1 /* 2 * Memory Migration functionality - linux/mm/migrate.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 #include <linux/page_idle.h> 41 42 #include <asm/tlbflush.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/migrate.h> 46 47 #include "internal.h" 48 49 /* 50 * migrate_prep() needs to be called before we start compiling a list of pages 51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 52 * undesirable, use migrate_prep_local() 53 */ 54 int migrate_prep(void) 55 { 56 /* 57 * Clear the LRU lists so pages can be isolated. 58 * Note that pages may be moved off the LRU after we have 59 * drained them. Those pages will fail to migrate like other 60 * pages that may be busy. 61 */ 62 lru_add_drain_all(); 63 64 return 0; 65 } 66 67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 68 int migrate_prep_local(void) 69 { 70 lru_add_drain(); 71 72 return 0; 73 } 74 75 /* 76 * Put previously isolated pages back onto the appropriate lists 77 * from where they were once taken off for compaction/migration. 78 * 79 * This function shall be used whenever the isolated pageset has been 80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 81 * and isolate_huge_page(). 82 */ 83 void putback_movable_pages(struct list_head *l) 84 { 85 struct page *page; 86 struct page *page2; 87 88 list_for_each_entry_safe(page, page2, l, lru) { 89 if (unlikely(PageHuge(page))) { 90 putback_active_hugepage(page); 91 continue; 92 } 93 list_del(&page->lru); 94 dec_zone_page_state(page, NR_ISOLATED_ANON + 95 page_is_file_cache(page)); 96 if (unlikely(isolated_balloon_page(page))) 97 balloon_page_putback(page); 98 else 99 putback_lru_page(page); 100 } 101 } 102 103 /* 104 * Restore a potential migration pte to a working pte entry 105 */ 106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 107 unsigned long addr, void *old) 108 { 109 struct mm_struct *mm = vma->vm_mm; 110 swp_entry_t entry; 111 pmd_t *pmd; 112 pte_t *ptep, pte; 113 spinlock_t *ptl; 114 115 if (unlikely(PageHuge(new))) { 116 ptep = huge_pte_offset(mm, addr); 117 if (!ptep) 118 goto out; 119 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 120 } else { 121 pmd = mm_find_pmd(mm, addr); 122 if (!pmd) 123 goto out; 124 125 ptep = pte_offset_map(pmd, addr); 126 127 /* 128 * Peek to check is_swap_pte() before taking ptlock? No, we 129 * can race mremap's move_ptes(), which skips anon_vma lock. 130 */ 131 132 ptl = pte_lockptr(mm, pmd); 133 } 134 135 spin_lock(ptl); 136 pte = *ptep; 137 if (!is_swap_pte(pte)) 138 goto unlock; 139 140 entry = pte_to_swp_entry(pte); 141 142 if (!is_migration_entry(entry) || 143 migration_entry_to_page(entry) != old) 144 goto unlock; 145 146 get_page(new); 147 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 148 if (pte_swp_soft_dirty(*ptep)) 149 pte = pte_mksoft_dirty(pte); 150 151 /* Recheck VMA as permissions can change since migration started */ 152 if (is_write_migration_entry(entry)) 153 pte = maybe_mkwrite(pte, vma); 154 155 #ifdef CONFIG_HUGETLB_PAGE 156 if (PageHuge(new)) { 157 pte = pte_mkhuge(pte); 158 pte = arch_make_huge_pte(pte, vma, new, 0); 159 } 160 #endif 161 flush_dcache_page(new); 162 set_pte_at(mm, addr, ptep, pte); 163 164 if (PageHuge(new)) { 165 if (PageAnon(new)) 166 hugepage_add_anon_rmap(new, vma, addr); 167 else 168 page_dup_rmap(new, true); 169 } else if (PageAnon(new)) 170 page_add_anon_rmap(new, vma, addr, false); 171 else 172 page_add_file_rmap(new); 173 174 if (vma->vm_flags & VM_LOCKED) 175 mlock_vma_page(new); 176 177 /* No need to invalidate - it was non-present before */ 178 update_mmu_cache(vma, addr, ptep); 179 unlock: 180 pte_unmap_unlock(ptep, ptl); 181 out: 182 return SWAP_AGAIN; 183 } 184 185 /* 186 * Get rid of all migration entries and replace them by 187 * references to the indicated page. 188 */ 189 static void remove_migration_ptes(struct page *old, struct page *new) 190 { 191 struct rmap_walk_control rwc = { 192 .rmap_one = remove_migration_pte, 193 .arg = old, 194 }; 195 196 rmap_walk(new, &rwc); 197 } 198 199 /* 200 * Something used the pte of a page under migration. We need to 201 * get to the page and wait until migration is finished. 202 * When we return from this function the fault will be retried. 203 */ 204 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 205 spinlock_t *ptl) 206 { 207 pte_t pte; 208 swp_entry_t entry; 209 struct page *page; 210 211 spin_lock(ptl); 212 pte = *ptep; 213 if (!is_swap_pte(pte)) 214 goto out; 215 216 entry = pte_to_swp_entry(pte); 217 if (!is_migration_entry(entry)) 218 goto out; 219 220 page = migration_entry_to_page(entry); 221 222 /* 223 * Once radix-tree replacement of page migration started, page_count 224 * *must* be zero. And, we don't want to call wait_on_page_locked() 225 * against a page without get_page(). 226 * So, we use get_page_unless_zero(), here. Even failed, page fault 227 * will occur again. 228 */ 229 if (!get_page_unless_zero(page)) 230 goto out; 231 pte_unmap_unlock(ptep, ptl); 232 wait_on_page_locked(page); 233 put_page(page); 234 return; 235 out: 236 pte_unmap_unlock(ptep, ptl); 237 } 238 239 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 240 unsigned long address) 241 { 242 spinlock_t *ptl = pte_lockptr(mm, pmd); 243 pte_t *ptep = pte_offset_map(pmd, address); 244 __migration_entry_wait(mm, ptep, ptl); 245 } 246 247 void migration_entry_wait_huge(struct vm_area_struct *vma, 248 struct mm_struct *mm, pte_t *pte) 249 { 250 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 251 __migration_entry_wait(mm, pte, ptl); 252 } 253 254 #ifdef CONFIG_BLOCK 255 /* Returns true if all buffers are successfully locked */ 256 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 257 enum migrate_mode mode) 258 { 259 struct buffer_head *bh = head; 260 261 /* Simple case, sync compaction */ 262 if (mode != MIGRATE_ASYNC) { 263 do { 264 get_bh(bh); 265 lock_buffer(bh); 266 bh = bh->b_this_page; 267 268 } while (bh != head); 269 270 return true; 271 } 272 273 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 274 do { 275 get_bh(bh); 276 if (!trylock_buffer(bh)) { 277 /* 278 * We failed to lock the buffer and cannot stall in 279 * async migration. Release the taken locks 280 */ 281 struct buffer_head *failed_bh = bh; 282 put_bh(failed_bh); 283 bh = head; 284 while (bh != failed_bh) { 285 unlock_buffer(bh); 286 put_bh(bh); 287 bh = bh->b_this_page; 288 } 289 return false; 290 } 291 292 bh = bh->b_this_page; 293 } while (bh != head); 294 return true; 295 } 296 #else 297 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 298 enum migrate_mode mode) 299 { 300 return true; 301 } 302 #endif /* CONFIG_BLOCK */ 303 304 /* 305 * Replace the page in the mapping. 