page);
2530 		put_page(page);
2531 		restore--;
2532 	}
2533 }
2534 
2535 /*
2536  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2537  * @migrate: migrate struct containing all migration information
2538  *
2539  * Replace page mapping (CPU page table pte) with a special migration pte entry
2540  * and check again if it has been pinned. Pinned pages are restored because we
2541  * cannot migrate them.
2542  *
2543  * This is the last step before we call the device driver callback to allocate
2544  * destination memory and copy contents of original page over to new page.
2545  */
2546 static void migrate_vma_unmap(struct migrate_vma *migrate)
2547 {
2548 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2549 	const unsigned long npages = migrate->npages;
2550 	const unsigned long start = migrate->start;
2551 	unsigned long addr, i, restore = 0;
2552 
2553 	for (i = 0; i < npages; i++) {
2554 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2555 
2556 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2557 			continue;
2558 
2559 		if (page_mapped(page)) {
2560 			try_to_unmap(page, flags);
2561 			if (page_mapped(page))
2562 				goto restore;
2563 		}
2564 
2565 		if (migrate_vma_check_page(page))
2566 			continue;
2567 
2568 restore:
2569 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2570 		migrate->cpages--;
2571 		restore++;
2572 	}
2573 
2574 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2575 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2576 
2577 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2578 			continue;
2579 
2580 		remove_migration_ptes(page, page, false);
2581 
2582 		migrate->src[i] = 0;
2583 		unlock_page(page);
2584 		restore--;
2585 
2586 		if (is_zone_device_page(page))
2587 			put_page(page);
2588 		else
2589 			putback_lru_page(page);
2590 	}
2591 }
2592 
2593 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2594 				    unsigned long addr,
2595 				    struct page *page,
2596 				    unsigned long *src,
2597 				    unsigned long *dst)
2598 {
2599 	struct vm_area_struct *vma = migrate->vma;
2600 	struct mm_struct *mm = vma->vm_mm;
2601 	struct mem_cgroup *memcg;
2602 	bool flush = false;
2603 	spinlock_t *ptl;
2604 	pte_t entry;
2605 	pgd_t *pgdp;
2606 	p4d_t *p4dp;
2607 	pud_t *pudp;
2608 	pmd_t *pmdp;
2609 	pte_t *ptep;
2610 
2611 	/* Only allow populating anonymous memory */
2612 	if (!vma_is_anonymous(vma))
2613 		goto abort;
2614 
2615 	pgdp = pgd_offset(mm, addr);
2616 	p4dp = p4d_alloc(mm, pgdp, addr);
2617 	if (!p4dp)
2618 		goto abort;
2619 	pudp = pud_alloc(mm, p4dp, addr);
2620 	if (!pudp)
2621 		goto abort;
2622 	pmdp = pmd_alloc(mm, pudp, addr);
2623 	if (!pmdp)
2624 		goto abort;
2625 
2626 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2627 		goto abort;
2628 
2629 	/*
2630 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2631 	 * pte_offset_map() on pmds where a huge pmd might be created
2632 	 * from a different thread.
2633 	 *
2634 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2635 	 * parallel threads are excluded by other means.
2636 	 *
2637 	 * Here we only have down_read(mmap_sem).
2638 	 */
2639 	if (pte_alloc(mm, pmdp))
2640 		goto abort;
2641 
2642 	/* See the comment in pte_alloc_one_map() */
2643 	if (unlikely(pmd_trans_unstable(pmdp)))
2644 		goto abort;
2645 
2646 	if (unlikely(anon_vma_prepare(vma)))
2647 		goto abort;
2648 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2649 		goto abort;
2650 
2651 	/*
2652 	 * The memory barrier inside __SetPageUptodate makes sure that
2653 	 * preceding stores to the page contents become visible before
2654 	 * the set_pte_at() write.
2655 	 */
2656 	__SetPageUptodate(page);
2657 
2658 	if (is_zone_device_page(page)) {
2659 		if (is_device_private_page(page)) {
2660 			swp_entry_t swp_entry;
2661 
2662 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2663 			entry = swp_entry_to_pte(swp_entry);
2664 		} else if (is_device_public_page(page)) {
2665 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2666 			if (vma->vm_flags & VM_WRITE)
2667 				entry = pte_mkwrite(pte_mkdirty(entry));
2668 			entry = pte_mkdevmap(entry);
2669 		}
2670 	} else {
2671 		entry = mk_pte(page, vma->vm_page_prot);
2672 		if (vma->vm_flags & VM_WRITE)
2673 			entry = pte_mkwrite(pte_mkdirty(entry));
2674 	}
2675 
2676 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2677 
2678 	if (pte_present(*ptep)) {
2679 		unsigned long pfn = pte_pfn(*ptep);
2680 
2681 		if (!is_zero_pfn(pfn)) {
2682 			pte_unmap_unlock(ptep, ptl);
2683 			mem_cgroup_cancel_charge(page, memcg, false);
2684 			goto abort;
2685 		}
2686 		flush = true;
2687 	} else if (!pte_none(*ptep)) {
2688 		pte_unmap_unlock(ptep, ptl);
2689 		mem_cgroup_cancel_charge(page, memcg, false);
2690 		goto abort;
2691 	}
2692 
2693 	/*
2694 	 * Check for usefaultfd but do not deliver the fault. Instead,
2695 	 * just back off.