306 * 307 * The number of remaining references must be: 308 * 1 for anonymous pages without a mapping 309 * 2 for pages with a mapping 310 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 311 */ 312 int migrate_page_move_mapping(struct address_space *mapping, 313 struct page *newpage, struct page *page, 314 struct buffer_head *head, enum migrate_mode mode, 315 int extra_count) 316 { 317 struct zone *oldzone, *newzone; 318 int dirty; 319 int expected_count = 1 + extra_count; 320 void **pslot; 321 322 if (!mapping) { 323 /* Anonymous page without mapping */ 324 if (page_count(page) != expected_count) 325 return -EAGAIN; 326 327 /* No turning back from here */ 328 set_page_memcg(newpage, page_memcg(page)); 329 newpage->index = page->index; 330 newpage->mapping = page->mapping; 331 if (PageSwapBacked(page)) 332 SetPageSwapBacked(newpage); 333 334 return MIGRATEPAGE_SUCCESS; 335 } 336 337 oldzone = page_zone(page); 338 newzone = page_zone(newpage); 339 340 spin_lock_irq(&mapping->tree_lock); 341 342 pslot = radix_tree_lookup_slot(&mapping->page_tree, 343 page_index(page)); 344 345 expected_count += 1 + page_has_private(page); 346 if (page_count(page) != expected_count || 347 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 348 spin_unlock_irq(&mapping->tree_lock); 349 return -EAGAIN; 350 } 351 352 if (!page_freeze_refs(page, expected_count)) { 353 spin_unlock_irq(&mapping->tree_lock); 354 return -EAGAIN; 355 } 356 357 /* 358 * In the async migration case of moving a page with buffers, lock the 359 * buffers using trylock before the mapping is moved. If the mapping 360 * was moved, we later failed to lock the buffers and could not move 361 * the mapping back due to an elevated page count, we would have to 362 * block waiting on other references to be dropped. 363 */ 364 if (mode == MIGRATE_ASYNC && head && 365 !buffer_migrate_lock_buffers(head, mode)) { 366 page_unfreeze_refs(page, expected_count); 367 spin_unlock_irq(&mapping->tree_lock); 368 return -EAGAIN; 369 } 370 371 /* 372 * Now we know that no one else is looking at the page: 373 * no turning back from here. 374 */ 375 set_page_memcg(newpage, page_memcg(page)); 376 newpage->index = page->index; 377 newpage->mapping = page->mapping; 378 if (PageSwapBacked(page)) 379 SetPageSwapBacked(newpage); 380 381 get_page(newpage); /* add cache reference */ 382 if (PageSwapCache(page)) { 383 SetPageSwapCache(newpage); 384 set_page_private(newpage, page_private(page)); 385 } 386 387 /* Move dirty while page refs frozen and newpage not yet exposed */ 388 dirty = PageDirty(page); 389 if (dirty) { 390 ClearPageDirty(page); 391 SetPageDirty(newpage); 392 } 393 394 radix_tree_replace_slot(pslot, newpage); 395 396 /* 397 * Drop cache reference from old page by unfreezing 398 * to one less reference. 399 * We know this isn't the last reference. 400 */ 401 page_unfreeze_refs(page, expected_count - 1); 402 403 spin_unlock(&mapping->tree_lock); 404 /* Leave irq disabled to prevent preemption while updating stats */ 405 406 /* 407 * If moved to a different zone then also account 408 * the page for that zone. Other VM counters will be 409 * taken care of when we establish references to the 410 * new page and drop references to the old page. 411 * 412 * Note that anonymous pages are accounted for 413 * via NR_FILE_PAGES and NR_ANON_PAGES if they 414 * are mapped to swap space. 415 */ 416 if (newzone != oldzone) { 417 __dec_zone_state(oldzone, NR_FILE_PAGES); 418 __inc_zone_state(newzone, NR_FILE_PAGES); 419 if (PageSwapBacked(page) && !PageSwapCache(page)) { 420 __dec_zone_state(oldzone, NR_SHMEM); 421 __inc_zone_state(newzone, NR_SHMEM); 422 } 423 if (dirty && mapping_cap_account_dirty(mapping)) { 424 __dec_zone_state(oldzone, NR_FILE_DIRTY); 425 __inc_zone_state(newzone, NR_FILE_DIRTY); 426 } 427 } 428 local_irq_enable(); 429 430 return MIGRATEPAGE_SUCCESS; 431 } 432 433 /* 434 * The expected number of remaining references is the same as that 435 * of migrate_page_move_mapping(). 436 */ 437 int migrate_huge_page_move_mapping(struct address_space *mapping, 438 struct page *newpage, struct page *page) 439 { 440 int expected_count; 441 void **pslot; 442 443 spin_lock_irq(&mapping->tree_lock); 444 445 pslot = radix_tree_lookup_slot(&mapping->page_tree, 446 page_index(page)); 447 448 expected_count = 2 + page_has_private(page); 449 if (page_count(page) != expected_count || 450 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 451 spin_unlock_irq(&mapping->tree_lock); 452 return -EAGAIN; 453 } 454 455 if (!page_freeze_refs(page, expected_count)) { 456 spin_unlock_irq(&mapping->tree_lock); 457 return -EAGAIN; 458 } 459 460 set_page_memcg(newpage, page_memcg(page)); 461 newpage->index = page->index; 462 newpage->mapping = page->mapping; 463 get_page(newpage); 464 465 radix_tree_replace_slot(pslot, newpage); 466 467 page_unfreeze_refs(page, expected_count - 1); 468 469 spin_unlock_irq(&mapping->tree_lock); 470 return MIGRATEPAGE_SUCCESS; 471 } 472 473 /* 474 * Gigantic pages are so large that we do not guarantee that page++ pointer 475 * arithmetic will work across the entire page. We need something more 476 * specialized. 477 */ 478 static void __copy_gigantic_page(struct page *dst, struct page *src, 479 int nr_pages) 480 { 481 int i; 482 struct page *dst_base = dst; 483 struct page *src_base = src; 484 485 for (i = 0; i < nr_pages; ) { 486 cond_resched(); 487 copy_highpage(dst, src); 488 489 i++; 490 dst = mem_map_next(dst, dst_base, i); 491 src = mem_map_next(src, src_base, i); 492 } 493 } 494 495 static void copy_huge_page(struct page *dst, struct page *src) 496 { 497 int i; 498 int nr_pages; 499 500 if (PageHuge(src)) { 501 /* hugetlbfs page */ 502 struct hstate *h = page_hstate(src); 503 nr_pages = pages_per_huge_page(h); 504 505 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 506 __copy_gigantic_page(dst, src, nr_pages); 507 return; 508 } 509 } else { 510 /* thp page */ 511 BUG_ON(!PageTransHuge(src)); 512 nr_pages = hpage_nr_pages(src); 513 } 514 515 for (i = 0; i < nr_pages; i++) { 516 cond_resched(); 517 copy_highpage(dst + i, src + i); 518 } 519 } 520 521 /* 522 * Copy the page to its new location 523 */ 524 void migrate_page_copy(struct page *newpage, struct page *page) 525 { 526 int cpupid; 527 528 if (PageHuge(page) || PageTransHuge(page)) 529 copy_huge_page(newpage, page); 530 else 531 copy_highpage(newpage, page); 532 533 if (PageError(page)) 534 SetPageError(newpage); 535 if (PageReferenced(page)) 536 SetPageReferenced(newpage); 537 if (PageUptodate(page)) 538 SetPageUptodate(newpage); 539 if (TestClearPageActive(page)) { 540 VM_BUG_ON_PAGE(PageUnevictable(page), page); 541 SetPageActive(newpage); 542 } else if (TestClearPageUnevictable(page)) 543 SetPageUnevictable(newpage); 544 if (PageChecked(page)) 545 SetPageChecked(newpage); 546 if (PageMappedToDisk(page)) 547 SetPageMappedToDisk(newpage); 548 549 /* Move dirty on pages not done by migrate_page_move_mapping() */ 550 if (PageDirty(page)) 551 SetPageDirty(newpage); 552 553 if (page_is_young(page)) 554 set_page_young(newpage); 555 if (page_is_idle(page)) 556 set_page_idle(newpage); 557 558 /* 559 * Copy NUMA information to the new page, to prevent over-eager 560 * future migrations of this same page. 561 */ 562 cpupid = page_cpupid_xchg_last(page, -1); 563 page_cpupid_xchg_last(newpage, cpupid); 564 565 ksm_migrate_page(newpage, page); 566 /* 567 * Please do not reorder this without considering how mm/ksm.c's 568 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 569 */ 570 if (PageSwapCache(page)) 571 ClearPageSwapCache(page); 572 ClearPagePrivate(page); 573 set_page_private(page, 0); 574 575 /* 576 * If any waiters have accumulated on the new page then 577 * wake them up. 578 */ 579 if (PageWriteback(newpage)) 580 end_page_writeback(newpage); 581 } 582 583 /************************************************************ 584 * Migration functions 585 ***********************************************************/ 586 587 /* 588 * Common logic to directly migrate a single page suitable for 589 * pages that do not use PagePrivate/PagePrivate2. 590 * 591 * Pages are locked upon entry and exit. 592 */ 593 int migrate_page(struct address_space *mapping, 594 struct page *newpage, struct page *page, 595 enum migrate_mode mode) 596 { 597 int rc; 598 599 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 600 601 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 602 603 if (rc != MIGRATEPAGE_SUCCESS) 604 return rc; 605 606 migrate_page_copy(newpage, page); 607 return MIGRATEPAGE_SUCCESS; 608 } 609 EXPORT_SYMBOL(migrate_page); 610 611 #ifdef CONFIG_BLOCK 612 /* 613 * Migration function for pages with buffers. This function can only be used 614 * if the underlying filesystem guarantees that no other references to "page" 615 * exist. 616 */ 617 int buffer_migrate_page(struct address_space *mapping, 618 struct page *newpage, struct page *page, enum migrate_mode mode) 619 { 620 struct buffer_head *bh, *head; 621 int rc; 622 623 if (!page_has_buffers(page)) 624 return migrate_page(mapping, newpage, page, mode); 625 626 head = page_buffers(page); 627 628 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 629 630 if (rc != MIGRATEPAGE_SUCCESS) 631 return rc; 632 633 /* 634 * In the async case, migrate_page_move_mapping locked the buffers 635 * with an IRQ-safe spinlock held. In the sync case, the buffers 636 * need to be locked now 637 */ 638 if (mode != MIGRATE_ASYNC) 639 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 640 641 ClearPagePrivate(page); 642 set_page_private(newpage, page_private(page)); 643 set_page_private(page, 0); 644 put_page(page); 645 get_page(newpage); 646 647 bh = head; 648 do { 649 set_bh_page(bh, newpage, bh_offset(bh)); 650 bh = bh->b_this_page; 651 652 } while (bh != head); 653 654 SetPagePrivate(newpage); 655 656 migrate_page_copy(newpage, page); 657 658 bh = head; 659 do { 660 unlock_buffer(bh); 661 put_bh(bh); 662 bh = bh->b_this_page; 663 664 } while (bh != head); 665 666 return MIGRATEPAGE_SUCCESS; 667 } 668 EXPORT_SYMBOL(buffer_migrate_page); 669 #endif 670 671 /* 672 * Writeback a page to clean the dirty state 673 */ 674 static int writeout(struct address_space *mapping, struct page *page) 675 { 676 struct writeback_control wbc = { 677 .sync_mode = WB_SYNC_NONE, 678 .nr_to_write = 1, 679 .range_start = 0, 680 .range_end = LLONG_MAX, 681 .for_reclaim = 1 682 }; 683 int rc; 684 685 if (!mapping->a_ops->writepage) 686 /* No write method for the address space */ 687 return -EINVAL; 688 689 if (!clear_page_dirty_for_io(page)) 690 /* Someone else already triggered a write */ 691 return -EAGAIN; 692 693 /* 694 * A dirty page may imply that the underlying filesystem has 695 * the page on some queue. So the page must be clean for 696 * migration. Writeout may mean we loose the lock and the 697 * page state is no longer what we checked for earlier. 698 * At this point we know that the migration attempt cannot 699 * be successful. 700 */ 701 remove_migration_ptes(page, page); 702 703 rc = mapping->a_ops->writepage(page, &wbc); 704 705 if (rc != AOP_WRITEPAGE_ACTIVATE) 706 /* unlocked. Relock */ 707 lock_page(page); 708 709 return (rc < 0) ? -EIO : -EAGAIN; 710 } 711 712 /* 713 * Default handling if a filesystem does not provide a migration function. 714 */ 715 static int fallback_migrate_page(struct address_space *mapping, 716 struct page *newpage, struct page *page, enum migrate_mode mode) 717 { 718 if (PageDirty(page)) { 719 /* Only writeback pages in full synchronous migration */ 720 if (mode != MIGRATE_SYNC) 721 return -EBUSY; 722 return writeout(mapping, page); 723 } 724 725 /* 726 * Buffers may be managed in a filesystem specific way. 727 * We must have no buffers or drop them. 728 */ 729 if (page_has_private(page) && 730 !try_to_release_page(page, GFP_KERNEL)) 731 return -EAGAIN; 732 733 return migrate_page(mapping, newpage, page, mode); 734 } 735 736 /* 737 * Move a page to a newly allocated page 738 * The page is locked and all ptes have been successfully removed. 739 * 740 * The new page will have replaced the old page if this function 741 * is successful. 742 * 743 * Return value: 744 * < 0 - error code 745 * MIGRATEPAGE_SUCCESS - success 746 */ 747 static int move_to_new_page(struct page *newpage, struct page *page, 748 enum migrate_mode mode) 749 { 750 struct address_space *mapping; 751 int rc; 752 753 VM_BUG_ON_PAGE(!PageLocked(page), page); 754 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 755 756 mapping = page_mapping(page); 757 if (!mapping) 758 rc = migrate_page(mapping, newpage, page, mode); 759 else if (mapping->a_ops->migratepage) 760 /* 761 * Most pages have a mapping and most filesystems provide a 762 * migratepage callback. Anonymous pages are part of swap 763 * space which also has its own migratepage callback. This 764 * is the most common path for page migration. 