2696 	 */
2697 	if (userfaultfd_missing(vma)) {
2698 		pte_unmap_unlock(ptep, ptl);
2699 		mem_cgroup_cancel_charge(page, memcg, false);
2700 		goto abort;
2701 	}
2702 
2703 	inc_mm_counter(mm, MM_ANONPAGES);
2704 	page_add_new_anon_rmap(page, vma, addr, false);
2705 	mem_cgroup_commit_charge(page, memcg, false, false);
2706 	if (!is_zone_device_page(page))
2707 		lru_cache_add_active_or_unevictable(page, vma);
2708 	get_page(page);
2709 
2710 	if (flush) {
2711 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2712 		ptep_clear_flush_notify(vma, addr, ptep);
2713 		set_pte_at_notify(mm, addr, ptep, entry);
2714 		update_mmu_cache(vma, addr, ptep);
2715 	} else {
2716 		/* No need to invalidate - it was non-present before */
2717 		set_pte_at(mm, addr, ptep, entry);
2718 		update_mmu_cache(vma, addr, ptep);
2719 	}
2720 
2721 	pte_unmap_unlock(ptep, ptl);
2722 	*src = MIGRATE_PFN_MIGRATE;
2723 	return;
2724 
2725 abort:
2726 	*src &= ~MIGRATE_PFN_MIGRATE;
2727 }
2728 
2729 /*
2730  * migrate_vma_pages() - migrate meta-data from src page to dst page
2731  * @migrate: migrate struct containing all migration information
2732  *
2733  * This migrates struct page meta-data from source struct page to destination
2734  * struct page. This effectively finishes the migration from source page to the
2735  * destination page.
2736  */
2737 static void migrate_vma_pages(struct migrate_vma *migrate)
2738 {
2739 	const unsigned long npages = migrate->npages;
2740 	const unsigned long start = migrate->start;
2741 	struct mmu_notifier_range range;
2742 	unsigned long addr, i;
2743 	bool notified = false;
2744 
2745 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2746 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2747 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2748 		struct address_space *mapping;
2749 		int r;
2750 
2751 		if (!newpage) {
2752 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2753 			continue;
2754 		}
2755 
2756 		if (!page) {
2757 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2758 				continue;
2759 			}
2760 			if (!notified) {
2761 				notified = true;
2762 
2763 				mmu_notifier_range_init(&range,
2764 							migrate->vma->vm_mm,
2765 							addr, migrate->end);
2766 				mmu_notifier_invalidate_range_start(&range);
2767 			}
2768 			migrate_vma_insert_page(migrate, addr, newpage,
2769 						&migrate->src[i],
2770 						&migrate->dst[i]);
2771 			continue;
2772 		}
2773 
2774 		mapping = page_mapping(page);
2775 
2776 		if (is_zone_device_page(newpage)) {
2777 			if (is_device_private_page(newpage)) {
2778 				/*
2779 				 * For now only support private anonymous when
2780 				 * migrating to un-addressable device memory.
2781 				 */
2782 				if (mapping) {
2783 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2784 					continue;
2785 				}
2786 			} else if (!is_device_public_page(newpage)) {
2787 				/*
2788 				 * Other types of ZONE_DEVICE page are not
2789 				 * supported.
2790 				 */
2791 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2792 				continue;
2793 			}
2794 		}
2795 
2796 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2797 		if (r != MIGRATEPAGE_SUCCESS)
2798 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2799 	}
2800 
2801 	/*
2802 	 * No need to double call mmu_notifier->invalidate_range() callback as
2803 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2804 	 * did already call it.
2805 	 */
2806 	if (notified)
2807 		mmu_notifier_invalidate_range_only_end(&range);
2808 }
2809 
2810 /*
2811  * migrate_vma_finalize() - restore CPU page table entry
2812  * @migrate: migrate struct containing all migration information
2813  *
2814  * This replaces the special migration pte entry with either a mapping to the
2815  * new page if migration was successful for that page, or to the original page
2816  * otherwise.
2817  *
2818  * This also unlocks the pages and puts them back on the lru, or drops the extra
2819  * refcount, for device pages.