765 */ 766 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode); 767 else 768 rc = fallback_migrate_page(mapping, newpage, page, mode); 769 770 /* 771 * When successful, old pagecache page->mapping must be cleared before 772 * page is freed; but stats require that PageAnon be left as PageAnon. 773 */ 774 if (rc == MIGRATEPAGE_SUCCESS) { 775 set_page_memcg(page, NULL); 776 if (!PageAnon(page)) 777 page->mapping = NULL; 778 } 779 return rc; 780 } 781 782 static int __unmap_and_move(struct page *page, struct page *newpage, 783 int force, enum migrate_mode mode) 784 { 785 int rc = -EAGAIN; 786 int page_was_mapped = 0; 787 struct anon_vma *anon_vma = NULL; 788 789 if (!trylock_page(page)) { 790 if (!force || mode == MIGRATE_ASYNC) 791 goto out; 792 793 /* 794 * It's not safe for direct compaction to call lock_page. 795 * For example, during page readahead pages are added locked 796 * to the LRU. Later, when the IO completes the pages are 797 * marked uptodate and unlocked. However, the queueing 798 * could be merging multiple pages for one bio (e.g. 799 * mpage_readpages). If an allocation happens for the 800 * second or third page, the process can end up locking 801 * the same page twice and deadlocking. Rather than 802 * trying to be clever about what pages can be locked, 803 * avoid the use of lock_page for direct compaction 804 * altogether. 805 */ 806 if (current->flags & PF_MEMALLOC) 807 goto out; 808 809 lock_page(page); 810 } 811 812 if (PageWriteback(page)) { 813 /* 814 * Only in the case of a full synchronous migration is it 815 * necessary to wait for PageWriteback. In the async case, 816 * the retry loop is too short and in the sync-light case, 817 * the overhead of stalling is too much 818 */ 819 if (mode != MIGRATE_SYNC) { 820 rc = -EBUSY; 821 goto out_unlock; 822 } 823 if (!force) 824 goto out_unlock; 825 wait_on_page_writeback(page); 826 } 827 828 /* 829 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 830 * we cannot notice that anon_vma is freed while we migrates a page. 831 * This get_anon_vma() delays freeing anon_vma pointer until the end 832 * of migration. File cache pages are no problem because of page_lock() 833 * File Caches may use write_page() or lock_page() in migration, then, 834 * just care Anon page here. 835 * 836 * Only page_get_anon_vma() understands the subtleties of 837 * getting a hold on an anon_vma from outside one of its mms. 838 * But if we cannot get anon_vma, then we won't need it anyway, 839 * because that implies that the anon page is no longer mapped 840 * (and cannot be remapped so long as we hold the page lock). 841 */ 842 if (PageAnon(page) && !PageKsm(page)) 843 anon_vma = page_get_anon_vma(page); 844 845 /* 846 * Block others from accessing the new page when we get around to 847 * establishing additional references. We are usually the only one 848 * holding a reference to newpage at this point. We used to have a BUG 849 * here if trylock_page(newpage) fails, but would like to allow for 850 * cases where there might be a race with the previous use of newpage. 851 * This is much like races on refcount of oldpage: just don't BUG(). 852 */ 853 if (unlikely(!trylock_page(newpage))) 854 goto out_unlock; 855 856 if (unlikely(isolated_balloon_page(page))) { 857 /* 858 * A ballooned page does not need any special attention from 859 * physical to virtual reverse mapping procedures. 860 * Skip any attempt to unmap PTEs or to remap swap cache, 861 * in order to avoid burning cycles at rmap level, and perform 862 * the page migration right away (proteced by page lock). 863 */ 864 rc = balloon_page_migrate(newpage, page, mode); 865 goto out_unlock_both; 866 } 867 868 /* 869 * Corner case handling: 870 * 1. When a new swap-cache page is read into, it is added to the LRU 871 * and treated as swapcache but it has no rmap yet. 872 * Calling try_to_unmap() against a page->mapping==NULL page will 873 * trigger a BUG. So handle it here. 874 * 2. An orphaned page (see truncate_complete_page) might have 875 * fs-private metadata. The page can be picked up due to memory 876 * offlining. Everywhere else except page reclaim, the page is 877 * invisible to the vm, so the page can not be migrated. So try to 878 * free the metadata, so the page can be freed. 879 */ 880 if (!page->mapping) { 881 VM_BUG_ON_PAGE(PageAnon(page), page); 882 if (page_has_private(page)) { 883 try_to_free_buffers(page); 884 goto out_unlock_both; 885 } 886 } else if (page_mapped(page)) { 887 /* Establish migration ptes */ 888 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 889 page); 890 try_to_unmap(page, 891 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 892 page_was_mapped = 1; 893 } 894 895 if (!page_mapped(page)) 896 rc = move_to_new_page(newpage, page, mode); 897 898 if (page_was_mapped) 899 remove_migration_ptes(page, 900 rc == MIGRATEPAGE_SUCCESS ? newpage : page); 901 902 out_unlock_both: 903 unlock_page(newpage); 904 out_unlock: 905 /* Drop an anon_vma reference if we took one */ 906 if (anon_vma) 907 put_anon_vma(anon_vma); 908 unlock_page(page); 909 out: 910 return rc; 911 } 912 913 /* 914 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 915 * around it. 916 */ 917 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 918 #define ICE_noinline noinline 919 #else 920 #define ICE_noinline 921 #endif 922 923 /* 924 * Obtain the lock on page, remove all ptes and migrate the page 925 * to the newly allocated page in newpage. 926 */ 927 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 928 free_page_t put_new_page, 929 unsigned long private, struct page *page, 930 int force, enum migrate_mode mode, 931 enum migrate_reason reason) 932 { 933 int rc = MIGRATEPAGE_SUCCESS; 934 int *result = NULL; 935 struct page *newpage; 936 937 newpage = get_new_page(page, private, &result); 938 if (!newpage) 939 return -ENOMEM; 940 941 if (page_count(page) == 1) { 942 /* page was freed from under us. So we are done. */ 943 goto out; 944 } 945 946 if (unlikely(PageTransHuge(page))) { 947 lock_page(page); 948 rc = split_huge_page(page); 949 unlock_page(page); 950 if (rc) 951 goto out; 952 } 953 954 rc = __unmap_and_move(page, newpage, force, mode); 955 if (rc == MIGRATEPAGE_SUCCESS) 956 put_new_page = NULL; 957 958 out: 959 if (rc != -EAGAIN) { 960 /* 961 * A page that has been migrated has all references 962 * removed and will be freed. A page that has not been 963 * migrated will have kepts its references and be 964 * restored. 965 */ 966 list_del(&page->lru); 967 dec_zone_page_state(page, NR_ISOLATED_ANON + 968 page_is_file_cache(page)); 969 /* Soft-offlined page shouldn't go through lru cache list */ 970 if (reason == MR_MEMORY_FAILURE) { 971 put_page(page); 972 if (!test_set_page_hwpoison(page)) 973 num_poisoned_pages_inc(); 974 } else 975 putback_lru_page(page); 976 } 977 978 /* 979 * If migration was not successful and there's a freeing callback, use 980 * it. Otherwise, putback_lru_page() will drop the reference grabbed 981 * during isolation. 982 */ 983 if (put_new_page) 984 put_new_page(newpage, private); 985 else if (unlikely(__is_movable_balloon_page(newpage))) { 986 /* drop our reference, page already in the balloon */ 987 put_page(newpage); 988 } else 989 putback_lru_page(newpage); 990 991 if (result) { 992 if (rc) 993 *result = rc; 994 else 995 *result = page_to_nid(newpage); 996 } 997 return rc; 998 } 999 1000 /* 1001 * Counterpart of unmap_and_move_page() for hugepage migration. 1002 * 1003 * This function doesn't wait the completion of hugepage I/O 1004 * because there is no race between I/O and migration for hugepage. 1005 * Note that currently hugepage I/O occurs only in direct I/O 1006 * where no lock is held and PG_writeback is irrelevant, 1007 * and writeback status of all subpages are counted in the reference 1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1009 * under direct I/O, the reference of the head page is 512 and a bit more.) 1010 * This means that when we try to migrate hugepage whose subpages are 1011 * doing direct I/O, some references remain after try_to_unmap() and 1012 * hugepage migration fails without data corruption. 1013 * 1014 * There is also no race when direct I/O is issued on the page under migration, 1015 * because then pte is replaced with migration swap entry and direct I/O code 1016 * will wait in the page fault for migration to complete. 1017 */ 1018 static int unmap_and_move_huge_page(new_page_t get_new_page, 1019 free_page_t put_new_page, unsigned long private, 1020 struct page *hpage, int force, 1021 enum migrate_mode mode) 1022 { 1023 int rc = -EAGAIN; 1024 int *result = NULL; 1025 int page_was_mapped = 0; 1026 struct page *new_hpage; 1027 struct anon_vma *anon_vma = NULL; 1028 1029 /* 1030 * Movability of hugepages depends on architectures and hugepage size. 1031 * This check is necessary because some callers of hugepage migration 1032 * like soft offline and memory hotremove don't walk through page 1033 * tables or check whether the hugepage is pmd-based or not before 1034 * kicking migration. 1035 */ 1036 if (!hugepage_migration_supported(page_hstate(hpage))) { 1037 putback_active_hugepage(hpage); 1038 return -ENOSYS; 1039 } 1040 1041 new_hpage = get_new_page(hpage, private, &result); 1042 if (!new_hpage) 1043 return -ENOMEM; 1044 1045 if (!trylock_page(hpage)) { 1046 if (!force || mode != MIGRATE_SYNC) 1047 goto out; 1048 lock_page(hpage); 1049 } 1050 1051 if (PageAnon(hpage)) 1052 anon_vma = page_get_anon_vma(hpage); 1053 1054 if (unlikely(!trylock_page(new_hpage))) 1055 goto put_anon; 1056 1057 if (page_mapped(hpage)) { 1058 try_to_unmap(hpage, 1059 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1060 page_was_mapped = 1; 1061 } 1062 1063 if (!page_mapped(hpage)) 1064 rc = move_to_new_page(new_hpage, hpage, mode); 1065 1066 if (page_was_mapped) 1067 remove_migration_ptes(hpage, 1068 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage); 1069 1070 unlock_page(new_hpage); 1071 1072 put_anon: 1073 if (anon_vma) 1074 put_anon_vma(anon_vma); 1075 1076 if (rc == MIGRATEPAGE_SUCCESS) { 1077 hugetlb_cgroup_migrate(hpage, new_hpage); 1078 put_new_page = NULL; 1079 } 1080 1081 unlock_page(hpage); 1082 out: 1083 if (rc != -EAGAIN) 1084 putback_active_hugepage(hpage); 1085 1086 /* 1087 * If migration was not successful and there's a freeing callback, use 1088 * it. Otherwise, put_page() will drop the reference grabbed during 1089 * isolation. 1090 */ 1091 if (put_new_page) 1092 put_new_page(new_hpage, private); 1093 else 1094 putback_active_hugepage(new_hpage); 1095 1096 if (result) { 1097 if (rc) 1098 *result = rc; 1099 else 1100 *result = page_to_nid(new_hpage); 1101 } 1102 return rc; 1103 } 1104 1105 /* 1106 * migrate_pages - migrate the pages specified in a list, to the free pages 1107 * supplied as the target for the page migration 1108 * 1109 * @from: The list of pages to be migrated. 1110 * @get_new_page: The function used to allocate free pages to be used 1111 * as the target of the page migration. 1112 * @put_new_page: The function used to free target pages if migration 1113 * fails, or NULL if no special handling is necessary. 1114 * @private: Private data to be passed on to get_new_page() 1115 * @mode: The migration mode that specifies the constraints for 1116 * page migration, if any. 1117 * @reason: The reason for page migration. 1118 * 1119 * The function returns after 10 attempts or if no pages are movable any more 1120 * because the list has become empty or no retryable pages exist any more. 1121 * The caller should call putback_movable_pages() to return pages to the LRU 1122 * or free list only if ret != 0. 1123 * 1124 * Returns the number of pages that were not migrated, or an error code. 1125 */ 1126 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1127 free_page_t put_new_page, unsigned long private, 1128 enum migrate_mode mode, int reason) 1129 { 1130 int retry = 1; 1131 int nr_failed = 0; 1132 int nr_succeeded = 0; 1133 int pass = 0; 1134 struct page *page; 1135 struct page *page2; 1136 int swapwrite = current->flags & PF_SWAPWRITE; 1137 int rc; 1138 1139 if (!swapwrite) 1140 current->flags |= PF_SWAPWRITE; 1141 1142 for(pass = 0; pass < 10 && retry; pass++) { 1143 retry = 0; 1144 1145 list_for_each_entry_safe(page, page2, from, lru) { 1146 cond_resched(); 1147 1148 if (PageHuge(page)) 1149 rc = unmap_and_move_huge_page(get_new_page, 1150 put_new_page, private, page, 1151 pass > 2, mode); 1152 else 1153 rc = unmap_and_move(get_new_page, put_new_page, 1154 private, page, pass > 2, mode, 1155 reason); 1156 1157 switch(rc) { 1158 case -ENOMEM: 1159 goto out; 1160 case -EAGAIN: 1161 retry++; 1162 break; 1163 case MIGRATEPAGE_SUCCESS: 1164 nr_succeeded++; 1165 break; 1166 default: 1167 /* 1168 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1169 * unlike -EAGAIN case, the failed page is 1170 * removed from migration page list and not 1171 * retried in the next outer loop. 1172 */ 1173 nr_failed++; 1174 break; 1175 } 1176 } 1177 } 1178 nr_failed += retry; 1179 rc = nr_failed; 1180 out: 1181 if (nr_succeeded) 1182 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1183 if (nr_failed) 1184 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1185 