2820  */
2821 static void migrate_vma_finalize(struct migrate_vma *migrate)
2822 {
2823 	const unsigned long npages = migrate->npages;
2824 	unsigned long i;
2825 
2826 	for (i = 0; i < npages; i++) {
2827 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2828 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2829 
2830 		if (!page) {
2831 			if (newpage) {
2832 				unlock_page(newpage);
2833 				put_page(newpage);
2834 			}
2835 			continue;
2836 		}
2837 
2838 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2839 			if (newpage) {
2840 				unlock_page(newpage);
2841 				put_page(newpage);
2842 			}
2843 			newpage = page;
2844 		}
2845 
2846 		remove_migration_ptes(page, newpage, false);
2847 		unlock_page(page);
2848 		migrate->cpages--;
2849 
2850 		if (is_zone_device_page(page))
2851 			put_page(page);
2852 		else
2853 			putback_lru_page(page);
2854 
2855 		if (newpage != page) {
2856 			unlock_page(newpage);
2857 			if (is_zone_device_page(newpage))
2858 				put_page(newpage);
2859 			else
2860 				putback_lru_page(newpage);
2861 		}
2862 	}
2863 }
2864 
2865 /*
2866  * migrate_vma() - migrate a range of memory inside vma
2867  *
2868  * @ops: migration callback for allocating destination memory and copying
2869  * @vma: virtual memory area containing the range to be migrated
2870  * @start: start address of the range to migrate (inclusive)
2871  * @end: end address of the range to migrate (exclusive)
2872  * @src: array of hmm_pfn_t containing source pfns
2873  * @dst: array of hmm_pfn_t containing destination pfns
2874  * @private: pointer passed back to each of the callback
2875  * Returns: 0 on success, error code otherwise
2876  *
2877  * This function tries to migrate a range of memory virtual address range, using
2878  * callbacks to allocate and copy memory from source to destination. First it
2879  * collects all the pages backing each virtual address in the range, saving this
2880  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2881  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2882  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2883  * in the corresponding src array entry. It then restores any pages that are
2884  * pinned, by remapping and unlocking those pages.
2885  *
2886  * At this point it calls the alloc_and_copy() callback. For documentation on
2887  * what is expected from that callback, see struct migrate_vma_ops comments in
2888  * include/linux/migrate.h
2889  *
2890  * After the alloc_and_copy() callback, this function goes over each entry in
2891  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2892  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2893  * then the function tries to migrate struct page information from the source
2894  * struct page to the destination struct page. If it fails to migrate the struct
2895  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2896  * array.
2897  *
2898  * At this point all successfully migrated pages have an entry in the src
2899  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2900  * array entry with MIGRATE_PFN_VALID flag set.
2901  *
2902  * It then calls the finalize_and_map() callback. See comments for "struct
2903  * migrate_vma_ops", in include/linux/migrate.h for details about
2904  * finalize_and_map() behavior.
2905  *
2906  * After the finalize_and_map() callback, for successfully migrated pages, this
2907  * function updates the CPU page table to point to new pages, otherwise it
2908  * restores the CPU page table to point to the original source pages.
2909  *
2910  * Function returns 0 after the above steps, even if no pages were migrated
2911  * (The function only returns an error if any of the arguments are invalid.)
2912  *
2913  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2914  * unsigned long entries.
2915  */
2916 int migrate_vma(const struct migrate_vma_ops *ops,
2917 		struct vm_area_struct *vma,
2918 		unsigned long start,
2919 		unsigned long end,
2920 		unsigned long *src,
2921 		unsigned long *dst,
2922 		void *private)
2923 {
2924 	struct migrate_vma migrate;
2925 
2926 	/* Sanity check the arguments */
2927 	start &= PAGE_MASK;
2928 	end &= PAGE_MASK;
2929 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2930 			vma_is_dax(vma))
2931 		return -EINVAL;
2932 	if (start < vma->vm_start || start >= vma->vm_end)
2933 		return -EINVAL;
2934 	if (end <= vma->vm_start || end > vma->vm_end)
2935 		return -EINVAL;
2936 	if (!ops || !src || !dst || start >= end)
2937 		return -EINVAL;
2938 
2939 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2940 	migrate.src = src;
2941 	migrate.dst = dst;
2942 	migrate.start = start;
2943 	migrate.npages = 0;
2944 	migrate.cpages = 0;
2945 	migrate.end = end;
2946 	migrate.vma = vma;
2947 
2948 	/* Collect, and try to unmap source pages */
2949 	migrate_vma_collect(&migrate);
2950 	if (!migrate.cpages)
2951 		return 0;
2952 
2953 	/* Lock and isolate page */
2954 	migrate_vma_prepare(&migrate);
2955 	if (!migrate.cpages)
2956 		return 0;
2957 
2958 	/* Unmap pages */
2959 	migrate_vma_unmap(&migrate);
2960 	if (!migrate.cpages)
2961 		return 0;
2962 
2963 	/*
2964 	 * At this point pages are locked and unmapped, and thus they have
2965 	 * stable content and can safely be copied to destination memory that
2966 	 * is allocated by the callback.
2967 	 *
2968 	 * Note that migration can fail in migrate_vma_struct_page() for each
2969 	 * individual page.
2970 	 */
2971 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2972 
2973 	/* This does the real migration of struct page */
2974 	migrate_vma_pages(&migrate);
2975 
2976 	ops->finalize_and_map(vma, src, dst, start, end, private);
2977 
2978 	/* Unlock and remap pages */
2979 	migrate_vma_finalize(&migrate);
2980 
2981 	return 0;
2982 }
2983 EXPORT_SYMBOL(migrate_vma);
2984 #endif /* defined(MIGRATE_VMA_HELPER) */
2985