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1186 1187 if (!swapwrite) 1188 current->flags &= ~PF_SWAPWRITE; 1189 1190 return rc; 1191 } 1192 1193 #ifdef CONFIG_NUMA 1194 /* 1195 * Move a list of individual pages 1196 */ 1197 struct page_to_node { 1198 unsigned long addr; 1199 struct page *page; 1200 int node; 1201 int status; 1202 }; 1203 1204 static struct page *new_page_node(struct page *p, unsigned long private, 1205 int **result) 1206 { 1207 struct page_to_node *pm = (struct page_to_node *)private; 1208 1209 while (pm->node != MAX_NUMNODES && pm->page != p) 1210 pm++; 1211 1212 if (pm->node == MAX_NUMNODES) 1213 return NULL; 1214 1215 *result = &pm->status; 1216 1217 if (PageHuge(p)) 1218 return alloc_huge_page_node(page_hstate(compound_head(p)), 1219 pm->node); 1220 else 1221 return __alloc_pages_node(pm->node, 1222 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1223 } 1224 1225 /* 1226 * Move a set of pages as indicated in the pm array. The addr 1227 * field must be set to the virtual address of the page to be moved 1228 * and the node number must contain a valid target node. 1229 * The pm array ends with node = MAX_NUMNODES. 1230 */ 1231 static int do_move_page_to_node_array(struct mm_struct *mm, 1232 struct page_to_node *pm, 1233 int migrate_all) 1234 { 1235 int err; 1236 struct page_to_node *pp; 1237 LIST_HEAD(pagelist); 1238 1239 down_read(&mm->mmap_sem); 1240 1241 /* 1242 * Build a list of pages to migrate 1243 */ 1244 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1245 struct vm_area_struct *vma; 1246 struct page *page; 1247 1248 err = -EFAULT; 1249 vma = find_vma(mm, pp->addr); 1250 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1251 goto set_status; 1252 1253 /* FOLL_DUMP to ignore special (like zero) pages */ 1254 page = follow_page(vma, pp->addr, 1255 FOLL_GET | FOLL_SPLIT | FOLL_DUMP); 1256 1257 err = PTR_ERR(page); 1258 if (IS_ERR(page)) 1259 goto set_status; 1260 1261 err = -ENOENT; 1262 if (!page) 1263 goto set_status; 1264 1265 pp->page = page; 1266 err = page_to_nid(page); 1267 1268 if (err == pp->node) 1269 /* 1270 * Node already in the right place 1271 */ 1272 goto put_and_set; 1273 1274 err = -EACCES; 1275 if (page_mapcount(page) > 1 && 1276 !migrate_all) 1277 goto put_and_set; 1278 1279 if (PageHuge(page)) { 1280 if (PageHead(page)) 1281 isolate_huge_page(page, &pagelist); 1282 goto put_and_set; 1283 } 1284 1285 err = isolate_lru_page(page); 1286 if (!err) { 1287 list_add_tail(&page->lru, &pagelist); 1288 inc_zone_page_state(page, NR_ISOLATED_ANON + 1289 page_is_file_cache(page)); 1290 } 1291 put_and_set: 1292 /* 1293 * Either remove the duplicate refcount from 1294 * isolate_lru_page() or drop the page ref if it was 1295 * not isolated. 1296 */ 1297 put_page(page); 1298 set_status: 1299 pp->status = err; 1300 } 1301 1302 err = 0; 1303 if (!list_empty(&pagelist)) { 1304 err = migrate_pages(&pagelist, new_page_node, NULL, 1305 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1306 if (err) 1307 putback_movable_pages(&pagelist); 1308 } 1309 1310 up_read(&mm->mmap_sem); 1311 return err; 1312 } 1313 1314 /* 1315 * Migrate an array of page address onto an array of nodes and fill 1316 * the corresponding array of status. 1317 */ 1318 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1319 unsigned long nr_pages, 1320 const void __user * __user *pages, 1321 const int __user *nodes, 1322 int __user *status, int flags) 1323 { 1324 struct page_to_node *pm; 1325 unsigned long chunk_nr_pages; 1326 unsigned long chunk_start; 1327 int err; 1328 1329 err = -ENOMEM; 1330 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1331 if (!pm) 1332 goto out; 1333 1334 migrate_prep(); 1335 1336 /* 1337 * Store a chunk of page_to_node array in a page, 1338 * but keep the last one as a marker 1339 */ 1340 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1341 1342 for (chunk_start = 0; 1343 chunk_start < nr_pages; 1344 chunk_start += chunk_nr_pages) { 1345 int j; 1346 1347 if (chunk_start + chunk_nr_pages > nr_pages) 1348 chunk_nr_pages = nr_pages - chunk_start; 1349 1350 /* fill the chunk pm with addrs and nodes from user-space */ 1351 for (j = 0; j < chunk_nr_pages; j++) { 1352 const void __user *p; 1353 int node; 1354 1355 err = -EFAULT; 1356 if (get_user(p, pages + j + chunk_start)) 1357 goto out_pm; 1358 pm[j].addr = (unsigned long) p; 1359 1360 if (get_user(node, nodes + j + chunk_start)) 1361 goto out_pm; 1362 1363 err = -ENODEV; 1364 if (node < 0 || node >= MAX_NUMNODES) 1365 goto out_pm; 1366 1367 if (!node_state(node, N_MEMORY)) 1368 goto out_pm; 1369 1370 err = -EACCES; 1371 if (!node_isset(node, task_nodes)) 1372 goto out_pm; 1373 1374 pm[j].node = node; 1375 } 1376 1377 /* End marker for this chunk */ 1378 pm[chunk_nr_pages].node = MAX_NUMNODES; 1379 1380 /* Migrate this chunk */ 1381 err = do_move_page_to_node_array(mm, pm, 1382 flags & MPOL_MF_MOVE_ALL); 1383 if (err < 0) 1384 goto out_pm; 1385 1386 /* Return status information */ 1387 for (j = 0; j < chunk_nr_pages; j++) 1388 if (put_user(pm[j].status, status + j + chunk_start)) { 1389 err = -EFAULT; 1390 goto out_pm; 1391 } 1392 } 1393 err = 0; 1394 1395 out_pm: 1396 free_page((unsigned long)pm); 1397 out: 1398 return err; 1399 } 1400 1401 /* 1402 * Determine the nodes of an array of pages and store it in an array of status. 1403 */ 1404 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1405 const void __user **pages, int *status) 1406 { 1407 unsigned long i; 1408 1409 down_read(&mm->mmap_sem); 1410 1411 for (i = 0; i < nr_pages; i++) { 1412 unsigned long addr = (unsigned long)(*pages); 1413 struct vm_area_struct *vma; 1414 struct page *page; 1415 int err = -EFAULT; 1416 1417 vma = find_vma(mm, addr); 1418 if (!vma || addr < vma->vm_start) 1419 goto set_status; 1420 1421 /* FOLL_DUMP to ignore special (like zero) pages */ 1422 page = follow_page(vma, addr, FOLL_DUMP); 1423 1424 err = PTR_ERR(page); 1425 if (IS_ERR(page)) 1426 goto set_status; 1427 1428 err = page ? page_to_nid(page) : -ENOENT; 1429 set_status: 1430 *status = err; 1431 1432 pages++; 1433 status++; 1434 } 1435 1436 up_read(&mm->mmap_sem); 1437 } 1438 1439 /* 1440 * Determine the nodes of a user array of pages and store it in 1441 * a user array of status. 1442 */ 1443 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1444 const void __user * __user *pages, 1445 int __user *status) 1446 { 1447 #define DO_PAGES_STAT_CHUNK_NR 16 1448 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1449 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1450 1451 while (nr_pages) { 1452 unsigned long chunk_nr; 1453 1454 chunk_nr = nr_pages; 1455 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1456 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1457 1458 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1459 break; 1460 1461 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1462 1463 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1464 break; 1465 1466 pages += chunk_nr; 1467 status += chunk_nr; 1468 nr_pages -= chunk_nr; 1469 } 1470 return nr_pages ? -EFAULT : 0; 1471 } 1472 1473 /* 1474 * Move a list of pages in the address space of the currently executing 1475 * process. 1476 */ 1477 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1478 const void __user * __user *, pages, 1479 const int __user *, nodes, 1480 int __user *, status, int, flags) 1481 { 1482 const struct cred *cred = current_cred(), *tcred; 1483 struct task_struct *task; 1484 struct mm_struct *mm; 1485 int err; 1486 nodemask_t task_nodes; 1487 1488 /* Check flags */ 1489 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1490 return -EINVAL; 1491 1492 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1493 return -EPERM; 1494 1495 /* Find the mm_struct */ 1496 rcu_read_lock(); 1497 task = pid ? find_task_by_vpid(pid) : current; 1498 if (!task) { 1499 rcu_read_unlock(); 1500 return -ESRCH; 1501 } 1502 get_task_struct(task); 1503 1504 /* 1505 * Check if this process has the right to modify the specified 1506 * process. The right exists if the process has administrative 1507 * capabilities, superuser privileges or the same 1508 * userid as the target process. 1509 */ 1510 tcred = __task_cred(task); 1511 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1512 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1513 !capable(CAP_SYS_NICE)) { 1514 rcu_read_unlock(); 1515 err = -EPERM; 1516 goto out; 1517 } 1518 rcu_read_unlock(); 1519 1520 err = security_task_movememory(task); 1521 if (err) 1522 goto out; 1523 1524 task_nodes = cpuset_mems_allowed(task); 1525 mm = get_task_mm(task); 1526 put_task_struct(task); 1527 1528 if (!mm) 1529 return -EINVAL; 1530 1531 if (nodes) 1532 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1533 nodes, status, flags); 1534 else 1535 err = do_pages_stat(mm, nr_pages, pages, status); 1536 1537 mmput(mm); 1538 return err; 1539 1540 out: 1541 put_task_struct(task); 1542 return err; 1543 } 1544 1545 #ifdef CONFIG_NUMA_BALANCING 1546 /* 1547 * Returns true if this is a safe migration target node for misplaced NUMA 1548 * pages. Currently it only checks the watermarks which crude 1549 */ 1550 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1551 unsigned long nr_migrate_pages) 1552 { 1553 int z; 1554 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1555 struct zone *zone = pgdat->node_zones + z; 1556 1557 if (!populated_zone(zone)) 1558 continue; 1559 1560 if (!zone_reclaimable(zone)) 1561 continue; 1562 1563 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1564 if (!zone_watermark_ok(zone, 0, 1565 high_wmark_pages(zone) + 1566 nr_migrate_pages, 1567 0, 0)) 1568 continue; 1569 return true; 1570 } 1571 return false; 1572 } 1573 1574 static struct page *alloc_misplaced_dst_page(struct page *page, 1575 unsigned long data, 1576 int **result) 1577 { 1578 int nid = (int) data; 1579 struct page *newpage; 1580 1581 newpage = __alloc_pages_node(nid, 1582 (GFP_HIGHUSER_MOVABLE | 1583 __GFP_THISNODE | __GFP_NOMEMALLOC | 1584 __GFP_NORETRY | __GFP_NOWARN) & 1585 ~__GFP_RECLAIM, 0); 1586 1587 return newpage; 1588 } 1589 1590 /* 1591 * page migration rate limiting control. 1592 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1593 * window of time. Default here says do not migrate more than 1280M per second. 1594 */ 1595 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1596 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1597 1598 /* Returns true if the node is migrate rate-limited after the update */ 1599 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1600 unsigned long nr_pages) 1601 { 1602 /* 1603 * Rate-limit the amount of data that is being migrated to a node. 1604 * Optimal placement is no good if the memory bus is saturated and 1605 * all the time is being spent migrating! 1606 */ 1607 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1608 spin_lock(&pgdat->numabalancing_migrate_lock); 1609 pgdat->numabalancing_migrate_nr_pages = 0; 1610 pgdat->numabalancing_migrate_next_window = jiffies + 1611 msecs_to_jiffies(migrate_interval_millisecs); 1612 spin_unlock(&pgdat->numabalancing_migrate_lock); 1613 } 1614 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1615 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1616 nr_pages); 1617 return true; 1618 } 1619 1620 /* 1621 * This is an unlocked non-atomic update so errors are possible. 1622 * The consequences are failing to migrate when we potentiall should 1623 * have which is not severe enough to warrant locking. If it is ever 1624 * a problem, it can be converted to a per-cpu counter. 1625 */ 1626 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1627 return false; 1628 } 1629 1630 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1631 { 1632 int page_lru; 1633 1634 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1635 1636 /* Avoid migrating to a node that is nearly full */ 1637 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1638 return 0; 1639 1640 if (isolate_lru_page(page)) 1641 return 0; 1642 1643 /* 1644 * migrate_misplaced_transhuge_page() skips page migration's usual 1645 * check on page_count(), so we must do it here, now that the page 1646 * has been isolated: a GUP pin, or any other pin, prevents migration. 1647 * The expected page count is 3: 1 for page's mapcount and 1 for the 1648 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1649 */ 1650 if (PageTransHuge(page) && page_count(page) != 3) { 1651 putback_lru_page(page); 1652 return 0; 1653 } 1654 1655 page_lru = page_is_file_cache(page); 1656 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1657 hpage_nr_pages(page)); 1658 1659 /* 1660 * Isolating the page has taken another reference, so the 1661 * caller's reference can be safely dropped without the page 1662 * disappearing underneath us during migration. 1663 */ 1664 put_page(page); 1665 return 1; 1666 } 1667 1668 bool pmd_trans_migrating(pmd_t pmd) 1669 { 1670 struct page *page = pmd_page(pmd); 1671 return PageLocked(page); 1672 } 1673 1674 /* 1675 * Attempt to migrate a misplaced page to the specified destination 1676 * node. Caller is expected to have an elevated reference count on 1677 * the page that will be dropped by this function before returning. 1678 */ 1679 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1680 int node) 1681 { 1682 pg_data_t *pgdat = NODE_DATA(node); 1683 int isolated; 1684 int nr_remaining; 1685 LIST_HEAD(migratepages); 1686 1687 /* 1688 * Don't migrate file pages that are mapped in multiple processes 1689 * with execute permissions as they are probably shared libraries. 1690 */ 1691 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1692 (vma->vm_flags & VM_EXEC)) 1693 goto out; 1694 1695 /* 1696 * Rate-limit the amount of data that is being migrated to a node. 1697 * Optimal placement is no good if the memory bus is saturated and 1698 * all the time is being spent migrating! 1699 */ 1700 if (numamigrate_update_ratelimit(pgdat, 1)) 1701 goto out; 1702 1703 isolated = numamigrate_isolate_page(pgdat, page); 1704 if (!isolated) 1705 goto out; 1706 1707 list_add(&page->lru, &migratepages); 1708 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1709 NULL, node, MIGRATE_ASYNC, 1710 MR_NUMA_MISPLACED); 1711 if (nr_remaining) { 1712 if (!list_empty(&migratepages)) { 1713 list_del(&page->lru); 1714 dec_zone_page_state(page, NR_ISOLATED_ANON + 1715 page_is_file_cache(page)); 1716 putback_lru_page(page); 1717 } 1718 isolated = 0; 1719 } else 1720 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1721 BUG_ON(!list_empty(&migratepages)); 1722 return isolated; 1723 1724 out: 1725 put_page(page); 1726 return 0; 1727 } 1728 #endif /* CONFIG_NUMA_BALANCING */ 1729 1730 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1731 /* 1732 * Migrates a THP to a given target node. page must be locked and is unlocked 1733 * before returning. 1734 */ 1735 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1736 struct vm_area_struct *vma, 1737 pmd_t *pmd, pmd_t entry, 1738 unsigned long address, 1739 struct page *page, int node) 1740 { 1741 spinlock_t *ptl; 1742 pg_data_t *pgdat = NODE_DATA(node); 1743 int isolated = 0; 1744 struct page *new_page = NULL; 1745 int page_lru = page_is_file_cache(page); 1746 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1747 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1748 pmd_t orig_entry; 1749 1750 /* 1751 * Rate-limit the amount of data that is being migrated to a node. 1752 * Optimal placement is no good if the memory bus is saturated and 1753 * all the time is being spent migrating! 1754 */ 1755 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1756 goto out_dropref; 1757 1758 new_page = alloc_pages_node(node, 1759 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1760 HPAGE_PMD_ORDER); 1761 if (!new_page) 1762 goto out_fail; 1763 prep_transhuge_page(new_page); 1764 1765 isolated = numamigrate_isolate_page(pgdat, page); 1766 if (!isolated) { 1767 put_page(new_page); 1768 goto out_fail; 1769 } 1770 1771 if (mm_tlb_flush_pending(mm)) 1772 flush_tlb_range(vma, mmun_start, mmun_end); 1773 1774 /* Prepare a page as a migration target */ 1775 __SetPageLocked(new_page); 1776 SetPageSwapBacked(new_page); 1777 1778 /* anon mapping, we can simply copy page->mapping to the new page: */ 1779 new_page->mapping = page->mapping; 1780 new_page->index = page->index; 1781 migrate_page_copy(new_page, page); 1782 WARN_ON(PageLRU(new_page)); 1783 1784 /* Recheck the target PMD */ 1785 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1786 ptl = pmd_lock(mm, pmd); 1787 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1788 fail_putback: 1789 spin_unlock(ptl); 1790 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1791 1792 /* Reverse changes made by migrate_page_copy() */ 1793 if (TestClearPageActive(new_page)) 1794 SetPageActive(page); 1795 if (TestClearPageUnevictable(new_page)) 1796 SetPageUnevictable(page); 1797 1798 unlock_page(new_page); 1799 put_page(new_page); /* Free it */ 1800 1801 /* Retake the callers reference and putback on LRU */ 1802 get_page(page); 1803 putback_lru_page(page); 1804 mod_zone_page_state(page_zone(page), 1805 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1806 1807 goto out_unlock; 1808 } 1809 1810 orig_entry = *pmd; 1811 entry = mk_pmd(new_page, vma->vm_page_prot); 1812 entry = pmd_mkhuge(entry); 1813 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1814 1815 /* 1816 * Clear the old entry under pagetable lock and establish the new PTE. 1817 * Any parallel GUP will either observe the old page blocking on the 1818 * page lock, block on the page table lock or observe the new page. 1819 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1820 * guarantee the copy is visible before the pagetable update. 1821 */ 1822 flush_cache_range(vma, mmun_start, mmun_end); 1823 page_add_anon_rmap(new_page, vma, mmun_start, true); 1824 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 1825 set_pmd_at(mm, mmun_start, pmd, entry); 1826 flush_tlb_range(vma, mmun_start, mmun_end); 1827 update_mmu_cache_pmd(vma, address, &entry); 1828 1829 if (page_count(page) != 2) { 1830 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1831 flush_tlb_range(vma, mmun_start, mmun_end); 1832 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1833 update_mmu_cache_pmd(vma, address, &entry); 1834 page_remove_rmap(new_page, true); 1835 goto fail_putback; 1836 } 1837 1838 mlock_migrate_page(new_page, page); 1839 set_page_memcg(new_page, page_memcg(page)); 1840 set_page_memcg(page, NULL); 1841 page_remove_rmap(page, true); 1842 1843 spin_unlock(ptl); 1844 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1845 1846 /* Take an "isolate" reference and put new page on the LRU. */ 1847 get_page(new_page); 1848 putback_lru_page(new_page); 1849 1850 unlock_page(new_page); 1851 unlock_page(page); 1852 put_page(page); /* Drop the rmap reference */ 1853 put_page(page); /* Drop the LRU isolation reference */ 1854 1855 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1856 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1857 1858 mod_zone_page_state(page_zone(page), 1859 NR_ISOLATED_ANON + page_lru, 1860 -HPAGE_PMD_NR); 1861 return isolated; 1862 1863 out_fail: 1864 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1865 out_dropref: 1866 ptl = pmd_lock(mm, pmd); 1867 if (pmd_same(*pmd, entry)) { 1868 entry = pmd_modify(entry, vma->vm_page_prot); 1869 set_pmd_at(mm, mmun_start, pmd, entry); 1870 update_mmu_cache_pmd(vma, address, &entry); 1871 } 1872 spin_unlock(ptl); 1873 1874 out_unlock: 1875 unlock_page(page); 1876 put_page(page); 1877 return 0; 1878 } 1879 #endif /* CONFIG_NUMA_BALANCING */ 1880 1881 #endif /* CONFIG_NUMA */ 1882